
Matching Lenses: Alignment and View Update

Davi M. J. Barbosa Julien Cretin
École Polytechnique

Nate Foster
Princeton University

Michael Greenberg Benjamin C. Pierce
University of Pennsylvania

Abstract
Bidirectional programming languages are attracting attention as a
practical approach to the view update problem. Programs in these
languages, called lenses, define both a view and its associated up-
date policy—i.e., every program can be read as a function mapping
sources to views as well as a function mapping updated views back
to updated sources.

A thorny issue that has not received sufficient attention in the
design of bidirectional languages is alignment. In general, to cor-
rectly propagate an update to a view, a lens needs to match up
pieces of the view with the corresponding pieces of the underlying
source, even after insertions and deletions. Unfortunately, existing
bidirectional languages either support only simple strategies that
fail on many examples of practical interest, or else propose specific
strategies that are baked deeply into the underlying theory.

We propose a general notion of matching lenses that parame-
terizes the basic lens framework with respect to arbitrary heuris-
tics for calculating alignments. We enrich the types of lenses with
“chunks” that identify the reorderable pieces of the source and view
that should be re-aligned after an update, and we formulate be-
havioral laws that capture essential constraints on the handling of
chunks. We develop a core language of matching lenses for strings,
together with a set of “alignment combinators” that can be used to
implement a wide variety of specific alignment strategies.

1. Introduction
The view update problem is a classic issue in data management [7]:
given a view and an update to the view, how do we find a new
source that accurately reflects this update? Recent work in the pro-
gramming languages community has made progress on this old
problem by developing new languages in which programs, called
lenses, can be read both as view definitions and as update transla-
tors. This approach avoids the code duplication of writing separate
functions, gives programmers great flexibility in defining desired
update translation policies, and allows once-and-for-all proofs of
key round-tripping laws as corollaries of type soundness.

Formally, a basic lens l mapping between a set of sources S
and a set of views V with respect to a set C of “complements”
comprises four functions:1

l.get ∈ S → V
l.res ∈ S → C
l.put ∈ V → C → S

l.create ∈ V → S

1 Readers familiar with lenses will see some small differences from previous
formulations: the put function has type V → C → S rather than V →
S → S and we assume that every lens has a res function that extracts a
complement from a source. To recover the original presentation, we can take
the set C to be S and let res be the identity function. The added precision
that we get by breaking out a separate set of complements will be helpful in
formulating the concepts we’re working with here.

The get function maps a source to a view. The res (“residue”) func-
tion maps a source to a complement, a structure that records (at
least) the information not reflected in the view—i.e., the informa-
tion that needs to be “remembered” so that it can be mixed together
with an updated view to produce an updated source. The other two
functions handle updates: put takes a view and a complement and
builds a new source, while create handles the special case where
we need to map a view to a source but do not have a complement
available. It builds a source from a view directly, filling in any miss-
ing information with defaults. We write S

C⇐⇒ V for the set of all
basic lenses between S and V with respect to C.

Basic lenses must obey the following laws for every source s,
view v, and complement c:2

l.get (l.put v c) = v (PUTGET)
l.put (l.get s) (l.res s) = s (GETPUT)

These laws are closely related to the conditions on update trans-
lators that have been proposed in the database literature [1, 7,
14]. PUTGET ensures that updates to the view are translated
“exactly”—i.e., that, given a view and a complement, the put func-
tion produces a source that get maps back to the very same view.
GETPUT ensures a “stability” property for the source—i.e., it re-
quires that the put function returns the original source unmodified
whenever the update to the view is a no-op. It also guarantees that
the complement computed by res records all of the source informa-
tion not reflected in the view.

Lenses have been studied extensively in recent years [3, 4, 10,
13, 19, 20, 21, 22, 23, 25] and they have been applied in areas
as diverse as user interfaces [21], structure editors [16], configura-
tion management [19], software model transformations [8, 24, 27],
pattern matching [26], data synchronization [9], and security [12].
See [6] for a survey.

However, one fundamental issue continues to hinder wide appli-
cation of these ideas: alignment. In general, the get function may
discard some of the information in the source, so the put function
needs to recombine parts of the view with parts of the complement
to produce the updated source. When the source and view include
ordered data (lists, strings, XML trees, etc.), this matching up the
pieces of the updated view with the corresponding pieces of the
complement. Consider a simple example where the source is a Wiki

=Tour de France=
The Tour is held in July...
=Vuelta a Spain=
The Vuelta is held in September...

and the view is a string containing just the section headings:

Tour de France
Vuelta a Spain

2 Lenses also obey a CREATEGET law analogous to PUTGET. To save
space, we elide this law and all other laws involving create. Complete
definitions can be found in the long version.

1

If we change the view by replacing “Spain” with “Espana” and
adding a line for the Giro, we would like the put function to take
the new view

Giro d’Italia
Tour de France
Vuelta a Espana

together with the complement of the original source and build a new
source reflecting the same updates. But if the lens uses a simple
positional strategy—the only one available in most bidirectional
languages—then the first line in the view will be matched up with
the first section in the source, the second with the second, and so
on. The result will be a mangled Wiki

=Giro d’Italia=
The Tour is held in July...
=Tour de France=
The Vuelta is held in September...
=Vuelta a Espana=

in which the paragraph for the Tour appears underneath the heading
for the Giro and the paragraph for the Vuelta appears underneath
the heading for the Tour—a recipe for tragedy in the cycling world!

Existing bidirectional languages deal with the challenge of
alignment in different ways. At the simple end of the spectrum,
many languages ignore alignment issues entirely and use the
straightforward positional strategy to match up pieces of the source
and view [10, 20, 23, 25, 26]. This works in a few simple cases—
when the structures are unordered to begin with, or when they are
sufficiently rigid that updates only need to modify information in-
place, without changing its position—but fails in many others.

Other languages deal with alignment by adopting an operation-
based approach [16, 21, 22, 27]—that is, rather than taking the state
of the new view as an argument, the put function is told what up-
date operation was applied to the view. Working with explicit oper-
ations gives the put function detailed information about the nature
of the update applied to the view, which can help it calculate a good
alignment. However, this solution is not fully general. The “update
language” recognized by put functions is fixed—and typically sim-
ple, to keep the theory manageable—so complicated updates have
to be broken down into several smaller ones. For example, many
update languages support inserting and deleting items but not mov-
ing items from one location to another. To move an item in the
view, we have to delete the item and re-insert it at the new location,
causing the hidden information associated to the item to be lost.

Finally, a few systems align the pieces of the source and view
using keys. For example, in our own earlier proposal for dictionary
lenses [3], the programmer identifies the reorderable chunks in the
source and specifies how to compute a key for each one. The put
function uses keys rather than positions to locate a chunk for each
piece of the view. This alignment strategy works well when chunks
have stable keys, but it is also not a complete solution. In particular,
when the chunks do not have a natural key (e.g., because they are
blocks of otherwise unstructured text) or when keys themselves can
be edited in the view (as in the Wiki example above), the simple
alignment strategy baked into dictionary lenses can lead to mangled
or lost data. Similar limitations apply to relational lenses [4], which
use functional dependencies to identify keys that can be used to
perform database operations like join in an updatable fashion.

Our goal in this paper is to develop a completely generic mecha-
nism that overcomes the limitations of all these approaches and ad-
dresses the issue of alignment once and for all. To this end, we pro-
pose a new framework of matching lenses that separates the process
of aligning the original and edited views from the process of weav-
ing together the original source and the updated view to build an up-
dated source. This separation yields a flexible framework that can

.

.

.. ..

.. ..

.. ..

.. ..

..

.

.

.. ..

.. ..

.. ..

.. ..

..

(a) positional (b) best match

.

.

.. ..

.. ..

.. ..

.. ..

. ..

.

.

.. ..

.. ..

.. ..-

.. ..

. ..+
(c) best non-crossing match (d) actual operations

Figure 1. Alignment strategies

be instantiated with arbitrary heuristic alignment strategies with-
out complicating the basic theory. Figure 1 depicts some possible
choices: (a) simple positional alignment; (b) “best match” align-
ment, which tries to match chunks without regard to ordering (this
is good for set-like data where ordering is not critical); (c) a vari-
ant of best-match that only considers “non-crossing” matches, like
the longest common subsequence heuristic used by diff (this can
lose hidden data if the actual edit is a move, but in return it can
use local context to guide matching and will often perform better
on document-like data); and (d) using the actual edit operations
performed by the user (assuming these are available) to calculate
exactly the “intended match.” The matching lens framework can
accommodate all of these, and many others.

At the level of the mathematical semantics, we enrich lens types
with annotations specifying what constitutes a reorderable “chunk,”
and we add behavioral laws that capture the essential constraints on
the handling of chunks—e.g., these stipulate that lenses must carry
chunks in the source through to chunks in the view and vice versa,
and they guarantee that reorderings on the chunks in the view are
translated to corresponding reorderings on the source.

Operationally, we make the separation of concerns described
above explicit by splitting the complement into two pieces: a rigid
complement that represents the source information that should be
handled positionally and a resource that represents the information
extracted from chunks. To supply a lens with a precise alignment
directive, we simply rearrange the resource according to the direc-
tive and obtain a pre-aligned resource in which each piece of the
source matches up with the specified piece of the view.

Finally, we instantiate this abstract framework with primitive
matching lenses and combinators for string data. (We work with
strings, rather than richer structures like trees or graphs, but we use
regular expression types to overlay tree structures onto them. In-
deed, our types are already expressive enough to describe arbitrary
XML structures with non-recursive schemas.) We give coercions
that convert basic lenses to matching lenses and vice versa, and
we show how to interpret each of the the regular operators (union,
concatenation, and Kleene star) as well as the composition oper-
ator as matching lenses. Finally, we describe primitives for speci-
fying, combining, and tuning alignment strategies using notions of
“species,” “tags,” “keys,” and “thresholds.”

Our contributions can be summarized as follows:

1. We define a new semantic space of matching lenses that en-
riches the types of lenses with chunks and adds behavioral laws
ensuring that chunks are handled correctly (Section 3). Unlike
our previous work on dictionary lenses, which used a single

2

alignment strategy based on keys, matching lenses are generic
and can be instantiated with arbitrary alignment strategies.

2. We define a simple syntax for matching lenses over string data
(Section 4), and we prove (in the appendix) that each primitive
is well behaved at its specified type.

3. We develop several ways of describing alignments using no-
tions of “species”, “tags”, “keys” and “thresholds” (Section 5),
discuss their implementation in Boomerang [11], and sketch
several extensions to the framework (Section 6).

Related and future work are discussed in Sections 7 and 8.

2. Example
Let’s continue the Wiki example a little further to preview the
essential ingredients of our solution. First, here is a Boomerang
program that implements the original Wiki lens with positional
alignment:

let NONSPECIAL : regexp = [^=\n]
let HEADING : regexp = [^=\n] . NONSPECIAL*
let LINES : regexp = (NONSPECIAL+ . "\n")*
let PARAGRAPHS : regexp = LINES . ("\n" . LINES)*

let section : lens =
"=" <-> "" .
copy HEADING .
"=" <-> "" .
copy "\n" .
PARAGRAPHS <-> ""

let wiki : lens = section*

The first few lines define regular expressions describing “non-
special” characters (everything except ‘=’ and ‘\n’), lines of text,
and paragraphs. The section lens processes one section of the
Wiki source. The copy E lens recognizes a source string matching
the regular expression E and copies it (in both directions). The get
direction of the “replace by constant” lens E <-> u recognizes a
source string matching E but adds the fixed string u to the view;
the put direction recognizes u and restores the original source from
the complement. The concatenation operator . uses one sublens to
process the beginning of its input and the other for the end. The
wiki lens, defined using the Kleene star operator *, iterates the
section lens to handle lists of sections.

This version of the Wiki lens implements a simple positional
alignment strategy for matching up paragraphs in the source with
lines in the view, leading to the unfortunate behavior described in
the introduction. Here is a better version, written using the features
developed in this paper, that uses section headings to locate the
corresponding paragraphs from the source:

let section : lens =
"=" <-> "" .

..key (copy HEADING) .
"=" <-> "" .
copy "\n" .
PARAGRAPHS <-> ""

let wiki : lens = ..< best : section >*

We’ve made two changes. First, in the definition of the wiki lens,
we have indicated that each section in the source should be treated
as a reorderable “chunk” by enclosing the section lens in angle
brackets. Second, we have specified the policy that should be used
to align chunks using the annotations key and best. The key
annotation indicates the portions of each chunk that should be
taken into account when computing an alignment. The “alignment
species” best selects the overall heuristic to use for computing a

correspondence between chunks: one that minimizes the sum of the
edit distances between the keys of matched chunks.

The point of this example is that we can provide programmers
with simple, compositional primitives that allow them to specify
rich alignment strategies directly in a lens program. In particular, if
we put back the updated view

Giro d’Italia
Tour de France
Vuelta a Espana

with the complement extracted from the original source, we obtain
a new source in which paragraphs are restored to the appropriate
sections:

=Giro d’Italia=
=Tour de France=
The Tour is held in July...
=Vuelta a Espana=
The Vuelta is held in September...

Readers familiar with dictionary lenses [3] will recall similar
constructs for specifying chunks and alignment policies. Indeed,
on the surface, matching lenses are designed to look like a straight-
forward generalization of dictionary lenses. Under the hood, the
critical difference that makes the generalization work is that match-
ing lenses make all alignment decisions in a separate phase that
happens before the outermost put function is called, whereas dic-
tionary lenses interleave alignment decisions with the operation of
put functions. This untangling of mechanisms has several benefi-
cial effects. First, it modularizes the framework, allowing us to use
many different alignment strategies instead of just one. Second, it
allows us to use global alignment strategies that optimize some dis-
tance metric over the whole document; in particular, we can relax
the assumption that keys are never edited, a major practical restric-
tion of dictionary lenses. Third, it permits an elegant treatment of
the composition operator (see Section 4), which we have found im-
portant in practical bidirectional programming but which doesn’t
interact nicely with dictionary lenses. Fourth, it clarifies the under-
lying theory by treating alignment algorithms, which are typically
complex and heuristic, separately from the core language, which
remains simple and generic. And finally, it avoids some arbitrary
technical choices that are forced by the locality of alignment de-
cisions in dictionary lenses—for example, the left-bias of the con-
catenation and Kleene star operators.

3. Semantics
We begin our technical development by defining the semantic space
of matching lenses. They are organized around a simple two-tier
architecture: a top-level matching lens processes the information
outside of chunks; a lower-level basic lens processes the chunks
themselves. To streamline the presentation, we make several sim-
plifying assumptions: chunks only appear at the top level, the same
basic lens is used to process every chunk, and lenses themselves do
not reorder chunks. We relax these restrictions in Section 6.

One of the main contributions of our framework is the separa-
tion of alignment from all other processing: matching lenses do not
themselves align chunks in the source and view. The put function
operates on a residual structure consisting of the information out-
side of chunks and an ordering on chunks. This makes the design
general: matching lenses are a framework that can be instantiated
with many different alignment functions. We describe some spe-
cific functions for computing alignments in Section 5.

Let’s begin with a small example.

let k : lens = key (copy [A-Z]) . del [a-z]
let l : lens = <best:k> . (copy "," . <best:k>)*

3

The basic lens k copies an upper-case letter from source to view
and deletes a lower-case letter, while the matching lens l uses
the match, concatenation, and Kleene star operators to iterate k
over a non-empty list of comma-separated chunks. The behavior of
l’s get component is straightforward—e.g., it maps “Xx,Yy,Zz”
to “X,Y,Z”. Its put function is more interesting: it must restore
the lower-case letters from source chunks by matching upper-case
letters in the old and new views. For example, if we reorder the
view and insert “W” in the middle, then put behaves as follows:

l.put "Z,Y,W,X" into "Xx,Yy,Zz" = "Zz,Yy,Wa,Xx"

We said before that the put function operates on views and comple-
ments, but here we have applied it to a view and a source directly.
Under the hood, the evaluation of this top-level put in Boomerang
uses a coercion %·& (defined at the end of this section), which pack-
ages up a lens with a simpler interface that allows us to pass a view
and source to put directly. It works in several steps. First, it uses
l.res to extract a complement from the source string. In a matching
lens, every complement is divided into two parts: a rigid comple-
ment c for the information outside of chunks and a resource r for
the information within chunks:

c = (!, [(“,”, !), (“,”, !)]) r =

8
<

:

˛̨
˛̨
˛̨

1 '→ “Xx”
2 '→ “Yy”
3 '→ “Zz”

˛̨
˛̨
˛̨

9
=

;

The rigid complement is structured object that records the position
of each chunk as well as the commas between chunks; the resource
is a finite map that records the locations of chunks as well as
their contents. Next, it invokes an alignment function to compute
a correspondence g between the chunks in the original and updated
views. It then composes this correspondence with the resource r to
obtain a “pre-aligned” resource (r ◦ g):

g =
..X

.Y

.Z

.Z

.Y

.W

.X

=

8
<

:

˛̨
˛̨
˛̨
4 '→ 1
2 '→ 2
1 '→ 3

˛̨
˛̨
˛̨

9
=

; (r ◦ g) =

8
<

:

˛̨
˛̨
˛̨
4 '→ “Xx”
2 '→ “Yy”
1 '→ “Zz”

˛̨
˛̨
˛̨

9
=

;

Finally, it runs l.put on the updated view, the rigid complement,
and the pre-aligned resource. The effect is that each lower-case
letter is restored to the chunk containing the appropriate upper-
case letter. Notice that the third chunk, W is created with the default
lower-case letter “a” because the pre-aligned resource (r ◦ g) is
undefined on 3.

3.1 Notation
In this section, the sources and views are arbitrary structures; we
just assume that they are are equipped with notions of what con-
stitutes a reorderable chunk of information. Formally, we require
that it be possible to break these “structures with chunks” into two
pieces: the list of chunks and a skeleton structure with holes, where
the number of chunks in the list equals the number of holes in the
skeleton. For example, in the string “Xx,Yy,Zz”, if each pair of
letters are a chunk, then the list of chunks is [Xx, Yy, Zz] and the
skeleton is “!, !, !”. Examples of structures that can be treated
in this way abound, including conventional datatypes such as trees,
lists, matrices, etc.—see Jay’s work on “shapely types” for many
more [17]. When u is a (source or view) structure with chunks we
write
• |u| for the number of chunks in u,
• locs(u) for the set of locations of chunks in u, where a location

is a number from 1 to |u|,
• u[n] for the chunk located at n in u, where n ∈ locs(u),

• u[n:=v] for the structure obtained from u by setting the chunk
at n to v, where n in locs(u) and v is an appropriately-typed
structure, and

• skel(u) for the skeleton of u—i.e. the parts not contained in
any chunk.

To ensure that chunks can be freely reordered, we require that the
sets of sources and views must be closed under the operation of
replacing chunks by other chunks. Formally, when U is a set of
structures with chunks and U ′ is a set of ordinary structures, we
say that U is chunk compatible with U ′ iff
• the chunks of every structure in U belong to U ′—i.e., for every

u ∈ U and n ∈ locs(u) we have u[n] ∈ U ′, and
• membership in U is preserved when we replace arbitrary

chunks with elements of U ′—i.e., for every u ∈ U , n ∈
locs(u), u′ ∈ U ′ we have u[n:=u′] ∈ U .

To represent resources, we use finite maps from locations to
complements. This makes it easy to re-align resources—we simply
apply a (possibly lossy) reordering to the map. When r is a finite
map we write
• {||} for the totally undefined map,
• {|n '→ c|} for the singleton map that associates the location n

to the complement c and is otherwise undefined,
• r(n) for the complement that r associates to n,
• dom(r) for the domain of r,
• |r| for the largest element of dom(r),
• (r1 ++ r2) for the finite map that behaves like the finite map

r1 on locations in dom(r1) and like the finite map r2 with
locations shifted up by |r1| otherwise, and

• {|N '→ C|} for the set of all finite maps from locations to
elements of C, where C is a set of complements.

3.2 Matching Lenses
Let S and V be sets of structures with chunks, let C be a set of rigid
complements, and let k be a basic lens with S chunk compatible
with k.S (i.e., the source type of k) and V chunk compatible with
k.V (i.e., the view type of k). A matching lens l on S, C, k, and V
comprises four functions

l.get ∈ S → V
l.res ∈ S → C × {|N '→ k.C|}
l.put ∈ V → C × {|N '→ k.C|} → S

l.create ∈ V → {|N '→ k.C|} → S

obeying several laws described below. The get function has the
same type as in basic lenses. The put function takes a rigid com-
plement and a resource (not just a complement). The res function
extracts both these structures from a source. The create function
takes both a view and a resource as arguments; this makes it pos-
sible for matching lenses to restore information to chunks whose
rigid complement is newly created—e.g., the last chunk in the ex-
ample from the beginning of this section, which contains “X” (be-
cause it appears at the very end). To create a source completely
from scratch, we invoke create with the empty resource.

The PUTGET and GETPUT laws express the same fundamental
constraints as the basic lens laws.

l.get (l.put v (c, r)) = v (PUTGET)
l.put (l.get s) (l.res s) = s (GETPUT)

Two additional laws capture straightforward constraints on the han-
dling of chunks:

locs(s) = locs(l.get s) (GETCHUNKS)

4

c, r = l.res s

locs(s) = dom(r)
(RESCHUNKS)

They force matching lenses to maintain a one-to-one correspon-
dence between the chunks in the source and view and the comple-
ments in the resource. Specifically, the GETCHUNKS law stipulates
that each chunk in the source must be carried through to a chunk in
the view. This rules out lenses that advertise the presence of chunks
in the source but not in the view (or vice versa). The RESCHUNKS
law requires an analogous property for the resource generated by
the res function from the source. We need not state the analogous
PUTCHUNKS property as a law because it can be derived:

A.1 Lemma [PUTCHUNKS]: Let l be a matching lens in S
C,k⇐⇒

V . For every view v, rigid complement c, and resource r we have
locs(l.put v (c, r)) = locs(v).

The next two laws are the essential matching-lens laws—they
ensure that the put function uses its resource correctly.

n ∈ (locs(v) ∩ dom(r))

(l.put v (c, r))[n] = k.put v[n] (r(n))
(CHUNKPUT)

n ∈ (locs(v) \ dom(r))

(l.put v (c, r))[n] = k.create v[n]
(NOCHUNKPUT)

The CHUNKPUT law stipulates that the nth chunk in the source
produced by put must be identical to the structure produced by ap-
plying k.put to the nth chunk in the view and the complement as-
sociated to n in the resource when the resource contains a comple-
ment for n. The NOCHUNKPUT law is similar, but handles the case
where the resource does not contain a complement for n. Together,
these laws specify the interaction between put and resources.3 No-
tice that we build the basic lens k used to processes chunks into
the definition of matching lenses. We need to do this because these
laws both mention it.

The last law, SKELPUT, states that the skeleton of the sources
produced by put must not depend on any of the chunks in the view
or complements in the resource.

skel(v) = skel(v′)

skel(l.put v (c, r)) = skel(l.put v′ (c, r′))
(SKELPUT)

This law is critical for ensuring that matching lenses translate
reorderings on the view to reorderings on the source.

Compared to the basic lens laws, these laws have a low-level
and operational feel—they spell out the precise handling of chunks
and resources in detail. However, we can use them to derive higher-
level, more declarative properties. For instance, we can use them to
show the property just described—that the put function translates
reorderings on the chunks in the view to corresponding reorderings
on the chunks in the source. We write Perms(u) for the set of
permutations of chunks in u and q" u for the structure obtained
by reordering the chunks of u according to a permutation q. The
next lemma follows directly from the matching lens laws:

A.2 Lemma [REORDERPUT]: Let l be a matching lens in S
C,k⇐⇒

V . For every view v in V , rigid complement c in C, resource
r in {|N '→ k.C|}, and permutation q in Perms(v), we have
q" (l.put v (c, r)) = l.put (q" v) (c, r ◦ q−1).

To finish the semantics, we define a coercion %·& (pronounced
“lower”) that takes a matching lens l in S

C,k⇐⇒ V and packages it
up with the interface of a basic lens in S

S⇐⇒ V . This coercion per-
forms the steps needed to use the put component of a matching lens
as described in the example at the beginning of this section. Criti-
cally, we leave one part of this procedure abstract—the alignment

3 When we allow lenses to reorder chunks in Section 6, we will have to
generalize these laws to account for lenses that permute chunks.

function align . It turns out that we only need a single constraint on
this function to ensure well behavedness—see below.

.

.

.
l ∈ S

C,k⇐⇒ V

%l& ∈ S
S⇐⇒ V

.

get s = l.get s
res s = s
put v s = l.put v (c, r ◦ g)

where (c, r) = l.res s
and g = align(v, l.get s)

create v = l.create v {||}

The typing rule in the top box can be read as a lemma asserting
that if l is a matching lens at S

C,k⇐⇒ V then %l& is a basic lens at
S

S⇐⇒ V . A proof appears in the appendix (Lemma A.3).
The bottom box defines the components of %l&. The get function

is identical to l.get. The res function uses the whole source as the
complement. The put function takes a (possibly updated) view v
and a complement s as arguments. It first uses l.res to calculate a
rigid complement c and a resource r from s; it then uses align to
calculate a correspondence g between the locations of chunks in the
updated view v and chunks in the original view l.get s. For now, we
simply assume that align is some fixed function that takes updated
and original views and computes a correspondence between their
chunks—formally, a partial injective function from old locations
to new locations. (We describe primitives for specifying align
functions in Section 5). Next, it composes r and g as functions,
which has the effect of rearranging the complements in the resource
r according to the alignment g. To finish the job, the put function
passes v, c and (r◦g) to l.put, which produces the new source. The
basic create function invokes l.create with the view and the empty
resource. The %·& operator does not need to assume anything about
the align function, except that it returns the identity alignment
when its arguments are identical views. We use this property to
prove that %l& obeys the GETPUT law.

4. Matching Lenses for Strings
Having defined the semantic space of matching lenses and devel-
oped some of their main properties, we now turn our attention to
syntax. This section defines a collection of matching lens primi-
tives for strings. The primitives in this section are mostly similar
to the basic and dictionary lenses over strings that we have studied
previously [3, 13], adapted to the matching lens semantics.

4.1 Notation
First, a little more notation for strings with chunks. Let Σ be a finite
alphabet (e.g., ASCII). The symbol ε denotes the empty string and
(u·v) denotes the concatenation of strings u and v. A language L
is a subset of Σ∗. We lift concatenation to languages in the obvious
way. The iteration of a language L is L∗ # S∞

n=0 Ln, where Ln

denotes the n-fold concatenation of L with itself.
Many of our definitions require that every string in the con-

catenation of two languages have a unique factorization into
smaller strings belonging to the languages being concatenated.
Two languages L1 and L2 are unambiguously concatenable, writ-
ten L1·!L2, if for all strings u1 and v1 in L1 and u2 and v2 in L2,
if (u1·u2) = (v1·v2) then u1 = v1 and u2 = v2. Similarly, a lan-
guage L is unambiguously iterable, written L!∗, if for all strings u1

to um and v1 to vn in L, if (u1 · · ·um) = (v1 · · · vn) then m = n
and ui = vi for i from 1 to n.

We will define the types of our matching lens primitives using
regular expressions decorated with annotations indicating the loca-

5

tions of chunks. The set of ordinary regular expressions is gener-
ated by the following grammar

R ::= ∅ | u | R·R | R|R | R∗

where u ranges over arbitrary strings (including ε). The denotation
[[E]] of a regular expression E is a regular language. Regular lan-
guages are closed under the boolean operators and have many de-
cidable properties including emptiness, inclusion, and equivalence.
It is also decidable whether two regular languages are unambigu-
ously concatenable and whether a single regular language is unam-
biguously iterable (see [2, Prop. 4.1.3]).

Now we will show how to add annotations to regular expres-
sions to specify the locations of chunks. Let ‘〈’ and ‘〉’ be fresh
symbols that do not occur in Σ. The set of chunk-annotated regular
expressions is generated by the following grammar:

A ::= R | 〈R〉 | A |A | A·A | A∗

Observe that every ordinary regular expression is also a chunk-
annotated regular expression and that chunks only appear at the top
level. The denotation [[A]] of a chunk-annotated regular expression
A is a language of chunk-annotated strings—i.e., strings over the
extended alphabet (Σ∪{‘〈’, ‘〉’})∗ where occurrences of ‘〈’ and ‘〉’
are balanced and non-nested. We write %·& for the erasure function
that maps chunk-annotated strings to ordinary strings (by removing
’〈’ and ’〉’ characters and mapping every other character to itself)
and lift %·& to regular expressions and languages in the obvious way.

We will use languages of chunk-annotated strings to “read off”
the locations of chunks in ordinary strings. Given a language of
chunk-annotated strings L and an ordinary string u in the erasure
of L, we calculate the number |u| of chunks in u, the chunk
u[n] at n in u, and so on, by first “parsing” u into a chunk-
annotated string using L, and then using the explicit chunks in
the result to interpret each of the concepts involving chunks. For
example, if L is the language of chunk-annotated strings described
by 〈(‘A’ | . . . | ‘Z’)·(‘1’ | . . . | ‘9’)〉∗ and u is “A1B2C3”, then u
parses into “〈A1〉〈B1〉〈C1〉”, so the number |u| of chunks in u is
3, the second chunk u[2] in u is “B2”, and the string u[2:=“Z9”]
obtained by setting the second chunk in u to “Z9” is “A1Z9C3”.

Obviously for this way of identifying chunks in ordinary strings
to make sense, we need to be sure that every string has a unique
parse into a chunk-annotated string using L. Not every language
has this property—e.g., (a·b) has two different parses using the
language {“〈a〉b”, “a〈b〉”}. To rule out such chunk ambiguous
languages, we will be careful to ensure that every language of
chunk-annotated strings under discussion uniquely determines the
chunks of strings in its erasure—i.e., whenever we introduce a
chunk-annotated regular language L as the source or view type of
a matching lens, we will ensure that L and %L& are isomorphic.

4.2 Primitives
With this notation fixed, we are now ready to define primitives.

Lift It should be clear that matching lenses generalize basic
lenses. The lift operator witnesses this fact, converting a basic lens
k to a matching lens bk. This operator makes it possible to use basic
lenses like copy and <-> as matching lenses. As the source and
view types are ordinary sets of strings, the lifted lens does not have
chunks so it satisfies the new matching lens laws vacuously.

.

.

.
k′ ∈ S′ C′

⇐⇒ V ′ k ∈ S
C⇐⇒ V

bk ∈ S
C,k′
⇐⇒ V

.

get s = k.get s
res s = k.res s, {||}
put v (c, r) = k.put v c
create v r = k.create v

Note that the basic lens k′ mentioned in the type of bk is arbitrary.

Match We can also convert a basic lens to a matching lens by
placing it in a chunk.

.

.

.
k ∈ S

C⇐⇒ V

〈k〉 ∈ 〈S〉 {!},k⇐==⇒ 〈V 〉

.

get s = k.get s
res s = !, {|1 '→ k.res s|}

put v (!, r)=


k.put v (r(1)) if 1 ∈ dom(r)
k.create v otherwise

create v r =


k.put v (r(1)) if 1 ∈ dom(r)
k.create v otherwise

The lens 〈k〉 (pronounced “match k”) is the essential matching lens.
It uses the basic lens k to process strings in both directions, treating
the entire source as a reorderable chunk. The get component of
〈k〉 simply passes off control to the basic lens k. The res function
takes a source s and produces ! as the rigid complement and
{|1 '→ k.res s|} as the resource. The put function accesses the
complement through its resource argument: it invokes k.put on
the view and r(1) if r is defined on 1 and k.create on the view
otherwise. The create function is identical.

Concatenation The next three primitives build bigger lenses
out of smaller ones using the regular operators. Together, these
operators represent a core language that can be used to express
many useful transformations on strings. The concatenation operator
is the simplest:

.

.

.

l1 ∈ S1
C1,k⇐⇒ V1 %S1&·!%S2&

l2 ∈ S2
C2,k⇐⇒ V2 %V1&·!%V2&

l1·l2 ∈ (S1·S2)
(C1×C2),k⇐===⇒ (V1·V2)

.

get (s1·s2) = (l1.get s1)·(l2.get s2)
res (s1·s2) = (c1, c2), (r1 ++ r2)

where c1, r1 = l1.res s1

and c2, r2 = l2.res s2

put (v1·v2) (c, r) = (l1.put v1 (c1, r1))·(l2.put v2 (c2, r2))
where c1, c2 = c

and r1, r2 = split(|v1|, r)
create (v1·v2) r =(l1.create v1 r1)·(l2.create v2 r2)

where r1, r2 = split(|v1|, r)

The get function splits the source into s1 and s2, applies the get
functions of l1 and l2 to these strings, and concatenates the results.
We write s1·s2 to indicate that s1 and s2 are strings in S1 and S2

that concatenate to s1·s2. Because the typing rule requires that the
concatenation of %S1& and %S2& be unambiguous, s1 and s2 are
unique. This also ensures that S1·S2 is chunk unambiguous.

6

The res function splits the source into s1 and s2 and applies the
res functions of l1 and l2 to these strings, yielding rigid comple-
ments c1 and c2 and resources r1 and r2. It merges c1 and c2 into
a pair (c1, c2) and combines the resources into a single finite map
(r1 ++r2). Because the same basic lens k is mentioned in the types
of both l1 and l2, the resources r1, r2, and (r1 ++ r2) are all finite
maps belonging to {|N '→ k.C|}. This ensures that we can freely
reorder the resource and pass arbitrary portions of it to l1 and l2.

The put function splits each of the view, rigid complement,
and resource in two, applies the put functions of l1 and l2 to the
corresponding pieces of each, and concatenates the results. The
create function is similar. To split the resource, we use a function
split(|v1|, r). This yields two resources: one that behaves like r
restricted to locations less than or equal to |v1| and another that
behaves like like r restricted to locations greater than |v1| and then
shifted down by |v1|. Splitting the resource in this way ensures that
every complement that is aligned with a chunk in the view remains
aligned with the same chunk in the corresponding portion of the
resource and substring of the view. Note that split(|r1|, r1++r2) =
(r1, r2). This property is essential for ensuring the GETPUT law.

As discussed above, the typing rule requires that l1 and l2 be
defined over the same basic lens k, which ensures that the resource
(r1 ++ r2) has a uniform type. We might be tempted to relax the
condition and allow l1 and l2 to be defined over two different basic
lenses, as long as those lenses had compatible complement types.
Unfortunately, this would lead to lenses with weaker properties.
For example, consider the lens 〈k1〉·〈k2〉 where k1 and k2 are basic
lenses defined as follows:

k1 # (a ↔ a | b ↔ b) ∈ {a, b} ()⇐==⇒ {a, b}
k2 # (a ↔ b | b ↔ a) ∈ {a, b} ()⇐==⇒ {a, b}

Invoking the put function of this lens on “aa” yields “ab” as a result
(since k1 and k2 are “bijective” lenses, the rigid complement and
resource arguments do not affect the evaluation of the put function).
Now suppose that we swap the chunks of “aa”. According to
Lemma A.2, the put function should produce “ba”—i.e., the string
obtained by swapping the chunks of “ab”. But this is not what
happens. Swapping the chunks of “aa” is a no-op, so put produces
the same result as before. Thus, although it is tempting to allow
matching lenses to use different lenses to process chunks, we do
not allow it, because it would require sacrificing intuitive properties
such as Lemma A.2.

Kleene Star The Kleene star operator iterates a lens:

.

.

.
%S&!∗ %V &!∗ l ∈ S

C,k⇐⇒ V

l∗ ∈ S∗ (C list),k⇐==⇒ V ∗

.

get (s1 · · · sn) = (l.get s1) · · · (l.get sn)

res (s1 · · · sn) = [c1, . . . , cn], (r1 ++ . . . ++ rn)
where ci, ri = l.res si for i ∈ {1, . . . , n}

put (v1 · · · vn) (c, r)= s′1 · · · s′n
where s′i =


l.put vi (ci, ri) i ∈ {1, . . . , min(n, m)}
l.create vi ri i ∈ {m + 1, . . . , n}

and [c1, · · · , cm] = c
and r′0 = r
and ri, r

′
i = split(|vi|, r′(i−1)) for i ∈ {1, . . . , n}

create (v1 · · · vn) r =(l.create v1 r1) · · · (l.create vn rn)
where r′0 = r

and ri, r
′
i = split(|vi|, r′(i−1)) for i ∈ {1, . . . , n}

The get and res components of the Kleene star lens are straight-
forward generalizations of the corresponding components of the

concatenation lens. The put function, however is different. Because
it must be a total function, it needs to handle situations where
the number of substrings of the view is different than the num-
ber of items in the list of rigid complements—i.e., chunks have
been added to or removed from the view. When there are more
rigid complements than substrings of the view, the lens simply dis-
cards the extra complements. When there are more substrings than
rigid complements, it processes the extra substrings using l.create.
This is the reason that create takes a resource as an argument—
the resource often has entries for the extra chunks (especially if
the Kleene star lens appears embedded in an instance of the lower
combinator, which pre-aligns the resource against the updated view
before it invokes put).

Union The final regular operator is union:

.

.

.

l1 ∈ S1
C1,k⇐⇒ V1 %S1& ∩ %S2& = ∅

l2 ∈ S2
C2,k⇐⇒ V2 %V1& ∩ %V2& ⊆ %V1 ∩ V2&

l1 | l2 ∈ (S1 ∪ S2)
(C1+C2),k⇐===⇒ (V1 ∪ V2)

.

get s =


l1.get s if s ∈ %S1&
l2.get s if s ∈ %S2&

res s =


Inl(l1.res s) if s ∈ %S1&
Inr(l2.res s) if s ∈ %S2&

put v (c, r)=

8
><

>:

l1.put v (c1, r) if v ∈ %V1& ∧ c = Inl(c1)
l2.put v (c2, r) if v ∈ %V2& ∧ c = Inr(c2)
l1.create v r if v 3∈ %V2& ∧ c = Inl(c2)
l2.create v r if v 3∈ %V1& ∧ c = Inr(c1)

create v r =


l1.create v r if v ∈ %V1&
l2.create v r if v 3∈ %V1&

The union lens behaves like a bidirectional conditional operator.
The get function selects l1.get or l2.get by testing whether the
source string belongs to %S1& or %S2&. The typing rule requires
that these types be disjoint, so this choice is deterministic.

The res function also selects l1.res or l2.res by testing the source
string. It places the resulting rigid complement in a tagged sum,
producing Inl(c) if the source belongs to %S1& and Inr(c) if it
belongs to %S2&. It does not tag the resource—because l1 and l2
are defined over the same basic lens k for chunks, we can safely
pass a resource computed by l1.res to l2.put and vice versa.

The put function is slightly more complicated, because the typ-
ing rule allows the view types to overlap. It tries to select one of
l1.put or l2.put using the view and uses the rigid complement dis-
ambiguate cases where the view belongs to both %V1& and %V2&.
The create function is similar. Note that because put is a total func-
tion, it needs to handle cases where the view belongs to (%V1&\V2)
but the complement is of the form Inl(c). To satisfy the PUTGET
law, it must invoke one of l1’s component functions, but it cannot
invoke l1.put because the rigid complement c does not necessarily
belong to C1. It discards c and uses l1.create instead.

The side condition (%V1& ∩ %V2&) ⊆ %V1 ∩ V2& in the typing
rule for union ensures that (V1 |V2) is chunk unambiguous—i.e.,
that strings in the intersection (V1∩V2) have unique parses. It rules
out language of chunk-annotated strings such as (a·〈b〉 | 〈a〉·b).

Composition The composition operator puts two matching
lenses in sequence:

7

.

.

.
l1 ∈ S

C1,k1⇐==⇒ U l2 ∈ U
C2,k2⇐==⇒ V

l1;l2 ∈ S
(C1⊗C2),(k1;k2)⇐=====⇒ V

.

get s = l2.get (l1.get s)
res s = 〈c1, c2〉, zip r1 r2

where c1, r1 = l1.res s
and c2, r2 = l2.res (l1.get s)

put v (〈c1, c2〉, r)= l1.put (l2.put v (c2, r2)) (c1, r1)
where r1, r2 = unzip r

create v r = l1.create (l2.create v r2) r1

where r1, r2 = unzip r

This operator is especially interesting as a matching lens because it
handles alignment in two sequential phases of computation. Com-
position provides strong evidence that our design for matching
lenses is robust. Unlike the composition operator defined in our
previous work on dictionary lenses, whose behavior was often un-
predictable, the constraints imposed by the matching lens laws lead
naturally to a definition of an operator whose behavior is intuitive.

The get function applies l1.get and l2.get in sequence. The res
function applies l1.res to the source s, yielding a rigid complement
c1 and resource r1, and l2.res to l1.get s, yielding c2 and r2. It
merges the rigid complements into a pair 〈c1, c2〉 and combines
the resources by zipping them together, where the zip function is
defined as follows:4

(zip r1 r2)(m) =


〈r1(m), r2(m)〉 if m ∈ dom(r1) ∩ dom(r2)
undefined otherwise

Note that we have the following equalities

dom(r1) = locs(s) by RESCHUNKS for l1
= locs(l.get s) by GETCHUNKS for l1
= dom(r2) by RESCHUNKS for l2

so zip r1 r2 is defined on all locations in dom(r1) (and dom(r2)).
The put function unzips the resource and applies l2.put and

l1.put in that order. The unzip function is defined by

(πi(unzip r))(m) =

(
ci if r(m) = 〈c1, c2〉
undefined otherwise

where i ∈ {1, 2}. Because the zipped resource represents the
resources generated by l1 and l2 together, rearranging the resource
has the effect of pre-aligning the resources for both phases of
computation. To illustrate, consider the following example:

let k1 : lens = del [0-9] . copy [A-Z] . copy [a-z]
let k2 : lens = del [A-Z] . key (copy [a-z])
let l : lens =

<k1> . (copy "," . <k1>)* ;
<k2> . (copy "," . <k2>)*

The get function takes a non-empty list of comma-separated chunks
containing a number, an upper-case letter, and a lower-case letter,
and deletes the number in the first phase and the upper-case letter
in the second phase:

l.get "1Aa,2Bb,3Cc" = "a,b,c"

The resource produced by res represents the upper-case letter and
number together, so even though the alignment is only calculated
against the final view, the effect after applying the alignment to
the resource is that the put function restores information from both
sequential phases to the appropriate chunk:

4 The angle brackets and type operator ⊗ distinguish these pairs from the
ordinary pairs generated as rigid complements for the concatenation lens.

l.put "b,a" into "1Aa,2Bb,3Cc" = "2Bb,1Aa"

The typing rule for the composition lens requires that the view
type of l1 be identical to the source type of l2. In particular, it re-
quires that the chunks in these types must be identical. Intuitively,
this makes sense—the only way that the put function can reason-
ably translate alignments on the view back through both phases of
computation to the source is if the chunks in the types of each lens
agree. However, in some situations, it is useful to compose lenses
that have identical erased types but different notions of chunks—
e.g., one lens does not have any chunks, while the other lens does
have chunks. To do this “asymmetric” form of composition, we
can convert both lenses to basic lenses using %·&, which forgets the
chunks in the source and view and compose them as basic lenses.

5. Alignments
So far, our discussion has focused on the core mechanisms of
matching lenses—extending basic lenses with chunks and devel-
oping an interface for supplying lenses with explicit alignment di-
rectives. But we have not said where these alignment directives
come from! In this section, we describe the primitives for spec-
ifying alignments implemented in the Boomerang language [11].
We describe three alignment “species” and describe how align-
ments can be tuned using “keys” and “thresholds”. Because align-
ment is a fundamentally heuristic operation, the choice of an align-
ment function depends intimately on the details of the application
at hand. One of the main strengths of the matching lens framework
is its flexibility. Matching lenses can be instantiated with arbitrary
alignment functions since well-behavedness does not hinge on any
special properties of the function used to align chunks: the only
property we require is that it return the identity alignment when its
arguments are identical. Thus, the functions described in this sec-
tion are not exhaustive; it would be easy to add new primitives as
needed.

Species Boomerang currently supports three different alignment
“species”, depicted graphically in Figure 1 (a-c):

• Positional: The alignment matches chunks by position. If one
list contains more chunks, the extras at the end of the longer list
are not matched with any chunk in the other list.

• Best match: The alignment minimizes the sum of the total
edit distances between matched chunks and the lengths of un-
matched chunks.

• Best non-crossing match: The alignment minimizes the same
heuristic as in best match, but only considers alignments with
“non-crossing” edges. This heuristic can be computed effi-
ciently using a variant of the standard algorithm for computing
longest common subsequence.

For example:

let l : lens = key [A-Z] . del [0-9]
<pos:l>*.put "BCA" into "A1B2C3" = "B1C2A3"
<best:l>*.put "BCA" into "A1B2C3" = "B2C3A1"
<nonx:l>*.put "BCA" into "A1B2C3" = "B2C3A0"

As these examples show, the match combinator actually takes two
arguments: an annotation that specifies the alignment species as
well as a basic lens (the abbreviation <l> desugars to <best:l>).
When we convert a matching lens to a basic lens using the lower
coercion, %·&, the align function is instantiated using the func-
tion indicated in the species annotation (the Boomerang imple-
mentation automatically inserts this coercion whenever we in-
voke the put function of a matching lens with string arguments).
The Boomerang system checks that the same annotation is used

8

on every instance of the match combinator—e.g., it disallows
(<pos:l> . <nonx:l>), because it uses two different species.

Keys Typically we only want to consider a part of each chunk
when we compute an alignment. Boomerang includes two primi-
tives, key and nokey, that provide a way for programmers to con-
trol the portion of each chunk that is used to compute an alignment.
These combinators take a matching lens as an argument but they
do not change the get/put behavior of the lens they enclose. In-
stead, they add extra annotations to the view type that we use to
“read off” the key for chunks (just as we use annotations on reg-
ular expressions to “read off” the locations of chunks). When the
align function computes an alignment for two lists of chunks, it
first uses the view type to extract the regions of each chunk marked
as keys and then computes an alignment. To illustrate the use of
keys, consider a simple example:

let k : lens =
del [0-9] . copy [A-Z] . copy [a-z]

let l : lens = <best:k> . (copy "," . <best:k>)*
l.put "Cc,Bb,Aa" into "1Aa,2Bb,3Cc" =
"1Cc,2Bb,3Aa"

This program uses the best species, but behaves positionally be-
cause the view type does not contain any key annotations—i.e., the
key of every chunk is the empty string. By adding a key annotation
we obtain a lens whose put function matches up chunks using the
upper-case letters in the view:

let k : lens =
del [0-9] . ..key (copy [A-Z]) . copy [a-z]

let l : lens =
<k> . (copy "," . <k>)*

l.put "Cc,Bb,Aa" into "1Aa,2Bb,3Cc" =
"3Cc,2Bb,1Aa"

Note that lower-case letters, which are not marked as a part of the
key, do not affect the alignment:

l.put "Ca,Bb,Ac" into "1Aa,2Bb,3Cc" =
"3Ca,2Bb,1Ac"

The nokey primitive is dual to key—it removes the key annotation
on the view type. We can write an equivalent version of the previous
lens using nokey:

let k : lens =
..key (del [0-9] . copy [A-Z] . ..nokey (copy [a-z]))

let l : lens = <k> . (copy "," . <k>)*

These simple mechanisms for indicating keys suffice for many
practical examples, but we can imagine several ways they could be
extended. For example, we could provide programmers with mech-
anisms for generating unique keys or for building keys structured as
tuples or records (rather than simply flattening the portion of each
chunk marked as a key into a string). We plan to explore these ideas
in future work.

Thresholds The best and nonx species compute alignments by
minimizing the sum of the total edit distances between matched
chunks and the lengths of unmatched chunks. In some applications,
it is important to not match up chunks that are “too different”, even
if aligning those chunks would produce a minimal cost alignment.
For instance, in the following program, where keys are three char-
acters long

let k : lens = key [A-Z]{3} . del [0-9]
let l : lens = <best:k> . (copy ";" . <best:k>)*
l.put "DBD;CCC;AAA" into "AAA1;BBB2;CCC3" =
"DBD2;CCC3;AAA1"

we might prefer to not align the DBD and BBB2 chunks with each
other. Unfortunately, the best species does align them because
the cost of a two-character edit is less than the six-character edit
of deleting BBB from the view and adding DBD. To achieve the
behavior we want, we can use a threshold annotation, as shown
in the following example:

let l : lens =
<best ..50:k> . (copy ";" . <best ..50:k>)*

l.put "DBD;CCC;AAA" into "AAA1;BBB2;CCC3" =
"DBD0;CCC3;AAA1"

The best species takes an optional integer n as an argument.
When supplied with such an integer, it minimizes the total edit
distances between aligned chunks, but it only aligns chunks whose
longest common subsequence is at least n% of the lengths of their
keys. (The strict key-based alignment used in dictionary lenses
can be simulated using best 100.) The revised version of the l
lens does not align DBD with BBB2 because the longest common
subsequence computed from their keys does not meet the threshold.
The nonx species also supports thresholds. We often use nonx with
a threshold to align chunks containing totally unstructured text.

6. Extensions
To streamline the discussion, our presentation of matching lenses
in the preceding sections has been based on three assumptions:
(1) chunks only appear at the top level, (2) the same basic lens
processes every chunk, and (3) the lens does not reorder chunks in
going from source to view. Of course, in many applications, it is
important to be able to nest chunks, to use different basic lenses to
process chunks, and to reorder chunks. This section describes how
we can extend the matching lens framework to accommodate these
features. Each of these extensions is implemented in Boomerang.

6.1 Nested Chunks
To handle sources with reorderable information at several different
levels, it is often useful to nest chunks inside each other. For exam-
ple, suppose that we want to extend our Wiki lens to handle several
levels of nested structure: sections, subsections, and paragraphs. So
the get function will map the source

=Grand Tours=
The grand tours are major cycling races...
==Giro d’Italia==
The Giro is usually held in May and June...
=Classics=
The classics are one-day cycling races...
==Milan-San Remo==
The Spring classic is held in March...

to a view that contains just section and subsection headings:

Grand Tours
Giro d’Italia

Classics
Milan-San Remo

If we modify the view by reordering sections and adding new
subsections,

Classics
Milan-San Remo
Paris-Roubaix

Grand Tours
Giro d’Italia
Tour de France

we would like paragraphs to be restored to the appropriate section
or subsection.

9

We can build a matching lens that has chunks at multiple levels
of structure using the lower combinator, which converts a match-
ing lens to a basic lens:

let subsection : lens =
"" <-> " " .
"==" <-> "" .
key (copy HEADING) .
"==" <-> "" .
copy "\n" .
PARAGRAPHS <-> ""

let section : lens =
"=" <-> "" .
key (copy HEADING) .
"=" <-> "" .
copy "\n" .
PARAGRAPHS <-> "" .
lower < best : subsection >*

let wiki : lens = < best : section >*

The subsection lens inserts two characters of indentation, copies
the heading, and deletes any paragraphs that follow. The section
lens copies the heading, deletes the paragraphs that follow, and then
uses lower to convert the matching lens that processes the list of
subsection chunks into a basic lens. The top-level wiki lens uses
the section lens to process a list of section chunks. If we put back
the updated view into the original source, we get an updated source
where paragraphs are restored appropriately:

=Classics=
The classics are one-day cycling races...
==Milan-San Remo==
The Spring classic is held in March...
==Paris-Roubaix==
=Grand Tours=
The grand tours are major cycling races...
==Giro d’Italia==
The Giro is usually held in May and June...
==Tour de France==

The main thing to notice about this program is that we can use
lower to build matching lenses that process nested chunks. Lenses
built in this way align chunks in strict nested fashion—e.g., in this
example, the top-level wiki lens aligns the section chunks and then
aligns the nested chunks for subsections within each section.

6.2 Multiple Lenses
We can also build matching lenses that use different basic lenses to
process chunks. Returning to our running example, suppose that we
wanted a version of the wiki lens in which subsections and sections
are aligned separately. Why would we want this? Observe that
the lens described in the previous section never aligns subsections
that appear in different sections. This means that if we move a
subsection from one section to another

Classics
Grand Tours
Giro d’Italia
Milan-San Remo

the paragraph under that subsection will be lost when we put the
result back into the original source

=Classics=
The classics are one-day cycling races...
=Grand Tours=
The grand tours are major cycling races...
==Giro d’Italia==
The Giro is usually held in May and June...

==Milan-San Remo==

because the alignment strictly follows the nesting structure of the
document.

We can build a lens that aligns section and subsections sepa-
rately by using two different kinds of chunks, as in the following
program, written using “tags”:

let section : lens =
"=" <-> "" .
key (copy HEADING) .
"=" <-> "" .
copy "\n" .
PARAGRAPHS <-> ""

let wiki : lens =
(< tag "section" best : section > .
< tag "subsection" best : subsection >*)*

This version of the wiki lens has two chunks at the top level—one
for sections and another for subsections. The tag primitives assigns
a distinct name to each kind of chunk. On the same inputs as above,
the put function of this lens produces a new source

=Classics=
The classics are one-day cycling races...
=Grand Tours=
The grand tours are major cycling races...
==Giro d’Italia==
The Giro is usually held in May and June...
==Milan-San Remo==
The Spring classic is held in March...

where the paragraph under the Milan–San Remo subsection is
restored from the source. To extend matching lenses with tags we
simply generalize each of our structures with an extra level of
indirection—e.g., we change the type of resources from finite maps
from locations to complements to finite maps from tags to locations
to complements. When we align chunks, we compute a separate
alignment for each tag.

6.3 Reordering Chunks
Some applications require matching lenses that reorder chunks
in going from source to view. The swap operator (l1 ∼ l2) is
similar to concatenation, but inverts the order of the strings in the
view. Adding swap as a primitive breaks the procedure for using
a matching lens implemented by the %·& coercion described in
Section 3 where we pre-align the resource using a correspondence
computed between the old and new view. It also causes problems
with the sequential composition operator—in general, the lenses
being composed may reorder the source chunks differently, so it
does not make sense to simply zip the resources generated by each
lens together and align the result against the view.

To recover the behavior we want, we need to extend matching
lenses with another function that keeps track of the permutation on
chunks computed by the lens:

l.perm ∈ Π s : %S&. Perms(locs(s))

It is straightforward to add perm to each of the lenses we have seen
so far—e.g., the lift primitive returns the empty permutation, match
returns the identity permutation on its single chunk, the concate-
nation operator merges the permutations returned by its sublenses
in the obvious way, and so on. We also need the CHUNKPUT and
NOCHUNKPUT laws to use perm—the old versions are no longer
valid for lenses that reorder chunks:

n ∈ (locs(v) ∩ dom(r))
(l.perm (l.put v (c, r)))(m) = n

(l.put v (c, r))[m] = k.put v[n] (r(n))
(CHUNKPUT)

10

n ∈ (locs(v) \ dom(r))
(l.perm (l.put v (c, r)))(m) = n

(l.put v (c, r))[m] = k.create v[n]
(NOCHUNKPUT)

These laws generalize the laws given in Section 3. The CHUNKPUT
law stipulates that the mth chunk in the source produced by put
must be identical to the structure produced by applying k.put to the
nth chunk in the view and the element r(n) in the resource, where
the permutation computed by the perm function on the source maps
m to n. The other laws generalize similarly.

Composition Using perm, we can define a version of the se-
quential composition operator that uses the permutation on chunks
computed in each phase:

.

.

.

l1 ∈ S
C1,k1⇐==⇒ U

l2 ∈ U
C2,k2⇐==⇒ V

(l1;l2) ∈ S
(C1⊗C2),(k1;k2)⇐=====⇒ V

.

get s = l2.get (l1.get s)
res s = 〈c1, c2〉, zip (r1 ◦ p−1

2) r2

where c1, r1 = l1.res s
and c2, r2 = l2.res (l1.get s)
and p2 = l2.perm (l1.get s)

perm s =(l2.perm (l1.get s)) ◦ (l1.perm s)
put v (〈c1, c2〉, r)= l1.put (l2.put v (c2, r2)) (c1, r1 ◦ p−1

2)
where r1, r2 = unzip r

and p2 = l2.perm (l2.put v (c2, r2))
create v r = l1.create (l2.create v r2) (r1 ◦ p−1

2)
where r1, r2 = unzip r

and p2 = l2.perm (l2.create v r2)

The res function applies the inverse of the permutation computed
by l2 on the intermediate view to the resource computed by l1,
which puts it into the “view order” of l2. Likewise, the put function
puts the r1 resource back into the view order of l1.

Swap The swap lens is defined as follows:

.

.

.

l1 ∈ S1
C1,k⇐⇒ V1 %S1&·!%S2&

l2 ∈ S2
C2,k⇐⇒ V2 %V2&·!%V1&

l1 ∼ l2 ∈ (S1·S2)
(C2×C1),k⇐===⇒ (V2·V1)

.

get (s1·s2) = (l2.get s2)·(l1.get s1)
res (s1·s2) = (c2, c1), (r2 ++ r1)

where c1, r1 = l1.res s1

and c2, r2 = l2.res s2

perm (s1·s2) = (l2.perm s2) ∗∗ (l1.perm s1)
put (v2·v1) (c, r)= (l1.put v1 (c1, r1))·(l2.put v2 (c2, r2))

where c2, c1 = c
and r2, r1 = split(|v2|, r)

create (v2·v1) r =(l1.create v1 r1)·(l2.create v2 r2)
where r2, r1 = split(|v2|, r)

Like the concatenation lens, the get component of swap splits the
source string in two and applies l1.get and l2.get to the resulting
substrings. However, before it concatenates the results, it swaps
their order. The res, put, and create functions are similar. The perm
component of swap combines permutations using the (∗∗) operator

(q2 ∗∗ q1)(m) =

(
q1(m) + |q2| if m < |q1|
q2(m − |q1|) otherwise

which behaves like the (++) operator for resources.

7. Related Work
This paper extends our previous work on lenses [3, 4, 10, 12,
13] with new mechanisms for specifying and using alignments.
The original paper on lenses [10] includes an extensive survey
of relevant threads from the database and programming languages
literature. We focus here on the most closely related work.

Matching lenses grew out of the dictionary lenses we proposed
previously [3], but they differ in several important ways. First, dic-
tionary lenses are based on a single alignment mechanism—”by
keys”—whereas matching lenses provide a generic framework for
using alignments in lenses that can be instantiated with arbitrary
functions. Second, the semantic laws that govern the behavior of
dictionary lenses express much weaker constraints than the match-
ing lens laws, which specify the handling of chunks directly and
in detail. Specifically, dictionary lenses obey an EQUIVPUT law
that forces the put function to be “oblivious” to certain features of
sources characterized by an equivalence relation ∼. By picking ∼
to be an equivalence that relates strings differing only in the rela-
tive order of chunks with different keys we get some constraints on
put—e.g., it forbids lenses that operate positionally—but these con-
straints are weaker than the conditions stated in the matching lens
laws. For example, Lemma A.2 does not hold for dictionary lenses
because the type system does not explicitly keep track of chunks.

Much of the previous work on view update assumes that the
user will modify the view using special operations in some “update
language”, and, often, these update operations can be used to infer
an intended alignment. For example, in Meertens’s work on con-
straint maintainers for user interfaces [21] users manipulate lists
using “small updates” for which it is easy to maintain the corre-
spondence between source and view items. Similarly, the bidirec-
tional languages X and Inv [15, 22] assume that edit operations are
applied to the data to yield annotated values that indicate whether a
value was newly created or deleted. Their languages handle single
insertions and deletions but not general reorderings.

Relational view update translators often use constraints ex-
pressed in the schema to guide the selection of a source update.
For example Keller identifies criteria for view update translators
requiring that the key of each source item appears in the view [18].
Matching lenses also use a notion of keys for alignment, but they
permit the correspondence between chunks to be computed using
arbitrary heuristics.

Alignment issues also come up when bidirectional transforma-
tions are used for software model transformations. Some systems
offer “traceability links” that can be used for alignment [5, 24].

8. Future Work
Our work can be extended in several directions. We are interested
in instantiating the framework of matching lenses in other settings
besides strings and exploring implementation issues, including al-
gebraic optimization and lenses for streaming data. We are also in-
terested in exploring alignment mechanisms based on provenance.

Acknowledgments We wish to thank Zack Ives, Alexandre
Pilkiewicz, Val Tannen, Philip Wadler, and Steve Zdancewic for
helpful comments. Our work is supported by the National Science
Foundation under grants IIS-0534592 Linguistic Foundations for
XML View Update, and CT-0716469 Manifest Security.

References
[1] François Bancilhon and Nicolas Spyratos. Update semantics of rela-

tional views. ACM Transactions on Database Systems, 6(4):557–575,
December 1981.

11

[2] Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes
and Automata. Cambridge University Press, 2009.

[3] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre
Pilkiewicz, and Alan Schmitt. Boomerang: Resourceful lenses for
string data. In ACM SIGPLAN–SIGACT Symposium on Principles
of Programming Languages (POPL), San Francisco, CA, pages 407–
419, January 2008.

[4] Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C. Pierce. Rela-
tional lenses: A language for updateable views. In ACM SIGACT–
SIGMOD–SIGART Symposium on Principles of Database Systems
(PODS), Chicago, TL, 2006. Extended version available as Univer-
sity of Pennsylvania technical report MS-CIS-05-27.

[5] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel,
Andy Schürr, and James F. Terwilliger. Bidirectional transformations:
A cross-discipline perspective. In ICMT ’09: Proceedings of the 2nd
International Conference on Theory and Practice of Model Transfor-
mations, pages 260–283, Berlin, Heidelberg, 2009. Springer-Verlag.

[6] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel,
Andy Schürr, and James F. Terwilliger. Bidirectional transformations:
A cross-discipline perspective. GRACE meeting notes, state of the art,
and outlook. In International Conference on Model Transformations
(ICMT), Zurich, Switzerland, pages 260–283, June 2009. Invited
paper.

[7] Umeshwar Dayal and Philip A. Bernstein. On the correct translation of
update operations on relational views. ACM Transactions on Database
Systems, 7(3):381–416, September 1982.

[8] Zinovy Diskin. Algebraic models for bidirectional model synchro-
nization. In International Conference on Model Driven Engineering
Languages and Systems (MoDELS), Toulouse, France, pages 21–36,
September 2008.

[9] J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard, Ben-
jamin C. Pierce, and Alan Schmitt. Exploiting schemas in data syn-
chronization. Journal of Computer and System Sciences, 73(4), June
2007. Short version in DBPL ’05.

[10] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view update problem.
ACM Transactions on Programming Languages and Systems, 29(3),
May 2007.

[11] J. Nathan Foster and Benjamin C. Pierce. Boomerang Program-
mer’s Manual, 2009. Available from http://www.seas.upenn.
edu/~harmony/.

[12] J. Nathan Foster, Benjamin C. Pierce, and Steve Zdancewic. Updatable
security views. In IEEE Computer Security Foundations Symposium
(CSF), Port Jefferson, NY, pages 60–74, July 2009.

[13] J. Nathan Foster, Alexandre Pilkiewcz, and Benjamin C. Pierce. Quo-
tient lenses. In ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), Victoria, BC, pages 383–395, September
2008.

[14] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics
of consistent views. ACM Transactions on Database Systems (TODS),
13(4):486–524, 1988.

[15] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A pro-
grammable editor for developing structured documents based on bi-
directional transformations. In Partial Evaluation and Program Ma-
nipulation (PEPM), pages 178–189, 2004. Long version to appear in
HOSC.

[16] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A pro-
grammable editor for developing structured documents based on bidi-
rectional transformations. Higher-Order and Symbolic Computation,
21(1–2), June 2008.

[17] C. Barry Jay and J. Robin B. Cockett. Shapely types and shape poly-
morphism. In Proceedings of the European Symposium on Program-
ming (ESOP), London, UK, pages 302–316, 1994.

[18] Arthur M. Keller. Algorithms for translating view updates to database
updates for views involving selections, projections, and joins. In
Proceedings of Fourth Annual ACM Symposium on Principles of
Database Systems (PODS), pages 154–163, march 1985. Portland,
Oregon.

[19] David Lutterkort. Augeas–A configuration API. In Linux Symposium,
Ottawa, ON, pages 47–56, 2008.

[20] Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto Hamana,
and Masato Takeichi. Bidirectionalization transformation based on
automatic derivation of view complement functions. In ACM SIG-
PLAN International Conference on Functional Programming (ICFP),
Freiburg, Germany, pages 47–58, 2007.

[21] Lambert Meertens. Designing constraint maintainers for user interac-
tion, 1998. Manuscript, available from ftp://ftp.kestrel.edu/
pub/papers/meertens/dcm.ps.

[22] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic
approach to bi-directional updating. In ASIAN Symposium on Pro-
gramming Languages and Systems (APLAS), pages 2–20, November
2004.

[23] Hugo Pacheco and Alcino Cunha. Generic point-free lenses. In
International Conference on Mathematics of Program Construction
(MPC), Québec City, QC, 2010. To appear.

[24] Perdita Stevens. Bidirectional model transformations in QVT: Seman-
tic issues and open questions. In International Conference on Model
Driven Engineering Languages and Systems (MoDELS), Nashville,
TN, volume 4735 of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2007.

[25] Janis Voigtländer. Bidirectionalization for free! In ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages
(POPL), Savannah, GA, pages 165–176, January 2009.

[26] Meng Wang, Jeremy Gibbons, Kazutaka Matsuda, and Zhenjiang Hu.
Gradual refinement: Blending pattern matching with data abstraction.
In International Conference on Mathematics of Program Construction
(MPC), Québec City, QC, 2010. To appear.

[27] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei. Support-
ing automatic model inconsistency fixing. In ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (FSE), Amsterdam,
Netherlands, pages 315–324, 2009.

12

