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Scheme is the optimal 
programming language! 
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Any questions? 
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  The talk: 
◦ Arguments for and against static type systems, especially 

very precise ones 
◦ The Boomerang language as a case study in the pros 

and cons of precise types 
◦ Contracts as a way of balancing concerns 
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  Complex definitions tend to be wrong when first 
written down 

  In fact, not only wrong but nonsensical 

Most programming errors are not subtle! 
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  Attempting to prove any nontrivial theorem 
about your program will expose lots of bugs 

  The particular choice of theorem makes little 
difference! 

  Typechecking is good because it proves lots and 
lots of little theorems about your program 
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Types good   ⇒   More types better?    
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Does he look like he needs a type system? 
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Does he? 
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What about him? 
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  The classic retort:  
Computers are fast; programmers are not 

  The rational retort:  
Types enable better compiler analyses and  

make programs run faster, not slower 

  The new retort:  
Java 

“If you can’t make it fast and correct, 
make it fast.” 

-- L. Cardelli 
[paraphrased] 
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  Type systems – especially very precise ones – force 
programmers to think rigorously about what  they are 
doing 

  This is good... up to a point! 
◦  Do we want languages where a PhD* is required to understand 

the library documentation? 

Is it better for Jane Programmer to 
write ~20 more or less correct 

lines of code / day or ~0 perfect 
ones? 

* two PhDs for Haskell 
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  Complex type systems can lead to complex 
language definitions 

  Easy to blow the overall complexity budget 
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  Why is Hindley-Milner such a 
sweet spot? 

  One reason: A term’s HM principal 
type is the most general theorem 
that can be expressed in the 
“program logic” of the type system 

The Library Problem 
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  Precise types can force details of issues like 
resource usage into interfaces 

cf. Morrisett’s story about region 
types in Cyclone... 

And similar stories with security 
types...   

The Visible Plumbing 
Problem 
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  Type structure is calculated from program 
structure 

So program structure must be carefully designed 
to give rise to the desired type structure! 

The Intersection Problem 
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  Types – especially very precise ones – are a 
mixed blessing in practice 
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Precision can be useful 
or even necessary 

But we need to stay awake 
to some serious pragmatic 
issues 

∴ More research is needed! 
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  Boomerang language design as an example of  
1.  the need for very precise types 
2.  some of the technical problems they raise    

  Contracts as an attractive way of addressing 
some of these issues 

27 

life with a very precise type system… 
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  Computing is full of situations where we want to 
compute some function, edit the output, and “push 
the edits back” through the function to obtain a 
correspondingly edited input.    
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 A bijective lens (or, for this talk, just lens) l from S 
to T is a pair of total functions 

l.get ∈ S→T 
l.put∈ T→S 

 such that 
l.get (l.put t) = t 

l.put (l.get s) = s. 

 The set of lenses from S to T is written S⇔T.  

Boomerang also handles 
non-bijective lenses, but 

that’s another story… 
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  How do we write down lenses? 

  Bad answer: Write down two functions and prove 
that they are inverses. 

  Better answer: Build big lenses from smaller 
ones.  (I.e., design a programming language 
where every expression denotes a lens.) 
◦ Single description 
◦ Bijectivity guaranteed by construction   
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  Let’s design a little language for bijective string 
transformations… 
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So lenses form a category… whew! 
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let XML_ESC : regexp = "&lt;" | "&gt;" | "&amp;" | [^<>&]	



let escape_xml_char : (lens in ANYCHAR <=> XML_ESC) = 	


    '<' <=> "&lt;"	


  | '>' <=> "&gt;"	


  | '&' <=> "&amp;"	


  | copy (ANYCHAR - [<>&])	



let ANY : regexp = ANYCHAR*	


let XML_ESC_STRING : regexp = XML_ESC*	



let escape_xml : (lens in ANY <=> XML_ESC_STRING ) = 	


  escape_xml_char*	



test escape_xml.get	


  <<	


    <hello"world>	


  >>	


= 	


  <<	


    &lt;hello"world&gt;	


  >> 	



unit test 

char escaping lens 

string escaping lens 
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let ESC_SYMBOL : regexp = "\\\"" | "\\\\" | [^\\""]	



let escape_quotes_char : (lens in ANYCHAR <=> ESC_SYMBOL) = 	


    '"' <=> "\\\""	


  | '\\' <=> "\\\\"	


  | copy (ANYCHAR - [\\""]) 	



let ESC_STRING : regexp = ESC_SYMBOL*	


let escape_quotes_string : (lens in ANY <=> ESC_STRING ) = 	


  escape_quotes_char*	



test escape_quotes_string.get	


  <<	


    <hello"world>	


  >>	


= 	


  <<	


    <hello\"world>	


  >> 	



A similar lens for a different escaping convention  
(escaping quotes and backslashes) 
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let quotes_to_xml : (lens in ESC_STRING <=> XML_ESC_STRING) = 	


  (invert escape_quotes_string) ; escape_xml	



test quotes_to_xml.get	


  <<	


    <hello\"world>	


  >>	


= 	


  <<	


    &lt;hello"world&gt;	


  >> 	



invert quote-escaper 
and compose 

with XML-escaper 

the composite lens maps from quote-escaped 
strings to XML-escaped strings  
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  Types of compound expressions are 
calculated compositionally from types of 
subexpressions 

  Typechecking can be carried out mechanically 
◦  ... Requires devoting some care to the engineering! 

  Type soundness = totality + bijectivity   (!) 
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  Programming with these combinators is fun for a 
while, but it loses its charm as programs become 
larger 

  Need facilities for naming, abstraction, code 
reuse…  
◦  i.e., we want a real programming language 
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Lenses + Lambdas  
= 

 Boomerang 
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let escape_char (raw:char) (esc:string) 	



    (R:regexp where not ((matches R raw) || (matches R esc)))	



    : (lens in (raw | R) <=> (esc | R) 	



= 	



    ( raw <=> esc | copy R )	



let escape_xml_char : (lens in ANYCHAR <=> XML_ESC) = 	



  ( escape_char '&' "&amp;" [^&]	



  ; escape_char '<' "&lt;"  ([^&<] | "&amp;")	



  ; escape_char '>' "&gt;"  ([^&<>] | "&amp;" | "&lt;") ) 	



A generic function for building character-escaping lenses: 

The XML-escaping lens again: 
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let escape_xml : (lens in ANY <=> XML_ESC_STRING ) = 	



  let l1 = escape_char '&' "&amp;" [^&] in	



  let l2 = escape_char '<' "&lt;"  ((codomain_type l1) - "<") in 	



  let l3 = escape_char '>' "&gt;"  ((codomain_type l2) - ">") in 	



  (l1;l2;l3)*	



A more uniform version of the XML-escaping lens: 
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let escape_chars 	



      (esc:char) 	



      (pairs: (char * string) List.t where	



            contains_esc_char esc pairs	



         && no_repeated_esc_codes pairs)	



   : (lens in ANY <-> (escaped esc pairs)* ) = 	



  let l : lens = 	



    List.fold_left{char * string}{lens}	



      (fun (li:lens) (p:char * string) -> 	



         let cj,sj = p in 	



         let lj = escape_char cj (esc . sj) ((codomain_type li) - cj) in 	



         li;lj)	



      (copy ANYCHAR) pairs in 	



    l*	



let escape_xml : lens = 	



  escape_chars '&’ [('&',"amp;");('<',"lt;");('>',"gt;")] 	



A function mapping a list of pairs of (character, escape code) to 
an escaping lens: 
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  The requirements of lens programming have led us 
to a type system with: 
◦  dependent function types 
◦  regular expressions (for lenses) 
◦  type refinements 

(R:regexp where not ((matches R raw) 	


                  || (matches R esc)))  

◦  polymorphism (for lists) 

  This precision is necessary to support code reuse 
while guaranteeing bijectiveness and totality. 

  But I have no idea how to write a typechecker for 
this beast! 
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  Split typechecking into multiple phases 
◦ Phase I: Function types and polymorphism  
  Typecheck functional program, treating regular expressions 

and refinement types as uninterpreted “blobs” 

◦ Phase II: Refinements and regular expressions 
  Execute functional program to produce a lens, checking type 

refinements and preconditions of lens primitives as they are 
encountered   

◦ Phase III: Evaluation 
  Apply resulting “straight line lens” to its string argument 
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  Problem: We’ve taken a static type analysis and 
turned it into a dynamic check 
  Not so bad in terms of when type errors appear (always 

during Phase I or II) 
  Not so good in terms of where they appear 

  When precise type checking fails for a lens-
assembling primitive (union, concatenation, etc.), 
all we can do is print a stack trace  
◦ But this is anti-modular!  To debug a stack trace, you 

have to look at all the modules between the one that 
failed that the one that actually caused the problem. 

We need one more idea… 
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  Postpone some static checks to  
 runtime as dynamic casts  

Even = { x:Int | x mod 2 = 0 }	



(<Even⇐Int> 2)	


➥ 2	



refinement type 

contract base type 
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  When a contract violation is 
detected, the program location 
(blame label) of the contract is 
“blamed” 

(<Even⇐Int>b 3)	



➥ b is blamed!	



blame label violated contract 

56 

But actually there are some subtleties… 
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  Contracts at functional types 

 cannot be checked directly.  Instead, they are compiled 
into separate checks for the domain and codomain. 

  Surprisingly, there are two ways to do this! 

<T1→T2 ⇐ S1→S2>  f 

<T1→T2 ⇐ S1→S2>    ~    λf. λx. <T2⇐S2> (f (<S1⇐T1> x)) (“contravariant”) 

<T1→T2 ⇐ S1→S2>    ~    λf. λx. <T2⇐S2> (f (<T1⇐S1> x)) (“covariant”) 

  More surprisingly, both are reasonable! 
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“manifest” contracts 
(visible in type of result) 

<T⇐S>   ∈   S → (T ∪ {blame})    

“latent” contracts 
(hidden in type of result) <T⇐S>   ∈   S → (S ∪ {blame})    

Makes sense in precisely 
typed languages, where 
refinements ⊆ types. 

Makes sense in untyped 
or simply typed 
languages, where types 
are not expressive 
enough to talk about 
refinements. 
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Latent contracts Manifest contracts 

Untyped Simple static types Precise static types 

Scheme contracts 
Findler, Felleisen ’02 
Blume, McAllester ‘06 

Findler, Blume ‘06 

Quasi-Static  Typing 
Thatte, ’89 

Typed Contracts for 
Haskell 

Hinze, Jeuring, Löh ’06 

Typed Scheme 
Tobin-Hochstadt, Felleisen ‘08 

Gradual Typing 
Siek, Taha ’06 

Hybrid Types 
Flanagan ‘06 

Sage 
Knowles, Tomb, Gronski, Freund, 

Flanagan ’06 

“Well typed programs 
can’t be blamed” 

Wadler, Findler ‘08  

Boomerang 

(Part of) 

^ 

  We take the “manifest contracts” approach 
◦ Rich language of types  
◦ Three-phase execution model 

1.  Check simple types 
2.  Execute functional code to produce a lens (checking contracts) 
3.  Execute lens 

◦ Contracts assign blame to a program location when a 
dynamic check fails in Phase II 
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(Ongoing work!) 
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  A precise type system with contracts can offer an 
attractive compromise between expressiveness of 
types, dynamism of checking, and language 
complexity 

  But many technical challenges remain… 
  How do we state “type soundness”? 
 What is the algebra of blame? 
  How do we make programs run fast enough with all these 

dynamic checks ? 
 What are the pragmatics of programming in such a 

language?   
  How to deal with the Intersection Problem, the Library Problem, 

the Visible Plumbing Problem, etc.?  

62 

  Complex programs have interesting properties, 
which require complex contracts to check 
◦ Contracts are software! 
◦ Need suitable language design, software engineering 

methodologies, etc. 

  Interesting connections with testing 
◦ Every function needs a unit test, and so does its 

contract! 
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  Mechanical checks of simple properties 
enormously improve software quality 
◦ Types ~ General but weak theorems (usually checked 

statically) 
◦ Contracts ~ General and strong theorems, checked 

dynamically for particular instances that occur during 
regular program operation 
◦ Unit tests ~ Specific and strong theorems, checked 

quasi-statically on particular “interesting instances” 

  Needed: Better ways of integrating these different 
sorts of checks 
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  Things to play with: Boomerang sources/demos: 
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