
Foundations for
Bidirectional Programming

Benjamin Pierce
University of Pennsylvania

ICMT 2009

Foundations for
Bidirectional Programming

Benjamin Pierce
University of Pennsylvania

ICMT 2009

How To Build a
Bidirectional Programming

Language

Benjamin Pierce
University of Pennsylvania

ICMT 2009

Connected Structures

Connected Structures

a database a materialized view

Connected Structures

a database a materialized view

an in-memory heap structure its marshalled disk representation

Connected Structures

a database a materialized view

an in-memory heap structure its marshalled disk representation

an XML document a pretty-printed textual representa-
tion

Connected Structures

a database a materialized view

an in-memory heap structure its marshalled disk representation

an XML document a pretty-printed textual representa-
tion

a text pane in a GUI the scroll bar for this text pane

Connected Structures

a database a materialized view

an in-memory heap structure its marshalled disk representation

an XML document a pretty-printed textual representa-
tion

a text pane in a GUI the scroll bar for this text pane

a relational schema an ER diagram of the same schema

Connected Structures

a database a materialized view

an in-memory heap structure its marshalled disk representation

an XML document a pretty-printed textual representa-
tion

a text pane in a GUI the scroll bar for this text pane

a relational schema an ER diagram of the same schema

a requirements model of a software
system

an implementation model of the
same system

Connected Structures

a database a materialized view

an in-memory heap structure its marshalled disk representation

an XML document a pretty-printed textual representa-
tion

a text pane in a GUI the scroll bar for this text pane

a relational schema an ER diagram of the same schema

a requirements model of a software
system

an implementation model of the
same system

Unfortunately, nothing stays the same forever...

Connected Structures... and Updates

When one of the structures is changed...

Connected Structures... and Updates

When one of the structures is changed... the other needs to be
updated “in the same way”

An “Easy” Solution

Standard approach: write a pair of functions, each propagating
updates in one direction.

f

g

+ Uses standard technology

+ Works fine for simple transformations

– Scales badly

– Maintenance nightmare

– No automatic support for detecting mistakes

An “Easy” Solution

Standard approach: write a pair of functions, each propagating
updates in one direction.

f

g

+ Uses standard technology

+ Works fine for simple transformations

– Scales badly

– Maintenance nightmare

– No automatic support for detecting mistakes

A Better Idea

Specify both transformations with a single description!

Many∗ instances of this idea...

I ad hoc libraries and tools (marshallers/unmarshallers,
parsers/prettyprinters, ...)

I bidirectional versions of standard languages (XQuery,
UnQL, relational algebra, ...)

I domain-specific bidirectional languages
I “coupled grammars” (XSugar, biXid, TGGs, ...)
I combinator-based (this talk)

I “program inversion” / “reversible computation”

I “Bidirectionalization for Free”

I etc.

∗dozens, if not hundreds...

Research Challenge

Many solutions exist, but...

1. they tend to be specialized to very particular domains

2. fundamental design principles are not well understood

Harmony

The Harmony project at the University of Pennsylvania has
been working in this space for a number of years.

I Focus on strong semantic foundations

I Working prototypes
I Focal: a bidirectional tree transformation language
I a bidirectional variant of relational algebra
I Boomerang: a bidirectional string transformation

language

I Applications
I XML ↔ ASCII converter for UniProtKB genome DB
I BibTex, iCal, vCard
I ...

Goals of the Talk

I Explore fundamental concepts of bidirectional
programming in the simplest imaginable setting

I data = strings
I types = regular expressions
I computation = finite state transduction
I bijective transformations (to start with)

Goals of the Talk

I Explore fundamental concepts of bidirectional
programming in the simplest imaginable setting

no UML, graphs, ...
I data = strings
I types = regular expressions
I computation = finite state transduction
I bijective transformations (to start with)

Goals of the Talk

I Explore fundamental concepts of bidirectional
programming in the simplest imaginable setting

no UML, graphs, ...
I data = strings

Simple, but not trivial...

I ordered

I lots of implicit structure

I types = regular expressions
I computation = finite state transduction
I bijective transformations (to start with)

Outline

I Bijective lenses

I Non-bijective lenses

I Sketches of additional topics (time permitting)
I Global alignment
I Synchronization (handling parallel updates)
I Data integrity
I Quotienting away “inessential” information

Please ask questions!

Bijective Programming

Example

composers =
"<composers>\n" <=> "" .
("<name>" <=> "" .

copy ALPHA .
" </name><dates>" <=> ", " .
copy ALPHA .
" </dates>\n" <=> "")* .

"</composers>" <=> ""

Now let’s break it down...

Schubert, 1797-1828<composers>

<name>Schubert</name>

<dates>1797-1828</dates>

</composers>

Example

composers =
"<composers>\n" <=> "" .
("<name>" <=> "" .

copy ALPHA .
" </name><dates>" <=> ", " .
copy ALPHA .
" </dates>\n" <=> "")* .

"</composers>" <=> ""

Now let’s break it down...

Schubert, 1797-1828

Schubert, 1797-1828

Schumann, 1810-1856

<composers>

<name>Schubert</name>

<dates>1797-1828</dates>

</composers>

Example

composers =
"<composers>\n" <=> "" .
("<name>" <=> "" .

copy ALPHA .
" </name><dates>" <=> ", " .
copy ALPHA .
" </dates>\n" <=> "")* .

"</composers>" <=> ""

Now let’s break it down...

<composers>

<name>Schubert</name>

<dates>1797-1828</dates>

</composers><composers>

<name>Schubert</name>

<dates>1797-1828</dates>

<name>Schumann</name>

<dates>1810-1856</dates>

</composers>

Schubert, 1797-1828

Schubert, 1797-1828

Schumann, 1810-1856

Example

composers =
"<composers>\n" <=> "" .
("<name>" <=> "" .

copy ALPHA .
" </name><dates>" <=> ", " .
copy ALPHA .
" </dates>\n" <=> "")* .

"</composers>" <=> ""

Now let’s break it down...

<composers>

<name>Schubert</name>

<dates>1797-1828</dates>

</composers><composers>

<name>Schubert</name>

<dates>1797-1828</dates>

<name>Schumann</name>

<dates>1810-1856</dates>

</composers>

Schubert, 1797-1828

Schubert, 1797-1828

Schumann, 1810-1856

Example

composers =
"<composers>\n" <=> "" .
("<name>" <=> "" .

copy ALPHA .
" </name><dates>" <=> ", " .
copy ALPHA .
" </dates>\n" <=> "")* .

"</composers>" <=> ""

Now let’s break it down...

<composers>

<name>Schubert</name>

<dates>1797-1828</dates>

</composers><composers>

<name>Schubert</name>

<dates>1797-1828</dates>

<name>Schumann</name>

<dates>1810-1856</dates>

</composers>

Schubert, 1797-1828

Schubert, 1797-1828

Schumann, 1810-1856

Basic Structures

A basic bijective lens l between a set R and a set S , written

l ∈ R
 S

comprises two (total) functions

l→ ∈ R → S
l← ∈ S → R

where l→ and l← are inverses:

l← (l→ r) = r
l→ (l← s) = s

Regular Expressions

R ::= {string} singleton
R1 · R2 concatenation
R1 | R2 union
R∗ repetition
∅ empty set

As always, a regular expression denotes a set of strings

Examples

ALPHA = ({a}|...|{z}|{A}|...|{Z})*

composersXML =
"<composers>\n" .
("<name>" .

ALPHA .
" </name><dates>" .
ALPHA .
" </dates>\n")* .

"</composers>"

composersASCII = ...similar...

Examples

ALPHA = ({a}|...|{z}|{A}|...|{Z})*

composersXML =
"<composers>\n" .
("<name>" .

ALPHA .
" </name><dates>" .
ALPHA .
" </dates>\n")* .

"</composers>"

composersASCII = ...similar...

Next step...

Finite-State Transducers

ALPHA = ({a}|...|{z}|{A}|...|{Z})*

composersXML =
"<composers>\n" . => ""
("<name>" . => ""

copy ALPHA .
" </name><dates>" . => ", "
copy ALPHA .
" </dates>\n" => "")* .

"</composers>" => ""

composersASCII = ...similar...

Finite-State Transducers
=

Regular expressions with outputs

Finite-State Transducers (FSTs)

The simplest possible programming language over strings...

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ; f2 composition (do f1 then f2)
f1 ∼ f2 swapping concatenation

Finite-State Transducers (FSTs)

The simplest possible programming language over strings...

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ; f2 composition (do f1 then f2)
f1 ∼ f2 swapping concatenation

Schubert copy ALPHA Schubert

Finite-State Transducers (FSTs)

The simplest possible programming language over strings...

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ; f2 composition (do f1 then f2)
f1 ∼ f2 swapping concatenation

Schubert del ALPHA

Finite-State Transducers (FSTs)

The simplest possible programming language over strings...

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ; f2 composition (do f1 then f2)
f1 ∼ f2 swapping concatenation

foo "foo"⇒ "bar" bar

Finite-State Transducers (FSTs)

The simplest possible programming language over strings...

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ; f2 composition (do f1 then f2)
f1 ∼ f2 swapping concatenation

fooXX ("foo"⇒ "bar") · (copy ALPHA) barXX

Finite-State Transducers (FSTs)

The simplest possible programming language over strings...

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ; f2 composition (do f1 then f2)
f1 ∼ f2 swapping concatenation

A ("A"⇒ "B") | ("B"⇒ "A") B

Finite-State Transducers (FSTs)

The simplest possible programming language over strings...

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ; f2 composition (do f1 then f2)
f1 ∼ f2 swapping concatenation

AAABA ("A"⇒ "B" | "B"⇒ "A")∗ BBBAB

Finite-State Transducers (FSTs)

The simplest possible programming language over strings...

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ; f2 composition (do f1 then f2)
f1 ∼ f2 swapping concatenation

AAABA
("A"⇒ "B" | "B"⇒ "A")∗

; ("A"⇒ "A" | "B"⇒ "C")∗ CCCAC

Finite-State Transducers (FSTs)

The simplest possible programming language over strings...

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ; f2 composition (do f1 then f2)
f1 ∼ f2 swapping concatenation

fooXX ("foo"⇒ "bar") ∼ (copy ALPHA) XXbar

Finite-State Functions (FSFs)

In general, an FST denotes a relation on strings.

For today, we want to restrict attention to FSTs that denote
total functions.

Given an FST f , how can we tell whether it is a function?

One way:

...that generalizes nicely for other purposes...

With a type system!

Finite-State Functions (FSFs)

In general, an FST denotes a relation on strings.

For today, we want to restrict attention to FSTs that denote
total functions.

Given an FST f , how can we tell whether it is a function?

One way:

...that generalizes nicely for other purposes...

With a type system!

Finite-State Functions (FSFs)

In general, an FST denotes a relation on strings.

For today, we want to restrict attention to FSTs that denote
total functions.

Given an FST f , how can we tell whether it is a function?

One way:

...that generalizes nicely for other purposes...

With a type system!

Finite-State Functions: Types

Write f ∈ R → S to mean “f is a finite-state function from R
to S”

I i.e., f relates each string in R to a unique string in S

Now, for each syntactic form, we give a rule that describes
when an FST of that form is guaranteed to be a function (and
tells us its domain and range)...

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2

f1 · f2 ∈ R1 · R2 → S1 · S2

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2

f1 · f2 ∈ R1 · R2 → S1 · S2

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2

f1 · f2 ∈ R1 · R2 → S1 · S2

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2
first try

f1 · f2 ∈ R1 · R2 → S1 · S2

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2
first try

f1 · f2 ∈ R1 · R2 → S1 · S2

Problem: Concatenation is not always deterministic!

f = (copy ALPHA) · (del ALPHA)
f "abcd" = ???

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2 R1 ·! R2

f1 · f2 ∈ R1 · R2 → S1 · S2

Problem: Concatenation is not always deterministic!

f = (copy ALPHA) · (del ALPHA)
f "abcd" = ???

Solution: Require that R1 and R2 be “uniquely splittable”

I i.e., every element of R1 · R2 can be formed in exactly one
way by concatenating an element of R1 and an element of R2

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2 R1 ·! R2

f1 · f2 ∈ R1 · R2 → S1 · S2

f ∈ R → S R∗!

similarlyf ∗ ∈ R∗ → S∗

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2 R1 ·! R2

f1 · f2 ∈ R1 · R2 → S1 · S2

f ∈ R → S R∗!

f ∗ ∈ R∗ → S∗

f1 ∈ R1 → S1 f2 ∈ R2 → S2
first try

f1 | f2 ∈ R1 | R2 → S1 | S2

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2 R1 ·! R2

f1 · f2 ∈ R1 · R2 → S1 · S2

f ∈ R → S R∗!

f ∗ ∈ R∗ → S∗

f1 ∈ R1 → S1 f2 ∈ R2 → S2 R1 ∩ R2 = ∅
f1 | f2 ∈ R1 | R2 → S1 | S2

But what if R1 and R2 overlap? Again, not bijective!

I Need to require that R1 and R2 be disjoint

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2 R1 ·! R2

f1 · f2 ∈ R1 · R2 → S1 · S2

f ∈ R → S R∗!

f ∗ ∈ R∗ → S∗

f1 ∈ R1 → S1 f2 ∈ R2 → S2 R1 ∩ R2 = ∅
f1 | f2 ∈ R1 | R2 → S1 | S2

f1 ∈ R → U f2 ∈ U → S

f1 ; f2 ∈ R → S

Finite-State Functions: Typing Rules

copy R ∈ R → R

delete R ∈ R → {""}

s ⇒ t ∈ {s} → {t}

f1 ∈ R1 → S1 f2 ∈ R2 → S2 R1 ·! R2

f1 · f2 ∈ R1 · R2 → S1 · S2

f ∈ R → S R∗!

f ∗ ∈ R∗ → S∗

f1 ∈ R1 → S1 f2 ∈ R2 → S2 R1 ∩ R2 = ∅
f1 | f2 ∈ R1 | R2 → S1 | S2

f1 ∈ R → U f2 ∈ U → S

f1 ; f2 ∈ R → S

f1 ∈ R1 → S1 f2 ∈ R2 → S2 R1 ·! R2

f1 ∼ f2 ∈ R1 · R2 → S2 · S1

Bidirectionalizing FSFs

Ordinary FSFs

f ::= copy R
del R
r ⇒ s
f1 · f2
f1 | f2
f ∗
f1 ; f2
f1 ∼ f2

=⇒

Bidirectional FSFs

l ::= copy R
−
r⇔s
l1 · l2
l1 | l2
l∗
l1 ; l2
l1 ∼ l2

I drop del (can’t be part of a bijection anyway)

I write ⇒ as ⇔ to emphasize symmetry

I give each syntactic form the natural interpretation as a
bijective lens (straightforward details elided)

Example

composers =
"<composers>\n" <=> "" .
("<name>" <=> "" .
copy ALPHA .
" </name><dates>" <=> ", " .
copy ALPHA .
" </dates>\n" <=> "")* .

"</composers>" <=> ""

Next question: How do we know that a given expression in the
bijective syntax really denotes a law-abiding (i.e., bijective)
lens?

Answer: With a type system, naturally! ...

Example

composers =
"<composers>\n" <=> "" .
("<name>" <=> "" .
copy ALPHA .
" </name><dates>" <=> ", " .
copy ALPHA .
" </dates>\n" <=> "")* .

"</composers>" <=> ""

Next question: How do we know that a given expression in the
bijective syntax really denotes a law-abiding (i.e., bijective)
lens?

Answer: With a type system, naturally! ...

Example

composers =
"<composers>\n" <=> "" .
("<name>" <=> "" .
copy ALPHA .
" </name><dates>" <=> ", " .
copy ALPHA .
" </dates>\n" <=> "")* .

"</composers>" <=> ""

Next question: How do we know that a given expression in the
bijective syntax really denotes a law-abiding (i.e., bijective)
lens?

Answer: With a type system, naturally! ...

Bijective Lenses: Typing Rules

copy R ∈ R
 R

s ⇒ t ∈ {s}
 {t}

l1 ∈ R1
 S1 l2 ∈ R2
 S2 R1 ·! R2 S1 ·! S2

l1 · l2 ∈ R1 · R2
 S1 · S2

(and similarly for the other syntactic forms)

Footnote: Unique Splittability

The unique splittability conditions (·! and !∗) are strong!

I Not easy to check efficiently, even for regular expressions

I Can be annoying for programmers

But they are fundamental:

I We want to know that l1 · l2 is a bijective lens

I We’re using a type system (i.e., a compositional static
analysis) to check this automatically

I So we need to be able to prove that l1 · l2 is a bijective
lens, knowing only that l1 and l2 are

I This simply isn’t true without the unique splittability
restriction

Bidirectional Programming
(The Non-Bijective Case)

Symmetric vs. Asymmetric

Non-bijective connected structures come in two varieties:

I Symmetric (“many to many”)
I both transformations “lose information”

I formally, they are not injective

I Example: Two models of different aspects of a software
system

I Asymmetric (“many to one”)
I one of the transformations is injective while the other is

not
I Example: A database and a materialized view

I At Penn we’ve worked mostly on the asymmetric case
I So, for fun, let’s talk about the symmetric case here... :-)

Intuition

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

dates only here countries only here

Intuition

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

1797-1828
1810-1856

Austria
Germany

add an extra structure (the
"complement") that stores the

"private information" from both sides

Intuition

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

1797-1828
1810-1856

Austria
Germany

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Intuition

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

each transformation propagates
updates both to the target artifact

and to the complement...

Intuition

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

each transformation propagates
updates both to the target artifact

and to the complement...

...using the complement to fill in
information not available in the

source

Intuition

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Austria

Monteverdi, unknown

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

Intuition

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Austria

Monteverdi, unknown

1797-1828
1810-1856
1567-1643

Austria
Germany
Italy

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

Symmetric Lenses (First Version)

A symmetric lens l between a set R and a set S with
complement C , written l ∈ R
C S , comprises two functions

l⇒ ∈ R × C → S × C
l⇐ ∈ S × C → R × C

where

l⇒(r , c) = (s ′, c ′)

l⇐(s ′, c ′) = (r , c ′)

propagating a null update changes nothing

l⇐(s, c) = (r ′, c ′)

l⇒(r ′, c ′) = (s, c ′)

ditto

Creation

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

1797-1828
1810-1856

Austria
Germany

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

I In the composers example, the top-level lens has the form

composers = composer*

I Since there is no entry in C for Monteverdi initially, the
composers lens needs to call the composer sublens with just
an S argument.

I We need variants of composer⇒ and composer⇐ that create
an appropriate C by filling in defaults

Creation

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

I In the composers example, the top-level lens has the form

composers = composer*

I Since there is no entry in C for Monteverdi initially, the
composers lens needs to call the composer sublens with just
an S argument.

I We need variants of composer⇒ and composer⇐ that create
an appropriate C by filling in defaults

Symmetric Lenses (Final Version)

A symmetric lens l between a set R and a set S with
complement C , written l ∈ R
C S , comprises four functions

l⇒ ∈ R × C → S × C l→ ∈ R → S × C
l⇐ ∈ S × C → R × C l← ∈ S → R × C

where

l⇒(r , c) = (s ′, c ′)

l⇐(s ′, c ′) = (r , c ′)

l→r = (s ′, c ′)

l⇐(s ′, c ′) = (r , c ′)

l⇐(s, c) = (s ′, c ′)

l⇒(s ′, c ′) = (s, c ′)

l←s = (r ′, c ′)

l⇒(r ′, c ′) = (s, c ′)

Building Symmetric Lenses

I We can use all the same syntactic primitives
I ...generalizing their behavior and typing rules

I And we get to add some interesting new ones...
I In particular, del E now makes sense

See our POPL 08 paper for full details (for the asymmetric
case)

The Example, Again

composers =
(copy ALPHA .
", " <=> ", " .
// delete dates in -> direction
del-> ALPHA "?dates?" .
// delete country in <- direction
del<- ALPHA "?country?" .
"\n" <=> "\n")*

Digression: State-based vs.Operation-Based

We’ve been assuming so far that the main arguments to the
l⇒ and l⇐ functions were entire structures. Naturally, there
are other choices...

l⇒ ∈


R × C → S × C state-based

∆R × C → S × C delta-based
(R → R)× C → S × C operation-based

I state-based: pass both changed and unchanged parts

I delta-based: pass just changed parts

I operation-based: pass the edit operation itself

Digression: State-based vs.Operation-Based

We’ve been assuming so far that the main arguments to the
l⇒ and l⇐ functions were entire structures. Naturally, there
are other choices...

l⇒ ∈


R × C → S × C state-based

∆R × C → S × C delta-based
(R → R)× C → S × C operation-based

I state-based: pass both changed and unchanged parts

I delta-based: pass just changed parts

I operation-based: pass the edit operation itself

Digression: State-based vs.Operation-Based

We’ve been assuming so far that the main arguments to the
l⇒ and l⇐ functions were entire structures. Naturally, there
are other choices...

l⇒ ∈


R × C → S × C state-based

∆R × C → S × C delta-based
(R →intuitively R)× C → S × C operation-based

I state-based: pass both changed and unchanged parts

I delta-based: pass just changed parts

I operation-based: pass the edit operation itself

Digression: State-based vs.Operation-Based

We’ve been assuming so far that the main arguments to the
l⇒ and l⇐ functions were entire structures. Naturally, there
are other choices...

l⇒ ∈


R × C → S × C state-based

∆R × C → S × C delta-based
(R →intuitively R)× C → S × C operation-based

I state-based: pass both changed and unchanged parts

I delta-based: pass just changed parts

I operation-based: pass the edit operation itself

Digression: State-based vs.Operation-Based

We’ve been assuming so far that the main arguments to the
l⇒ and l⇐ functions were entire structures. Naturally, there
are other choices...

l⇒ ∈


R × C → S × C state-based

∆R × C → S × C delta-based
(R →intuitively R)× C → S × C operation-based

I state-based: pass both changed and unchanged parts

I delta-based: pass just changed parts

I operation-based: pass the edit operation itself

State-based and delta-based are fundamentally similar, while
operation-based is a rather different animal.

Digression: Totality

The assumption that l⇒ and l⇐ are total functions is pretty
strong:

I It means that our update translators must be able to
handle any update whatsoever

Can we relax this restriction?

Depends on the application!

I If our lenses are being used in an on-line setting, where
edits are propagated immediately, totality is not critical

I However, in an off-line setting, arbitrary changes can
accumulate before we get a chance to propagate them

I Here, totality is really important

Digression: Totality

The assumption that l⇒ and l⇐ are total functions is pretty
strong:

I It means that our update translators must be able to
handle any update whatsoever

Can we relax this restriction?

Depends on the application!

I If our lenses are being used in an on-line setting, where
edits are propagated immediately, totality is not critical

I However, in an off-line setting, arbitrary changes can
accumulate before we get a chance to propagate them

I Here, totality is really important

More Extensions...

Alignment

(The hard part...)

Alignment

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

1797-1828
1810-1856
1567-1643

Austria
Germany
Italy

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Alignment

???

1797-1828
1810-1856
1567-1643

Austria
Germany
Italy

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Alignment

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

1797-1828
1810-1856
1567-1643

Austria
Germany
Italy

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Alignment

Monteverdi, Italy
Schubert, Austria
Schumann, Germany

1567-1643
1797-1828
1810-1856

Italy
Austria
Germany

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Chunks and Keys

We also need to enrich the syntax a little so the programmer
can tell the aligner

1. where are the alignable chunks

2. what are their keys

Chunks and Keys

We also need to enrich the syntax a little so the programmer
can tell the aligner

1. where are the alignable chunks

2. what are their keys

composers =

(copy ALPHA .

", " <=> ", " .

del-> ALPHA "?dates?" .

del<- ALPHA "?country?" .

"\n" <=> "\n")*

Chunks and Keys

We also need to enrich the syntax a little so the programmer
can tell the aligner

1. where are the alignable chunks

2. what are their keys

composers =

< key ALPHA .

", " <=> ", " .

del-> ALPHA "?dates?" .

del<- ALPHA "?country?" .

"\n" <=> "\n" >*

Separation of Concerns

1. Alignment is a global matter

2. Alignment algorithms are complicated and messy
I Often heuristic
I Different kinds of alignment are useful for different data

I “bushy” (for “table-like” structures with keys)
I “diffy” (for “document-like” structures without keys)
I positional
I etc.?

To keep the theory (and implementation) clean, separate
finding the alignment from using the alignment to translate
updates.

Aligning Lenses (Sketch)

An aligning lens l ∈ R
C S comprises four functions

l⇒ ∈ R × C × A → S × C l→ ∈ R → S × C
l⇐ ∈ S × C × A → R × C l← ∈ S → R × C

where...

(...same laws as before, adjusted to take alignment into account, plus
some new ones describing how alignments are used...)

Status

Our POPL ’08 paper shows how to handle the bushy and
positional cases

I We are currently working on generalizing this framework
to handle other kinds of alignment

Synchronization

Synchronization

So far, we’ve assumed that only one structure at a time can be
modified

To handle the case where both structures can be edited
between propagating updates, we need to add synchronization
to our story...

Synchronization

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Germany

1797-1828
1810-1856

Austria
Germany

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany

Synchronization

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Germany

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

Step 1: Propagate edit from left to right with respect to existing
complement (i.e., using the private information from the original
right-hand structure)

Synchronization

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Germany

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

Schubert, Austria
Schumann, Germany

Monteverdi, ?country?

Step 2: Combine (“synchronize”) result with edited right-hand
structure to obtain new right-hand structure

Synchronization

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Germany

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

Schubert, Austria
Schumann, Germany

Monteverdi, ?country?

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Step 3: Propagate new right-hand structure to left; everything
is now up to date

Integrity

The Integrity Issue

I Propagating updates can cause changes in private data in
the target structure!

I This can be prevented by adding another law requiring
that updates always be propagated in an “undoable” way

I or, equivalently, by requiring that translating updates
not change the complement (cf. “constant complement
approach to view update” from the database literature)

I However, this condition is very strong!
I Imposing it in both directions means that the

complement cannot ever be changed — i.e., it takes us
back to bijective lenses

I Even imposing it in just one direction prevents writing
many useful transformations

Integrity Annotations

A more refined approach:

I Enrich the schemas of the two structures with integrity
annotations specifying “levels of trustedness” of different
parts of the data

I Impose new laws requiring that, during update
translation, high-integrity data in the target structure be
changed only as a result of edits to high-integrity regions
of the source

I Refine the typing rules to track information flow; prove
that the refined rules guarantee the new lens laws

I Correct handling of confidential information can be
treated using the same mechanism

See our CSF 2009 paper for details.

Inessential Information

Dealing With “Inessential Information”

I The round-tripping laws we’ve imposed are attractive for
both language designers and programmers

I However, writing lenses in practice, one quickly discovers
that they are a bit too strong

I Most real-world structures include “inessential
information” that should be preserved when possible but
that can be changed if necessary

I whitespace, diagram layout, order of rows in tables, etc.

I Need to loosen the lens laws just a little so that they
hold “up to changes in inessential information”

I An “obvious” idea, but takes some work to carry through

I Essential in practice

Our ICFP 2008 paper develops a semantic theory and syntactic
constructs for “quotient lenses” that embody this idea.

Wrapping Up...

How To Build a Bidirectional Programming

Language

1. Think first about semantics
I What are the inputs and outputs of update translation?
I What laws capture our intuition of “well-behaved

translations”?

2. Design bidirectional syntax

3. Define a static analysis (e.g., a typing relation) to check
whether a given program satisfies the behavioral laws

4. Prove that the static analysis is correct

5. Implement

6. Test on practical examples

7. Repeat from (1) :-)

Simple structures, clean theory, real examples!

Deploying the Technology

How would these ideas be used in practice?

1. As a separate, domain-specific language
I E.g., RedHat’s Augeas tool is based directly on

Boomerang

2. As an embedded language
I A library of lenses and lens constructors
I lens is an abstract type provided by the library
I Each syntactic form becomes an operation in the API

I Each lens object stores its domain and range types
I Typing constraints are verified when lenses are

constructed

I Predefined constructors can be mixed with ad hoc
(programmer-provided) lenses performing special /
domain-specific transformations

Related Work

... Way too much even to summarize here

I See GRACE Workshop Report for extensive citations and
discussion

Want to Play?

Our prototype Boomerang implementation is available for
download...

I Source code (GPL)

I Binaries for Windows, OSX, Linux

I Tutorial and demos

A major new release is planned for this summer

Thank You!

Boomerang team: Aaron Bohannon, Davi Barbosa, Julien
Cretin, Nate Foster, Michael Greenberg, Benjamin Pierce,
Alexandre Pilkiewicz, Alan Schmitt

Past contributors to the Harmony project: Ravi Chugh, Malo
Denielou, Michael Greenwald, Owen Gunden, Martin
Hofmann, Sanjeev Khanna, Keshav Kunal, Stéphane Lescuyer,
Jon Moore, Jeff Vaughan, Zhe Yang

Resources: Papers, slides, sources, binaries, and demos:

http://www.seas.upenn.edu/∼harmony/

http://www.seas.upenn.edu/~harmony/

	Bijective Programming
	Bidirectional Programming (The Non-Bijective Case)
	More Extensions...
	Alignment
	Synchronization
	Integrity
	Inessential Information
	Wrapping Up...

