
(When) Will
Property-Based Testing

Rule The World?

Benjamin C. Pierce
University of Pennsylvania

YOW! Lambda Jam 2022

What is property-based testing?

An Annoying Testing Scenario…

Preheat
Oven

Combine Dry
Ingredients

Mix
Batter

Combine Wet
Ingredients

Crack Eggs

(This could really be any set of actions with
dependencies! Cf. “DAGs and topological sorting.”)

What order do I actually
do things in?

What has to happen
before what?

��Expected:

Got:

��Expected:

Got:

��Expected:

Got:

What to do?

1. Go back and fix up the expected outputs in all the tests?

2. Try something different?

What does it mean to say that
this function is “correct”?

before before

before before

For every
graph

and for
every edge

in
must
come
before

in

fCorrectOn G =
 let s = f G in
 all (\(v, w) -> index v s < index w s) (edges g)

In Haskell…

Property-Based Testing

Basic idea

1. Write down a property
○ … as a Boolean function taking a concrete input and yielding

True if the system behaves as desired on this particular input

2. Apply it to many test inputs

3. If it ever yields False, report a bug!

… sampled from some
random distribution

… or enumerated in some
order

… or …

In Haskell…

fCorrectOn G =
 let s = f G in
 all (\(v, w) -> index v s < index w s) (edges g)

prop_fCorrect =
 forAll generateDAG (\G -> fCorrectOn G)

> quickCheck prop_fCorrect
+++ OK, passed 100 tests.

QuickCheck Family

C
(theft)

C++
(CppQuickCheck)

Clojure
(test.check)

Coq
(QuickChick)

F#
(FsCheck)

Go
(gopter)

Haskell
(QuickCheck or

Hedgehog)
Java

(QuickTheories)
JavaScript
(jsverify)

PHP
(Eris)

Python
(Hypothesis)

Ruby
(Rantly)

Rust
(Quickcheck)

Scala
(ScalaCheck)

Swift
(Swiftcheck)

And more!

Quality improvement

Ef
fo

rt

Unit testing

Property-
based testing

Formal
verification

(not to scale!)

Similar
specifications

“Same order of magnitude” effort

Lightweight Formal Methods

Supports automation!

Demands automation!

Formal method: A mathematically rigorous
technique for validating the actual behavior of
a program against a description of its desired
behavior.

Lightweight formal method: one that can be
applied successfully by people that don’t
understand it.”

:-)

“Industry will have no reason to adopt
formal methods until the benefits of
formalization can be obtained
immediately.”

— Daniel Jackson and Jeannette Wing

https://people.csail.mit.edu/dnj/publications/ieee96-roundtable.html

Lightweight formal methods

● Property-based testing
● Model checking
● Types
● etc.

Quality improvement

Ef
fo

rt

Traditional testing

Lightweight formal
methods

Traditional
formal methods

(not to scale!)

Similar
specifications

“Same order of magnitude” effort

“The future is already here. It’s just not
evenly distributed yet.”

— (attributed to) William Gibson

Success Stories

Rust’s PropTest tool was used
to test that a new key-value
store node implementation for
S3 matches a reference
implementation.

PBT is used in tandem with
other lightweight formal
methods like model checking.

Formal specifications of a range of critical interfaces,
validated against real-world artifacts using PBT…

○ X86 instruction set
○ TCP protocol suite
○ Posix file system interface
○ Weak memory consistency models for x86, ARM, PowerPC
○ ISO C / C++ concurrency
○ Elf loader format
○ C language

“Rigorous
Engineering of

Mainstream
Systems”

○ Engineers at the PBT company Quviq built an executable
specification based on the 3000-page AutoSAR standard for
automotive software components

○ QuickCheck-based testing found >200 faults in AutoSAR
Basic Software, including >100 inconsistencies in the
standard

“We helped Basho test their no-SQL
database, Riak, for the key property of
eventual consistency—and found a bug
(now fixed, of course) that was present, not
only in Riak, but in the original Amazon
paper … that kicked off the no-SQL trend.”

- John Hughes
Experiences with QuickCheck

● Used state-machine testing to generate
large sequences of API calls

● Found long and hard-to-find sequences
of operations that corrupted databases

What’s happening at Penn

● If PBT were a silver bullet for everything, it would be used for everything
● Three broad categories of problems:

1. Appropriateness – PBT is shockingly effective in some domains; in others, it might not be the
right tool; in others, we don’t know

2. Effectiveness – even in the domains where it works well, there’s plenty of room for
improvement

3. Usability – it can be hard to know what properties to test and how to integrate PBT into
software workflows

● We’ve done lots of work on (1) and (2)
● We’re starting to think very seriously about (3)

Property-Based Testing Isn’t Perfect
(Shock, horror…)

“Testing the Hard Stuff”

HT John Hughes

● Testing security properties (dealing with sparse
preconditions and hard-to-falsify properties)

● Dropbox testing (flakey tests, distributed, time-sensitive,
…)

● DeepSpec server (interactive systems)

Case Studies
Leonidas

Lampropoulos

Benjamin C.
Pierce

(And others!)

John Hughes

Li-Yao Xia

Yishuai Li

Dropbox
testing

We used a QuickCheck specification of
DropBox to find several new bugs in its

behavior

Improving Random Generation

Picking Tests is Hard!

● Enumerating small inputs doesn’t give good coverage
● Effectiveness of random test generation depends a lot on sampling from the

right distribution
● Lots of properties have preconditions that we need to worry about – “rejection

sampling” doesn’t work!

prop_fCorrect =
 forAll generateDAG (\G -> fCorrectOn G)

Generating Good Generators for Inductive Relations [POPL’18]

Beginner’s Luck [POPL’17]

Deriving Generators from Predicates
Leonidas

Lampropoulos

Benjamin C.
Pierce

Zoe
Paraskevopoulou

John Hughes

Cătălin Hrițcu

Diane
Gallois-Wong

Li-Yao Xia

Predicate: ∀x. ɸ(x)

Generator: Gɸ

Holey Generators! (Under Submission)

Joseph W.
Cutler

Benjamin C.
Pierce

John Hughes

Harrison
Goldstein

Koen
Claessen

Incorporating Other Testing
Techniques

Coverage Guided, Property Based Testing [OOPSLA’19]

Coverage Guided Property-Based Testing
Leonidas

Lampropoulos

Michael Hicks

Benjamin C.
Pierce

Combinatorial Property-Based Testing

Do Judge a Test by its Cover [ESOP’21]

Leonidas
Lampropoulos

Benjamin C.
Pierce

John Hughes

Harrison
Goldstein

Reflective Generators (Work in Progress!)

Benjamin C.
Pierce

Meng Wang

Harrison
Goldstein

Samantha
FrohlichRun the generator “backward” to

obtain the random choices used
to arrive at particular examples

Run generator forward to get new
inputs based on this distribution

Tune distribution accordingly

Example-based tuning

Validity-preserving mutation

Backtracking Generators (Work in Progress!)

Leonidas
Lampropoulos

Benjamin C.
Pierce

Calvin Beck

John Hughes

So… when will PBT rule the world??

When we get more scientific!

1. More rigorous ways of evaluating and
comparing PBT techniques and technologies

2. Clearer picture of what potential users actually
need and what are the barriers to adoption

A Common Benchmark Suite

and more…

Goal: a benchmark framework for
comparing property-based
bug-finding methodologies

Leonidas
Lampropoulos

Benjamin C.
Pierce

Alperen Keles

Harrison
Goldstein

Jessica Shi

our framework

benchmarks methodologies

Outcomes

● A better way to know we’ve succeeded when we develop new testing tools!
● A canonical, comprehensive list of interesting testing problems
● As we see what tools succeed and fail at what, we may get new ideas about

how to combine the strengths of multiple approaches

A Preliminary User Study

Property-Based Testing For Everyone?

Ask them?

How do we find out what would help
more people use PBT?

Preliminary User Study

Focused on “interviews for need
finding.”

Recruited 7 industrial Python
programmers who use the Hypothesis
PBT tool.

Interview Questions

1. “Tell us about your most
memorable time doing
PBT.”
(To get subjects thinking
about a specific
experience.)

2. “How did you come up
with the properties that
you tested?”

3. “Did you need custom
generators? If so, what
did they generate?”

Joseph W.
Cutler

Benjamin C.
Pierce

Andrew Head

Harrison
Goldstein

Adam Stein

What Have We Learned (So Far)?

What have we learned?

1. People who like PBT really like it!

:-)

What have we learned?

Power Users

● Fully “bought in”
● Often have strongly mathematical

backgrounds (often PhD in Math/CS)
● Care about testing efficiency
● Tend to test properties corresponding to

the math behind their code

Occasional Users

● Use PBT occasionally
● More traditional software engineering

backgrounds
● Tend to test simple, “extremal”

properties:
○ “Program doesn’t crash”
○ “Program behaves exactly like oracle”

2. There are two (surprisingly distinct) classes of users…

These groups can teach us different things!

Need better generators! Need help “seeing” properties!

What have we learned?

3. PBT requires cleanly abstracted code
○ In particular, functions tested with PBT should be relatively “pure”
○ Some informants reported that “carving out” an interface was much of

their testing effort
○ Others reported resorting to “end-to-end” properties like “the whole

system does not crash”
○ “I can’t see any properties to test” was a common refrain

What have we learned?

4. We need to do a better job of teaching PBT!
○ Several informants cited lack of examples / experience as a problem
○ PBT documentation often uses terminology unfamiliar to engineers
○ Incorporating PBT into CS education is critical!

Shriram Krishnamurthi has
written a ton about how to
do this!

Preliminary Takeaways

● For power users, a central problem is easily writing generators that effectively
test the properties they care about

● For occasional users a central problem is understanding how to formulate
even fairly simple properties

● PBT education (example repos, teaching materials, …) deserves more
attention!

Scaling up

Comprehensive Benchmarking

● Our initial goals with benchmarking are modest, but eventually we hope to
build the world’s best PBT benchmarking framework

● This means we need examples!
● And we need people that want test their tools against our suite!
● Send us an email if you’re interested in this kind of stuff

bcpierce@cis.upenn.edu

● We want to know much more about how PBT can be improved, especially for
new / occasional users

○ Where is PBT especially useful? Especially difficult to implement?
○ What kinds of programs actually have useful properties? Do people see them?
○ How could we best integrate PBT into the software development process?

● Hope to talk to industry users, industry non-users (tried it, didn’t like it?), and
even tech leads and managers

● If you’re willing to chat with us, fill out this form to let us know!

Full-Scale User Study

https://tinyurl.com/pbt-at-penn

Thank you! Questions?

University of
Pennsylvania

External
Collaborators

bcpierce@cis.upenn.edu
https://tinyurl.com/pbt-at-penn

Joseph W. Cutler
1st Year PhD

Harrison Goldstein
3rd Year PhD

Adam Stein
1st Year PhD

Andrew Head
Asst. Prof

Jessica Shi
1st Year PhD

Thank you!
(Questions?)

Basic idea

1. Write down a property as a Boolean
function mapping a concrete input to
True if the system behaves as desired
on this particular input

2. Apply this function to many test inputs

3. If the property ever yields False,
report a bug

● … by enumerating small inputs
exhaustively

● … or by generating larger inputs
randomly

● … or by mutating past inputs that
seem “interesting” (e.g., because
they lead to a novel “branch
coverage signature”)

● … etc.

Better idea:

Split this into two slides.
Show static approaches
on the first, with stronger
and stronger type
systems (maybe both
static and dynamic?)
along the diagonal, with
formal verification in the
upper right corner.

(Model checking can go
on this slide too, I guess,
or on its own slide.)

Then switch to a slide on
dynamic methods, with
fuzzing way at the
bottom but not all the
way to the left, then
assertions, then unit
testing in the bottom
middle, and then PBT
almost but not quite all
the way on the right…

C
os

t o
f e

nt
ry

Bug-finding power

Unit testing

Fuzzing
Assertions

PBT

Formal
verification

Types à la C, Java ‘95, …

Types à la Java ‘21, Scala, Rust, Haskell 98 …

Types à la Haskell ‘22 …

Quality improvement

Ef
fo

rt

Unit testing

Property-
based testing

Formal
verification

(not to scale!)

Similar
specifications

“Same order of magnitude” effort

What’s the common thread?

before before

before before

Expected:

Got:

C
os

t o
f e

nt
ry

Bug-finding power

Formal
verification

Types à la C, Java ‘95, …

Types à la Java ‘21, Scala, Rust, Haskell 98 …

Types à la Haskell ‘22 …

C
os

t o
f e

nt
ry

Bug-finding power

Formal
verification

Types à la C, Java ‘95, …

Types à la Java ‘21, Scala, Rust, Haskell 98 …

Types à la Haskell ‘22 …

C
os

t o
f e

nt
ry

Bug-finding power

Unit testing

Fuzzing
Assertions

PBT

Formal
verification

Types à la C, Java ‘95, …

Types à la Java ‘21, Scala, Rust, Haskell 98 …

Types à la Haskell ‘22 …

C
os

t o
f e

nt
ry

Bug-finding power

Unit testing

Fuzzing
Assertions

PBT

Formal
verification

Types à la C, Java ‘95, …

Types à la Java ‘21, Scala, Rust, Haskell 98 …

Types à la Haskell ‘22 …

“Only a little higher”

cost of entry!

O
fte

n
“re

m
ar

ka
bl

y
cl

os
e”

 in

pr
ac

tic
al

bu

g-
fin

di
ng

po

w
er

!

To be written
This section can be short, just a little overview of what we are trying to achieve in the
current phase of the project

● Sound basis for comparing different “generation methodologies” (enumerative,
various flavors of random, coverage-based, etc.)

● Cover Haskell and Coq
● Provide boilerplate for analytics, presentation of results, …
● Make it very easy to add a new generation methodology and easy to add a new

benchmark
● Each benchmark consists of one correct version and a number of “mutants”

containing (hand-inserted) bugs of varying difficulties

Include pictures of collaborators :-)

Include a slide about QuickChick and PyTest Mutagen (as prior work that gives us some
ideas for how to incorporate mutant suites into benchmarks)

