
Harmony:
A Synchronization Framework
For Tree-Structured Data

Michael B. Greenwald, Owen Gunden,
Jonathan T. Moore, Benjamin C. Pierce,

Alan Schmitt

University of Pennsylvania

September, 2003

1/61

Optimistic Replication

• Many copies of data, spread across many machines

• Any copy may be updated at any time

• Hosts occasionally synchronize (or “reconcile”) their
states

2/61

Advantages of Optimism

• Availability: users can work while disconnected

• Scalability: no “hot spots” for writes

• Quality control: updates can be “curated” before
being allowed into a replica

• Visibility/atomicity control: a set of updates can be
“kept local” until ready, then propagated to other
machines (cf. CVS)

3/61

Challenges of Optimism

Pragmatic issues:

• How to make sure updates get propagated in a timely
manner (while dealing with failures, avoiding swamping
the network or using too much local storage, etc.)?

=⇒ Interesting when there are many replicas

Semantic issues:

• Precisely what does it mean to “synchronize” replicas?

=⇒ Interesting when replicated data has nontrivial
internal structure

4/61

Synchronizing States vs. Operations

Two basic approaches to semantics of synchronization:

• Operation-based synchronizers are given access to
complete traces of all the operations performed on
each replica of the data.
Examples: Bayou, IceCube

• State-based synchronizers are given just the states of
the replicas at particular moments in time.
Examples: Unison, Harmony

5/61

Tradeoffs

Operation-based:

• Pro: temporal sequencing of operations on each
replica visible to synchronizer

• Pro: operations can be chosen to encode high-level
application semantics

• Con: require relatively tight coupling with applications
=⇒ Appropriate for “synchronization middleware”

State-based:

• Con: less information available at sync time

• Pro: applications need not be “synchronization aware”
=⇒ Appropriate for loosely coupled architectures

6/61

Caveat

The state-based / operation-based distinction is a bit
slippery and various hybrids are possible. E.g...

• Can build a state-based system with an
operation-based core by diffing previous and current
states to obtain a hypothetical (typically, minimal)
sequence of operations

7/61

Caveat

The state-based / operation-based distinction is a bit
slippery and various hybrids are possible. E.g...

• Can build a state-based system with an
operation-based core by diffing previous and current
states to obtain a hypothetical (typically, minimal)
sequence of operations
But... this involves complex heuristics, which can be
difficult for users to understand

7/61

The Harmony Project

Research goal:

Build a (pure) state-based synchronizer for structured
data stored as XML documents

8/61

The Harmony Project

Research goal:

Build a (pure) state-based synchronizer for structured
data stored as XML documents

Simplification:

For this talk, I’ll focus on the 2-replica case

8/61

Outline of talk

• Architecture

• Data model

• Synchronization algorithm

• Tree transformation language

• Applications

9/61

Architecture

10/61

Architecture (first cut)

Sync

Orig

BA

Merged

11/61

Better Architecture

Sync

Orig

BA

Final

12/61

Conflicts

There will be times when the synchronizer cannot merge
the changes to the replicas.

on replica A we create a file x with contents 5
on replica B we create a file x with contents 7

What to do?

13/61

Conflicts

• A state-based synchronizer tries to make the replicas
“more similar”

So it is natural to deal with conflicts by allowing
replicas to remain different after synchronization

(Note that this never backs out user changes, but
does not always achieve convergence.)

14/61

Conflicts

• A state-based synchronizer tries to make the replicas
“more similar”

So it is natural to deal with conflicts by allowing
replicas to remain different after synchronization

(Note that this never backs out user changes, but
does not always achieve convergence.)

• By contrast, an operation-based synchronizer tries to
construct a common sequence of operations

Thus, it is natural to deal with conflicts by omitting
conflicting operations

This always achieves a common final state, but
sometimes backs out user changes

14/61

Conflicts

• A state-based synchronizer tries to make the replicas
“more similar”

So it is natural to deal with conflicts by allowing
replicas to remain different after synchronization

(Note that this never backs out user changes, but
does not always achieve convergence.)N.b.: not forced...

• By contrast, an operation-based synchronizer tries to
construct a common sequence of operations

Thus, it is natural to deal with conflicts by omitting
conflicting operations

This always achieves a common final state, but
sometimes backs out user changes

14/61

Sync

Orig

BA

A' B'

15/61

Abstraction

Problem: The “concrete representation” of data as XML is
not always appropriate for synchronization.

Orig = <phonedb>

<entry> <Name>Pat</> <Phone>333-4444</> </entry>

<entry> <Name>Chris</> <Phone>888-9999</> </entry>

<phonedb/>

A = <phonedb>

<entry> <Name>Chris</> <Phone>555-6666</> </entry>

<entry> <Name>Pat</> <Phone>333-4444</> </entry>

<phonedb/>

B = <phonedb>

<entry> <Name>Pat</> <Phone>111-2222</> </entry>

<entry> <Name>Chris</> <Phone>888-9999</> </entry>

<phonedb/>

16/61

Abstraction

Problem: The “concrete representation” of data as XML is
not always appropriate for synchronization.

Orig = <phonedb>

<entry> <Name>Pat</> <Phone>333-4444</> </entry>

<entry> <Name>Chris</> <Phone>888-9999</> </entry>

<phonedb/>

A = <phonedb>

<entry> <Name>Chris</> <Phone>555-6666</> </entry>

<entry> <Name>Pat</> <Phone>333-4444</> </entry>

<phonedb/>

B = <phonedb>

<entry> <Name>Pat</> <Phone>111-2222</> </entry>

<entry> <Name>Chris</> <Phone>888-9999</> </entry>

<phonedb/>

17/61

Abstraction

Solution: Transform concrete representations into a more
suitable abstract form (in an application-specific way)
before synchronizing

� � � � =

(� � �

7→

� � � � 	 	 	 	

 � � � �

7→

 � � � � �

�

=

(
 � � � �
7→

 � � � � �

� � �
7→

� � � � � � � �

�

=

(� � �

7→

� � � � 	 	 	 	

 � � � �

7→

� � � � � � � �

(Trees are drawn sideways; children are unordered.)

18/61

Architecture with “Lenses”

Sync

Orig

BA

A' B'

19/61

Concretion

Of course, after synchronization, we want our data back
in its original concrete form.

I.e., the abstraction function must be “wrapped around”
both sides of the core synchronization engine, mapping
structures from concrete to abstract and back again.

20/61

Final Architecture

Sync

Orig

BA

A' B'

21/61

User Interface

When discussing the core synchronization algorithm, it is
convenient to ignore user interface issues: in case of a
conflict, the output replicas are simply left unchanged
from the inputs.

The user interface is regarded as a separate tool that
takes the same inputs as the synchronizer, reports
conflicts, and allows the user to bring the replicas into a
consistent state.

The synchronizer then simply notes that the replicas are
equal.

22/61

Final Architecture (with UI)

Sync

Orig

CC

C C

User Interface

BA

23/61

Data Model

24/61

Trees

Harmony’s core data model is the simplest we could think
of — unordered, edge-labeled trees with all children of a
node labeled differently.

(I.e., each tree is a partial function from labels to subtrees.)































� � � 7→







� � � � � 7→
{

� � � � � � � � 7→ {

� !

7→
{

� � � " # $ $ " � �% & � ' 7→ {

(�) * + 7→







� � � � � 7→
{

, , , � - - - - 7→ {

� !
7→

{

� � � " # $ $ & �) * +% �) . 7→ {

25/61

Lists

The list
[/

1 . . . /

n]

is represented by the tree























0 �

7→ /

1

0 �

7→











0 �

7→ /

2

0 �

7→

{

. . . 7→

{

0 �

7→ /

n

0 �

7→ {

26/61

XML

The XML element

<tag attr1="val1" ... attrm="valm">

subelt1 ... subeltn

</tag>

is represented by the tree


































� � . 7→


































� � �) 1 7→

{

/ � 2 1 7→ {
...

� � �) ' 7→
{

/ � 2 ' 7→ {

0 & � � � � � � 7→





〈 + 3 4 � 2 � 1〉
...

〈 + 3 4 � 2 � �〉

27/61

Synchronization

28/61

Definitions

• path = a sequence of names

• contents of a path = either a tree or MISSING

• change (in a replica) = a path whose contents are
different from the original (last synchronized) tree

• conflict = path that has been deleted (changed from
some tree to MISSING) in one replica and one of
whose descendants has changed in the other

29/61

Specification

A good synchronizer should...

1. Never overwrite changes

2. Never “make up” contents

3. Stop at conflicting paths (leaving replicas in their
current states)

4. Propagate as many changes as possible without
violating above rules

30/61

Synchronization Algorithm (first try)

sync(O, A, B) =

if A = B then (A,B) -- equal replicas: done

else if A = O then (B,B) -- no change to A: propagate B

else if B = O then (A,A) -- no change to B: propagate A

else if A = MISSING then (A,B) -- delete/modify conflict

else if B = MISSING then (A,B) -- delete/modify conflict

else -- proceed recursively

for each child k, let

(Ak,Bk) = sync(O(k), A(k), B(k)) in

let A’ = { k -> Ak } in

let B’ = { k -> Bk } in

(A’,B’)

31/61

Refinement: Atomicity

for example...

Problem: There are situations where this synchronization
algorithm can create ill-formed or nonsensical trees.

32/61

Refinement: Atomicity

Synchronizing two trees representing filesystems...

A =







5 6 7 7→







8

7→
{ 8 6 9 : 7→

{

; < = > ?

7→ {

@ 7→
{ 8 6 9 : 7→

{

< <

7→ {

B =







5 6 7 7→







8

7→
{

8 6 9 : 7→
{

A B C D E

7→ {

@ 7→
{

8 6 9 : 7→
{

< <

7→ {

...yields a non-filesystem:














F *) 7→















G
7→

{

G * 2 � 7→

{ 1 H � � I

7→ {

J K , - L

7→ {
. 7→

{

G * 2 � 7→
{

H H

7→ {

33/61

Refinement: Atomicity

Solution:

Mark nodes ATOMIC if their children should not be
“mixed” during synchronization.























































F *) 7→











































G

7→











G * 2 � 7→

{ 1 H � � I

7→ {
M N O P Q (

7→ {

M N O P Q (
7→ {

. 7→











G * 2 � 7→

{ H H

7→ {

M N O P Q (

7→ {
M N O P Q (

7→ {

M N O P Q (
7→ {

34/61

Final Specification

A good synchronizer should...

1. Never overwrite changes

2. Never “make up” contents

3. Stop at conflicting paths (leaving replicas in their
current states)

4. Leave the domain of each node marked ATOMIC equal
to its domain in one of the starting replicas

5. Propagate as many changes as possible without
violating above rules

35/61

Final Algorithm

sync(O, A, B) =

if A = B then (A,B) -- equal replicas: done

else if A = O then (B,B) -- no change to A: propagate B

else if B = O then (A,A) -- no change to B: propagate A

else if A = MISSING then (A,B) -- delete/modify conflict

else if B = MISSING then (A,B) -- delete/modify conflict

else if ATOMIC in (dom(A) U dom(B))

and dom(A) <> dom(O)

and dom(B) <> dom(O)

and dom(A) <> dom(B)

then (A,B) -- atomicity conflict

else -- proceed recursively

for each child k, let

(Ak,Bk) = sync(O(k), A(k), B(k)) in

let A’ = { k -> Ak } in

let B’ = { k -> Bk } in

(A’,B’)

36/61

Aside: Synchronizing Lists

Applying this algorithm to lists encoded as trees yields
element-wise synchronization.

37/61

Tree Transformation Language

38/61

Lenses, Informally

A lens l consists of two functions:

• The get function, l↗, maps a concrete tree to an
abstract tree

• The put function, l↘, maps an (updated) abstract
tree and an (original) concrete tree to a (updated)
concrete tree

39/61

Example: Get

Concrete tree






























� � � 7→







� � � � � 7→
{

� � � � � � � � 7→ {

� !

7→
{

� � � " # $ $ " � �% & � ' 7→ {

(�) * + 7→







� � � � � 7→
{

, , , � - - - - 7→ {

� !

7→
{

� � � " # $ $ & �) * +% �) . 7→ {

yields abstract tree:






� � � 7→
{

� � � � � � � � 7→ {

(�) * + 7→
{

, , , � - - - - 7→ {

40/61

Example: Put

New abstract tree






� � � 7→
{

� � � � � � H 1

7→ {

R � 7→
{

I I I � J J J J 7→ {

(plus original concrete tree) yields new concrete tree:






























� � � 7→







� � � � � 7→
{

� � � � � � H 1

7→ {

� !

7→
{

� � � " # $ $ " � �% & � ' 7→ {

R � 7→







� � � � � 7→
{

I I I � J J J J 7→ {

� !
7→

{

� � � " # $ $. � � . 2 �% & � ' 7→ {

41/61

Lenses, Formally

Write T for the set of trees.

A lens l is a pair of partial functions

• l↗ from T to T (get)

• l↘ from T × T to T (put)

satisfying two laws:

• GETPUT: l↘ (l↗ c, c) = c if c ∈ dom(l↗)

• PUTGET: l↗ l↘ (a, c) = a if (a, c) ∈ dom(l↘)

42/61

A Programming Language for Lenses

Question: How do we make it easy for (power) users to
write lenses? How do we check that they are well formed?

Answer: By providing a domain-specific language in which
all expressions denote well-formed lenses.

43/61

Some Primitive Lenses

(In the get direction...)

• * F

does nothing

• & � � + � v transforms any concrete tree into v

• l;k applies l, then k

•) � � � ' � b renames immediate children according to
bijection b

• � � * + � n hoists the child under name n (which must
be the only child)

• ' � " l applies l to all immediate children

44/61

A Fun Primitive Lens:

S T U V

The get direction of

G �) W p l1 l2:

������� ??
??

??
?

p p

�������
p

;;

??
??

??
?

p

cc

�������
p

(l1↗)

OO

??
??

??
?

p

(l2↗)

OO

������� ??
??

??
?

p p

dd ::

45/61

Recursion

It is not hard to show that the collection of well-formed
lenses forms a complete partial order.

Thus, our lens programming language may sensibly include
definition by recursion.

46/61

Some Derived Lenses

• G * 2 � �) p =

G �) W p

* F

(& � � + � {})

• G � & 3 + n =

G * 2 � �) {n};

� � * + � n

• ' � " " p l =

G �) W p (' � " l)

* F

• � F

=

G � & 3 + 0 �

• � 2 =

G � & 3 + 0 �

• ' � "
X

2 * + � l = ' � " " { 0
�

} l; ' � " " { 0 �} (' � "
X

2 * + � l)

47/61

Example: Bookmarks (Concrete)

{*contents ->

[{html -> {*contents ->

[{head -> {*contents -> [{title ->

{*contents ->

[{PCDATA -> Bookmarks}]}}]}}

{body -> {*contents ->

[{h3 -> {*contents ->

[{PCDATA -> Bookmarks Folder}]}}

{dl -> {*contents ->

[{dt -> {*contents ->

[{a -> {*contents -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> www.google.com}}]}}

{dd -> {*contents ->

[{h3 -> {*contents -> [{PCDATA ->

Conferences Folder}]}}

{dl -> {*contents ->

[{dt -> {*contents ->

[{a ->

{*contents -> [{PCDATA -> POPL}]

add_date -> 1032528670

href -> cristal.inria.fr/POPL2004

}}]}}]}}]}}]}}]}}]}}]}

48/61

Example: Bookmarks (Abstract)

{name -> Bookmarks Folder

contents ->

[{link -> {name -> Google

url -> www.google.com}}

{folder ->

{name -> Conferences Folder

contents ->

[{link ->

{name -> POPL

url -> cristal.inria.fr/POPL2004}}]}}]}

49/61

Example: Bookmark lens

link = rename {dt = link};

map (hoist *contents;

hd {};

hoist a;

rename {href = url, *contents = name};

prune add_date {$today};

mapp {name} (hd {}; hoist PCDATA))

folder = rename {dd = folder};

map (hoist *contents; folder_contents)

folder_contents =

hoist_list [{h3} {dl}];

rename {h3 = name, dl = contents};

mapp {name} (hoist *contents; hd {}; hoist PCDATA);

mapp {contents} (hoist *contents; map_list item)

50/61

Example: Bookmarks

item =

dispatch [({dd},{folder},folder)

({dt},{link},link)]

bookmarks =

hoist *contents; hd {}; hoist html; hoist *contents;

tl {head -> {*contents -> [{title -> {*contents ->

[{PCDATA -> Bookmarks}]}}]}};

hd {}; hoist body; hoist *contents;

folder_contents

51/61

Applications

52/61

Demos — Running

• universal bookmark synchronizer (Internet Explorer,
Mozilla, Safari, ...)

• synchronizer for calendars in several formats

• (simple) structured text file synchronizer

• bibtex synchronizer

53/61

Demos — Planned

• address books, preference files, etc., etc., etc.

• richer structured documents (Word, LaTeX, DocBook,
etc.)

• biological database annotations

• slide presentations (Powerpoint, Keynote)

54/61

Related Work

55/61

Related Projects

• IceCube
• ongoing project at MSR (Shapiro, Rowstrom, Kemmarek, ...)

• operation-based synchronization middleware

• sophisticated algorithms for finding “best” merges of
operation sequences from different replicas

• Bayou
• late ’90s project at Xerox PARC (Edwards, Mynatt, Petersen,
Spreitzer, Terry, Theimer, ...)

• operation-based

• not as flexible as IceCube, but addressed distribution / scale
issues very seriously

• Unison
• late ’90s project at Penn (Jim, Pierce, Vouillon)

• state-based file synchronizer

• formal specification similar to Harmony’s

56/61

Related work

• Ramsey and Csirmaz
• Careful algebraic specification of a file synchronizer similar to
Unison, in an operation-based style

• LibreSource
• current project at INRIA Lorraine [Molli, Oster, Skaf-Molli,
Imine, etc.]

• basic idea: operation transform
Define, for each pair of operations, op1 and op2, a
transformed version of op1, written T (op1, op2), that
achieves “the same effect” as op1 but makes sense in a
context where op2 has been executed.

57/61

Finishing Up...

58/61

Harmony Status

• Core implementation and several demos running

• 2 users :-)

59/61

Ongoing Work

• tree-transformation language
• additional primitivies

• binding
• copying

• characterization of expressive power
• empirically (by building demos)
• analytically

• metatheory (type systems, algebraic theory, ...)

• pushing the language further (e.g., database joins!)

• generating lenses “by example” or from schemas

• multi-replica synchronization
• beyond tree-structured data

• synchronizing dags [with Sanjeev Khanna and Alan Schmitt]

• relations, ordered lists, sets, bags, etc., etc.

60/61

Want to play?...

Papers on our earlier synchronizer, Unison (as well as full
sources, docs, and pre-built binaries) can be found here:

http://www.cis.upenn.edu/∼bcpierce/unison

A paper on Harmony’s lens language can be found here:

http://www.cis.upenn.edu/∼bcpierce/harmony

More Harmony papers will appear here in due course.

61/61

	Optimistic Replication
	Advantages of Optimism
	{Challenges of Optimism}
	Synchronizing States vs. Operations
	Tradeoffs
	Caveat
	The Harmony Project
	Outline of talk
	Architecture
	Architecture (first cut)
	Better Architecture
	Conflicts
	Conflicts
	
	Abstraction
	Abstraction
	Abstraction
	Architecture with ``Lenses''
	Concretion
	Final Architecture
	User Interface
	Final Architecture (with UI)
	Data Model
	Trees
	Lists
	XML
	Synchronization
	Definitions
	Specification
	Synchronization Algorithm (first try)
	Refinement: Atomicity
	Refinement: Atomicity
	Refinement: Atomicity
	Final Specification
	Final Algorithm
	Aside: Synchronizing Lists
	Tree Transformation Language
	Lenses, Informally
	Example: Get
	Example: Put
	Lenses, Formally
	A Programming Language for Lenses
	Some Primitive Lenses
	A Fun Primitive Lens: LN {fork}
	Recursion
	Some Derived Lenses
	Example: Bookmarks (Concrete)
	Example: Bookmarks (Abstract)
	Example: Bookmark lens
	Example: Bookmarks
	Applications
	Demos --- Running
	Demos --- Planned
	Related Work
	Related Projects
	Related work
	Finishing Up...
	Harmony Status
	Ongoing Work
	Want to play?...

