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How did that happen?



® Better programming languages

® Powerful mechanisms for abstraction and modularity

® Better software development methodology

® Agile workflows, unit testing, ...
® Stable platforms and frameworks

® Posix, Win32, Android, iOS, apache, DOM/JS, ...
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Grounds for hope...

® Better programming languages

® Basic safety guarantees built in
® Better understanding of risks and vulnerabilities

® Better system architectures for security
® Separation kernels, hypervisors, sandboxing, TPMs, ...
® Success stories of formal specification and machine-checked

verification of critical software at scale

* Not a panacea (side channels, etc.)

e But a big step in the right direction!



logical specification

Theorem compiles_correctly := Formal
V(e : exp), execute [] (compile e) = [eval e]. Live
Rich
executable specification
Definition compiles_correctly (e : exp) : Bool := Formal
eq (execute [] (compile €)) [eval €]. .
QuickCheck compiles_correctly. Live
Rich
unit tests
Example e3 : Formal
assert (compiles_correctly (Plus (Num 2) (Num 2))). .
Live
Example e4 : .
assert (compiles_correctly (Plus (Num 5) (Num Rich /X

¥

informal specification

code

Formal X

Fixpoint compile (e : exp) : list instr :=

match e with Lorem ipsum dolor sit amet, consectetur adipiscing

[ Num n =>[PUSH n] elit, sed do eiusmod tempor incididunt ut labore et Live X
| Plus el 2 => compile el ++ compile e2 *+ [PLUS] . dolore magna aliqua. Ut enim ad minim veniam, quis
| Minus el e2 => compile el ++ compile e2 ++ [MINUS] thlnklng Rich

| Mult el e2 => compile el ++ compile e2 ++ [MULT]

' > nostrud exercitation ullamco laboris nisi ut aliquip ex

end. ea commodo consequat. ...




Are logical specifications practical?
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® Accepts most of ISO C 99

® Produces machine code for PowerPC, ARM, x86 (32-bit),
and RISC-V architectures

® 90% of the performance of GCC
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Verification really works!

Regehr’s Csmith project used random testing to assess all popular C
compilers, and reported:

“The striking thing about our CompCert results is that the middle- o fessh
end bugs we found in all other compilers are absent. As of early

2011, the under-development version of CompCert is the only

compiler we have tested for which Csmith cannot find wrong-code

errors. This is not for lack of trying: we have devoted about six

CPU-years to the task. The apparent unbreakability of CompCert

supports a strong argument that developing compiler optimizations

within a proof framework, where safety checks are explicit and machine-

checked, has tangible benefits for compiler users.”



Isabelle/HOL

| Abstract specification |
Refinement proof ﬁ
Security. Performance. Proof.
| Executable specification | < C Haskell prototype)
Automatic
Refinement proof ﬁ translation

| High-performance C implementation |

® Real-world operating-system kernel

® With an end-to-end proof of implementation correctness
and security enforcement

® Verified down to machine code

NICTA




And many, many more!

® Bedrock system ® IronClad Apps
® Ur/Web compiler ® Full-scale formal specifications of
o . critical system interfaces
CompCert TSO compiler ® X86 instruction set
® CompCert static analysis tools ® TCP protocol suite
® Posix file system interface
® Jitk and Dataé verified filesystems . / ,
Weak memory consistency models for
® Fscq file system from MIT x86, ARM, PowerPC
® ISO C/ C++ concurrency
® Verdi distributed system framework ® EIf loader format
® Testable formal spec for AutoSAR ® Clanguage (Cerberus —also see
Krebbers, K semantics, ...)
s

CakeML compiler

® Vellvm: Verified LLVM optimizations



Tobias Nipkow - Gerwin Kleif

Verified Textbooks! Concrete
Semantics

With Isabelle/HOL

Isabelle

WARE

y . Certified Programming with
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Foundations Foundations Algorithms
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A Pragmatic Introduction to the Coq Pro
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SoftwareFoundations.org ... and several others!



Why now!

Urgent need for increased confidence
+

Diminishing value of “paper proofs”
+

Progress on enabling technologies



Enabling Technologies

* Losi t
Logics #
® Concurrent separation logic, ... &)
. Daf
® Proof assistants a"yﬁf

® Coq, Isabelle, ACL2, Twelf, HOL-light, ...

® Testing tools and methodologies

® QuickCheck, QuickChick, ... ‘AC L2

® DSLs for writing specifications
® OTT, Lem, Redex, ...

® Languages with integrated specifications

® Dafny, Boogie, ML, F*, Liquid Types, Verilog PSL, :
Dependent Haskell, ... ) Racket




Enabling Technologies

Memory Price ($/MB)

Historical Cost of Computer Memory and Storage
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So are we done!

Nope.



Lessons from CompCert

OS client interface Program Logic

Shao C language C language

C language

PowerPC ISA

PowerPC ISA

Sewell
Transistors




Lessons from CompCert

OS client interface Program Logic

Shao

C language C language

Sewell

Transistors




Lessons from CompCert

OS client interface Program Logic

Shao C language C language

C language

PowerPC ISA

PowerPC ISA

Sewell
Transistors




Lessons from sel 4

® Original specification and correctness proof for seL4 kernel took

~20 person years

Later, the same team added a tool for setting up secure system
configurations

® where processes at different security levels were guaranteed not to interfere

Proving correctness of this tool took ~4 person years, of which 1.5
years were devoted to upgrading the kernel specification
(and proof) to eliminate unwanted nondeterminism



Two-sided specifications

HTTP
Web
Server
C language
C language \ o
Verified components TW.O. Sld.ed
must connect at Compiler / specifications
specification boundaries

ARM instructions

ARM instructions

CPU

Transistors




“Deep” specifications:
Formal mathematically rigorous

Rich precisely expressing intended
behavior of complex software

automatically checked against

Live actual code (not just a model)

exercised by both “implementors”

TWO'Sided TN b ’»
and “clients



The Science

of Deep Specification
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Yours truly Zhong Shao  Stephanie Weirich

University of Pennsylvania Yale University of Pennsylvania
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Lennart Beringer  Adam Chlipala
Princeton MIT




And more importantly...

Andres Erbsen

Antal Spector-Zabusky
Antoine Voizard
Benjamin Sherman
Christine Rizkallah
David Costanzo

David Kaloper Mersinjak
Dmitri Garbuzov
Hernan Vanzetto

Jade Philipoom

Jason Gross

Ji-Yong Shin

Jieung Kim

Joachim Breitner
Joonwon Choi

Joshua Lockerman
Jérémie Koenig

Leonidas Lampropoulos
Li-yao Xia

Lionel Rieg

Lucas Paul

Matthew Weaver
Menggqi Liu

Mirai lkebuchi

Murali Vijayaraghavan
Nick Giannarakis
Olivier Savary Belanger
Pedro Henrique Avezedo de
Amorim

Paul He

Pierre Wilke

Qinxiang Cao

Quentin Carbonneaux

Richard Zhang
Ronghui Gu

Samuel Gruetter
Santiago Cuellar
Unsung Lee

Vilhelm Sjoberg
William Mansky
Wolf Honore
Xiongnan (Newman) Wu
Yao Li

Yishuai Li

Yuanfeng Peng

Yuting Wang

Zoe Paraskevopoulou
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Move from

point success stories

to

sustainable engineering practice
at industrially relevant scale



) Verified

| M
&) Software )
| f; V..
HH Toolchain Andrew  Lennart
|y Appel Beringer
“'C sq:fce pf:gram“'
L I Str_m‘fer:I  Demo projects:
Program logic for Verifiable C | yogram !
proving correctness of PiE R '\a:‘t‘;‘,'f,’;i: crypto primitives,
(concurrent) C programs
VST retargetable “mailbox”
Proof automation tools Separation Logic communication system,
for applying the program ¥y 3 3 3 X .
. garbage collector
logic C.OMPCERT. for Certicoq
verified C compiler
(from INRIA)
¥y ¥ ¥ ¥ B* Trees DBMS

verified machine language program

web server

30



. Operating

I System
CERTIKOS hong

Shao

Demo project:
“Certified Abstraction Layers” PTo)

Certified Kit O ting Syst CertiKOS
a new refinement-based ertified Kit Operating System (CertiKOS)
methodology for software

Configurable as supervisor or hypervisor
correctness proofs

, Runs on Intel, AMD, ARM platforms
... of programs with low-level

concerns such as interrupts,
virtual-memory mapping,
scheduling, ...

... multicore

Hosts Linux (or other client/guest software)

31



ey

Vellvm

b compiler intermediate

LLVM

COMPILER INFRASTRUCTURE
widely used

compiler framework
based on Static
Single-Assignment (SSA)

LLVM
language

Vellvm:
Formal specification

of LLVM; proofs of
correctness of LLVM

compiler phases

7 ,- . e i
Steve
Zdancewic

Demo project:

Use as basis for
testing correctness
of GHC, using
QuickChick

32



Haskell
Language
Specification

N

Core Spec

Haskell: widely used

pure functional Haskell Core Spec:
programming language
with lazy evaluation Formal specification

of semantics of the
Haskell core language

Haskell Core:
near-source-level
intermediate language
inside GHC compiler

Stephanie
Weirich

Demo projects:

Prove correctness
of some GHC phases
using

hs-to-coq

Use as basis for

testing correctness
of GHC, using
QuickChick

33



Coq

Gallina:
functional programming
language inside Coq

“Extraction:”
Translate Gallina

to ML, compile with
Ocaml compiler

Extraction is quite good,
but it’s not verified
correct

Verified
Compiler for
Coq programs

CertiCoq:

A verified compiler
for Gallina

Write your software as a

pure functional program in Coq,
prove its correctness using Coq,
use CertiCoq to compile

to efficient machine code

|

Andrew Appel Grég Morrisett

Demo projects:
Resolution theorem
prover for Separation
Logic

(?7) CompCert

(7) database query
optimization

(?) parts of web server

34



Verified
processor
design

Adam Chlipala
Old way: New way:
Write reference manual for ISA Formal specification of ISA
Prove correctness
. . i }of Bluespec program
Write RTL program in VHDL Write RTL program
. Decent formal ln Bluespec Prove correctness
Complle VHDL } tools exist for }of Bluespec compiler
. . ifying thi .
into transistors J pat B Compile Bluespec
into VHDL

COmpile VHDL }Use existing tools
into transistors

to verify correctness

Demo project:
specification / verification of
RISC-V processor implementation




Old way:
Fuzz testing

Recent ways:
Semantic fuzz testing

Tool: QuickCheck, for Haskell and
Erlang; fuzzes over (tree) data
structures, automatically reduces
bugs found into minimal input
cases

Specification-
based

random testing  senjamin

QuickChick:

Semantic fuzz testing based
on conformance to formal
specification in Coq

Demo projects:

Apache web server
DeepSpec web server

Haskell compiler

Pierce
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Verification of
cryptographic
primitives

Lennart Adam
Beringer Chlipala

Demo projects: these crypto applications
: : serve as demo projects for several of our
High-level cryptographic

specs (“pseudorandom function, other tools:
cryptographic advantage”),
Message authentication,

Random number generation Q N | )

High-level functional specs (elliptic 1 E t U;uk\l cad

curves in finite fields) ~\ria

Low-level functional specs (multibit Verified

carry) Software Vellvm
Toolchain s

Efficient imperative implementations
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Verified

Software
Toolchain

Lennart
Appel Beringer

3 Cc sogrce pggram +
” other Demo projects:
Program logic for Verifiable C :,;/forgr':s, !
proving correctness of AERgS S PERgEIn L oglS I\a"ti'g’;is : crypto primitives,
(concurrent) C programs T
VST retargetable “mailbox”
Proof automation tools Separation Logic communication sysem
for applying the program 3 3 3 3 garbage collector
logic for Certicoq
COMPCERT
verified C compiler B* Trees DBMS
(from INRIA)

A 4 ¥ L 4 L 4
verified machine language program Web server



Goal: Rich, formal, live, 2-sided specs

collaborations Tmnsfer
external to

DeepSpec group
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o el
The Internet
of THINGS

A

Application demo?

( IoT 7device )

(Web Server)

( Elections )
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Application demos!
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DeepWeb

A web server built on DeepSpec



Many parts One whole

Verified

Software
Toolchain

(o

CERTIKOS

Core Spec

Vellvm

verified
LLVM




Challenges

® Extreme vertical integration

® Make progress through a sequence of “integration experiments”

® Multiple levels and styles of specifications
® Need a “lingua franca” for writing a variety of specs

® - Interaction trees
® Combining testing and verification

® Reasoning about server behavior “modulo the network”



Challenge:
Vertical Integration



Executable high-level specification of

HTTP(S) spec HTTP(S) protocols and web services

Web server
POSIX API System call interface specification
— oS
RISC-V ISA Instruction-set specification
. Q_EO” ) X RISC-V
“s\(:;ie ‘N\\O\e Transistors RTL-level description of circuit behaviors



HTTP(S) spec

v

Low-level functional spec

Web server

POSIX API

'

POSIX API

(ON

RISC-V ISA

v

RISC-V ISA

RISC-V

Transistors

Functional program with same observable
behavior as C web server

(separation logic Hoare triples)

(CertiKOS “layer interface”)

(assembly level, structured memory model)

(machine-code level, flat memory model)



Challenge:
Disparate Specification Styles



Too many metalanguages!

® Network-level HTTP spec

® Nondeterministic “model implementation” (functional program)

® Client-side acceptance tester (functional program)

® Web server implementation

® CompCert “observation traces”

® VST C verification tool

® Hoare triples in separation logic

® CertikOS

® “Layer interfaces”



Interaction trees

k,a T — T @I k, 0 T—t—a
ky b ‘C—’C—’C—’C—H k, 1 'c—q
T — T — T k, c ‘c—n k, 3 T_T_T—a
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Reasoning
“Modulo the Network’



Swap server specification

Cat
Bat

Dog
Cat

Elk

Dog

Client 1

Client 2

Client 3

52



Swap server: in the real world

Cat * Messages on different
connections can be
Dog reordered
SIS0 | ¢ Messages can be
Elk / delayed indefinitely

Tester

53



Network refinement

«—
—n
«—
—_—

«——
4>-

e Observable behavior
Specification G .
by clients

t Network semantics

network-refines

: Observable behavior
implementation G .
by clients

Network semantics

Adaptation of Observational refinement/Linearizability



Challenge:
Testable High-Level Specifications



Where we have to stand
for teSting Because (1) we want to

test our C code and (2) the
tester also needs to work
with stock web servers

What we have

J

Observable behavior

Specification —

. by clients
t Network semantics
network-refines Ul
]

Observable behavior

Implementation —

by clients

Network semantics



Automatic
derivation

Tester
(“acceptance test”)

Specification
(“model implementation”)

Main challenge: nondeterminism
* introduced by the network
* ... or present in the original spec
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Final theorem

® “If you put these bits (produced by compiling CertiKOS and the
web server using CompCert) into a memory connected to this
connection of transistors (produced by compiling a RISC-V
implementation using Kami), the behaviors of the resulting

system will network refine the behaviors describe ed by the
model implementation.”



Progress

® Vertical integration
® See CPP 2019 paper about testing and VST verification of a “swap server”

® Interaction trees
® https://github.com/DeepSpec/InteractionTrees

® See talks by Steve Zdancewic today and by Yann Régis-Giannis and Gil Hur
tomorrow

® Connecting VST and CertiKOS
® See talk by William Mansky today

® Connecting CertiKOS and Risc-V

® Ongoing work at Yale and MIT on a “flat memory” semantics for CompCert


https://github.com/DeepSpec/InteractionTrees

The demo is not the (only) scientific result!

DeepSpec is not “build a verified stack”

62



DeepSpeciis . . .

a coherent collection of tools and techniques . .
lI Verified

H
) CERTIKOS

—

%i - CQ re Spec

Vellvm
verified
LLVM

_— ¢ J——"

Software
Toolchain

COMPCERT

..that can be connected, combined, and configured to allow users to build and
foundationally verify high assurance, functionally correct software and hardware.
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DeeoSpec Workshop
Overview



09:00 - 09:45
Talk
09:45 - 10:30
Talk
11:00 - 11:30
Talk
11:30 - 12:00
Talk
12:00 - 12:30
Talk
14:00 - 14:30
Talk
14:30 - 15:00
Talk
15:00 - 15:30
Talk
16:00 - 16:20
Talk
16:20 - 16:45
Talk
16:45 - 17:30
Talk

Overview of the DeepSpec Expedition and its Capstone Application
Benjamin C. Pierce University of Pennsylvania

Project Updates from Participating Sites
Andrew Appel Princeton, Adam Chlipala Massachusetts Institute of Technology, USA, Zhong Shao Yale University

Closure Conversion is Safe for Space
Zoe Paraskevopoulou Princeton University, Andrew Appel Princeton

Fast, Verified Partial Evaluation
Adam Chlipala Massachusetts Institute of Technology, USA

Stack-Aware CompCert
Yuting Wang Yale University

Abstraction, Subsumption, and Linking in VST
Lennart Beringer Princeton University, Andrew Appel Princeton

Compositional Verification of Preemptive OS Kernels with Temporal and Spatial Isolation
Mengqi Liu Yale University

Modular Correctness Proofs at the Hardware-Software Interface
Joonwon Choi Massachusetts Institute of Technology, USA

Interaction Trees: Representing Recursive and Impure Programs in Coq
Steve Zdancewic University of Pennsylvania

Connecting Separation Logic with First-Order Reasoning on Memory
William Mansky University of lllinois at Chicago

Typed Programming with Algebraic Effects (in terms of ambient values, functions, and

control)
Daan Leijen Microsoft Research, USA

Welcome and overview

Compiler Verification

Modular Reasoning

Interaction Trees and
Algebraic Effects |



Implementation and Verification of Modular Effectful Systems in Coq using FreeSpec

Yann Régis-Gianas IRIF, University Paris Diderot and CNRS, France / INRIA PI.R2

Names, Places, and Things: Generic Traversals over Generic Syntax with Binding

James McKinna University of Edinburgh

Development of the RISC-V ISA Formal Specification
Rishiyur Nikhil

Automated Formal Memory Consistency Verification of Hardware
Yatin Manerkar Princeton University

Project Oak: Control Data in Distributed Systems, Verify All The Things

Ben Laurie Google Research

Refinement-Based Game Semantics for CompCert
Jérémie Koenig Yale University

Coinductive Reasoning about Interaction Trees
Chung-Kil Hur Seoul National University

Coverage Guided, Property Based Testing
Leonidas Lampropoulos University of Pennsylvania

Interaction Trees and
Algebraic Effects Il

Hardware / Software
Interface Specifications

Verifying all the things

Coinduction and testing



Thank you!

. ' (any (more) questions?)
Ooin us.

Teaching materials Technical workshops
(like this one :-)

Summer schools

PhD and postdoc positions ~ ¥°'to"S Program

Visit deepspec.org to see what’s happening
and join our mailing list



