
The SAFE Machine
An Architecture for Pervasive Information Flow

Benjamin C. Pierce
University of Pennsylvania

Computer Security Foundations
June 28, 2013

PC

ALU

Memory

I−Store

Combine
 Tags

se
cu

ri
ty

vi
o

la
tio

n

result tag

new PC tag

tag data

Register
 File

TMU

Authority

+1

Why are computers so insecure?

2

One culprit...

3

Legacy design decisions
embedded in the HW/SW ecosystem

unchecked address arithmetic

unchecked address
arithmetic

“uni-typed” semantics
 (pointer = integer = instructions)

"root" user

Memory protection at
process/page granularity

Single protection boundary
(user/kernel)

raw seething bits

monolithic kernel design

expensive crossing
between protection
domains

manual memory
management

numeric issues (under/overflow,
implicit promotion to unsigned, etc.)

macro instead of micro-kernels

4

Crash/
SAFE

Shown: Sumit Ray, Howard Reubenstein, Andrew Sutherland, Tom Knight, Olin Shivers,
Benjamin Pierce, Ben Karel, Benoit Montagu, Jonathan Smith, Cătălin Hriţcu, Randy
Pollack, André DeHon, Gregory Malecha, Basil Krikeles, Greg Sullivan, Greg Frazier, Tim
Anderson, Bryan Loyall

Not shown: Greg Morrisett, Peter Trei, David Wittenberg, Amanda Strnad, Justin
Slepak, David Darais, Robin Morisset, Chris White, Anna Gommerstadt, Marty Fahey, Tom
Hawkins, Karl Fischer, Hillary Holloway, Andrew Kaluzniacki, Michael Greenberg, Andrew
Tolmach, Antal Spector-Zabuski, Leonidas Lampropoulos, Tyler Brown, Ian Nightingale,
Udit Dhawan, Albert Kwon, Jesse Tov, Arthur Azevedo de Amorim, Nathan Collins, Arun
Thomas, Shannon Spires, ... 5

SAFE
• Clean-slate redesign of the entire system stack
• Hardware

• System software

• Programming languages

• Support for critical security primitives at all levels (from
hardware up)
• Memory safety

• Strong dynamic typing

• Information flow and access control

• Verification of key mechanisms deeply integrated into
design process

6

SAFE: Hardware level
• “Low-fat” pointers [paper under submission]

• Every pointer includes base, bounds, and offset

• Compact encoding into 64 bit words

• Hardware types
• instruction ≠ integer ≠ pointer

• Hardware tagging [2 papers in preparation]

• atom = payload + hardware type + software-defined tag

• Hardware rule cache supports tag propagation with every machine step

• And more...
• Lightweight transactions

• Linear pointers

• Hardware-supported stream operations

7

PC

ALU

Memory

I−Store

Combine
 Tags

se
cu

ri
ty

vi
o
la

tio
n

result tag

new PC tag

tag data

Register
 File

TMU

Authority

+1+1

PC

ALU

Memory

Register File

I−Store

Why new hardware?

• Explore how to effectively spend hardware
resources on security

• Reconsider traditional sources of complexity
and vulnerability

• Remove compiler from TCB
• (at least partly)

• Make security mechanisms available for writing
low-level systems code

8

SAFE: OS level

• “Zero-Kernel OS”

• OS services organized into a set of mutually suspicious
components

• Goal: No “omniprivileged component”

• not part of today’s story, but central to full SAFE design

• ConcreteWare = runtime services for SAFE

• process management and scheduling

• storage allocation and GC

• virtualization of tagging hardware

9

Much more on
this coming up...!

SAFE: Application level
• Breeze: A mostly functional, security-oriented language

• All type- and security checks are dynamic
• Static typechecking → dynamic contract checking

• Fine-grained: every value annotated with an IFC label
• DC label model (cf. LIO system)

• Labels, principals, authorities are first class

• Labels are public
• bracketing mechanism prevents flows through labels

• ... and supports IFC-safe exception handling [Oakland S&P ‘13]

• Access control (clearance) á la Flume, Histar, etc.

• Erlang-style concurrency

10

Some Related
Work...

Related Work: LIO
• Haskell library for dynamic IFC
• Basis for the Stanford HAILS web framework

• Similarities
• Purely dynamic IFC

• Same label model (“disjunction categories”)

• Public labels

• ...

• Differences
• Coarser-grained than SAFE
• explicit “labeling nodes” in data structures

• Pure software approach

12
[Stefan et al, 2011]

Related Work: RIFLE

• Soundly track user-specified IFC policies for
unmodified binaries
• Hardware-supported dynamic tracking of explicit flows

• Binary rewriting to make implicit flows explicit

• Heroic static analysis

• Recent Coq formalization and proof of NI
• for a simplified model

13

hard (and assumes some
compiler cooperation)

hot!

cool

[Vachharajani et al., Micro ‘04]
[Beringer, APLAS ’12]

Related Work: seL4
• Heroic machine-checked correctness proof for a real

microkernel

• More recent: machine-checked proof of
noninterference for a separation-kernel configuration

• Well-structured proof architecture yields huge
reduction in verification effort
• Prove NI for an abstract specification (for a deterministic

notion of NI)

• Prove refinement between spec and a concrete
implementation

14

for us too!

[Klein et al, ’09]
[Murray et al, ’13]

Related Work: ARIES/TIARA

• Direct ancestors of SAFE

• ARIES proposed using a hardware rule cache to
speed information-flow tracking

• TIARA proposed the idea of a Zero-Kernel
Operating System and outlined a concrete
architecture

• Paper designs
• SAFE is the first concrete realization of these ideas

15

[Shrobe et al, ’09]
[Brown and Knight, ’01]

Any questions?

A Formal Model
of SAFE IFC

 Arthur Azevedo de Amorim, Nathan Collins,
André DeHon, Delphine Demange, Cătălin Hriţcu,

David Pichardie, Benjamin C. Pierce,
Randy Pollack, Andrew Tolmach

(and formalized)
^

• Deterministic, single-threaded machine

• Conventional memory model
• pointers are just integers

• single kernel protection domain

• Stack instead of registers

• No downgrading, public labels, dynamic principal
generation, ...

• No exception handling
• security violation halts the whole machine

• One-line rule cache

Simplifications

18

Minor

Major

Outline

20

Abstract
IFC Machine

21

Abstract
IFC Machine

Concrete
Machine

22

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

23

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Rule table

24

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Rule table

IFC rule table

25

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Rule table

IFC rule table

Rule cache
Fault handler

26

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Rule table

IFC rule table

Rule cache
Fault handler

IFC fault
handler

Abstract Machine

Instruction memory (user)

Program counter

Machine state

Data memory (user)

Stack
...

Output
...

Abstract Machine

28

Instruction memory (user)

Program counter

Machine state

Data memory (user)

Stack
...

Output
...

Abstract Machine

29

Atom

Written

payload label

payload @ label

memory

output

pc
stack

next state

30

31

32

Example

Suppose:

Then:

index n

33

34

Quasi-Abstract
Machine

QA Machine

• Alternate presentation of the abstract machine
• Same machine states

• Same step relation

• IFC side conditions factored out into a
separate, explicit rule table

36

consult rule table...
for tags...

and opcode...
to obtain result tags...

37

is this operation allowed?
new pc label

label for result

38

IFC Rule Table

=

subtraction is always allowed
pc label is unchanged

result label is join of arg labels

39

IFC Rule Table

=

Concrete Machine

Instruction memory (user) Instruction memory (kernel)

Privilege bitProgram counter

Machine state

Data memory (user) Rule cache (= kernel data memory)

Stack

...

Output
...

Concrete machine

41

concrete atom:

n @ p

integer integer

Instruction memory (user) Instruction memory (kernel)

Privilege bitProgram counter

Machine state

Data memory (user) Rule cache (= kernel data memory)

Stack

...

Output
...

Concrete machine

42

PC tag op1 tag op2 tag op3 tag new PC tag result tag

Inputs Outputs

Rule cache:
(single-line)

Kernel mode User mode
(cache hit)

User-to-kernel mode
(cache miss)

pc

stack

user
memory

kernel
memory

privilege bit

43

user mode
(cache hit)

user mode
(cache miss)

kernel mode the new
cache is set

User mode
(cache hit)

Kernel modeUser-to-kernel mode
(cache miss)

44

Kernel modeUser mode
(cache hit)

User-to-kernel mode
(cache miss)

45

Kernel modeUser mode
(cache hit)

User-to-kernel mode
(cache miss)

46

47

Example (cache hit case)

Suppose
 tag 0 represents label ⊥
 tag 1 represents label ⊤

cache inputs match
current machine state!

48

Example (cache miss case)

mismatch!

Fault Handler

50

Properties

• Goal:
• Termination-Insensitive Noninterference
• for concrete machine

• running this particular fault handler

• together with arbitrary user code

• Direct brute-force proof?
• hopelessly complex

• unmaintainable

• What kind of structure do we need?

Approach

52
The one we’ve already got!

preserved bypreserved by

53

satisfies
noninterference

refines

refines

satisfies
noninterference

correctly
compiled from

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Rule table

IFC rule table

Rule cache
Fault handler

IFC fault
handler

• Refinement framework very useful for reasoning
• start with concrete object

• propose abstracted version
• incorporate convenient structure and annotations

• prove refinement

• prove interesting property of abstract object

• automatically follows for concrete object

Points to note

54

• Need a generic notion of noninterference that
makes sense for all machines

Points to note

55

Some Challenges...

• SAFE architecture is quite generic
• Can be used to implement a range of IFC label models

just by varying the rule table [see Montagu’s CSF
2013 talk!]

• Other potential uses
• access control (clearance)

• memory protection

• linearity

• dynamic typing

More uses for tags

57

• Essential in real IFC systems
• declassification needed to prevent “label creep”

• endorsement needed to make integrity labels interesting

• Plain noninterference a useful first step, but we want
to say something about programs with downgrading

• Should we change to some form of intransitive
noninterference? Or something else?
• many possibilities

• which one do we want?

Downgrading

58

“Least privilege”

• Real SAFE operating system uses hardware
protection mechanisms to organize functionality
into mutually suspicious compartments
• Goal: No “omniprivileged” compartment

• Zero-Kernel Operating System (ZKOS)

• What does this mean, formally? What can/should
we prove? What is the appropriate attack model?

• More generally, what would a formal account of
“least privilege” look like?

59

Concurrency
• Real machines / operating systems support many user processes

(including SAFE)

• Processes can interact (via streams, in SAFE)

• But communicating threads can leak secrets
• with high bandwidth, if threads can be created at will

• LIO solution: Never lower PC label
• “If a thread goes high, it stays high”

• To operate on secret data without poisoning the PC, fork a new thread

• Looking at result message from high thread makes receiver high (but it can store it
in a data structure without looking)

• Possible issues:
• Spawning many many many threads

• turning everything into futures

• Is this the best we can do???

60

Status

• Definitions and proofs from this talk fully formalized
(in Coq)
• Draft paper nearly done — email me if you’d like a copy

• Full SAFE hardware implemented (in Bluespec) and
running (on an FPGA)
• Pipelined version under construction

• Simple versions of key OS services working in isolation
• process management and scheduling

• storage allocation

• rule cache management

Done

62

• Integration of system components into end-to-end demo

• Compilers from high-level languages to SAFE machine
code

• Random testing of noninterference
• see our upcoming ICFP 2013 paper!

• Formal specification and noninterference proofs for
larger fragments of full SAFE machine
• storage allocation

• public labels

• dynamic principal generation

In progress

63

Thank you!
PC

ALU

Memory

I−Store

Combine
 Tags

se
cu

ri
ty

vi
o
la

tio
n

result tag

new PC tag

tag data

Register
 File

TMU

Authority

+1

Questions??

Instruction memory (user) Instruction memory (kernel)

Privilege bitProgram counter

Machine state

Data memory (user) Rule cache (= kernel data memory)

Stack

...

Output
...

