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ABSTRACT
We propose a novel approach to the classical view update
problem. The view update problem arises from the fact
that modifications to a database view may not correspond
uniquely to modifications on the underlying database; we
need a means of determining an “update policy” that guides
how view updates are reflected in the database. Our ap-
proach is to define a bi-directional query language, in which
every expression can be read both (from left to right) as a
view definition and (from right to left) as an update pol-
icy. The primitives of this language are based on standard
relational operators. Its type system, which includes record-
level predicates and functional dependencies, plays a crucial
role in guaranteeing that update policies are well-behaved, in
a precise sense, and that they are total—i.e., able to handle
arbitrary changes to the view.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
relational databases

General Terms
Languages, Theory

Keywords
View update, lenses

1. INTRODUCTION
Our interest in the view update problem arose from of our
work on a “universal data synchronizer” called Harmony [3,
4]. Harmony is a generic framework for reconciling discon-
nected updates to heterogeneous, replicated XML data. It
can be used, for instance, to synchronize the bookmark files
of several different web browsers, allowing bookmarks and
bookmark folders to be added, deleted, edited, and reor-
ganized by different users running different browser appli-
cations on disconnected machines. A central theme of the
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Harmony project has been bringing ideas from programming
languages to bear on a set of problems more commonly re-
garded as belonging to databases or distributed systems.

Much of our work on Harmony has focused on developing
the foundations of bi-directional programming languages [4],
in which every program denotes a pair of functions—one
for extracting a view of some complex data structure, and
another for putting back an updated view into the original
structure; we call these programs lenses. Lenses play a cru-
cial role in the way Harmony deals with heterogeneous struc-
tures, mapping between diverse concrete application data
formats and common abstract formats suitable for synchro-
nization, and then translating the updates resulting from
synchronization back to the original concrete data sources.
The lens programming language of Harmony can be viewed
as a solution to a specific instance of the general view update
problem, where the data structures involved are trees.

As we have begun applying it to a broader range of ap-
plications, we have encountered many situations where we
would like to use Harmony to synchronize information in
traditional relational formats. Of course, relational data
can be encoded as trees easily enough. But we have found
that Harmony’s tree-oriented programming language is not
appropriate for the sorts of transformations commonly per-
formed on relational data. In particular, its type system,
which is based on regular tree automata, is good at cap-
turing common XML schemas, but cannot encode familiar
concepts from relational schemas, such as functional depen-
dencies. This, in turn, means that the typing rules for fa-
miliar relational primitives such as joins are overly rigid,
disallowing many useful cases.

Our aim in this paper is to design a new bi-directional
language, based on the abstract framework of lenses but with
a set of primitives and a type system specifically targeted
at relational data. We plan to use this language in a new
version of the Harmony system that will deal natively with
synchronizing relational data, but the language also stands
on its own as a novel approach to the classical view update
problem in relational databases.

The view update problem can be illustrated as follows.
Suppose we have a relation T , which is the result of joining
relations R and S:



R A B
a b

S B C
b c

ff

./
−→



T A B C
a b c

ff

If we update T—say, by deleting its single row—we may
want to reflect this update in the original relations—i.e.,
to change R and/or S so that R ./ S is the empty table.
Here, the desired effect can be achieved by deleting the single



row in either or both of R and S; each of these options is
a concrete example of an update policy. The view update
problem is the problem of associating “reasonable” update
policies with views.

Our approach to the view update problem is to design a
new query language based on the relational algebra where
every expression denotes both a view definition and a view
update policy. Each primitive is annotated with enough
parameters to guide the choice among a range of reason-
able update policies, and the update policy for a compound
expression is calculated by composing together the update
policies of its constituents.

The example in Figure 1 illustrates the essential features
of our approach. The three ovals together represent the
following composite lens expression:

join dl Tracks, Albums as Tracks1;
drop Date determined by (Track, unknown)

from Tracks1 as Tracks2;
select from Tracks2 where Quantity > 2 as Tracks3

The first line joins the Tracks and Albums tables from the
original database state, yielding a new state with a single
table Tracks1 . This new state is a database in its own
right; this permits us to compose the other two lenses onto
its right, with each stage in the composition each taking
the “view” calculated by the previous stage as its start-
ing “database.” Likewise, the join dl operation is itself
a complete view definition, with its own individual update
translation policy (the suffix dl indicates that this policy
will delete rows from its left-hand argument, as we shall
see shortly). The drop in the second line projects away
the Date attribute from the table Tracks1 , yielding a new
database with a single table Tracks2 ; again, the annota-
tions (Track , unknown) will determine the update policy for
this lens. Finally, the select lens in the third line chooses
the rows in Tracks2 satisfying the predicate Quantity > 2,
yielding a final state with a table Tracks3 . Each stage in
the composition constructs a new table containing its result
and removes the tables it uses as inputs; this ensures that
each table can be used at most once in calculating the final
view, which avoids the need to introduce complex schemas
for tracking duplicated information in the view.

The top left box in the figure is the original state of the
database. The solid arrows going down the left-hand side
represent the (standard) step-by-step computation of the
view state, yielding the original view state at the bottom
left. We then perform an update on the view state, yielding
the updated view state on the bottom right. To propa-
gate the updates back to the original database, we apply
the putback functions of each of the lenses in turn, repre-
sented by the dashed arrows moving up the right-hand side
of the figure. The putback of the select lens uses the func-
tional dependency Track → Rating to update the rating of
the unseen “Lullaby” record. The putback of the drop lens
uses the information in both original and updated states to
restore the values in the Date column that were projected
away by the get; also, the date “1989” is inferred for the
new row containing “Lovesong,” using the functional de-
pendency. For the join dl lens, records containing unseen
information such as (“Paris”, “4”) are correctly restored to
the table Albums, while deletions, such as the record for
“Trust,” and modifications, such as the quantity of “Disin-
tegration,” are correctly propagated. The final result is the

updated database state on the top right.
The technical contributions of our work are twofold. First,

our language incorporates a fairly rich notion of schemas
for databases and views, including the functional dependen-
cies shown in the example as well as record-level predicates.
Each of our primitive lenses comes equipped with a typ-
ing rule specifying the domain (database schema) and range
(view schema) on which its behavior is total—i.e., for which
arbitrary schema-preserving updates to views are guaran-
teed to have reasonable translations. Second, our primi-
tive lenses constitute a detailed analysis of the view up-
date behavior of a number of fundamental relational oper-
ations in the presence of predicates and functional depen-
dencies. Some—in particular, join [7]—have been studied
previously. But the others turn out to be surprisingly in-
teresting. For example, the way select’s behavior interacts
with functional dependencies is quite subtle.

The rest of the paper is organized as follows. Section 2 re-
views some familiar definitions and notational conventions.
Section 3 introduces the abstract framework of lenses. Sec-
tion 4 develops some fundamental operations involving re-
lations and functional dependencies; these are used in Sec-
tion 5 to define bi-directional versions of several fundamental
relational operators. Sections 6 and 7 discuss related and fu-
ture work. Proofs are omitted for the sake of brevity; they
can be found in a companion technical report, available from
http://www.cis.upenn.edu/~bcpierce/harmony.

2. BACKGROUND
We begin with a set of attributes, ranged over by A, B, C,
and a homogeneous set of values, ranged over by a, b, c. (We
do not assign specific domains or types to the attributes and
do not have a distinguished null value.) We let U, V and
X, Y, Z range over sets of attributes. Records, ranged over
by m, n, l, are partial functions from attributes to values.
We write records as {A = a1, B = b1}, or just (a1, b1) when
the attributes are clear from context. We write dom(m)
for the domain of the record m and write m : U to mean
that dom(m) = U . If A ∈ dom(m), then m(A) is the value
associated with A in m. We write m[A 7→ a] for the record
with domain dom(m) ∪ {A} that maps A to a and agrees
with m elsewhere, and m[X] for the record with domain
X ∩ dom(m) that agrees with m where it is defined.

We use M, N, L to range over relations—sets of records
with the same domain. We say that M has domain U , or
M is a relation over U , and write M :U , if m :U for all m ∈
M . The usual set-theoretic operations are also defined on
relations when both arguments have the same domain. We
lift domain restriction to sets of records to define relational
projection:

M [X] = {m[X] | m ∈M}

Given M : U and N : V , their natural join is defined by

M ./ N = {l | l : UV with l[U ] ∈M and l[V ] ∈ N}.

P and Q range over predicates. In examples, we use famil-
iar logical syntax for predicates; formally, however, we treat
predicates simply as sets (generally infinite ones) of records
having the same domain. We write >U for the set of all
records over the domain U—i.e., the always-true predicate
over U . To lighten notation, we often just write > when U
can be inferred from the context (and similarly for other U -
subscripted notations below). Negation of predicates is set
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Figure 1: A Composite Lens



complement: we write ¬UM (or just ¬M) for >U \M . Since
predicates and relations are the same sorts of objects, math-
ematical intersection (P ∩M) expresses relational selection.
Furthermore, all notation and definitions on relations are
equally applicable to predicates.

We will be interested in cases where predicates are insensi-
tive to the data associated with certain attributes. We write
“P ignores X” when the truth of m ∈ P can be determined
without considering any of the values that m assigns to at-
tributes in X—i.e., for all m and n, if m[dom(m)−X] =
n[dom(n) −X] then m ∈ P ⇐⇒ n ∈ P .

Functional dependencies play a crucial role in our devel-
opment. A functional dependency is a pair of attribute sets,
written X → Y . We say that X → Y is a functional depen-
dency over the domain U , written X → Y :U , if X ⊆ U and
Y ⊆ U . If X → Y is a functional dependency over U and M
is a relation over U , we say that M satisfies X → Y , written
M |= X → Y , if m1[X] = m2[X] implies m1[Y ] = m2[Y ]
for all m1, m2 ∈M .

Generally, we work with sets of functional dependencies.
We say that F is a set of functional dependencies over U
(written F : U) if X → Y : U for all X → Y ∈ F . If F is
a set of functional dependencies over U and M is a relation
over U , then M |= F means that M |= X → Y for all
X → Y ∈ F .

If F and F ′ are sets of functional dependencies over U ,
we say that F implies F ′, written F |=U F ′ when, for all
M over U , M |= F implies M |= F ′. We write F ≡U F ′ to
mean that F |=U F ′ and F ′ |=U F .

We use R, S to range over relation names; the function
sort assigns a tuple (U, P, F ) to each name, where U is a
domain of attributes, P a predicate over U , and F a set
of functional dependencies over U . If sort(R) = (U, P, F ),
then dom(R) = U , pred(R) = P , and fd(R) = F . We say
M satisfies (U,P, F ) when M : U , M ⊆ P , and M |= F .

I and J range over database instances (or databases). A
database I is a finite map from relation names to relations
such that, if I(R) = M , then M satisfies sort(R). A database
schema (ranged over by Σ, ∆) is a set of relation names.
A database I conforms to a schema Σ, written I |= Σ, if
dom(I) = Σ.

3. LENSES
The starting point for this work is the class of bi-directional
transformations known as lenses, which have previously been
applied in the domain of semistructured data [4]. Lenses are
bi-directional mappings between a concrete domain, thought
of as a set of database states, and an abstract domain, thought
of as a set of view states. (The abstract domain is “abstract”
in the sense that, in general, abstract states contain less in-
formation than concrete ones—i.e., a view is usually smaller
than the original database.) In the relational setting, both
of these domains are database schemas.

3.1 Definition [Lenses]: Given schemas Σ and ∆, a lens
v from Σ to ∆ (written v ∈ Σ ↔ ∆) is a pair of total
functions v↗∈ Σ → ∆ (“v↗” is pronounced “v get”) and
v↘∈ ∆× Σ→ Σ (pronounced “v putback”).

The get component of a lens corresponds exactly to a view
definition. Intuitively, the get and putback functions are in-
tended to be be “inverses,” in a sense that we will shortly
make precise by imposing additional restrictions on their

behavior. Since the view may discard information from the
concrete domain, there is generally more than one way of
inverting the get function. Hence, the putback function may
be seen as a class of inverse functions from ∆ to Σ that is
indexed by an element of the concrete domain Σ.

3.2 Definition [Well-behaved lenses]: Given schemas Σ
and ∆ along with a lens v ∈ Σ↔ ∆, we say that v is a well-
behaved lens from Σ to ∆ (written v ∈ Σ⇔ ∆) if it satisfies
the laws GetPut and PutGet:

v↘ (v↗ (I), I) = I for all I ∈ Σ (GetPut)
v↗ (v↘ (J, I)) = J for all (J, I) ∈ ∆× Σ (PutGet)

To highlight the importance of these properties, let us de-
fine a lens v./—a naive first attempt at a bi-directional ver-
sion of a natural join—that is not well-behaved. (Besides il-
lustrating the definition and exercising some of the notation
we have introduced, this lens will form the kernel of a bet-
ter attempt at defining selection in Section 5.1.) We define
the lens in a context where dom(R) = AB, dom(S) = BC,
dom(T ) = ABC, and the sorts of R, S, and T are other-
wise unconstrained. In the get direction, this lens forms the
natural join of the tables named R and S, calling the re-
sult T and removing R and S from the database. In the
putback direction, the lens projects T on AB and BC to
reconstruct R and S. Thus, v./ ∈ {R, S} ↔ {T}. (In
fact, v./ ∈ Σ ∪ {R, S} ↔ Σ ∪ {T} for any schema Σ with
R, S, T 6∈ Σ.) More formally:

v./↗ (I) = I\R,S[T 7→ I(R) ./ I(S)]

v./↘ (J, I) = J\T [R 7→ J(T )[AB]][S 7→ J(T )[BC]]

Although this definition has a pleasing simplicity and sym-
metry, one may rightly wonder whether the v./↘ is an ap-
propriate inverse for v./↗. The following example demon-
strates that it is not—in particular, that v./ does not satisfy
GetPut:
8

<

:

R A B
a1 b1

a1 b2

S B C
b1 c1

b1 c2

9

=

;

v./↗
//

8

<

:

T A B C
a1 b1 c1

a1 b1 c2

9

=

;

↑6= ↓=
8

<

:

R A B
a1 b1

S B C
b1 c1

b1 c2

9

=

;

oo
v./↘

8

<

:

T A B C
a1 b1 c1

a1 b1 c2

9

=

;

Intuitively, the failure here is related to the fact that the
view does not maintain all information present in the un-
derlying data, but the putback function does not use the
original database. A different problem is illustrated by the
fact that the lens also fails to satisfy PutGet:
8
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>
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;

oo
v./↗
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:

R A B
a1 b1

a2 b1

S B C
b1 c1

b1 c2

9

=

;

In this case, the initial state of table T could not have been
the result of applying v./↗ to any database with the schema
{R, S}, which directly implies that PutGet will fail.



Generally, the combination of well-behavedness and to-
tality implies that get and putback functions must always be
surjective. It is often very difficult to describe a pair of non-
trivial domains over which surjectivity holds in both direc-
tions for a lens. Thus, totality imposes a stringent constraint
on our lens design. The principle contribution of this re-
search is showing how to use schemas with functional depen-
dencies to describe useful domains for total, well-behaved
lenses based upon traditional relational primitives.

4. REVISION
The technical keystone of our approach is an operation that
“revises” a set of records from the original database state so
that they agree with a set of new records from an updated
view, with respect to a given set of functional dependencies;
this operation is used in Section 5 to define several of the
fundamental lens primitives. We begin its development in
Sections 4.1 and 4.2 by building up a few preliminaries in-
volving functional dependencies. The revision operator itself
is presented in Section 4.3.

4.1 Functions on Functional Dependencies
We write left(F ) for the set of all attributes appearing on the
left-hand side in a set of functional dependencies F . Simi-
larly, right(F ) is the the set of attributes appearing on the
right in F . We define names(F ) as left(F ) ∪ right(F ). We
also define a function that returns the set of all attributes
that appear on the right-hand side of a functional depen-
dency “in an essential way”:

outputs(F ) = {A ∈ U | ∃X ⊆ U. A 6∈ X and F |= X → A}

That is, the outputs are the fields that are actually con-
strained by some other fields in the relation. It is easy to
check that, if F ≡ F ′, then outputs(F ) = outputs(F ′).

4.2 Tree Form
We will sometimes work with sets of functional dependencies
with a special shape that we call tree form. We say F is in
tree form if there exists a collection of pairwise disjoint sets
of attributes X1, . . . , Xn such that, if X → Y ∈ F , then
X, Y ∈ {X1, . . . , Xn} and, moreover, the graph G over the
nodes {1, . . . , n} with the edges {(i, j) | Xi → Xj ∈ F} is
a directed acyclic graph with all nodes having in-degree at
most one (i.e., a forest, in the sense of graph theory).

If F is in tree form and we have two functional dependen-
cies X1 → Y1 and X2 → Y2 in F , we may draw some useful
conclusions about their relationship. First, either X1 = X2

or else X1 ∩ X2 = ∅ and Y1 ∩ Y2 = ∅. Moreover, either
Y1 = Y2 and X1 = X2, or else Y1 ∩ Y2 = ∅. Finally, if
{X → Y } 6∈ F and F ∪ {X → Y } is in tree form, then
Y ∩ right(F ) = ∅.

Consider the functional dependencies {A→ BC, C → D}.
This set is not literally in tree form by our definition, but it
is semantically equivalent to a set of functional dependencies
in tree form, namely {A → B, A→ C, C → D}.(Indeed, we
conjecture that our theory can be extended to handle any
set of functional dependencies that is equivalent to one in
tree form.) By contrast, some sets of functional dependen-
cies are not equivalent to any set in tree form. For example,
{A → B, B → A}, {A → C, B → C}, and {A → B, BC →
D}. Such sets of functional dependencies are problematic
for the primitive lenses defined in the next section. Fortu-
nately, they are also less commonly seen in practice than

those in tree form, which include basic key constraints and
the dependencies arising from typical joins on tables with
key constraints.

If F is in tree form, we define leaves(F ) and roots(F ) as
follows (note that these are sets of attribute sets):

leaves(F ) = {Y | ∃X. X → Y ∈ F and Y ∩ left(F ) = ∅}
roots(F ) = {X | ∃Y. X → Y ∈ F and X ∩ right(F ) = ∅}

4.3 Record and Relation Revision
Our goal is to define an operation M←F L that will compute
a new relation similar to M whose records do not conflict
with those of L on the functional dependencies F . For in-
stance, suppose F = {A → B, B → C} and M and L are
defined as follows:

M =

A B C
a1 b2 c1

a2 b1 c1

a3 b3 c3

L =
A B C
a2 b2 c2

a4 b4 c4

Then we want the following behavior:

M ←F L =

A B C
a1 b2 c2

a2 b2 c2

a3 b3 c3

Relation revision is at the heart of several of our primitive
lenses. In some cases, it appears in the form of a slightly
higher-level operation that revises a relation and combines
the result with the relation that was used during the revi-
sion. We call this operation relational merge. We define

M
∪
←F N = (M ←F N) ∪ N , where M : U and N : U . For

example:

M
∪
←F L =

A B C
a1 b2 c2

a2 b2 c2

a3 b3 c3

a4 b4 c4

It turns out to be somewhat tricky to define the revision
operation precisely and prove that it behaves as desired.
The remainder of Section 4 sketches this development; it
can safely be skipped on a first reading.

The most basic operation using functional dependencies
is one that updates some fields of a single record so that it
conforms to the other records in a relation. We write m←+n
for the right-biased combination of records m and n—i.e.,
the record with domain dom(m) ∪ dom(n) that agrees with
n on dom(n) and agrees with m on dom(m)− dom(n).

We first define a single-dependency record revision opera-
tion that takes a record m, a single functional dependency
X → Y , and a relation N satisfying X → Y , and returns
a revised record m′ such that {m′} ∪ N satisfies X → Y .
Formally, this operation is defined by giving a mathemat-
ical relation over tuples (X → Y, N, m, m′) (we typeset it
as an arrow mapping m to m′ with X → Y on top and N
below) and then showing that we can treat this relation as
a function, since there is always a unique such m′ whenever
X → Y , N , and m share a domain U and N |= X → Y .
The following inference rules define the relation:



m : U N : U X → Y : U
N |= X → Y n ∈ N

m[X] = n[X] m′ = m←+ n[Y ]

m
X→Y

N

// m′

(C-Match)

m : U N : U X → Y : U
N |= X → Y m[X] 6∈ N [X]

m
X→Y

N

// m

(C-NoMatch)

By C-Match, if there exists n ∈ N such that m[X] = n[X],
then m′ is the result of overwriting the Y fields of m with
those of n. Every such n will coincide on the values in the
Y fields since N |= X → Y . It should be clear that such
an n exists exactly when m[X] ∈ N [X]. On the other hand,
if m[X] 6∈ N [X], then we may apply C-NoMatch to show
that m is unchanged. The uniqueness of the result of record
revision follows immediately.

It also follows from the definition that, if two records m1

and m2 agree on the fields in X, the records that result from
revising m1 and m2 with the functional dependency X → Y
and the relation N will agree on the fields in Y , assuming m1

and m2 also agree with some record in N on the fields in X.
Moreover, as we might expect, revising a record twice with
the same functional dependency and relation does nothing
more than revising it just once.

The last step is to define a record revision operation that
can use a set of functional dependencies to make a record
conform to a relation. However, we need to be careful: there
is no natural way to do this for some sets of functional de-
pendencies. Consider the relation N = {(a1, b2), (a2, b1)}
over the attributes A,B, and assume that we want to re-
vise the record (a1, b1) to conform to N using the functional
dependencies {A → B, B → A}. Since we have no prece-
dence among our functional dependencies, we do not know
whether it would be better to revise it to (a1, b2) or (a2, b1).
We clearly don’t want to revise it to (a3, b3), because we
want the net change to the record to be minimal. Fortu-
nately, if the functional dependencies are in tree form, then
the effect of a revision operation is clear: we should propa-
gate updates down from the roots to the leaves.

Formally, the general revision operation is the least rela-
tion closed under the following inference rules:

m : U L : U

m
∅

L

+3 m

(FC-Empty)

L |= F, X → Y X → Y /∈ F
F, X → Y in tree form X ∈ roots(F, X → Y )

m
X→Y

L

// m′ m′ F

L

+3 n

m
F,X→Y

L

+3 n

(FC-Step)

Under the empty set of functional dependencies, a record
revises to itself by FC-Empty. For a non-empty set of func-
tional dependencies, we use FC-Step to first apply a single-
dependency record revision using some root dependency and
then proceed recursively with the remaining dependencies.

Intuitively, m
F

L

+3 m′ means that m′ is a version of m

that has been minimally revised to conform to the relation

L under the functional dependencies F . The following lem-
mas justify this intuition. The first says that the record
revision operation does not change more fields than neces-
sary. The second says that the revised record m′ agrees with
the relation L on the functional dependencies F . The third
says that any pair of records revised with the same relation
and functional dependencies are guaranteed not to conflict
with each other according to the functional dependencies.

4.3.1 Lemma: If m
F

L

+3 n and Z ∩ outputs(F ) = ∅, then

m[Z] = n[Z].

4.3.2 Lemma: If m
F

L

+3 m′, then {l, m′} |= F for all l ∈

L.

4.3.3 Lemma: Suppose m1
F

L

+3 m′
1 and m2

F

L

+3 m′
2, where

F is in tree form. If {m1, m2} |= F , then {m′
1, m

′
2} |= F .

The record revision operation can be lifted to sets of records
in a natural way. We call this relation revision:

M ←F L = {m′ | m
F

L

+3 m′ for some m ∈M}.

A key property of relation revision is that it does not make
up new values. Moreover (Lemma 4.3.5), it actually results
in a relation satisfying F .

4.3.4 Lemma: Let M :U , A ∈ U , and m′ ∈M←F L. Then
either m′[A] ∈M [A] or m′[A] ∈ L[A].

4.3.5 Lemma: If M |= F , then M ←F L |= F .

5. RELATIONAL LENS PRIMITIVES
We now describe some primitive lenses for updatable rela-
tional views. For brevity, we concentrate on three of the
most interesting primitives; several others are described in
the long version of the paper.

5.1 Selection
The get component of the select lens performs a relational
selection on a table in the database; this part is simple.
Equipping this get function with a putback function that
behaves well in the presence of schemas with functional de-
pendencies and predicates is a little trickier.

Letting v stand for the lens expression

select from R where P as S,

the behavior of the select lens is defined as follows:

v↗ (I) = I\R[S 7→ P ∩ I(R)]

v↘ (J, I) = J\S [R 7→M0 \N#]

where M0 = (¬P ∩ I(R))
∪
←F J(S)

N# = (P ∩M0) \ J(S)

F = fd(R)

The get function extracts the relation R from I , selects with
respect to the predicate P , and associates the resulting re-
lation with the name S. The putback function forms an
approximation M0 of the updated table R in the concrete
database by performing a relational merge of the records in
the abstract database with those from the concrete database



that do not satisfy the predicate. However, we have to be
careful: in some cases, M0 contains records that, if put in the
concrete database, would result in a violation of PutGet,
but that may safely be removed. (Such a case will be illus-
trated later in this section.) We collect these records as N#

and remove them from the result (# stands for “conflict”).
The following typing rule captures the domain over which

the select lens is guaranteed to behave well:

sort(R) = (U, Q, F )
sort(S) = (U, P ∩Q, F )

F is in tree form Q ignores outputs(F )

select from R where P as S ∈
Σ ] {R} ⇔ Σ ] {S}

(T-Select)

We use the notation Σ1]Σ2 for the disjoint union of Σ1 and
Σ2 (which is defined only when Σ1∩Σ2 = ∅). Thus, the Σ in
the conclusion of the typing rule may be instantiated with
any database schema as long as R, S 6∈ Σ. Above the line, we
declare the relationship that must exist between the sorts of
the tables R and S, along with two other constraints. This
typing rule can be read as a theorem that describes a set of
database schemas and view schemas over which the above
lens is well-behaved. Proving the theorem involves checking
that the following facts are implied by the rule’s premises:

Get Total: If I |= Σ then v↗ (I) |= ∆.

Put Total: If I |= Σ and J |= ∆ then v↘ (J, I) |= Σ.

GetPut: If I |= Σ then v↘ (v↗ (I), I) = I .

PutGet: If I |= Σ and J |= ∆ then v↗ (v↘ (J, I)) = J .

The restriction on the schema predicate Q is needed because
the relational merge results in record revisions that may
change any fields in outputs(F ). The requirement that F be
in tree form is needed because our relational merge operation
is only defined for such functional dependencies.

Here is a typical example of the use of select. Let v
stand for the expression select from R where C = c2 as S,
and assume that sort(R) is (ABC,>, {A→ B}) and sort(S)
is (ABC, C = c2, {A→ B}). We apply the lens in the get
direction to a database I containing a single table R:

8

>

>

<

>

>

:

R A B C
a1 b1 c1

a1 b1 c2

a2 b2 c2

9

>

>

=

>

>

;

I

v↗(I)
//

8

<

:

S A B C
a1 b1 c2

a2 b2 c2

9

=

;

J

Now assume that an update to the table S results in the
new database J ′. Applying the lens in the putback direction
results in an updated concrete database I ′:

8

>

>

<

>

>

:

R A B C
a1 b2 c1

a1 b2 c2

a2 b2 c2

9

>

>

=

>

>

;

I′

oo
v↘(J′,I)

8

<

:

S A B C
a1 b2 c2

a2 b2 c2

9

=

;

J′

In the table R, the record (a1, b1, c1) has been replaced with
the record (a1, b2, c1) to preserve the functional dependency
A → B, even though this record was not visible in the ab-
stract view.

One of the conditions imposed upon v by T-Select is that
Q ignores outputs(F ). We can justify this by considering
the following modification to the sorts: Assume that there
is an ordering on elements, such that bi ≤ cj exactly when

i ≤ j, and that sort(R) is (U,B ≤ C, A→ B) and sort(S) is
(U, B ≤ C ∧ C = c2, A→ B). Then, in the example above,
we would have I |= {R}, J |= {S}, and J ′ |= {S}, but I ′ 6|=
{R}, which violates our rule that lenses must be total on
their specified domains. The problem arises because the field
B is updated in the process of a merge operation, but the
record-level predicate associated with R puts a restriction
on the values in that field.

Finally, an example illustrating the role of N#. Suppose
we apply the lens select from R where B = b2 as S with
sort(R) is (U,>, A→ B) and sort(S) is (U, B = b2, A→ B)
to the database I :



R A B C
a1 b1 c1

ffI
v↗(I)

//



S A B C
ffJ

The abstract database table S is empty, but suppose the
record (a1, b2, c2) were added. One might expect the follow-
ing behavior from the putback function:

8

<

:

R A B C
a1 b2 c1

a1 b2 c2

9

=

;

I′

oo
v↘(J′,I)



S A B C
a1 b2 c2

ffJ′

However, this behavior would fail to satisfy the law PutGet

because a subsequent get operation would retrieve both rows
from the concrete database, while only one was present in
the abstract database. The actual behavior of the select

lens in the putback direction will delete the existing row in
the concrete database.



R A B C
a1 b2 c2

ffI′

oo
v↘(J′,I)



S A B C
a1 b2 c2

ffJ′

In general, it is safe, if somewhat counter-intuitive, to delete
records from the concrete database if they result in conflict-
ing values determined by functional dependencies.

5.2 Join
Relational join is another operation with non-obvious putback
semantics. There are actually many variants, all sharing the
same get component but with different update policies; we
consider just one update policy here, for brevity (the long
version of the paper explores several others). In the get di-
rection, the lens join dl R, S as T performs a natural join.
In the putback direction join dl may add records to both
tables R and S, but will only delete from table R (the name
is intended to suggest “deleting from the left table”).

The following example illustrates a typical use of join dl:

v = join dl R, S as T
fd(R) = {A→ B}

8

>

>

<

>

>

:

R A B C
a1 b1 c1

a2 b2 c2

a2 b2 c3

S C
c1

c2

9

>

>

=

>

>

;

I

v↗(I)
//

8

<

:

T A B C
a1 b1 c1

a2 b2 c2

9

=

;

J

8

<

:

R A B C
a2 b′2 c2

a2 b′2 c3

S C
c1

c2

9

=

;

I′

oo
v↘(I,J)



T A B C
a2 b′2 c2

ffJ′

Note that the record (a1, b1, c1) is deleted from R, rather
than deleting (c1) from S, in accordance with the “delete
from the left table” policy. Moreover, the record (a2, b2, c3)
in R, which does not appear in the view, is updated to



(a2, b
′
2, c3) by the putback; this a consequence of the func-

tional dependency A→ B.
The behavior of join dl is defined as follows:

v↗ (I) = I\R,S [T 7→ I(R) ./ I(S)]

v↘ (J, I) = J\T [R 7→M ][S 7→ N ]

where (U, P, F ) = sort(R)

(V, Q, G) = sort(S)

M0 = I(R)
∪
←F J(T )[U ]

N = I(S)
∪
←G J(T )[V ]

L = (M0 ./ N) \ J(T )

M = M0 \ L[U ]

The get function associates name T with the inner join of
R and S; the complexity is in the putback, where each piece
of the definition is necessary to guarantee well-behavedness.
To see why, recall from section 3 that defining putback by

vbroken1↘ (J, I) = J\T [R 7→ J(T )[U ]][S 7→ J(T )[V ]]

is unsatisfactory. This definition fails because (i) records
that are not included in the view are dropped after the
putback, and (ii) records may be added to create a view
state which is not the result of any natural join.

To address (i), we merge the concrete relations with pro-
jections of J(T ). Adding records from the concrete view
fixes (i), and the definition of merge guarantees that func-
tional dependencies are obeyed. However, we still do not
account for deletions. Consider defining the putback func-
tion as

vbroken2↘ (J, I) = J\T [R 7→M0][S 7→ N ].

We can see that this definition is not correct by examining
the database state:



R A B
a b

S B C
b c

ffI

In the get direction, v yields a view state with one row in ta-
ble T . Removing this row and invoking v↘ yields database
state I again, in violation of PutGet. The lens definition
fails to distinguish deleted records from those simply absent
from the initial view state.

Our actual definition avoids this problem by removing any
records that would, when using broken2 , violate PutGet.
To achieve this, we simulate a putback-get with vbroken2 as
the putback function and calculate which records appear that
should not. This yields L. We find the final right hand
relation by removing L[U ] from M0.

Working the previous example with the full, correct defi-
nition of putback gives:



R A B S B C
b c

ffI

We still need to address problem (ii). This is accomplished
by the typing rule:

sort(R) = (U, P, F ) sort(S) = (V, Q, G)
sort(T ) = (UV, P ./ Q, F ∪G)

G |= U ∩ V → V
F is in tree form G is in tree form

P ignores outputs(F ) Q ignores outputs(G)

join dl R, S as T ∈ Σ ] {R, S} ⇔ Σ ] {T}
(T-Join)

The most interesting premise is G |= U ∩ V → V , which
asserts that join dl can only join two tables if the shared
fields are a key for the right table. The following exam-
ple shows why this restriction is necessary. Consider using
join dl where U = AB and V = BC and dom(T ) = ABC.
Table

T A B C
a1 b1 c1

a1 b1 c2

a2 b1 c1

provides a counterexample to putback. Fortunately, our typ-
ing rule prevents J(T ) from having this form. (Imposing
the key constraint on the right table is an arbitrary choice.)
In a well typed join, sort(T ) ensures that any J(T ) is de-
composable into components satisfying schemas sort(R) and
sort(S). Additionally, F and G must be in tree form for re-
lational merge to be well defined.

Space constraints preclude further discussion of join. In
the long version of the paper, we define a variety of natural
join lenses as instantiations of a generic lens, parameter-
ized by two procedures: one that chooses records to delete
in the case of ambiguities, and another that ensures func-
tional dependencies are respected. For example, we define
join dl’, which is like join dl but does not require tree
form functional dependencies and updates, by using a de-
structive “squash” instead of merging.

5.3 Projection
Rather than defining a lens corresponding to a general rela-
tional projection operation, we consider a more basic lens,
which we call drop, that projects away just a single column
in the get direction. This simplification is useful because
some special care must be taken to make sure that values
in the missing column can be safely reconstructed; the pol-
icy for how to do this and the associated type constraints
describing when it is feasible are most easily expressed by
considering only a single column at a time. A column A
can be dropped when the associated functional dependen-
cies show that at most one X non-trivially determines A
and that no other fields are fully or partially determined
by A. In cases where a general projection makes sense, it
can be implemented by composing several drop operations
in sequence.

Letting v stand for the expression

drop A determined by (X, a) from R as S

the behavior of the drop lens is:

v↗ (I) = I\R[S 7→ I(R)[U − A]]

v↘ (J, I) = J\S [R 7→M ←X→A I(R)]

where M = (I(R) ./ J(S)) ∪ (N+ ./ {{A = a}})

N+ = J(S) \ I(R)[U − A]

U = dom(R)

The syntax of the drop expression includes a set of attributes
X upon which the field A has a functional dependency (the
typing rule will ensure this) and a value a, which will be used
as a default value for the column A when the unseen data do
not determine it. The get component simply projects away
the single field A. The behavior of the putback component
revolves around reconstructing the values in the missing col-
umn. Records that were unchanged in the view are guar-
anteed to receive their original values. Records that were



added in the view (captured by N+) are first paired with
the default value, but this may be overwritten by the re-
lational revision operation using the functional dependency
X → A.

We assign types to the drop lens with this rule:

sort(R) = (U, P, F )
A ∈ U F ≡ F ′ ∪ {X → A}

sort(S) = (U − A, P [U − A], F ′)
P = P [U − A] ./ P [A] {A = a} ∈ P [A]

drop A determined by (X, a) from R as S ∈
Σ ] {R} ⇔ Σ ] {S}

(T-Drop)

This rule imposes several restrictions on the dropped col-
umn A. We require A ∈ U as a sanity check. Then we
require that F has a representation in which a set of fields
X determines A. This set of fields must be unique because
F ′ : U −A, as required by the sort of S. (Note that, if A
is not determined by any other fields, then we may always
choose X = A.) Indeed, it is easy to see that no reasonable
behavior exists if this condition is not satisfied. For exam-
ple, assume that fd(R) = {A → C, B → C} (note that the
typing rule does not require fd(R) or fd(S) to be in tree
form) and we create a new table S by projecting away the
field C. A get operation on the database I followed by the
insertion of a new row (a1, b2) would cause a problem for
the putback operation:

8

<

:

R A B C
a1 b1 c1

a2 b2 c2

9

=

;

I

v↗(I)
//

8

<

:

S A B
a1 b1

a2 b2

9

=

;

J

8

>

>

<

>

>

:

R A B C
a1 b1 c1

a2 b2 c2

a1 b2 ?

9

>

>

=

>

>

;

I

oo
v↘(I,J′)

8

>

>

<

>

>

:

S A B
a1 b1

a2 b2

a1 b2

9

>

>

=

>

>

;

J′

Since B and C independently determine A, any value that
is put in place of ? will result in a table that disobeys F .

We must also constrain the predicate in the schema. The
expression P = P [U − A] ./ P [A] implies that the predicate
may not impose any sort of dependency between the value
in field A and the values other fields. This is necessary be-
cause it is not possible to statically guarantee that the value
assigned to the attribute A in the putback direction would
have any particular relationship with the rest of the record.
Finally, we require that {A = a} ∈ P [A], so that filling in
the default value is safe with respect to the predicate.

5.4 Lens Composition
Given lenses v and w, their composition (v; w) has get and
putback components with the following behavior:

(v; w)↗ (I) = v↗ (w↗ (I))

(v; w)↘ (J, I) = w↘ (v↘ (J, w↗ (I)), I)

The get direction applies the get function of v, yielding a
first abstract database, to which the get function of w is
applied. In the other direction, the two putback functions
are applied in turn: first, the putback function of w is used
to put J into the concrete database that the get of w was
applied to, i.e., w↗ (I); the result is then put into I using
the putback function of v.

The typing rule for composition reflects the fact that the
abstract domain of the first lens must coincide with the con-
crete domain of the second lens:

v ∈ Σ⇔ Σ′ w ∈ Σ′ ⇔ ∆

v; w ∈ Σ⇔ ∆
(T-Compose)

6. RELATED WORK
The framework of lenses was introduced by Foster, Green-
wald, Moore, Pierce, and Schmitt [4], to which we refer read-
ers for an extensive survey of the related literature. We
review here just a few important points of comparison.

In this work, we have adopted the position that views
should be “free-standing” entities—i.e., that it should be
possible to perform updates on a view without examining
the state of the concrete database. This perspective squarely
aligns us with traditional theories of the view-update prob-
lem [1, 5], but distinguishes us from the traditional practice
in the area, including the seminal work of Dayal and Bern-
stein [2], as well as the methods that have actually been
implemented in commercial database systems. The use of
free-standing views has practical advantages (views can be
edited when the database is inaccessible) and a theory that
naturally allows for composability. However, it is conceiv-
able that a more ad-hoc solution may be appropriate for
some applications.

View-update approaches inherently require a trade-off be-
tween the number of updates that can be translated success-
fully and the strength of the properties that update trans-
lation can be guaranteed to satisfy. At one extreme is the
position embodied in Bancilhon and Spyratos’s [1] notion
of the complement of a view, which includes (at least) all
the information missing from the view. When a comple-
ment is fixed, there is at most one update of the database
that reflects a given update on the view while leaving the
complement unmodified—i.e., that “translates updates un-
der a constant complement.” This approach has influenced
numerous later works in the area, including recent papers
by Lechtenbörger [9] and Hegner [6]. The approach places
tight constraints on the update translation, however, allow-
ing only a relatively small number of updates on a view to
be translated.

Our lenses fall at the opposite end of the spectrum, guar-
anteeing a translation for any update on any view, but with
necessarily fewer guarantees about the behavior of the trans-
lation. Others have also investigated looser restrictions on
update translations. Our definition of select, for example,
is similar to an example proposed by Keller [8] as an illus-
tration of a natural update policy that would be disallowed
under the constant complement approach. The notion of
“dynamic views” formulated by Gottlob, Paolini, and Zi-
cari [5] is another general formalism with relatively loose
restrictions on update translation. Dayal and Bernstein [2]
also adopt the more permissive position. These more lenient
approaches all retain some version of our PutGet law, but
vary in which additional laws are enforced.

Our careful treatment of functional dependencies in view
update can be viewed as one of the main technical contribu-
tions of this work. The theories of “dynamic views” [5] and
update translation under a constant complement [1] leave
all such details abstract. Concrete solutions, on the other
hand, tend to skirt the issue. For instance, Dayal and Bern-
stein’s [2] update translations make some operational use of
functional dependencies, but their translations are not gen-
erally guaranteed to respect functional dependencies, nor do
they give a useful specification of when each update oper-
ations will preserve the functional dependencies of the un-



derlying data. Any rigorous mechanism for building updat-
able views over relational data with functional dependencies
must choose between implementing some form of relational
revision (as we have done) or putting severe restrictions on
the sorts of views that can be built or the range of updates
that can be performed.

7. FUTURE WORK
The choice of schema language is a fundamental issue in
designing relational lenses, significantly constraining the de-
sign space for lens primitives. It may be fruitful to consider
extensions to the schema language we have proposed here.
Possibilities include multivalued dependencies and foreign
key constraints—or, more generally, inclusion dependencies.
Multivalued dependencies would allow us to support join
lenses with wider domains. Among other benefits, inclu-
sion constraints would allow us to define lenses for database
normalization.

We are interested in practical concerns surrounding po-
tential implementations of the theory we have presented.
Our language is designed so that type-checking should be
decidable, given a reasonable choice of language for express-
ing predicates. Another potential concern is the efficiency of
implementing the putback operations as defined in the paper;
it would be interesting to study whether we can preserve lens
semantics while only working with small “deltas” instead of
whole database states. We also want to consider how our
lenses would interact with traditional DBMS requirements
like transactionality. Finally, while we have confined this
work to total lenses, it may be useful to investigate par-
tial lenses that satisfy stronger properties or lenses that can
fail during putback based upon some features of the unseen
concrete data for greater flexibility of behavior.

We are also working on a prototype implementation, which
will allow us to experiment with a larger set of examples, as-
sess the usefulness of our approach, and compare its strengths
and weaknesses against available technologies and prior pro-
posals in the area.
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