
Welcome to the 2019
DeepSpec Workshop!

The Science of

Deep Specification
Benjamin C. Pierce

University of Pennsylvania

DeepSpec Workshop @ PLDI
June, 2019

“We can’t build
software that works!”

Or…?

How did that happen?

• Better programming languages

• Powerful mechanisms for abstraction and modularity

• Better software development methodology

• Agile workflows, unit testing, …

• Stable platforms and frameworks

• Posix, Win32, Android, iOS, apache, DOM/JS, …

Are we done?

Nope

What about
secure software?

Grounds for hope…
• Better programming languages

• Basic safety guarantees built in

• Better understanding of risks and vulnerabilities

• Better system architectures for security

• Separation kernels, hypervisors, sandboxing, TPMs, …

• Success stories of formal specification and machine-checked
verification of critical software at scale
• Not a panacea (side channels, etc.)

• But a big step in the right direction!

design

code
Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

Example e3 :
assert (compiles_correctly (Plus (Num 2) (Num 2))).

Example e4 :
assert (compiles_correctly (Plus (Num 5) (Num 3))).

unit tests

uni
t te

stin
g

Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. …

informal specification

thinking

logical specification
Theorem compiles_correctly :=
∀(e : exp), execute [] (compile e) = [eval e].

pr
oo

f
Formal

Live

Rich /✘

Formal

Live

Rich

Formal

Live

Rich

Formal ✘
Live ✘
Rich

executable specification

ra
nd

om
ize

d
tes

tin
g

Definition compiles_correctly (e : exp) : Bool :=
eq (execute [] (compile e)) [eval e].

QuickCheck compiles_correctly.

Are logical specifications practical?

• Accepts most of ISO C 99

• Produces machine code for PowerPC, ARM, x86 (32-bit),
and RISC-V architectures

• 90% of the performance of GCC (v4, opt. level 1)

Verification really works!
Regehr’s Csmith project used random testing to assess all popular C
compilers, and reported:

“The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early
2011, the under-development version of CompCert is the only
compiler we have tested for which Csmith cannot find wrong-code
errors. This is not for lack of trying: we have devoted about six
CPU-years to the task. The apparent unbreakability of CompCert
supports a strong argument that developing compiler optimizations
within a proof framework, where safety checks are explicit and machine-
checked, has tangible benefits for compiler users.”

John Regehr
Univ. of Utah

• Real-world operating-system kernel

• With an end-to-end proof of implementation correctness
and security enforcement

• Verified down to machine code

• Bedrock system

• Ur/Web compiler

• CompCert TSO compiler

• CompCert static analysis tools

• Jitk and Data6 verified filesystems

• Fscq file system from MIT

• Verdi distributed system framework

• Testable formal spec for AutoSAR

• CakeML compiler

• Vellvm: Verified LLVM optimizations

• IronClad Apps

• Full-scale formal specifications of
critical system interfaces
• X86 instruction set
• TCP protocol suite
• Posix file system interface
• Weak memory consistency models for

x86, ARM, PowerPC
• ISO C / C++ concurrency
• Elf loader format
• C language (Cerberus – also see

Krebbers, K semantics, …)

And many, many more!

Verified Textbooks!

Coq

Isabelle

… and several others!SoftwareFoundations.org

Why now?

Urgent need for increased confidence
+

Diminishing value of “paper proofs”
+

Progress on enabling technologies

Enabling Technologies

• Logics
• Concurrent separation logic, …

• Proof assistants
• Coq, Isabelle, ACL2, Twelf, HOL-light, …

• Testing tools and methodologies
• QuickCheck, QuickChick, …

• DSLs for writing specifications
• OTT, Lem, Redex, …

• Languages with integrated specifications
• Dafny, Boogie, JML, F*, Liquid Types, Verilog PSL,

Dependent Haskell, ...

QuickCheck

Enabling Technologies

So are we done?
Nope.

C language

CompCert
Compiler

PowerPC ISA

Program Logic

Verifiable C
System

C language

IBM’s CPU

Transistors

PowerPC ISA

OS client interface

CertiKOS
hypervisor kernel

C language AppelShao

Sewell

Leroy

Lessons from CompCert

CompCert
Compiler

PowerPC ISA

C language

IBM’s CPU

Transistors

PowerPC ISA

Program Logic

Verifiable C
System

C language

OS client interface

CertiKOS
hypervisor kernel

C language AppelShao

Sewell

Leroy

Lessons from CompCert

CompCert
Compiler

IBM’s CPU

Transistors

Program Logic

Verifiable C
System

C language

OS client interface

CertiKOS
hypervisor kernel

C language

C language

PowerPC ISA

PowerPC ISA

AppelShao

Sewell

Leroy

Lessons from CompCert

Lessons from seL4

• Original specification and correctness proof for seL4 kernel took
~20 person years

• Later, the same team added a tool for setting up secure system
configurations
• where processes at different security levels were guaranteed not to interfere

• Proving correctness of this tool took ~4 person years, of which 1.5
years were devoted to upgrading the kernel specification
(and proof) to eliminate unwanted nondeterminism

Verified components
must connect at

specification boundaries

Two-sided specifications

Two-sided
specifications

Formal

“Deep” specifications:

Rich

Live

mathematically rigorous

Two-sided

automatically checked against
actual code (not just a model)

exercised by both “implementors”
and “clients”

precisely expressing intended
behavior of complex software

The Science
of Deep Specification

Stephanie Weirich
University of Pennsylvania

Steve Zdancewic
University of Pennsylvania

Andrew Appel
Princeton

Zhong Shao
Yale

Adam Chlipala
MIT

Yours truly
University of Pennsylvania

Lennart Beringer
Princeton

Andres Erbsen
Antal Spector-Zabusky
Antoine Voizard
Benjamin Sherman
Christine Rizkallah
David Costanzo
David Kaloper Meršinjak
Dmitri Garbuzov
Hernán Vanzetto
Jade Philipoom
Jason Gross
Ji-Yong Shin
Jieung Kim
Joachim Breitner
Joonwon Choi
Joshua Lockerman
Jérémie Koenig

Richard Zhang
Ronghui Gu
Samuel Gruetter
Santiago Cuellar
Unsung Lee
Vilhelm Sjöberg
William Mansky
Wolf Honore
Xiongnan (Newman) Wu
Yao Li
Yishuai Li
Yuanfeng Peng
Yuting Wang
Zoe Paraskevopoulou

Leonidas Lampropoulos
Li-yao Xia
Lionel Rieg
Lucas Paul
Matthew Weaver
Mengqi Liu
Mirai Ikebuchi
Murali Vijayaraghavan
Nick Giannarakis
Olivier Savary Belanger
Pedro Henrique Avezedo de
Amorim
Paul He
Pierre Wilke
Qinxiang Cao
Quentin Carbonneaux

And more importantly…

Move from

point success stories
to

sustainable engineering practice
at industrially relevant scale

Goal:

30

Andrew
Appel

Lennart
Beringer

Program	logic	for	
proving	correctness	of
(concurrent)	C	programs

Proof	automation	tools
for	applying	the	program
logic

Demo	projects:

crypto	primitives,

“mailbox”
communication	system,

garbage	collector
for	Certicoq

B+	Trees	DBMS

web	server

Operating
System

31

“Certified	Abstraction	Layers”

a	new	refinement-based
methodology	for	software
correctness	proofs

.	.	.	of	programs	with	low-level
concerns	such	as	interrupts,
virtual-memory	mapping,
scheduling,	.	.	.

Zhong
Shao

Demo	project:

Certified	Kit	Operating	System	(CertiKOS)

Configurable	as	supervisor	or	hypervisor

Runs	on	Intel,	AMD,	ARM	platforms

.	.	.	multicore

Hosts	Linux	(or	other	client/guest	software)

LLVM
compiler	intermediate

language

32

widely	used	
compiler	framework
based	on	Static	
Single-Assignment	(SSA)

Vellvm:
Formal	specification
of	LLVM;	proofs	of
correctness	of	LLVM	
compiler	phases

Demo	project:

Use	as	basis	for
testing	correctness
of	GHC,	using	
QuickChick

Steve
Zdancewic

Haskell
Language

Specification

33

Stephanie
Weirich

Haskell:		widely	used	
pure	functional
programming	language
with	lazy	evaluation

Haskell	Core:		
near-source-level
intermediate	language
inside	GHC	compiler

Haskell	Core	Spec:	

Formal	specification
of	semantics	of	the
Haskell	core	language	

Demo	projects:

Prove	correctness	
of	some	GHC	phases	
using
hs-to-coq

Use	as	basis	for
testing	correctness
of	GHC,	using	
QuickChick

Verified
Compiler	for
Coq	programs

34

Gallina:
functional	programming
language	inside	Coq

“Extraction:”
Translate	Gallina
to	ML,	compile	with
Ocaml compiler

Extraction	is	quite	good,
but	it’s	not	verified
correct

CertiCoq:

A	verified	compiler
for	Gallina

Demo	projects:

Resolution	theorem
prover	for	Separation
Logic

(?)	CompCert

(?)	database	query
optimization

(?)	parts	of	web	server

Andrew	Appel Greg	Morrisett

Write	your	software	as	a	
pure	functional	program	in	Coq,
prove	its	correctness	using	Coq,
use	CertiCoq to	compile	
to	efficient	machine	code

Verified
processor
design

35

Adam	Chlipala
Old	way:
Write	reference	manual	for	ISA

Write	RTL	program	in	VHDL

Compile	VHDL	
into	transistors

Decent	formal
tools	exist	for
verifying	this
part

New	way:
Formal	specification	of		ISA

Write	RTL	program	
in	Bluespec

Compile	Bluespec
into	VHDL

Compile	VHDL	
into	transistors

Prove	correctness
of	Bluespec program

Prove	correctness
of	Bluespec compiler

Use	existing	tools
to	verify	correctness

Demo	project:		
specification	/	verification	of
RISC-V	processor	implementation

Specification-
based

random	testing

36

Old	way:
Fuzz	testing

Recent	ways:
Semantic	fuzz	testing

Tool:	QuickCheck,	for	Haskell	and	
Erlang;		fuzzes	over	(tree)	data	
structures,	automatically	reduces	
bugs	found	into	minimal	input	
cases

QuickChick:
Semantic	fuzz	testing	based
on	conformance	to	formal
specification	in	Coq

Benjamin
Pierce

Demo	projects:

Apache	web	server
DeepSpec web	server

Haskell	compiler

Verification	of
cryptographic
primitives

37

High-level	cryptographic
specs	(“pseudorandom	function,	
cryptographic	advantage”),
Message	authentication,
Random	number	generation

High-level	functional	specs	(elliptic	
curves	in	finite	fields)

Low-level	functional	specs	(multibit	
carry)

Efficient	imperative	implementations

Demo	projects:		these	crypto	applications
serve	as	demo	projects	for	several	of	our
other	tools:

Lennart
Beringer

Adam
Chlipala

Fiat

38

Andrew
Appel

Lennart
Beringer

Program logic for
proving correctness of

(concurrent) C programs

Proof automation tools
for applying the program

logic

Demo projects:

crypto primitives,

“mailbox”
communication system

garbage collector
for Certicoq

B+ Trees DBMS

web server

Goal: Rich, formal, live, 2-sided specs

39

Application demo?

40

O
pe

ra
tin

g
sy

st
em

C
 program

m
ing

D
atabase

Functional

program
m

ing

Web ServerElections

O
pe

ra
tin

g
sy

st
em

C
 program

m
ing

D
atabase

O
pe

ra
tin

g
sy

st
em

C
 program

m
ing

H
ypervisor

IoT device

Application demos!

41

Web Server

O
pe

ra
tin

g
sy

st
em

C
 program

m
ing

File system
C

rypto

C
 program

m
ing

H
ypervisor

Self-driving car

DeepWeb

A web server built on DeepSpec

Many parts One whole

Challenges

• Extreme vertical integration
• Make progress through a sequence of “integration experiments”

• Multiple levels and styles of specifications
• Need a “lingua franca” for writing a variety of specs

• à Interaction trees

• Combining testing and verification

• Reasoning about server behavior “modulo the network”

Challenge:
Vertical Integration

HTTP(S) spec

OS

POSIX API

RISC-V

RISC-V ISA

Transistors

Web server

Executable high-level specification of
HTTP(S) protocols and web services

Instruction-set specification

System call interface specification

RTL-level description of circuit behaviors

=

Goal: A
 “sin

gle QED”

encompassin
g th

e whole stac
k

HTTP(S) spec

OS

POSIX API

RISC-V

RISC-V ISA

Transistors

POSIX API

Web server

Low-level functional spec

RISC-V ISA

Executable high-level specification of
HTTP(S) protocols and web services

RTL-level description of circuit behaviors

Instruction-set specification
(machine-code level, flat memory model)

Instruction-set specification
(assembly level, structured memory model)

System call interface specification
(CertiKOS “layer interface”)

System call interface specification
(separation logic Hoare triples)

Functional program with same observable
behavior as C web server

Challenge:
Disparate Specification Styles

Too many metalanguages!

• Network-level HTTP spec
• Nondeterministic “model implementation” (functional program)

• Client-side acceptance tester (functional program)

• Web server implementation
• CompCert “observation traces”

• VST C verification tool
• Hoare triples in separation logic

• CertiKOS
• “Layer interfaces”

Interaction trees

Reasoning
“Modulo the Network”

Swap server specification

Server

Client 1
Cat

Dog

Bat

Cat Client 2

Client 3
Elk

Dog

52

Cat
Bat

Dog
Elk

Swap server: in the real world

Server
Clients

/
Tester

Cat

Dog

Dog

Bat
Elk

53

• Messages on different
connections can be
reordered

• Messages can be
delayed indefinitely

Network refinement

Specification Observable behavior
by clients

Network semantics

∪Inetwork-refines

Adaptation of Observational refinement/Linearizability

Implementation Observable behavior
by clients

Network semantics

Challenge:
Testable High-Level Specifications

Specification Observable behavior
by clients

Network semantics

∪Inetwork-refines

Implementation Observable behavior
by clients

Network semantics

What we have
Because (1) we want to

test our C code and (2) the
tester also needs to work

with stock web servers

Where we have to stand
for testing

Specification
(“model implementation”)

Tester
(“acceptance test”)

Main challenge: nondeterminism
• introduced by the network
• … or present in the original spec

Automatic
derivation

59

Final theorem

• “If you put these bits (produced by compiling CertiKOS and the
web server using CompCert) into a memory connected to this
connection of transistors (produced by compiling a RISC-V
implementation using Kami), the behaviors of the resulting
system will network refine the behaviors describe ed by the
model implementation.”

Progress

• Vertical integration
• See CPP 2019 paper about testing and VST verification of a “swap server”

• Interaction trees
• https://github.com/DeepSpec/InteractionTrees
• See talks by Steve Zdancewic today and by Yann Régis-Giannis and Gil Hur

tomorrow

• Connecting VST and CertiKOS
• See talk by William Mansky today

• Connecting CertiKOS and Risc-V
• Ongoing work at Yale and MIT on a “flat memory” semantics for CompCert

https://github.com/DeepSpec/InteractionTrees

The demo is not the (only) scientific result!

62

⊊

DeepSpec is not “build a verified stack”

DeepSpec is . . .

63

COMPCERT

a coherent collection of tools and techniques . . .

…that can be connected, combined, and configured to allow users to build and
foundationally verify high assurance, functionally correct software and hardware.

DeeoSpec Workshop
Overview

Welcome and overview

Compiler Verification

Modular Reasoning

Interaction Trees and
Algebraic Effects I

Hardware / Software
Interface Specifications

Verifying all the things

Interaction Trees and
Algebraic Effects II

Coinduction and testing

Join us!

Summer schools

Technical workshops
(like this one :-)

Visit deepspec.org to see what’s happening
and join our mailing list

visitors program
PhD and

Thank you!
(any (more) questions?)

postdoc positions

Teaching materials

