
A Formal Investigation of Diff3

Sanjeev Khanna1, Keshav Kunal2, and Benjamin C. Pierce1

1 University of Pennsylvania
2 Yahoo

Abstract. The diff3 algorithm is widely considered the gold standard
for merging uncoordinated changes to list-structured data such as text
files. Surprisingly, its fundamental properties have never been studied in
depth.

We offer a simple, abstract presentation of the diff3 algorithm and in-
vestigate its behavior. Despite abundant anecdotal evidence that people
find diff3’s behavior intuitive and predictable in practice, character-
izing its good properties turns out to be rather delicate: a number of
seemingly natural intuitions are incorrect in general. Our main result is
a careful analysis of the intuition that edits to “well-separated” regions
of the same document are guaranteed never to conflict.

1 Introduction

Users often want to edit a local copy of a replicated data structure, postponing
the moment when their changes become visible to others until sometime later—
when a set of changes has been finished and tested, when an offline laptop
is reconnected to the network, etc. In general, when multiple users can edit
at the same time, this reconciliation process requires a tool—a synchronizer—
that can propagate non-conflicting changes between different copies of the data,
while recognizing and flagging conflicts. Source code management systems, long-
distance collaborative editing environments, and file synchronizers are examples.

Operation-based synchronizers work by keeping track of the complete se-
quences of operations that have been applied to each replica and, during recon-
ciliation, attempting to synthesize a single unified view of the data structure’s
edit history. By contrast, a state-based synchronizer sees only the current ver-
sions of the replicas to be reconciled, together with an archive of the last state
they had in common (perhaps saved away at the end of the last synchronization).

A crucial problem faced by a state-based synchronizer is how to align the
information in the current replicas and the archive, so that it can tell where
changes have been made. This can be accomplished in a variety of ways, de-
pending on the nature of the data being synchronized. Where the data is rigidly
structured or where keys are available (e.g., in personal information management
applications such as address books), the proper alignment is generally clear. For
more flexibly structured data, such as semistructured databases, file systems,
and text documents, it is less clear how to reliably choose alignments that users

consider natural. The issue is particularly vexing for pure textual (or, more gen-
erally, list-structured) data, which offers no predetermined points of reference for
alignment—the structures are presented to the synchronizer as flat sequences of
uninterpreted atoms (characters, words, or lines of text)—and for which com-
mon edits include arbitrary insertions, deletions, and rearrangements of existing
material.

The best known tool for synchronization of textual data is diff3. Developed
by Randy Smith in 1988 [1] and popularized in revision control systems such as
CVS and Subversion, diff3 and its relatives are relied on by millions of users
for a huge range of collaborative tasks. The basic ideas of diff3 also appear
in numerous hybrid tools for synchronizing semi-structured data in formats like
XML, such as Lindholm’s 3DM [2], the work of Chawathe et al. [3], and FCDP [4].

Given its popularity, it is surprising that the fundamental properties of the
diff3 algorithm have never been explored. The published descriptions of its
behavior (the GNU difftools manual [5] and comments in the source code)
are helpful but rather low-level and operational, and we have been unable to
find in the literature any rigorous analysis of the properties that users might
want or expect from diff3 and the circumstances under which they hold.

Our first contribution is to put the diff3 algorithm itself on a more rigorous
footing by offering a concise description of its behavior (§2-§3). Our model here is
diff [6–8]—the two-way comparison algorithm used as a subroutine by diff3—
which has not one but two elegant specifications: it can be viewed as computing
either a longest common subsequence of its two inputs or a minimum-length edit
script for turning one into the other by single-element insertions and deletions.
Our specification of diff3 is not quite this concise, but nearly. We give a compact
reference implementation in half a page of pseudo-code.

Our second and main contribution is an analysis of diff3’s properties (§4).
Most importantly, we examine the common intuition that, if the changes to
the replicas are local to distinct and “well separated” regions, then diff3 will
always be able to merge them without conflicts. We show that the most obvious
formulations of this intuition are, in fact, wrong, but identify a common and
easily checked separation condition under which the property does hold. We also
formalize intuitive notions of idempotence (the results of synchronization are
“fully synchronized” except where edits conflict), stability (similar inputs lead
to similar outputs), and the guarantee of near-complete success when the inputs
have been changed in similar ways (even if these changes are large compared to
the archive version), and show that none of these properties hold in general.

We cite only closely related work. Broader surveys of the literature on syn-
chronization algorithms for other kinds of data and algorithms founded on dif-
ferent assumptions (such as operation-based techniques) can be found in [9, 10].

2 Warmup

Let us begin with a small example illustrating the basic operation of diff3.
Figure 1(a) shows the initial configuration: O is the archive—the last common

A = [1, 4, 5, 2, 3, 6]
O = [1, 2, 3, 4, 5, 6]
B = [1, 2, 4, 5, 3, 6]

(a) inputs

A 1 4 5 2 3 6

O 1 2 3 4 5 6

O 1 2 3 4 5 6

B 1 2 4 5 3 6

(b) maximum matches

A 1 4,5 2 3 6

O 1 2 3,4,5 6

B 1 2 4,5,3 6

(c) diff3 parse

A′ 1 4,5 2 3 6

O′ 1 4,5 2 3,4,5 6

B′ 1 4,5 2 4,5,3 6

(d) calculated output

1

4

5

2

<<<<<<< A

3

||||||| O

3

4

5

=======

4

5

3

>>>>>>> B

6

(e) printed output

Fig. 1. Warmup Example

version—and A and B are the current versions that have diverged from O.
(Whoever edited A has swapped 4, 5 and 2, 3, while 3 has gotten moved after 5
in B.) The first thing diff3 does is to call the two-way comparison tool diff to
find maximum matchings (or longest common subsequences) between O and A
and between O and B, as shown in Figure 1(b). It then takes the regions where
O differs from either A or B and coalesces the ones that overlap, leading to
the alternating sequence of stable (all replicas equal) and unstable (one or both
replicas changed) chunks shown in Figure 1(c).3 Finally, it examines what has
changed in each chunk and decides what changes can be propagated, as shown
in Figure 1(d)—here, the second chunk is changed only in A (by inserting 4, 5),
so this change can be propagated to B, but the fourth chunk has changes in
both A and B, so nothing can be propagated.

At this point, the actual diff3 tool is finished: it simply walks over the
chunks and, depending on what flags are provided on the command line, outputs
something appropriate for each chunk. For example, Figure 1(e) shows the output
from invoking diff3 -m A O B, where the -m flag requests a merged version of
the files. For non-conflicting chunks, a single version is printed; for conflicts, the
whole chunk.

Our analysis is a tiny bit more refined: We consider diff3 as having three
outputs—the new versions of A, O, and B with all non-conflicting changes in A
reflected in B′ and O′ and all non-conflicting changes in B reflected in A′ and O′.

3 The diff3 manual [11] uses the term hunks for what we are calling unstable chunks;
stable chunks are not named explicitly.

At the same time, we calculate a new archive O′ that reflects all the changes that
were successfully propagated, keeping the state from O in conflicting regions.
(This extra refinement is just for purposes of analysis. In principle, it could also
be useful in practice: after a partially successful synchronization, the current
replicas are left in a partially updated but usable state, in contrast with tools
like CVS based on the actual diff3, where conflicts cause the current replicas to
be polluted with information about conflicting chunks. However, we will see in
§4.2 that re-running diff3 after a partially conflicting run can have unexpected
consequences.)

3 The Diff3 Algorithm

We assume given some set of atoms A. (In practice, these might be lines of text,
as in GNU diff3, or they could be words, characters, etc.) We write A∗ for the
set of lists with elements drawn from A and use variables J , K, L, O, A, B,
and C to stand for elements of A∗. If L is a list and k ∈ {1, . . . , |L|}, then L[k]
denotes the kth element of L. A span in a list L is a pair of indices [i..j] with
1 ≤ i, j ≤ |L|. We write L[i..j] for the list of elements of L in locations i through
j; if j < i, this is the empty list. The length of a span [i..j] is j − i + 1 if i ≤ j
and 0 if i > j.

A configuration is a triple (A, O, B) ∈ A∗ × A∗ × A∗. We usually write
configurations in the more suggestive notation (A← O → B) to emphasize that
O is the archive from which A and B have been derived.

A synchronizer is a function that takes as input a configuration (A← O →
B) and yields another configuration (A′ ← O′ → B′). We say that (A ← O →
B) ⇒ (A′ ← O′ → B′) is a run of the synchronizer. A run (A ← O → B) ⇒
(C ← C → C), where the three components of the output configuration are
identical, is said to be conflict free. We write (A← O→ B)⇒ C in this case.

The first step of diff3 is to call a two-way comparison subroutine on (O, A)
and (O, B) to compute a non-crossing matching MA between the indices of O
and A—that is, a boolean function on pairs of indices from O and A such that if
MA[i, j] = true then (a) O[i] = A[j], (b) MA[i′, j] = false and MA[i, j′] = false
whenever i′ 6= i and j′ 6= j, and (c) MA[i′, j′] = false whenever either i′ < i
and j′ > j or i′ > i and j′ < j—and a non-crossing matching MB between the
indices of O and B. We treat this algorithm as a black box, simply assuming (a)
that it is deterministic, and (b) that it always yields maximum matchings. For
the counterexamples in the next section, we have verified that the matchings we
use correspond to the ones actually chosen by GNU diff3.

A chunk (from A, O, and B) is a triple H = ([ai..aj], [oi..oj], [bi..bj]) of a
span in A, a span in O, and a span in B such that at least one of the three is
non-empty. The size of a chunk is the sum of the lengths of all three spans. Write
A[H] for A[ai..aj] ∈ A∗, and similarly O[H] = O[oi..oj] and B[H] = B[bi..bj].

A stable chunk is a chunk in which all three spans have the same length and
corresponding indices are matched in all three—i.e., a chunk ([a..a+k−1], [o..o+
k−1], [b..b+k−1]) for some k > 0, with MA[o+ i, a+ i] = MB[o+ i, b+ i] = true

for each 0 ≤ i < k. That is, a stable chunk corresponds to a span in O that is
matched in both MA and MB. An unstable chunk is one that is not stable. An
unstable chunk H is classified as follows:

H is changed in A if O[H] = B[H] 6= A[H]
H is changed in B if O[H] = A[H] 6= B[H]
H is falsely conflicting if O[H] 6= A[H] = B[H]
H is (truly) conflicting if O[H] 6= A[H] 6= B[H] 6= O[H]

A chunk is called conflicting if it is either falsely or truly conflicting; a non-
conflicting chunk is thus either stable or else changed only in A or B. Given a
chunk H , we define the output of H to be the following triple of lists:

out(H) =

(A[H], O[H], B[H]) if H is stable or conflicting
(A[H], A[H], A[H]) if H is changed in A
(B[H], B[H], B[H]) if H is changed in B

A diff3 parse of A, O, and B with respect to the matchings MA and MB

is a sequence of stable and unstable chunks such that, (I) whenever MA[o, a] =
MB[o, b] = true, the indices a, o, and b appear together in some stable chunk,
and (II) each stable chunk is as large as possible. Observe that, under these
conditions, the given matchings MA and MB uniquely determine the division of
the inputs into an alternating sequence of stable and unstable chunks. Figure 2
gives a concrete algorithm for computing these chunks from the matchings.

3.1 Lemma: For any matchings MA between A and O and and MB between
B and O, the algorithm in Figure 2 outputs a diff3 parse.

Proof: For property (I), observe that the beginning of each unstable chunk
is identified in step 2(a). It starts at an index ℓO + 1 in O such that either
MA[ℓO + 1, ℓA + 1] = false or MB[ℓO + 1, ℓB + 1] = false . The unstable chunk
then spans the elements O[ℓO + 1], ..., O[o − 1] in O, where o > ℓO is the least
index with MA[o, a] = MB[o, b] = true for some a, b. Thus an unstable chunk
can not contain an element in O that is matched in both MA and MB.

Now suppose property (II) is violated in some parse output by the algorithm.
Consider the first stable chunk C that violates the maximality condition. The
chunk (if any) that precedes C must be an unstable chunk or else C is not the
first stable chunk to violate the maximality property. By (I), we know that no
elements in the unstable chunk preceding C (if any) could have been included in
C. Also, if C is output in step 2(b), it terminates at A[ℓA+i−1], O[ℓO+i−1], and
B[ℓB + i−1] where i satisfies the condition that either MA[ℓO + i, ℓA + i] = false
or MB[ℓO + i, ℓB + i] = false. Clearly, no more elements could be included in
C. Similarly, if C is output in step 3, then none of A, O, or B can contain any
elements that follow C. Thus C must be maximal—a contradiction. �

Finally, if P = [H1, . . . , Hn] is a parse—a sequence of chunks—then the
output of P is obtained by concatenating the outputs for each chunk,

out(P) = (concat([A1..An]), concat([O1..On]), concat([B1..Bn])),

where out(Hi) = (Ai, Oi, Bi) for each 1 ≤ i ≤ n.

1. Initialize ℓO = ℓA = ℓB = 0.
2. Find the least positive integer i such that either MA[ℓO + i, ℓA + i] = false or

MB [ℓO + i, ℓB + i] = false. If i does not exist, then skip to step 3 to output
a final stable chunk.

(a) If i = 1, then find the least integer o > ℓO such that there exist indices
a, b with MA[o, a] = MB [o, b] = true . If o does not exist, then skip to
step 3 to output a final unstable chunk. Otherwise, output the (unstable)
chunk

C = ([ℓA + 1 .. a − 1], [ℓO + 1 .. o − 1], [ℓB + 1 .. b − 1]).

Set ℓO = o − 1, ℓA = a − 1, and ℓB = b − 1, and repeat step 2.
(b) If i > 1, output the (stable) chunk

C = ([ℓA + 1 .. ℓA + i − 1], [ℓO + 1 .. ℓO + i − 1], [ℓB + 1 .. ℓB + i − 1]).

Set ℓO = ℓO + i − 1, ℓA = ℓA + i − 1, and ℓB = ℓB + i − 1, and repeat
step 2.

3. If (ℓO < |O| or ℓA < |A| or ℓB < |B|), output a final chunk

C = ([ℓA + 1 .. |A|], [ℓO + 1 .. |O|], [ℓB + 1 .. |B|]).

Fig. 2. The Diff3 Algorithm

4 Properties of Diff3

We now explore a number of intuitive properties that one might expect a syn-
chronization algorithm such as diff3 to possess... and encounter some surprises.

4.1 Locality

Users of version control systems such as CVS can often be heard saying things
like “I’ll change this section of the file and you change that one and we’ll sync
up when we’re done,” in perfect confidence that this synchronization will be
unproblematic. Indeed, perhaps the most important property that users of diff3
expect in practice is that, if A and B have been changed only in “non-overlapping
ways,” then synchronization will produce a unique, conflict-free result.

To investigate this intuition, let us focus on the case where A makes changes
only at one end of the file while B makes changes only at the other end of the file.
Define a tiling τ for a list O to be a partition of O into three lists O1, O2, and O3

such that O = O1O2O3. A configuration (A← O → B) is τ-respecting if O1 and
O3 are each modified in at most one of A and B and O2 is modified in neither.
If only one of O1 or O3 gets modified at all or if both O1 and O3 are modified
in the same list, the result will obviously be conflict free. The interesting case is
when both A and B make changes.

Next, we need to formalize the intuitive condition of the edited regions being
“well separated.” Two possible ways of doing this come immediately to mind:

A 1, 2, (1, 2)n−1 1, 2, 1, 2

O (1, 2)n 1, 2

B (1, 2)n 3

stable conflict

Fig. 3. Counter-example for locality

– require that the edited regions be separated by a large untouched region—
i.e., that O2 be longer than any of A1, O1, O3, or B3; or

– require that the separating region be different from anything appearing any-
where else—i.e., that the string O2 not occur in O1, A1, O3, or B3.

Most users of diff3 would probably guess (as we did) that either of these con-
ditions is enough to guarantee a conflict-free synchronization. As the following
example shows, this guess is wrong on both counts.

Let O1 = ∅, O2 = (1, 2)n, and O3 = 1, 2, for some positive integer n. In
replica A, the O1 component is modified to A1 = 1, 2 while in the replica B,
the O3 component is modified to B3 = 3. Consider the maximum matching MA

for pair (O, A) where the 1, 2 term in A1 is matched to the first 1, 2 term in
O2 component of O. Then the (1, 2)n−1 prefix in the O2 component in A is
matched to the (1, 2)n−1 suffix in the O2 component of O. Finally, the last (1, 2)
term in the O2 component of A is matched to the O3 component of O. For the
pair (O, B), the only maximum matching is one where their O2 components are
matched. As shown in Fig. 3, we have a (“true”) conflict in this run. Note that
the conflict is independent of the value of the parameter n and that it occurs
even when the stable region O2 is arbitrarily large.

At this point, one might begin to wonder whether, despite all the anecdotal
evidence to the contrary, diff3 might not be safe to use under any set of con-
ditions that can be concisely characterized. Fortunately, this is too pessimistic.
We can get the property we want by strengthening the second intuition.

Call a τ -respecting configuration (A ← O → B) safe if the O2 component
contains an element x that occurs exactly once in each of O, A, and B. Notice
that there are no constraints on the length of O2: it may contain just x.

4.1.1 Theorem: Every safe τ -respecting configuration (A← O → B) leads to
a unique conflict-free synchronization.

Such configurations are common in practice: for example, if the structures
being synchronized are replicas of a source code file, it is reasonable to expect
that O2 will contain some completely unique line, such as a procedure header
or a distinctive comment. The theorem can thus be viewed as justifying the
common belief in diff3’s locality. Its proof rests on a technical property.

4.1.2 Lemma: Suppose we are given a configuration (A← O→ B), a matching
MA between O and A, and a matching MB between O and B. If there exists

an element z that occurs uniquely in each of A, O, B and if both MA and MB

match the element z, then z must be contained in a stable chunk in the diff3

parse that results from MA and MB.

Proof. Let αO, αA, and αB respectively denote the locations of the element z
in O, A, and B. We prove the property by iteratively considering the chunks
that are output by the diff3 algorithm until the point that element z appears
in some output chunk for the first time. Let ℓO, ℓA, and ℓB (see Figure 2) be
the indices denoting the locations of the last elements in O, A, and B that were
processed by the algorithm. By assumption, ℓO < αO, ℓA < αA, and ℓB < αB.

If the next chunk being output is an unstable chunk as in step 2(a), then
the chunk ends just before the least offset in O at which there exists an element
matched in both MA and MB. Clearly, the updated indices ℓO, ℓA, and ℓB must
again satisfy the property ℓO < αO, ℓA < αA, and ℓB < αB since MA[αO, αA] =
MB[αo, αB] = true. On the other hand, if the next chunk being output is a
stable chunk as in step 2(b), then the chunk ends just before the least offset at
which there exists an element in O that is not matched in at least one of MA or
MB. If the updated indices still satisfy ℓO < αO, ℓA < αA, and ℓB < αB, then
we continue with the iterative process, maintaining the invariant. Otherwise, the
element z must appear in this stable chunk, establishing the desired property.

Proof of 4.1.1: Assume wlog that O1 is modified to A1 in A (i.e., A = A1O2O3)
and that O3 is modified to B3 in B (i.e., B = O1O2B3). Consider any maximum
matching MA between O and A. We claim that the element x must be matched
in MA. Suppose not. Let ℓ denote the number of elements that are matched by
MA between the A1 component of A and O1 component of O. Since the ele-
ment x is not matched in MA, the total number of elements matched by MA is
bounded by ℓ + (|O2| + |O3| − 1). Now consider the matching M ′

A that agrees
with MA in the matching of elements between A1 and O1 and also completely
matches the O2 and O3 components of A and O. Then the total number of el-
ements matched by M ′

A is ℓ + (|O2| + |O3|), contradicting the assumption that
MA is a maximum matching. Thus x must be matched in MA. Moreover, since
A and O are identical after x, MA must match all elements in A after x to all
elements in O after x, in order to be a maximum matching. Similarly, MB must
match all the elements up to x in B to all the elements up to x in O.

By Lemma 4.1.2, x must be contained in a stable chunk in diff3’s output.
To complete the proof, consider any unstable chunk H output by the algorithm.
Since the unique element x is contained in a stable chunk, either all elements in
the A, O, and B components of chunk H precede x or they all follow x. In the
former case, H must only be “changed in A,” since MB matches all elements up
to x in B to all elements up to x in O. Similarly, in the latter case, H must be
“changed in B.” Thus, every unstable chunk is conflict free.

Finally, to see that the resulting output is unique, note that, in every parse,
all the chunks above x are either stable or changed in A and those below x are
stable or changed in B. Thus, in the output, the elements up to x will be taken
from A while the elements following x will come from B. �

This well-separation condition is quite delicate, and we have found it difficult
to generalize. For example, one might guess that it can be extended to situations
where each user has made edits in multiple regions of the list, provided that these
regions are separated by unique elements and no region is edited in both A and
B. More precisely, let us say that a generalized tiling τ is a partition of O in to
2k + 1 non-empty pieces for some positive integer k ≥ 1, say, O1, O2, ..., O2k+1.
We now say a configuration (A ← O → B) is τ-respecting if each piece O2i+1

for 0 ≤ i ≤ k is modified in at most one of A and B, while each piece O2i for
0 ≤ i ≤ k is modified in neither. A τ -respecting configuration (A ← O → B)
is said to be safe if each O2i component contains an element x2i that occurs
exactly once in each of O, A, and B.

But this generalization no longer ensures a conflict-free synchronization. For
example, consider the extension even to k = 2; so O = O1O2O3O4O5. Further-
more, assume that for any 1 ≤ i < j ≤ 5, Oi and Oj are disjoint, that is, they
do not share any elements. Let A = A1O2O3O4A5, and let B = O1O2B3O4O5.
Also, let A1 = O5, and A5 = B3 = ∅. Now if |O5| > |O|/2, then the unique
maximum matching MA between A and O matches the A1 component in A to
O5 in O. On the other hand, consider the maximum matching MB between B
and O that matches them in all components except B3 to O3. It is easy to see
that the first diff3 chunk will be a conflict.

4.2 Idempotence

In the rest of this section, we consider some other intuitive properties that users
might expect of diff3 and show that, in fact, it possesses none of them.

To begin, let us take the intuition that every run of a synchronizer should “do
as much as possible” and reach a stable state: synchronizing again immediately
should propagate no further changes. This can be stated formally as follows:

4.2.1 Property: A synchronization algorithm is idempotent if (A ← O →
B)⇒ (A′ ← O′ → B′) implies (A′ ← O′ → B′)⇒ (A′ ← O′ → B′).

4.2.2 Fact: Diff3 is not idempotent.

Counterexample: Consider the run in the top part of Figure 4, where

([1, 2, 4, 6, 8]← [1, 2, 3, 4, 5, 5, 5, 6, 7, 8]→ [1, 4, 5, 5, 5, 6, 2, 3, 4, 8])
⇒ ([1, 2, 4, 6, 8]← [1, 2, 3, 4, 6, 7, 8]→ [1, 4, 6, 2, 3, 4, 8]).

The output configuration can take another step, shown in the bottom part of
Figure 4, leading to

([1, 2, 4, 6, 8]← [1, 2, 3, 4, 6, 7, 8]→ [1, 4, 6, 2, 3, 4, 8])
⇒ ([1, 4, 6, 2, 4, 6, 8]← [1, 4, 6, 2, 4, 6, 7, 8]→ [1, 4, 6, 2, 4, 8]).

Note that diff3 has no choice in either case: each of the input configurations
has just one pair of maximum matchings. (Ensuring this is the role of the blocks
of repeated 5s in the first configuration.) �

A 1 2 4 6 8

O 1 2,3 4 5,5,5 6 7 8

B 1 4 5,5,5 6 2,3,4 8

stable conflict stable changed in A stable conflict stable

A 1 2 4 6 8

O 1 2 3 4 6, 7 8

B 1 4,6 2 3 4 8

stable changed in B stable changed in A stable conflict stable

Fig. 4. Counter-example to idempotence

4.3 Near success on similar replicas

The diff3 algorithm begins by comparing O, separately, with A and with B;
it never compares A and B directly. Nevertheless, it seems reasonable to expect
that, even if A and B are very different from O, we should still be able to syn-
chronize successfully, as long as A and B themselves are similar. Unfortunately,
this intuition is misleading.

For any pair of replicas A, B, let m(A, B) denote the length of a largest
common subsequence for A and B. Let ǫ be some function mapping natural
numbers to reals between 0 and 1. A pair of replicas A, B is said to be ǫ-close
if m(A, B) ≥ (1− ǫ(n))n, where n = max{|A|, |B|}. We can now formally define
stability properties involving the notion of “similarity.”

4.3.1 Property: A synchronization algorithm guarantees near success on sim-
ilar replicas if there exists a universal constant c > 0 such that, for any ǫ-close
pair (A, B), if (A← O → B)⇒ (A′ ← O′ → B′), then A′ and B′ are (cǫ)-close.

4.3.2 Fact: Diff3 does not guarantee near success on similar replicas.

Counterexample: Consider the input configuration

(A← O → B) =

[1, n
2

+ 1, . . . , n− 1, 2, . . . , n
2
, n]

↑
[1, . . . , n]
↓
[1, 2, n

2
+ 1, . . . , n− 1, 3, . . . , n

2
, n]

(generalizing the one we saw in Section 2). Note that the pair (A, B) is 1

n
-close,

as their largest common subsequence is of length n − 1. The unique maximum
common subsequence of O and A is [1, 2, . . . , n/2, n]; between O and B it is
[1, 2, n/2 + 1, . . . , n − 1, n]. This leads to three stable diff3 chunks and two
unstable chunks, as shown in Figure 5. Though the second of these is conflicting,
the first is updated only in A; the output of this chunk thus propagates [n/2 +

A 1 n

2
+ 1, . . . , n − 1 2 3, . . . , n

2
n

O 1 2 3, . . . , n − 1 n

B 1 2 n

2
+ 1, . . . , n − 1 , 3, . . . , n

2
n

stable changed in A stable conflict stable

Fig. 5. Counter-example to several properties

1, . . . , n− 1] to O and B , yielding the complete output

(A′ ← O′ → B′) =

[1, n
2

+ 1, . . . , n− 1, 2, . . . , n
2
, n]

↑
[1, n

2
+ 1, . . . , n− 1, 2, . . . , n]

↓
[1, n

2
+ 1, . . . , n− 1, 2, n

2
+ 1, . . . , n− 1, 3, . . . , n

2
, n]

.

In the final reconciled state, A′ and B′ are only about 1

3
-close (m(A′, B′) = n,

while max{|A′|, |B′|} is about 3n
2

), and so no constant c exists such that they
are c

n
-close for every positive n. �

4.4 Stability

Another intuitively reasonable property is that any two runs whose inputs are
similar should have similar outputs.

4.4.1 Property: A synchronization algorithm is stable if there exists a universal
constant c > 0 such that, for any three pairs (O1, O2), (A1, A2), and (B1, B2),
such that each pair is ǫ-close, if (A1 ← O1 → B1) ⇒ (A′

1 ← O′

1 → B′

1) and
(A2 ← O2 → B2) ⇒ (A′

2 ← O′

2 → B′

2), then each pair of replicas (O′

1, O
′

2),
(A′

1, A
′

2), and (B′

1, B
′

2) is cǫ-close.

4.4.2 Fact: Diff3 is not stable, even for non-conflicting runs.

Counterexample: Consider the runs

([X, Y, X]← [X, Y, 0, Y, X]→ [Y, X, 0, Y])⇒ [Y, X, 0]
([X, Y, X]← [X, Y, 0, Y, X]→ [0, Y, X, Y])⇒ [0, X, Y],

where X = [1, . . . , n
2
] and Y = [n

2
+ 1, . . . , n]. It is easy to see that the corre-

sponding pairs in the two input configurations are all 2

3n
-close while the output

is only about 1

2
-close. �

5 Future Work

Our formalization suggests a number of interesting variations on diff3. For
example, instead of asking for separate matchings of (O, A) and (O, B) could

we try to compute a maximum joint matching of (A, O, B)? (Note that having
maximum matchings for (O, A) and (O, B) does not imply having a maximum
matching of (A, O, B). For instance, if O = [1, 2, 3, 4, 5, 6], B = [4, 5, 1, 2, 3],
and A = [4, 5, 6, 1, 2], the unique maximum matchings for the pairs leads to an
empty match for the triple though clearly one can choose either [1, 2] or [4, 5]
as the matching elements.) Alternatively, the choice of two-way matchings could
be biased by their effect on the output, especially when deciding between two
similar choices, since there are instances when a choosing a different maximum
match or even a slightly sub-optimal matching can lead to better results.

Acknowledgments

We gratefully acknowledge stimulating discussions about list synchronization
with James Leifer and Catuscia Palamidessi. Nate Foster helped us understand
some of the intricacies of diff3’s behavior. This research has been supported by
the National Science Foundation under grants 0113226, Principles and Practice
of Synchronization, and 0429836, Harmony: The Art of Reconciliation.

References

1. Smith, R.: GNU diff3 (1988) Version 2.8.1, April 2002; distributed with GNU
diffutils package.

2. Lindholm, T.: A three-way merge for xml documents. In: DocEng ’04: Proceedings
of the 2004 ACM symposium on Document engineering, New York, NY, USA, ACM
Press (2004) 1–10

3. Chawathe, S.S., Rajamaran, A., Garcia-Molina, H., Widom, J.: Change detection
in hierarchically structured information. ACM SIGMOD Record 25(2) (June 1996)
493–504

4. Lanham, M., Kang, A., Hammer, J., Helal, A., Wilson, J.: Format-independent
change detection and propoagation in support of mobile computing. In: Brazilian
Symposium on Databases (SBBD), Gramado, Brazil. (October 2002) 27–41

5. MacKenzie, D., Eggert, P., Stallman, R.: Comparing and Merging Files with GNU
diff and patch. Network Theory Ltd. (2003) Printed version of GNU diffutils

manual.
6. Miller, W., Myers, E.W.: A file comparison program. Softw., Pract. Exper. 15(11)

(1985) 1025–1040
7. Myers, E.W.: An o(nd) difference algorithm and its variations. Algorithmica 1(2)

(1986) 251–266
8. Ukkonen, E.: Algorithms for approximate string matching. Information and Con-

trol 64(1-3) (1985) 100–118
9. Foster, J.N., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.: Exploit-

ing schemas in data synchronization. Journal of Computer and System Sciences
(2007) To appear. Extended abstract in Database Programming Languages (DBPL)
2005.

10. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Software
Eng. 28(5) (2002) 449–462

11. Stallman, R., et al.: Comparing and merging files (2002) Manual for GNU
diffutils; available at gnu.org.

