A Deep Specification
for Dropbox

Benjamin C. Pierce
University of Pennsylvania

Clojure/conj
November, 2015

O & Penn

UNIVERSITY 0f PENNSYLVANIA

“We can’t build
software that works...”

D100%
’ngm LU |

But look at all the
software that does work!

But look at all the
software that does work!

How did that
happen!

Lots of ways!

Lots of ways!

® Better programming languages
® Basic safety guarantees built in

® Powerful mechanisms for abstraction and modularity

Lots of ways!

® Better programming languages
® Basic safety guarantees built in

® Powerful mechanisms for abstraction and modularity

® Better software development methodology

Lots of ways!

® Better programming languages
® Basic safety guarantees built in

® Powerful mechanisms for abstraction and modularity
® Better software development methodology

® Stable platforms and frameworks

Lots of ways!

® Better programming languages
® Basic safety guarantees built in

® Powerful mechanisms for abstraction and modularity
® Better software development methodology

® Stable platforms and frameworks

® Better use of specifications

Lots of ways!

® Better programming languages
® Basic safety guarantees built in

® Powerful mechanisms for abstraction and modularity
® Better softwa evelop nt methodology

® Stable platform nd fragBeworks

® Better use of specifi catlons

/ Ie , descriptions of what
software does (as

opposed to how to do it)

Why are
specifications useful?

Why are
specifications useful?

If you want to build software that
works, it is helpful to know what
you mean by "works"!

A Specification:

’ﬁ—L_-———————————-———-—————_————-——-i -
The “sort” function should take a list of

items and return a list of the same items
in increasing order.

A Specification:

The “sort” function should take a list of
items and return a list of the same items
in increasing order.

A Specification:

The “sort” function should take a list of
items and return a list of the same items
in increasing order.

but...

A Specification:

The “sort” function should take a list of
items and return a list of the same items
in increasing order.

but...

simple informal

A Specification:

The “sort” function should take a list of
items and return a list of the same items
in increasing order.

but...

disconnected

simple.informal ¢ "

Precise

Informal

&

)

Disconnected

Integrated

Simple — Rich

® C Language Reference

® 592 pages
® also Java (792 pages), C++ (1354
pages, etc. —

® x86 CPU reference
® [499 pages

e AUTOSAR standardized
automotive architecture

® 3000 pages

Al

TS

Informal — Precise

Formal specification languages
o Z, Alloy, VDM, ...
o ACL2

® x86 instruction set

® Java virtual machine

® (and many newer ones...)

Disconnected — Integrated

Formal verification tools

® Human constructs “proof script’”;
computer checks it

® Capable in principle of
establishing connections between
arbitrary specifications and code

® Challenging to use at scale, but
getting better!

Recap...

Precise

Informal

Disconnected Integrated

“Classic” specification
languages (Z, VDM ,...)

Precise

Informal

Disconnected Integrated

“Classic” specification
languages (Z, VDM ,...)

Precise

Comprehensive informal
specs (C, x86,
AUTOSAR, ...)

Informal

Disconnected Integrated

“Lightweight formal
methods” (e.g., type

systems) _\

“Classic” specification \
languages (Z, VDM ,...)

Precise

AUTOSAR, ...)

Comprehensive informal
specs (C, x86,
e

Informal

<
Disconnected Integrated

“Lightweight formal
methods” (e.g., type

systems) —_\

“Classic” specification \
languages (Z, VDM ,...)

Precise

AUTOSAR, ...)

Comprehensive informal
specs (C, x86,
e

Informal

<
Disconnected Integrated

“Lightweight formal

methods” (e.g., type D eep
Sy B specifications
“Classic” specification \ 4_J

languages (Z, VDM ,...)

Precise

Comprehensive informal
specs (C, x86,

AUTOSAR, ...)

Informal

(2

<
Disconnected Integrated

Deep specifications

Deep specifications

B

|. Rich
2. Formal

3. Integrated with code

CompCert C compiler

Programmed

P ~
7 A
[\ COq /’ T BN
BN /~ Other
Pnnﬁng to asm :
syntax in Caml

N)
Parser, e R Ianguages? 4 T
~ R s pe Graph
'Ypec:\;c!galrt (¢ 4 mini-ML i - reconiniction coloring
NS = //
N /
\ /
o o PowerPC o
assembly '

""" Initial Stack pre- CFG construction; Validat Validat Linearization Lay&)u(?I the G;"eramf,"co'
translation allocation i i it alidation || Validation of the CFG activation Power P d and
Program S ! record instructions rogrammed an
< _prover ! proved in Coq
_______ ; !
pv—o T 1
P
/" Model \I\ - R . Datafiow analyses ‘ Constant Common , Hegisterh alloIcaIion by s(regﬁes M;ch\nlg ‘ ‘ Men(;orly ‘
AN - checke,/ o ‘/ Static N graph coloring (Maps, Sets) arithmetic model
4 I [I I

‘‘‘‘‘ \._ analyzer

CompCert C compiler

Program \
prover y
e P
/" Model
\. checker

Parser,
typechecker,
simplifier (CIL

4

G
(

\

~

Static
analyzer

4

’

Initial
translation

Stack pre-
allocation

S——==
AN {)
LPTTTRA \ Janguages?
{_mini-ML) JTmme B
Sl _‘:/ ///
N ;
\ /

CFG construction;
instruction recognition

| Validation ‘ | Validation |

Register allocation by

Dataflow analyses

|_>‘ Constant Common >
[[

graph coloring

I

I

Linearization
of the CFG

Data
structures
(Maps, Sets)

Printing to asm Pr ng ammed
syntax in Caml

PowerPC
assembly

Layout of the Generation of
activation Power PC
record instructions Pr ogr: ammed and
proved in Coq
Machine Memory
arithmetic model

® Accepts most of the ISO C 99 language

CompCert C compiler

, o RN
N
. C L T
[Cog | .
RN /~ Other
Parser S \languages? Programmed
(ypecnecker A N < guag L Type Graph Printing to asm b
simplifier (CIL mini-ML) Rt reconstruction coloring syntax in Caml
T Vé
N /
N /
\, /
PowerPC
- o o Al i B - e -_——
assembly
""" Initial Stack pre- CFG construction; |Vah dation Hvalx dation | Linearization L:ycl::"l;z'o:‘e Gg:‘,:::“;%o'
[/ Program Y /, |‘ translation allocation instruction recognition of the CFG record instructions Programmed and
7 .
S\ _prover . 7 ! proved in Coq
o - ’
_— |
o - ! Data
4 Model N L R . Datafiow analyses Constant Common Register allocation by structures Machine Memory
p i i graph coloring (Maps, Sets) arithmetic model

N\) . >~
g \riheckef L Static A l
- J

\ analyzer

~

® Accepts most of the ISO C 99 language

® Produces machine code for PowerPC, ARM, and
IA32 (x86 32-bit) architectures

{ Cog) USRS, _
=< /. Other

CompCert C compiler

Programmed
in Caml

Printing to asm
syntax

rrrrrr
typechecker,
simplifier (CIL

PowerPC
assembly

Programmed and
proved in Coq

Linearization

instruction recognition of the CFG

Constant Common Register allocation by structures
p i i graph coloring (Maps, Sets)

_ CFG construction; | Validation ‘ | Validation |

\ B) N
\\riheclief/, ‘ Static N
b analyzer ,,’ l

® Accepts most of the ISO C 99 language

® Produces machine code for PowerPC, ARM, and
IA32 (x86 32-bit) architectures

® 90% of the performance of GCC

CompCert C compiler

~

N
I\ Coq /’ T N
TN (Other
N
(ype::lseecrker e)_, _,_ s N N \Ianguagesz v Type Graph Printing to asm Pro_grammed
simpliier (CIL) '\ mini-ML) e reconstruction coloring syntax in Caml
—— - //
/
/

PowerPC
assembly

CFG construction;

Stack pre- Linearization
allocation of the CFG

N . |Vahda1|on Hvalxdauon| ivation r
, ! instruction recognition [[[7~ JI7 7 " 1| 7| oftheCFG [T T d instructions Programmed and
’ % .
N _Pprover y ! proved in Coq
I |
Model v Constant Common Register allocation by bata Machine Memo

P = Dataflow analyses N N g N Y structures Y

\ checker 4 ~ graph coloring arithmeti model
N s 7 N P Maps, Sets)
S Static Y | l (Map:)

\._ analyzer ' l I

® Accepts most of the ISO C 99 language

® Produces machine code for PowerPC, ARM, and
IA32 (x86 32-bit) architectures

® 90% of the performance of GCC
e Fully verified

selL4 ®

Isabelle/HOL

Abstract specification N I CT] \
Refinement proof @

Executable specification <] C Haskell prototype)
Automatic
Refinement proof ﬁ translation

High-performance C implementation

selL4 (Je

Abstract specification N I CT/ \
Refinement proof @

Executable specification <] (Haskell prototype)
Automatic
Refinement proof @ translation

High-performance C implementation

® Real-world operating-system kernel with
an end-to-end proof of implementation
correctness and security enforcement

New tools

— U
® Coq o F*
® |sabelle ® Dafny
o ACL2 ® Boogie
® ... ® ...
. ——/
Powerful Mostly automatic verifiers
broof assistants and based on SMT solvers

brogram logics

Formal verification of real software

® Verified compilers g,

* CompCertTSO, CakeML, Bedrock,... g (

® Verified operating systems
® CertiKOS, Ironclad Apps, Jitk, ...

® Verified filesystems

® Fscq,...

® Verified distributed systems
® Verdi,...

® Verified cryptographic algorithms and protocols
o SHA,TLS, ...

What'’s happening
Nnow!

What'’s happening
now!

Zhong Shao
Yale

Andrew Appel

Princeton

Steve Zdancewic Adam Chlipala
University of Pennsylvania MIT

Safe-by-construction

Verified C application Java application

(C specification > (Java specification)

8% 8. &
3 = 3 90
2.8 253
0o SR
Verified Verified device v v
network stack drivers
Certified executable Certified executable
C Kernel interface specification)
Verified Microkernel
(Instruction set specification)

Verified and/or extensively tested hardware (x86, etc.)

A zero-vulnerability software stack

“But what if | don’t want to
do formal verification?”’

Expressive type systems

Classical type systems:
® Highly successful “lightweight formal methods”
® Designed into programming languages, not separate tools

e Limited expressiveness, but “always on” security types

New developments:

® Component types / module systems
e Generalized abstract datatypes

® Session types

® Lightweight dependent types

“But what if | don'’t
like types?”

D,

Another way to use specifications

Idea: Use random testing to quickly check
correspondence between systems and specs

® Good for debugging both code and spec!

® Pretty Good Assurance™ for cheap!

Specification-based
random testing

Key ideas

® Write specification as a set of executable
properties

® Generate many random inputs and check
whether properties return True

® When a counterexample is found, “shrink” it to
produce a minimal failing case

- [

Unit test suite

sort [1,2,3] =>[1,2,3]
sort [3,2,1] => [1,2,3]
sort [] => []
sort [1]=>[I]

sort [2,1,3,2] => [1,2,2,3]

Specification \

prop_ordered xs = ordered (sort xs)

where ordered [] = True
ordered [X] = True
ordered (x:iy:xs) = x <=y && ordered (y:xs)

prop_permutation xs = permutation xs (sort xs)
where permutation xs ys = null (xs \\ ys) && null (ys \\ xs)

Unit test suite

sort
sort
sort
sort
sort

1,2,3°
3,2,1°

=>[1,2,3]
=> [1,2,3]

12>

]

1] =>[1]

2,1,3,2] =>[1,2,2,3]

Specification

™

ordered [X]

ordered (X:y:xs)

(prop_ordered xs = ordered (sort xs)
where ordered []

True
True

x <=y && ordered (y:xs)

prop_permutation xs = permutation xs (sort xs)

where permutation xs ys = null (xs \\ ys) && null (ys \\ xs))

QuickCheck

|999—invented by Koen Claessen and John Hughes,
for Haskell

2006—Quviq founded, marketing Erlang version

Many extensions, ports to many other languages
(including test.check in Clojure! :-)

Finding deep bugs for Ericsson,Volvo Cars, Basho,
etc...

A Deep Specification
for Dropbox

A Deep Specification
for Dropbox

with

John Hughes
Thomas Arts

QuviQ AB

Why specify Dropbox!

Many synchronization services...

® Dropbox, Google Drive, OneDrive, Owncloud, SpiderOalk,
Sugarsync, Box.net, Seafile, Pulse,Wuala, Teamdrive, Cloudme,
Cx,Amazon cloud service, ...

...with many users...

® Dropbox: >400M
® Google Drive, MS OneDrive: >240M

...executing complex distributed algorithms over large
amounts of precious data

Many synchronization services...

® Dropbox, Google Drive, OneDrive, Owncloud, SpiderOalk,
Sugarsync, Box.net, Seafile, Pulse,Wuala, Teamdrive, Cloudme,
Cx,Amazon cloud service, ...

...with many users...

® Dropbox: >400M
® Google Drive, MS OneDrive: >240M

...executing complex distributed algorithms over large
amounts of precious data

What could go wrong...!

Goals

® Give a precise specification of the core behavior of a
synchronization service

® Phrased from the perspective of users
® Applicable to a variety of different synchronizers

® Validate it against Dropbox’s observed behavior
® Using Erlang QuickCheck

Test Setup

[wl<”

ERLANG\m

Test = list of operations

Test = list of operations

Each operation gives Obs; Obs; Obs3
rise to an observation

Test = list of operations

Each operation gives Obs; Obs; Obs3
rise to an observation

Obs Obs;

Model] ~p» [=[]

Each observation induces a transition
from one model state to the next

Test = list of operations

Each operation gives Obs; Obs; Obs3
rise to an observation

Obs Obs; Obs;

Each observation induces a transition A test fails when the model
from one model state to the next admits no transition validating
some observation we’ve made

Basic Specification

If Op...Op, is some sequence of operations and
Obs|...Obs, are the observations we make when

we run them, then

o Obs; Obs; Obsn
Init-state > > e —>

is a valid sequence of transitions of the model.

“What operations and
observations do we
need?”’

First try...

Operations

READN

Observations

READN — “‘current value”

Operations Observations

READN READN — “‘current value”

VVRITEN (“new value™) WRITEN (“new value) — “old value”

Operations Observations

READN READN — “‘current value”

VVRITEN (“new value™) WRITEN (“new value) — “old value”

Use special value L for “no file”

READN — L means that the file is missing
WVRITEN (L) means delete the file

Challenge #1: conflicts

write(“a”)
write("b")

" What should the
synchronizer do?

Challenge #1: conflicts

write(“a”)
write("b")

" What should the
synchronizer do?

Dropbox’s answer:

The “earlier” value wins;
other values are moved to
conflict files in the same
directory.

Challenge #1: conflicts

write(“a”)
write("b")

" What should the

synchronizer do?

Dropbox’s answer:

The “earlier” value wins;
other values are moved to
conflict files in the same
directory.

However, these conflict files
may not appear for a little
while!

Operations Observations

READN READN — “current value”
VVRITEN (“new value™) WVRITEN (“new value) — “old value”

STABILIZE STABILIZE — (“value”, {“conflict values™})

Operations Observations

READN READN — “current value”™
VVRITEN (“new value™) WRITEN (“‘new value) — “old value”
STABILIZE STABILIZE — (“value”, {“conflict values™})

p. 4

~

Same value in the file on all clients

Operations Observations

READN READN — “current value”™
VVRITEN (“new value™) WRITEN (“‘new value) — “old value”
STABILIZE STABILIZE — (“value”, {“conflict values™})

p. 4

~

Same value in the file on all clients Same set of values in conflict

files on all clients

Challenge #2: Background operations

® The Dropbox client communicates with the
test harness by observing what it writes to the
filesystem.

But...

® The Dropbox client also communicates with
the Dropbox servers!

® Timing of these communications is unpredictable

Challenge #2: Background operations

® The Dropbox client communicates with the
test harness by observing what it writes to the
filesystem.

But...

® The Dropbox client also communicates with
the Dropbox servers!

® Timing of these communications is unpredictable

—» Nondeterminism!

Approach

® Model the whole system state including the
(invisible) state of the server

® Add "conjectured actions” to the observed
ones

UPn node N uploads its value to the server
DOWNN node N is refreshed by the server

Operations

READN
WVRITEN (“new value™)

STABILIZE

Observations

READN — “current value”
WRITEN (“new value) — “old value”
STABILIZE — (“value”, {“conflict values’})
UPnN

DOWNN

For example...

Operations Observations

READN READN — “current value”
WVRITEN (“new value™) WRITEN (“new value) — “old value”
STABILIZE STABILIZE — (“value”, {“conflict values™})

For example...

Final specification

If Op...Op, is some sequence of operations and
Obs|...Obs, are the observations we make when

we run them, then we can add Ur/DOWN
“observations” to yield an explanation such that

5) 5) 5)
oo™ oo™ oot
o“é o“é o“(\
" Obs; Nk Obs; N Obs,
» >) > P ...

Init-state — - —> s ——

is a valid sequence of transitions of the model.

Client 1 Client 2

WRITE ‘&’
WRITE ‘b’
READ

WRITE ‘¢’

STABILIZE

Client 1 Client 2
WRITE ‘&’
WRITE ‘b’
READ
WRITE ‘¢’
STABILIZE

\

Client 1 Client 2

WRITE ‘a’ — L
WRITE ‘b’ — ‘a’
READ — ‘b’

WRITE ‘¢’ — ‘b’

STABILIZE — (‘c’, ()

Client 1 Client 2
WRITE ‘&’
WRITE ‘b’
READ
WRITE ‘¢’
STABILIZE
Client 1 Client 2

WRITE ‘a’ — L
WRITE ‘b’ — ‘&’

READ — ‘b’ '
WRITE ‘¢’ — ‘b’

STABILIZE — (‘c’, ()

Client 1 Client 2

WRITE ‘a’ — L

Up
DOWN
WRITE ‘b’ — ‘a’
Up

DOWN
WRITE ‘¢’ — ‘b’
Up

READ — ‘b’

DOWN

STABILIZE — (‘c’, ()

Using the specification for testing

|. Generate a random sequence of operations Op,...0Op,

2. Apply them to the system under test, yielding
observations Obs;...Obs,

3. Calculate all ways of interleaving Up and Down
observations with Obs,...0Obs, and, for each one, check
whether OOWC’\

6) 6)
Init-state LV, Obsi, VT Obsz. R %.

is a valid sequence of transitions of the model

4. If the answer is “no” for every possible interleaving, we
have found a failing test; otherwise, repeat

Model states

® Stable value (i.e., the one on the server)
® Conflict set (only ever grows)

® For each node:

® Current local value
® ’FRESH” or ”STALE”
® "CLEAN” or ’DIRTY”

Model states

® Stable value (i.e., the one on the server)
® Conflict set (only ever grows)

® For each node:

i.e., has the global value changed
® Current local value since this node’s last communication

° ”FRESH” or ”STALE’ with the server
® "CLEAN” or "DIRTY”"

Model states

® Stable value (i.e., the one on the server)
® Conflict set (only ever grows)

® For each node:
i.e., has the global value changed

® Current local value since this node’s last communication
° ”FRESH” or ”STALE, with the server

® "CLEAN” or "DIRTY.

i.e., has the local value been written
since this node was last refreshed by

the server

Modeling the operations

READ —» V

Precondition: LocalValy =V
Effect: none

WRITE Voo — Void

Precondition: LocalValny = V14

Effect: LocalValn < Ve
Clean? py < DIRTY

Modeling the operations

STABILIZE — (V,C)

Precondition: ServerVal =V
Conflicts = C

for all N, Fresh? = FRESH

Clean”? y = CLEAN

Effect: none

Modeling the operations

DOWN

Precondition: Fresh?pn = STALE
Clean? y = CLEAN
Effect: LocalValpn < ServerVal
Fresh”? n < FRESH

Modeling the operations

UP

Precondition: Clean” = DIRTY
Effect: Clean?y < CLEAN
if Fresh”? n = FRESH then
if LocalValyn # ServerVal then
Fresh?n: <+ STALE for all N' # N
ServerVal < LocalVal N
else
if LocalValy ¢ {ServerVal, L} then
Conflicts < Conflicts U {Local Valy }

Surprises...

Surprise: Dropbox can (briefly) delete
a newly created file...

Client 1 Client 2

WRITE ‘a’ — L
WRITE L — ‘a’
WRITE ‘b’ — ‘a’
WRITE ‘¢’ — L
READ — |

Surprise: Dropbox can (briefly) delete
a newly created file...

Client 1 Client 2

Create file WRITE ‘a’ — |
WRITE L — ‘&’
WRITE ‘b’ — ‘a’
WRITE ‘¢’ — L
READ — L

Surprise: Dropbox can (briefly) delete
a newly created file...

Client 1 Client 2

Create file WRITE ‘a’ — |
Deleteit | WRITE | — ‘a’
WRITE ‘b’ — ‘a’
WRITE ‘¢’ — |
READ — |

Surprise: Dropbox can (briefly) delete
a newly created file...

Client 1 Client 2
Create file WRITE ‘a’ — |
Deleteit | WRITE | — ‘a’

WRITE ‘b’ — ‘a’ | Observe
WRITE cca N J_ creation
READ — |

Surprise: Dropbox can (briefly) delete
a newly created file...

Client 1 Client 2
Create file WRITE ‘a’ — |
Delete it WRITE | — ‘g’

WRITE ‘b’ — ‘a’ |Observe
Create it again | WRITE ‘¢’ — | creation
READ — |

Surprise: Dropbox can (briefly) delete
a newly created file...

Client 1 Client 2
Create file WRITE ‘a’ — |
Delete it WRITE | — ‘g’

WRITE ‘b’ — ‘@’ |Observe
Create it again | WRITE ‘¢’ — | creation
File is gone! | READ — |

Surprise: Dropbox can (briefly) delete
a newly created file...

Client 1 Client 2
Create file WRITE ‘a’ — |
Delete it WRITE | — ‘g’

WRITE ‘b’ — ‘@’ |Observe
Create it again | WRITE ‘¢’ — | creation
File is gone! | READ — |

Timing is critical

Surprise: Dropbox can (briefly) delete
a newly created file...

Client 1 Client 2
Create file WRITE ‘a’ — |
Deleteit | WRITE | — ‘a’

WRITE ‘b’ — ‘@’ |Observe
Create it again | WRITE ‘¢’ — | creation
File is gone! | READ — |

Add SLEEP operations

Timing is critical! = ,
in tests

Surprise: Dropbox can (permanently)
re-create a deleted file...

Client 1 (other clients idle)
WRITE ‘b’ — L
WRITE 1L — ‘b’

READ — ‘b’

Surprise: Dropbox can (permanently)
re-create a deleted file...

Client 1 (other clients idle)

Creaatefile | WRITE ‘b’ — L

WRITE 1L — ‘b’
READ — ‘b’

Surprise: Dropbox can (permanently)
re-create a deleted file...

Client 1 (other clients idle)
Createfle | WRITE ‘b’ — |
Deleteit | WRITE L — ‘D’
READ — ‘b’

Surprise: Dropbox can (permanently)
re-create a deleted file...

Create file

Delete it

File is back!

Client 1 (other clients idle)

WRITE ‘b’ — L
WRITE 1 — ‘b’
READ — ‘b’

(Again, timing is critical)

Surprise: Dropbox can lose data

Client 1

Client 2

WRITE ‘a’ — ‘b’
READ — ‘a’

WRITE ‘> — L

STABILIZE —

(07, 0) }

Surprise: Dropbox can lose data

Client 1

Client 2

WRITE ‘a’ — ‘b’
READ — ‘a’

WRITE ‘> — L

STABILIZE —

(07, 0) }

Create file

Surprise: Dropbox can lose data

Overwrite it

Client 1

Client 2

WRITE ‘a’ — ‘b’
READ — ‘a’

WRITE ‘> — L

STABILIZE —

(07, 0) }

Create file

Surprise: Dropbox can lose data

Overwrite it

persists on
client |

Client 1

Client 2

WRITE ‘a’ — ‘b’
READ — ‘a’

WRITE ‘> — L

/

New value _|_>{ (‘a’,

STABILIZE —

0), (0°,0) }

Create file

Surprise: Dropbox can lose data

Overwrite it

persists on
client |

Client 1

Client 2

WRITE ‘a’ — ‘b’
READ — ‘a’

WRITE ‘> — L

/

New value _|_>{ (‘a’,

STABILIZE —

0), (0°,0) }

Create file

Old value

persists on
client 2!

Surprise: Dropbox can lose data

Client 1 Client 2
WRITE ‘b — L | Create file

Overwrite it WRITE ‘a’ — ‘D’
READ — ‘&’

/ STABILIZE —
New value _|_>{ (‘a’,0), (‘v’,0)} Old value

persists on persists on

client | / client 2!

Client | believes it is still Fresh, so if
we later write a new value on client 2,
it will silently overwrite client |’s value

and no conflict file will be created

Work in progress!

® More details:

® Draft paper available from my webpage

® Next steps:

® Add directories
e Test your favorite synchronizer :-)

Thank you!

(Any questions?)

\@ UNIVERSITY 0of PENNSYLVANIA L

