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Why are computers so insecure?
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One culprit...
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Legacy design decisions 
embedded in the HW/SW ecosystem

unchecked address arithmetic

unchecked address 
arithmetic

“uni-typed” semantics
  (pointer = integer = instructions)

"root" user

Memory protection at 
process/page granularity 

Single protection boundary 
(user/kernel)

raw seething bits

monolithic kernel design

expensive crossing 
between protection 
domains

manual memory 
management

numeric issues (under/overflow, 
implicit promotion to unsigned, etc.)

macro instead of micro-kernels
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Crash/
SAFE
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SAFE
• Clean-slate redesign of the entire system stack
• Hardware

• System software 

• Programming languages

• Support for critical security primitives at all levels (from 
hardware up)
• Memory safety

• Strong dynamic typing

• Information flow and access control

• Verification of key mechanisms deeply integrated into 
design process
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SAFE:  Hardware level
• “Low-fat” pointers      [paper under submission]

• Every pointer includes base, bounds, and offset

• Compact encoding into 64 bit words 

• Hardware types
• instruction ≠ integer ≠ pointer

• Hardware tagging        [2 papers in preparation]

• atom = payload + hardware type + software-defined tag

• Hardware rule cache supports tag propagation with every machine step

• And more...
• Lightweight transactions

• Linear pointers

• Hardware-supported stream operations
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Why new hardware?

• Explore how to effectively spend hardware 
resources on security

• Reconsider traditional sources of complexity 
and vulnerability

• Remove compiler from TCB
• (at least partly)

• Make security mechanisms available for writing 
low-level systems code
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SAFE:  OS level

• “Zero-Kernel OS”

• OS services organized into a set of mutually suspicious 
components

• Goal: No “omniprivileged component” 

• not part of today’s story, but central to full SAFE design

• ConcreteWare = runtime services for SAFE

• process management and scheduling

• storage allocation and GC

• virtualization of tagging hardware
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Much more on 
this coming up...!



SAFE:  Application level
• Breeze:  A mostly functional, security-oriented language

• All type- and security checks are dynamic
• Static typechecking → dynamic contract checking

• Fine-grained: every value annotated with an IFC label
• DC label model (cf. LIO system)

• Labels, principals, authorities are first class

• Labels are public
• bracketing mechanism prevents flows through labels 

• ... and supports IFC-safe exception handling     [Oakland S&P ‘13]

• Access control (clearance) á la Flume, Histar, etc.

• Erlang-style concurrency
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Some Related 
Work...



Related Work: LIO
• Haskell library for dynamic IFC
• Basis for the Stanford HAILS web framework

• Similarities
• Purely dynamic IFC

• Same label model (“disjunction categories”)

• Public labels

• ...

• Differences
• Coarser-grained than SAFE
• explicit “labeling nodes” in data structures

• Pure software approach
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Related Work: RIFLE

• Soundly track user-specified IFC policies for 
unmodified binaries
• Hardware-supported dynamic tracking of explicit flows

• Binary rewriting to make implicit flows explicit

• Heroic static analysis

• Recent Coq formalization and proof of NI
• for a simplified model
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hard (and assumes some 
compiler cooperation)

hot!

cool

[Vachharajani et al., Micro ‘04]
[Beringer, APLAS ’12]



Related Work: seL4
• Heroic machine-checked correctness proof for a real 

microkernel

• More recent: machine-checked proof of 
noninterference for a separation-kernel configuration

• Well-structured proof architecture yields huge 
reduction in verification effort
• Prove NI for an abstract specification  (for a deterministic 

notion of NI)

• Prove refinement between spec and a concrete 
implementation
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for us too!

[Klein et al, ’09]
[Murray et al, ’13]



Related Work:  ARIES/TIARA

• Direct ancestors of SAFE

• ARIES proposed using a hardware rule cache to 
speed information-flow tracking

• TIARA proposed the idea of a Zero-Kernel 
Operating System and outlined a concrete 
architecture

• Paper designs
• SAFE is the first concrete realization of these ideas
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[Shrobe et al, ’09]
[Brown and Knight, ’01]



Any questions?



A Formal Model
of SAFE IFC  

 Arthur Azevedo de Amorim, Nathan Collins, 
André DeHon, Delphine Demange, Cătălin Hriţcu, 

David Pichardie, Benjamin C. Pierce, 
Randy Pollack, Andrew Tolmach

(and formalized)
^



• Deterministic, single-threaded machine

• Conventional memory model 
• pointers are just integers

• single kernel protection domain

• Stack instead of registers

• No downgrading, public labels, dynamic principal 
generation, ...

• No exception handling
• security violation halts the whole machine

• One-line rule cache

Simplifications
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Minor

Major



Outline
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Abstract 
IFC Machine
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Abstract 
IFC Machine

Concrete 
Machine
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Abstract 
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Abstract 
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Abstract Machine



Instruction memory (user)

Program counter

Machine state

Data memory (user)

Stack
...

Output
...

Abstract Machine
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Instruction memory (user)

Program counter

Machine state

Data memory (user)

Stack
...

Output
...

Abstract Machine
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Example

Suppose:

Then:

index n
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Quasi-Abstract 
Machine



QA Machine

• Alternate presentation of the abstract machine
• Same machine states 

• Same step relation

• IFC side conditions factored out into a 
separate, explicit rule table
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consult rule table...
for tags...

and opcode...
to obtain result tags...
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is this operation allowed?
new pc label

label for result
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IFC Rule Table

=



subtraction is always allowed
pc label is unchanged

result label is join of arg labels
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IFC Rule Table

=



Concrete Machine



Instruction memory (user) Instruction memory (kernel)

Privilege bitProgram counter

Machine state

Data memory (user) Rule cache (= kernel data memory)

Stack

...

Output
...

Concrete machine
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concrete atom:

n @ p

integer integer



Instruction memory (user) Instruction memory (kernel)

Privilege bitProgram counter

Machine state

Data memory (user) Rule cache (= kernel data memory)

Stack

...

Output
...

Concrete machine
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PC tag op1 tag op2 tag op3 tag new PC tag result tag

Inputs Outputs

Rule cache:
(single-line)



Kernel mode User mode
(cache hit)

User-to-kernel mode
(cache miss)

pc 

stack 

user
memory 

kernel
memory 

privilege bit 
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user mode
(cache hit)

user mode
(cache miss)

kernel mode the new 
cache is set



User mode
(cache hit)

Kernel modeUser-to-kernel mode
(cache miss)
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Kernel modeUser mode
(cache hit)

User-to-kernel mode
(cache miss)
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Kernel modeUser mode
(cache hit)

User-to-kernel mode
(cache miss)
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Example (cache hit case)

Suppose 
  tag 0 represents label ⊥ 
  tag 1 represents label ⊤

cache inputs match 
current machine state!
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Example (cache miss case)

mismatch!



Fault Handler
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Properties



• Goal: 
• Termination-Insensitive Noninterference 
• for concrete machine 

• running this particular fault handler 

• together with arbitrary user code

• Direct brute-force proof?
• hopelessly complex

• unmaintainable

• What kind of structure do we need?

Approach
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The one we’ve already got!



preserved bypreserved by
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• Refinement framework very useful for reasoning 
• start with concrete object

• propose abstracted version 
• incorporate convenient structure and annotations 

• prove refinement

• prove interesting property of abstract object

• automatically follows for concrete object

Points to note
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• Need a generic notion of noninterference that 
makes sense for all machines 

Points to note
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Some Challenges...



• SAFE architecture is quite generic
• Can be used to implement a range of IFC label models 

just by varying the rule table   [see Montagu’s CSF 
2013 talk!]

• Other potential uses
• access control  (clearance)

• memory protection

• linearity

• dynamic typing

More uses for tags
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• Essential in real IFC systems
• declassification needed to prevent “label creep”

• endorsement needed to make integrity labels interesting

• Plain noninterference a useful first step, but we want 
to say something about programs with downgrading

• Should we change to some form of intransitive 
noninterference?  Or something else?
• many possibilities

• which one do we want?

Downgrading
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“Least privilege”

• Real SAFE operating system uses hardware 
protection mechanisms to organize functionality 
into mutually suspicious compartments
• Goal: No “omniprivileged” compartment

• Zero-Kernel Operating System (ZKOS) 

• What does this mean, formally?  What can/should 
we prove?  What is the appropriate attack model?

• More generally, what would a formal account of 
“least privilege” look like?
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Concurrency
• Real machines / operating systems support many user processes  

(including SAFE)

• Processes can interact (via streams, in SAFE)

• But communicating threads can leak secrets 
• with high bandwidth, if threads can be created at will

• LIO solution: Never lower PC label
• “If a thread goes high, it stays high”

• To operate on secret data without poisoning the PC, fork a new thread

• Looking at result message from high thread makes receiver high (but it can store it 
in a data structure without looking)

• Possible issues: 
• Spawning many many many threads

• turning everything into futures

• Is this the best we can do???
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Status



• Definitions and proofs from this talk fully formalized 
(in Coq)
• Draft paper nearly done — email me if you’d like a copy

• Full SAFE hardware implemented (in Bluespec) and 
running (on an FPGA)
• Pipelined version under construction

• Simple versions of key OS services working in isolation
• process management and scheduling

• storage allocation

• rule cache management

Done
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• Integration of system components into end-to-end demo

• Compilers from high-level languages to SAFE machine 
code

• Random testing of noninterference
• see our upcoming ICFP 2013 paper!

• Formal specification and noninterference proofs for 
larger fragments of full SAFE machine
• storage allocation

• public labels

• dynamic principal generation

In progress
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Thank you!
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Questions??

Instruction memory (user) Instruction memory (kernel)

Privilege bitProgram counter

Machine state

Data memory (user) Rule cache (= kernel data memory)

Stack

...

Output
...


