
A Deep Specification 
for Dropbox
Benjamin C. Pierce

University of Pennsylvania
Clojure/conj

November, 2015



“We can’t build 
software that works…”



“We can’t build 
software that works…”



But look at all the 
software that does work!



But look at all the 
software that does work!



How did that 
happen?





Lots of ways!



Lots of ways!

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity



Lots of ways!

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

• Better software development methodology



Lots of ways!

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

• Better software development methodology

• Stable platforms and frameworks



Lots of ways!

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

• Better software development methodology

• Stable platforms and frameworks

• Better use of specifications



Lots of ways!

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

• Better software development methodology

• Stable platforms and frameworks

• Better use of specifications

I.e., descriptions of what 
software does (as 

opposed to how to do it)



Why are 
specifications useful?



Why are 
specifications useful?

If you want to build software that 
works, it is helpful to know what 

you mean by "works"!



A Specification:

The “sort” function should take a list of 
items and return a list of the same items 

in increasing order.



A Specification:

The “sort” function should take a list of 
items and return a list of the same items 

in increasing order.

useful!



A Specification:

The “sort” function should take a list of 
items and return a list of the same items 

in increasing order.

useful!

but…

simple



A Specification:

The “sort” function should take a list of 
items and return a list of the same items 

in increasing order.

useful!

but…

simple informal



A Specification:

The “sort” function should take a list of 
items and return a list of the same items 

in increasing order.

useful!

disconnected
 from code

but…

simple informal





Simple ⟶ Rich

• C Language Reference
• 592 pages

• also Java (792 pages), C++ (1354 
pages, etc.

• x86 CPU reference
• 1499 pages

• AUTOSAR standardized 
automotive architecture

• 3000 pages



Informal ⟶ Precise

Formal specification languages

• Z,  Alloy,  VDM, …

• ACL2

• x86 instruction set

• Java virtual machine

• (and many newer ones…)



Disconnected ⟶ Integrated

Formal verification tools

• Human constructs “proof script”; 
computer checks it

• Capable in principle of 
establishing connections between 
arbitrary specifications and code

• Challenging to use at scale, but 
getting better!



Recap…













Deep specifications



Deep specifications

1. Rich

2. Formal

3. Integrated with code



CompCert C compiler



CompCert C compiler

• Accepts most of the ISO C 99 language



CompCert C compiler

• Accepts most of the ISO C 99 language

• Produces machine code for PowerPC, ARM, and 
IA32 (x86 32-bit) architectures



CompCert C compiler

• Accepts most of the ISO C 99 language

• Produces machine code for PowerPC, ARM, and 
IA32 (x86 32-bit) architectures

• 90% of the performance of GCC  (v4, opt. level 1)



CompCert C compiler

• Accepts most of the ISO C 99 language

• Produces machine code for PowerPC, ARM, and 
IA32 (x86 32-bit) architectures

• 90% of the performance of GCC  (v4, opt. level 1)

• Fully verified



seL4



seL4

• Real-world operating-system kernel with 
an end-to-end proof of implementation 
correctness and security enforcement



New tools

• Coq

• Isabelle

• ACL2

• …

• F*

• Dafny

• Boogie

• …

Powerful 
proof assistants and 

program logics

Mostly automatic verifiers
based on SMT solvers



Formal verification of real software
• Verified compilers

• CompCertTSO, CakeML, Bedrock,…

• Verified operating systems
• CertiKOS, Ironclad Apps, Jitk, …

• Verified filesystems
• Fscq, …

• Verified distributed systems
• Verdi, …

• Verified cryptographic algorithms and protocols
• SHA, TLS, …



What’s happening 
now?



Stephanie Weirich
University of Pennsylvania

Steve Zdancewic
University of Pennsylvania

Andrew Appel
Princeton

Zhong Shao
Yale

Adam Chlipala
MIT

What’s happening 
now?





A zero-vulnerability software stack



“But what if I don’t want to 
do formal verification?”



Expressive type systems
Classical type systems: 

• Highly successful “lightweight formal methods”

• Designed into programming languages, not separate tools

• Limited expressiveness, but “always on” security types

New developments: 

• Component types / module systems

• Generalized abstract datatypes

• Session types

• Lightweight dependent types

• …



“But what if I don’t 
like types?”



Another way to use specifications

Idea: Use random testing to quickly check 
correspondence between systems and specs

• Good for debugging both code and spec!

• Pretty Good Assurance™ for cheap!



Specification-based 
random testing



Key ideas

• Write specification as a set of executable 
properties

• Generate many random inputs and check 
whether properties return True

• When a counterexample is found, “shrink” it to 
produce a minimal failing case

Unit test suite
Specification

+
random tests



sort [1,2,3] => [1,2,3]
sort [3,2,1] => [1,2,3]
sort [] => []
sort [1] => [1]
sort [2,1,3,2] => [1,2,2,3]
…

   prop_ordered xs = ordered (sort xs)
       where ordered []          =  True
                 ordered [x]        =  True
                 ordered (x:y:xs)  =  x <= y && ordered (y:xs)

   prop_permutation xs = permutation xs (sort xs)
       where permutation xs ys = null (xs \\ ys) && null (ys \\ xs) 
  

Unit test suite

Specification



sort [1,2,3] => [1,2,3]
sort [3,2,1] => [1,2,3]
sort [] => []
sort [1] => [1]
sort [2,1,3,2] => [1,2,2,3]
…

   prop_ordered xs = ordered (sort xs)
       where ordered []          =  True
                 ordered [x]        =  True
                 ordered (x:y:xs)  =  x <= y && ordered (y:xs)

   prop_permutation xs = permutation xs (sort xs)
       where permutation xs ys = null (xs \\ ys) && null (ys \\ xs) 
  

Unit test suite

Specification

)

(



QuickCheck

1999—invented by Koen Claessen and John Hughes, 
for Haskell

2006—Quviq founded, marketing Erlang version

Many extensions, ports to many other languages 
(including test.check in Clojure! :-)

Finding deep bugs for Ericsson, Volvo Cars, Basho, 
etc…



A Deep Specification 
for Dropbox



A Deep Specification 
for Dropbox

with

John Hughes
Thomas Arts

QuviQ AB



Why specify Dropbox?



Many synchronization services…
• Dropbox, Google Drive, OneDrive, Owncloud, SpiderOak, 

Sugarsync, Box.net, Seafile, Pulse, Wuala, Teamdrive, Cloudme, 
Cx, Amazon cloud service, …

…with many users…
• Dropbox: >400M

• Google Drive, MS OneDrive: >240M

…executing complex distributed algorithms over large 
amounts of precious data



Many synchronization services…
• Dropbox, Google Drive, OneDrive, Owncloud, SpiderOak, 

Sugarsync, Box.net, Seafile, Pulse, Wuala, Teamdrive, Cloudme, 
Cx, Amazon cloud service, …

…with many users…
• Dropbox: >400M

• Google Drive, MS OneDrive: >240M

…executing complex distributed algorithms over large 
amounts of precious data

What could go wrong…?



Goals

• Give a precise specification of the core behavior of a 
synchronization service  

• Phrased from the perspective of users

• Applicable to a variety of different synchronizers 

• Validate it against Dropbox’s observed behavior
• Using Erlang QuickCheck



Test Setup

Laptop
VM

VM

VM

Dropbox	
  
server





System 
under test

Model



System 
under test

Model

Test = list of operations

System 
under test

System 
under test

Op1 Op2 Op3



System 
under test

Model

Test = list of operations

System 
under test

System 
under test

Obs1Each operation gives 
rise to an observation 

Op1 Op2 Op3

Obs2 Obs3



System 
under test

Model

Test = list of operations

System 
under test

System 
under test

Obs1Each operation gives 
rise to an observation 

Op1 Op2 Op3

Obs1

Obs2 Obs3

Model
Obs2

Model

Each observation induces a transition 
from one model state to the next 



System 
under test

Model

Test = list of operations

System 
under test

System 
under test

Obs1Each operation gives 
rise to an observation 

Op1 Op2 Op3

Obs1

Obs2 Obs3

Model
Obs2

Model
Obs3

A test fails when the model 
admits no transition validating 
some observation we’ve made

Each observation induces a transition 
from one model state to the next 



If Op1…Opn is some sequence of operations and 
Obs1…Obsn are the observations we make when 
we run them, then  

is a valid sequence of transitions of the model.

Basic Specification

init-state
Obs1 Obs2 Obsn…



“What operations and 
observations do we 

need?”



First try…



Operations Observations

READN READN ⟶ “current value”

First try…



Operations Observations

READN READN ⟶ “current value”

WRITEN (“new value”) WRITEN (“new value”) ⟶ “old value”

First try…



Operations Observations

READN READN ⟶ “current value”

WRITEN (“new value”) WRITEN (“new value”) ⟶ “old value”

First try…

READN ⟶ ⊥             means that the file is missing
WRITEN (⊥)              means delete the file

Use special value ⊥ for “no file”



Challenge #1: conflicts

What	
  should	
  the	
  
synchronizer	
  do?

write(“a”)
write("b")



Challenge #1: conflicts

What	
  should	
  the	
  
synchronizer	
  do?

write(“a”)
write("b")

Dropbox’s answer: 
The “earlier” value wins; 
other values are moved to 
conflict files in the same 
directory. 



Challenge #1: conflicts

What	
  should	
  the	
  
synchronizer	
  do?

write(“a”)
write("b")

Dropbox’s answer: 
The “earlier” value wins; 
other values are moved to 
conflict files in the same 
directory. 

However, these conflict files 
may not appear for a little 
while!



Operations Observations

READN READN ⟶ “current value”

WRITEN (“new value”) WRITEN (“new value”) ⟶ “old value”

STABILIZE STABILIZE ⟶ (“value”, {“conflict values”}) 

Second try…



Operations Observations

READN READN ⟶ “current value”

WRITEN (“new value”) WRITEN (“new value”) ⟶ “old value”

STABILIZE STABILIZE ⟶ (“value”, {“conflict values”}) 

Same value in the file on all clients

Second try…



Operations Observations

READN READN ⟶ “current value”

WRITEN (“new value”) WRITEN (“new value”) ⟶ “old value”

STABILIZE STABILIZE ⟶ (“value”, {“conflict values”}) 

Same value in the file on all clients Same set of values in conflict 
files on all clients

Second try…



Challenge #2: Background operations

• The Dropbox client communicates with the 
test harness by observing what it writes to the 
filesystem.

But…

• The Dropbox client also communicates with 
the Dropbox servers!
• Timing of these communications is unpredictable



Challenge #2: Background operations

• The Dropbox client communicates with the 
test harness by observing what it writes to the 
filesystem.

But…

• The Dropbox client also communicates with 
the Dropbox servers!
• Timing of these communications is unpredictable

Invisible, unpredictable activity Nondeterminism!



Approach

• Model the whole system state including	
  the	
  
(invisible)	
  state	
  of	
  the	
  server

• Add ”conjectured actions” to the observed 
ones

UPN           node N uploads its value to the server
DOWNN     node N is refreshed by the server



Operations Observations
READN READN ⟶ “current value”

WRITEN (“new value”) WRITEN (“new value”) ⟶ “old value”

STABILIZE STABILIZE ⟶ (“value”, {“conflict values”}) 

UPN

DOWNN

Final version:

For example…



Operations Observations
READN READN ⟶ “current value”

WRITEN (“new value”) WRITEN (“new value”) ⟶ “old value”

STABILIZE STABILIZE ⟶ (“value”, {“conflict values”}) 

UPN

DOWNN

Final version:

For example…



If Op1…Opn is some sequence of operations and 
Obs1…Obsn are the observations we make when 
we run them, then we can add UP/DOWN 
“observations” to yield an explanation such that 

is a valid sequence of transitions of the model.

Final specification

init-state Obs1
Obs2 Obsn…(UPs a

nd 
DOWNs)

… (UPs a
nd 

DOWNs)

… (UPs a
nd 

DOWNs)

…



Test



Test

Observations



Test

Observations

Explanation



1. Generate a random sequence of operations Op1…Opn 

2. Apply them to the system under test, yielding 
observations Obs1…Obsn

3. Calculate all ways of interleaving Up and Down 
observations with Obs1…Obsn and, for each one, check 
whether

is a valid sequence of transitions of the model

4. If the answer is “no” for every possible interleaving, we 
have found a failing test; otherwise, repeat 

Using the specification for testing

init-state Obs1
Obs2 Obsn…(UPs a

nd 
DOWNs)

… (UPs a
nd 

DOWNs)

… (UPs a
nd 

DOWNs)

…



Model states

• Stable value (i.e., the one on the server)

• Conflict set (only ever grows)

• For each node:
• Current local value

• ”FRESH” or ”STALE”

• ”CLEAN” or ”DIRTY” 



Model states

• Stable value (i.e., the one on the server)

• Conflict set (only ever grows)

• For each node:
• Current local value

• ”FRESH” or ”STALE”

• ”CLEAN” or ”DIRTY” 

i.e.,	
  has	
  the	
  global	
  value	
  changed	
  
since	
  this	
  node’s	
  last	
  communication	
  

with	
  the	
  server



Model states

• Stable value (i.e., the one on the server)

• Conflict set (only ever grows)

• For each node:
• Current local value

• ”FRESH” or ”STALE”

• ”CLEAN” or ”DIRTY” 

i.e.,	
  has	
  the	
  global	
  value	
  changed	
  
since	
  this	
  node’s	
  last	
  communication	
  

with	
  the	
  server

i.e.,	
  has	
  the	
  local	
  value	
  been	
  written	
  
since	
  this	
  node	
  was	
  last	
  refreshed	
  by	
  

the	
  server



Modeling the operations



Modeling the operations 



Modeling the operations 



Modeling the operations 



Surprises…



Surprise: Dropbox can (briefly) delete 
a newly created file…



Surprise: Dropbox can (briefly) delete 
a newly created file…

Create file



Surprise: Dropbox can (briefly) delete 
a newly created file…

Create file

Delete it



Surprise: Dropbox can (briefly) delete 
a newly created file…

Create file

Delete it

Observe 
creation



Surprise: Dropbox can (briefly) delete 
a newly created file…

Create file

Delete it

Observe 
creationCreate it again



Surprise: Dropbox can (briefly) delete 
a newly created file…

Create file

Delete it

Observe 
creationCreate it again

File is gone!



Surprise: Dropbox can (briefly) delete 
a newly created file…

Create file

Delete it

Observe 
creationCreate it again

File is gone!

Timing is critical!



Surprise: Dropbox can (briefly) delete 
a newly created file…

Create file

Delete it

Observe 
creationCreate it again

File is gone!

Timing is critical!
Add Sleep operations 

in tests



Surprise: Dropbox can (permanently) 
re-create a deleted file…

(other clients idle)



Surprise: Dropbox can (permanently) 
re-create a deleted file…

Create file

(other clients idle)



Surprise: Dropbox can (permanently) 
re-create a deleted file…

Create file

Delete it

(other clients idle)



Surprise: Dropbox can (permanently) 
re-create a deleted file…

Create file

Delete it

(other clients idle)

File is back!

(Again, timing is critical)



Surprise: Dropbox can lose data



Surprise: Dropbox can lose data

Create file



Surprise: Dropbox can lose data

Create file
Overwrite it
(Again, timing is 

important)



Surprise: Dropbox can lose data

Create file
Overwrite it

New value 
persists on 

client 1

(Again, timing is 
important)



Surprise: Dropbox can lose data

Create file
Overwrite it

New value 
persists on 

client 1

(Again, timing is 
important)

Old value 
persists on 

client 2!



Surprise: Dropbox can lose data

Create file
Overwrite it

New value 
persists on 

client 1

(Again, timing is 
important)

Old value 
persists on 

client 2!

Client 1 believes it is still Fresh, so if 
we later write a new value on client 2,  
it will silently overwrite client 1’s value 

and no conflict file will be created



Work in progress!

• More details:
• Draft paper available from my webpage

• Next steps:
• Add directories

• Test your	
  favorite synchronizer  :-)



Thank you!
(Any questions?)


