
5/26/08 

1 

Nate Foster, Michael Greenberg,

Benjamin C. Pierce
University of Pennsylvania

MFPS – May 23, 2008

:

2

5/26/08 

2 

3

4

5/26/08 

3 

5

6

5/26/08 

4 

7

Scheme is the optimal
programming language!

8

5/26/08 

5 

Any questions?

9

10

5/26/08 

6 

  The talk:
◦ Arguments for and against static type systems, especially

very precise ones
◦ The Boomerang language as a case study in the pros

and cons of precise types
◦ Contracts as a way of balancing concerns

11

12

5/26/08 

7 

  Complex definitions tend to be wrong when first
written down

  In fact, not only wrong but nonsensical

Most programming errors are not subtle!

13

  Attempting to prove any nontrivial theorem
about your program will expose lots of bugs

  The particular choice of theorem makes little
difference!

  Typechecking is good because it proves lots and
lots of little theorems about your program

14

Types good ⇒ More types better?

5/26/08 

8 

15

Does he look like he needs a type system?

16

5/26/08 

9 

Does he?

17

What about him?

18

5/26/08 

10 

  The classic retort:
Computers are fast; programmers are not

  The rational retort:
Types enable better compiler analyses and

make programs run faster, not slower

  The new retort:
Java

“If you can’t make it fast and correct,
make it fast.”

-- L. Cardelli
[paraphrased]

19

20

5/26/08 

11 

  Type systems – especially very precise ones – force
programmers to think rigorously about what they are
doing

  This is good... up to a point!
◦  Do we want languages where a PhD* is required to understand

the library documentation?

Is it better for Jane Programmer to
write ~20 more or less correct

lines of code / day or ~0 perfect
ones?

* two PhDs for Haskell

21

  Complex type systems can lead to complex
language definitions

  Easy to blow the overall complexity budget

22

5/26/08 

12 

  Why is Hindley-Milner such a
sweet spot?

  One reason: A term’s HM principal
type is the most general theorem
that can be expressed in the
“program logic” of the type system

The Library Problem

23

  Precise types can force details of issues like
resource usage into interfaces

cf. Morrisett’s story about region
types in Cyclone...

And similar stories with security
types...

The Visible Plumbing
Problem

24

5/26/08 

13 

  Type structure is calculated from program
structure

So program structure must be carefully designed
to give rise to the desired type structure!

The Intersection Problem

25

  Types – especially very precise ones – are a
mixed blessing in practice

26

Precision can be useful
or even necessary

But we need to stay awake
to some serious pragmatic
issues

∴ More research is needed!

5/26/08 

14 

  Boomerang language design as an example of
1.  the need for very precise types
2.  some of the technical problems they raise

  Contracts as an attractive way of addressing
some of these issues

27

life with a very precise type system…

28

5/26/08 

15 

  Computing is full of situations where we want to
compute some function, edit the output, and “push
the edits back” through the function to obtain a
correspondingly edited input.

29

 A bijective lens (or, for this talk, just lens) l from S
to T is a pair of total functions

l.get ∈ S→T
l.put∈ T→S

 such that
l.get (l.put t) = t

l.put (l.get s) = s.

 The set of lenses from S to T is written S⇔T.

Boomerang also handles
non-bijective lenses, but

that’s another story…

30

5/26/08 

16 

  How do we write down lenses?

  Bad answer: Write down two functions and prove
that they are inverses.

  Better answer: Build big lenses from smaller
ones. (I.e., design a programming language
where every expression denotes a lens.)
◦ Single description
◦ Bijectivity guaranteed by construction

31

  Let’s design a little language for bijective string
transformations…

32

5/26/08 

17 

33

So lenses form a category… whew!

34

5/26/08 

18 

35

36

5/26/08 

19 

37

38

5/26/08 

20 

39

let XML_ESC : regexp = "<" | ">" | "&" | [^<>&]	

let escape_xml_char : (lens in ANYCHAR <=> XML_ESC) = 	

 '<' <=> "<"	

 | '>' <=> ">"	

 | '&' <=> "&"	

 | copy (ANYCHAR - [<>&])	

let ANY : regexp = ANYCHAR*	

let XML_ESC_STRING : regexp = XML_ESC*	

let escape_xml : (lens in ANY <=> XML_ESC_STRING) = 	

 escape_xml_char*	

test escape_xml.get	

 <<	

 <hello"world>	

 >>	

= 	

 <<	

 <hello"world>	

 >> 	

unit test

char escaping lens

string escaping lens

40

5/26/08 

21 

let ESC_SYMBOL : regexp = "\\\"" | "\\\\" | [^\\""]	

let escape_quotes_char : (lens in ANYCHAR <=> ESC_SYMBOL) = 	

 '"' <=> "\\\""	

 | '\\' <=> "\\\\"	

 | copy (ANYCHAR - [\\""]) 	

let ESC_STRING : regexp = ESC_SYMBOL*	

let escape_quotes_string : (lens in ANY <=> ESC_STRING) = 	

 escape_quotes_char*	

test escape_quotes_string.get	

 <<	

 <hello"world>	

 >>	

= 	

 <<	

 <hello\"world>	

 >> 	

A similar lens for a different escaping convention
(escaping quotes and backslashes)

41

let quotes_to_xml : (lens in ESC_STRING <=> XML_ESC_STRING) = 	

 (invert escape_quotes_string) ; escape_xml	

test quotes_to_xml.get	

 <<	

 <hello\"world>	

 >>	

= 	

 <<	

 <hello"world>	

 >> 	

invert quote-escaper
and compose

with XML-escaper

the composite lens maps from quote-escaped
strings to XML-escaped strings

42

5/26/08 

22 

  Types of compound expressions are
calculated compositionally from types of
subexpressions

  Typechecking can be carried out mechanically
◦  ... Requires devoting some care to the engineering!

  Type soundness = totality + bijectivity (!)

43

44

5/26/08 

23 

  Programming with these combinators is fun for a
while, but it loses its charm as programs become
larger

  Need facilities for naming, abstraction, code
reuse…
◦  i.e., we want a real programming language

45

Lenses + Lambdas
=

 Boomerang

46

5/26/08 

24 

let escape_char (raw:char) (esc:string) 	

 (R:regexp where not ((matches R raw) || (matches R esc)))	

 : (lens in (raw | R) <=> (esc | R) 	

= 	

 (raw <=> esc | copy R)	

let escape_xml_char : (lens in ANYCHAR <=> XML_ESC) = 	

 (escape_char '&' "&" [^&]	

 ; escape_char '<' "<" ([^&<] | "&")	

 ; escape_char '>' ">" ([^&<>] | "&" | "<")) 	

A generic function for building character-escaping lenses:

The XML-escaping lens again:

47

let escape_xml : (lens in ANY <=> XML_ESC_STRING) = 	

 let l1 = escape_char '&' "&" [^&] in	

 let l2 = escape_char '<' "<" ((codomain_type l1) - "<") in 	

 let l3 = escape_char '>' ">" ((codomain_type l2) - ">") in 	

 (l1;l2;l3)*	

A more uniform version of the XML-escaping lens:

48

5/26/08 

25 

let escape_chars 	

 (esc:char) 	

 (pairs: (char * string) List.t where	

 contains_esc_char esc pairs	

 && no_repeated_esc_codes pairs)	

 : (lens in ANY <-> (escaped esc pairs)*) = 	

 let l : lens = 	

 List.fold_left{char * string}{lens}	

 (fun (li:lens) (p:char * string) -> 	

 let cj,sj = p in 	

 let lj = escape_char cj (esc . sj) ((codomain_type li) - cj) in 	

 li;lj)	

 (copy ANYCHAR) pairs in 	

 l*	

let escape_xml : lens = 	

 escape_chars '&’ [('&',"amp;");('<',"lt;");('>',"gt;")] 	

A function mapping a list of pairs of (character, escape code) to
an escaping lens:

49

  The requirements of lens programming have led us
to a type system with:
◦  dependent function types
◦  regular expressions (for lenses)
◦  type refinements

(R:regexp where not ((matches R raw) 	

 || (matches R esc)))

◦  polymorphism (for lists)

  This precision is necessary to support code reuse
while guaranteeing bijectiveness and totality.

  But I have no idea how to write a typechecker for
this beast!

50

5/26/08 

26 

  Split typechecking into multiple phases
◦ Phase I: Function types and polymorphism
  Typecheck functional program, treating regular expressions

and refinement types as uninterpreted “blobs”

◦ Phase II: Refinements and regular expressions
  Execute functional program to produce a lens, checking type

refinements and preconditions of lens primitives as they are
encountered

◦ Phase III: Evaluation
  Apply resulting “straight line lens” to its string argument

51

  Problem: We’ve taken a static type analysis and
turned it into a dynamic check
  Not so bad in terms of when type errors appear (always

during Phase I or II)
  Not so good in terms of where they appear

  When precise type checking fails for a lens-
assembling primitive (union, concatenation, etc.),
all we can do is print a stack trace
◦ But this is anti-modular! To debug a stack trace, you

have to look at all the modules between the one that
failed that the one that actually caused the problem.

We need one more idea…

52

5/26/08 

27 

53

  Postpone some static checks to
 runtime as dynamic casts

Even = { x:Int | x mod 2 = 0 }	

(<Even⇐Int> 2)	

➥ 2	

refinement type

contract base type

54

5/26/08 

28 

55

  When a contract violation is
detected, the program location
(blame label) of the contract is
“blamed”

(<Even⇐Int>b 3)	

➥ b is blamed!	

blame label violated contract

56

But actually there are some subtleties…

5/26/08 

29 

57

  Contracts at functional types

 cannot be checked directly. Instead, they are compiled
into separate checks for the domain and codomain.

  Surprisingly, there are two ways to do this!

<T1→T2 ⇐ S1→S2> f

<T1→T2 ⇐ S1→S2> ~ λf. λx. <T2⇐S2> (f (<S1⇐T1> x)) (“contravariant”)

<T1→T2 ⇐ S1→S2> ~ λf. λx. <T2⇐S2> (f (<T1⇐S1> x)) (“covariant”)

  More surprisingly, both are reasonable!

58

“manifest” contracts
(visible in type of result)

<T⇐S> ∈ S → (T ∪ {blame})

“latent” contracts
(hidden in type of result) <T⇐S> ∈ S → (S ∪ {blame})

Makes sense in precisely
typed languages, where
refinements ⊆ types.

Makes sense in untyped
or simply typed
languages, where types
are not expressive
enough to talk about
refinements.

5/26/08 

30 

60

Latent contracts Manifest contracts

Untyped Simple static types Precise static types

Scheme contracts
Findler, Felleisen ’02
Blume, McAllester ‘06

Findler, Blume ‘06

Quasi-Static Typing
Thatte, ’89

Typed Contracts for
Haskell

Hinze, Jeuring, Löh ’06

Typed Scheme
Tobin-Hochstadt, Felleisen ‘08

Gradual Typing
Siek, Taha ’06

Hybrid Types
Flanagan ‘06

Sage
Knowles, Tomb, Gronski, Freund,

Flanagan ’06

“Well typed programs
can’t be blamed”

Wadler, Findler ‘08

Boomerang

(Part of)

^

  We take the “manifest contracts” approach
◦ Rich language of types
◦ Three-phase execution model

1.  Check simple types
2.  Execute functional code to produce a lens (checking contracts)
3.  Execute lens

◦ Contracts assign blame to a program location when a
dynamic check fails in Phase II

61

(Ongoing work!)

5/26/08 

31 

  A precise type system with contracts can offer an
attractive compromise between expressiveness of
types, dynamism of checking, and language
complexity

  But many technical challenges remain…
  How do we state “type soundness”?
 What is the algebra of blame?
  How do we make programs run fast enough with all these

dynamic checks ?
 What are the pragmatics of programming in such a

language?
  How to deal with the Intersection Problem, the Library Problem,

the Visible Plumbing Problem, etc.?

62

  Complex programs have interesting properties,
which require complex contracts to check
◦ Contracts are software!
◦ Need suitable language design, software engineering

methodologies, etc.

  Interesting connections with testing
◦ Every function needs a unit test, and so does its

contract!

63

5/26/08 

32 

64

65

5/26/08 

33 

  Mechanical checks of simple properties
enormously improve software quality
◦ Types ~ General but weak theorems (usually checked

statically)
◦ Contracts ~ General and strong theorems, checked

dynamically for particular instances that occur during
regular program operation
◦ Unit tests ~ Specific and strong theorems, checked

quasi-statically on particular “interesting instances”

  Needed: Better ways of integrating these different
sorts of checks

66

  Things to play with: Boomerang sources/demos:

  Collaborators:
 Nate Foster and Michael Greenberg

  Acknowledgments:
 James McKinna, Greg Morrisett, Conor McBride, Andrew

Myers, Alexandre Pilkiewicz, Stephanie Weirich, Penn PL
Club

http://www.seas.upenn.edu/~harmony

67

:

