delta

Ordered Types for Stream Processing

Joseph W. Cutler
Christopher Watson
Philip Hilliard
Harrison Goldstein °

Caleb Stanford (UC Davis) Nas®

Benjamin C. Pierce (University of Pennsylvania)

1

delta

Ordered Types for Stream Processing

Joseph W. Cutler
Christopher Watson
Philip Hilliard
Harrison Goldstein °

Caleb Stanford (UC Davis) Nas®

Benjamin C. Pierce (University of Pennsylvania)

2

Stream Processing

3

What is a Stream?

What is a Stream?

An ordered sequence

(A=

What is a Stream?

An ordered sequence

arriving incrementally

(A=

What is a Stream?

An ordered sequence
arriving incrementally

and possibly unbounded in size.

(A=

What is a Stream?

An ordered sequence
arriving incrementally

and possibly unbounded in size.

OS020

What is Stream Processing?

>n

What is Stream Processing?

What is Stream Processing?

@ >n4@

What is Stream Processing?

@@ >n 2

What is Stream Processing?

What is Stream Processing?

What is Stream Processing?

What is Stream Processing?

vooo [l oo

What is Stream Processing?

What is Stream Processing?

[211/4] ” [2/317]

What is Stream Processing?

n

[211/4] g [2/317]

Incremental List Processing

What is Stream Processing?

n

[211/4] g [2/317]

Incremental List Processing

(with bounded memory)

Programming Models for Streams

Programming Models for Streams

Manual State Machine
"'s => "Ta => '"s * ("b list)

X Low-Level

Programming Models for Streams

Manual State Machine Functional Reactive Programming
"'s => "Ta => '"s * ("b list) time -> ’a

X Low-Level High-Level X Not Resource-Aware

Programming Models for Streams

Manual State Machine Functional Reactive Programming
's =>'a -> 's * ('b list) time -> "a
X Low-Level High-Level X Not Resource-Aware

Streaming eDSL

map : ("a -> 'b) -> "a stream -> ‘b stream Resource Aware
filter : ("a -> "b) -> "a stream -> ’'b stream _
window : (’'a list -> ’'b) -> int -> ’"a stream -> ’'b stream ngh_l—evel

fold : ("a -=> b -> "b) -> "b -> "a stream -> ’'b stream x Not Expressive

What if | told you...

You can write a natural function on lists...

fun partialSums (acc : 1nt, xs : 1nt list)
case xs of
nil => acc
| y::ys => let acc’ =y + acc 1n
acc’ ::partialSums (acc’,ys)

... and run it as a streaming program?

-O-O-0O000-

int list

-O-O-0-00~

Q _delta

Familiar functional syntax...
fun foo(xs : int 1list) =
case xs of
nil => ..
y :: ys => .. foo(ys)

OO —OO0O0O00-
... With streaming semantics!

Expressive High-Level

55\ delta

Familiar functional syntax...
fun foo(xs : int list) =

case xs of ~ fun foo(xs : int list) = ..
nil => .. :
?

y :: ys => .. foo(ys) .. ; /////////i\\\\\\\\\

And static prevention of space leaks

Unbounded
State

Expressive High-Level Resource-Aware

... With streaming semantics!

How?

How?

With an Ordered Substructural Type System!

9

A Non-Example, for Inspiration

“Stream” is written with
fun reverse(xs : s*) : g* = a star in delta, like
regular expressions

case xs of
nil => nil

| vy :: ys => snoc(reverse(ys) V)

A Non-Example, for Inspiration

“Stream” is written with
fun reverse(xs : s*) : g* = a star in delta, like
regular expressions

case xs of
nil => nil
| vy :: ys => snoc(reverse(ys) V)

y arrives before ys...

A Non-Example, for Inspiration

“Stream” is written with
fun reverse(xs : s*) : g* = a star in delta, like
regular expressions

case xs of
nil => nil
| vy :: ys => snoc(reverse(ys) V)

y arrives before ys... ... but is sent after

A Non-Example, for Inspiration

“Stream” is written with
fun reverse(xs : s*) : g* = a star in delta, like
regular expressions

case xs of
nil => nil
| vy :: ys => snoc(reverse(ys) V)

y arrives before ys... ... but is sent after

We have to save the entire stream in memory!

Core Idea:

If all variables are used in order of arrival of
the corresponding data, then the program
Is streamable with no auxiliary memory

Core Idea:

If all variables are used in order of arrival of
the corresponding data, then the program
Is streamable with no auxiliary memory

delta is stateless by default

(programmers can selectively introduce state when needed)

Typing Judgment

Lre:s

Input Types Stream Program Output Type

Typing Judgment

Lre:s

Input Types Stream Program Output Type

['= (z0:80); (x1:51);-..:(zp : Sn)

First variable to arrive Last variable to arrive

(Questions?)

Variables

(e :8); "o S

Variables

(e :8); "o S

Variables

(e :8); "o S

I'

Variables

(e :8); "o S

IS S

> > T —_—

Variables

(e :8); "o S

Nil and Cons

['Fnil:S~*

Nil and Cons

['Fnil:S~*

Nil and Cons

'nil:S™

Nil and Cons

I'Fe: S AFe:S*

I'Fnil: S* ["Abe::e 0 S*

Nil and Cons

Early inputs used for Later inputs used for

first output rest of outputs
'Fe: S AFe:8*
I'Fnil: S* ["AbFe::e 0 S*

—>n11

Nil and Cons

Early inputs used for Later inputs used for

first output rest of outputs
'Fe: S AFe:8*
I'Fnil: S* ["AbFe::e 0 S*

—p | nil €. €

Nil and Cons

Early inputs used for Later inputs used for

first output rest of outputs
'Fe: S AFe:8*
I'Fnil: S* ["AbFe::e 0 S*
T T S

— | nil — 6::6/ —>

Nil and Cons

Early inputs used for Later inputs used for

first output rest of outputs

'Fe: S AFe:8*
I'Fnil: S* ["AbFe::e 0 S*
T r A s s

— | nil ——— 6::6/ —_—

Star-Case

DTV kFe: T Ti(y:S);(ys:S*);IVkFe T

[;(xs: S*); TV F case(ws,e,y.ys.e’) : T

Filter

Looks like list
filter, runs like
stream filter!

fun filter[s] (p : s

case xs of

nil => nil
yi:ys => let zs
1f p(y)

-> Bool) (xs : s%*)

= filter(p) (ys) 1n
then y::2zs else zs

Filter

fun filter([s](p : s -> Bool) (xs : s*) : s* =
Looks like list case xs of
filter, runs like nil => nil
stream filter! | y::ys => let zs = filter (p) (ys) 1in

1f p(y) then y::zs else zs

5@,{ We can recover all the standard list combinators as Q@ﬁj
V stream combinators in this style! &/

But Wait, There’s More!

18

Ordered Structure Yields Rich Stream Types

ST

Concatenation Type

Ordered Structure Yields Rich Stream Types

S+ T ST

Sum Type Concatenation Type

Ordered Structure Yields Rich Stream Types

S+ T ST

Sum Type Concatenation Type

Int

Singleton Type

Ordered Structure Yields Rich Stream Types

S+ T ST

Sum Type Concatenation Type

Int &

Singleton Type Empty Stream Type

Quiz

Int 4+ Int - Int Int- (Int+ &)

Technical footnote:

Stream Types vs. Separation Logic

q.7T ST

Separation in time Separation in (heap) space

Rich types
let us build stream programs
compositionally

Example

Compute the average of each run above 3

23

Example

Compute the average of each run above 3

23

Example

Compute the average of each run above 3

23

Example

Compute the average of each run above 3

23

Example

Compute the average of each run above 3

23

Example

Compute the average of each run above 3

4

23

Example

Compute the average of each run above 3

4

23

Example

Compute the average of each run above 3

4

23

Example

Compute the average of each run above 3

$ o

23

In Flink:

“Compute averages of runs above 3”

24

In Flink:

“Compute averages of runs above 3”

xs.flatMapWithState((x : Int, st : Option[Int,Int]) =>
st match {
case None => if x > 3 then ([],Some(1l,x)) else ([],None)
case Some(num, tot) =>
1f x > 3 then
(L1,SomeCnum + 1, tot + x))
else
([(x + tot) / (num + 1)], None)

24

In Flink:

“Comp: ~ove 3”

xs.flatMapWithState(J \
st match {

case None => 1:

lone)
case Some(num,
1f x > 3 the
(L1, Some(nu
else
([(x + tot

24

In delta:

delta gives you
types to help
think about the
problem!

Q

Int - Int”™

“Nonempty run of Ints”

(Int - Int*)”

“Stream of nonempty runs of Ints”

Typeful Programming in delta

avgRun

Int - Int”™ > Int

parseRuns

» (Int - Int™)”

avgAbove3

Typeful Programming in delta

fun averagelRun(w : Int . Int*) : Int =
let (x;xs) = w 1n
let (k,n) = (sum(xs), length(xs)) 1in

(k + x) / (n + 1)

fun avgAbove3 (XS : Int*) : Int* =
map (averagelRun) (parseRuns (geg3) (xs))

27

Typeful Programming in delta

fun averagelRun(w : Int . Int*) : Int =
let (x;xs) = w 1n
let (k,n) = (sum(xs), length(xs)) 1in

(k + x) / (n + 1)

fun avgAbove3 (XS : Int*) : Int* =
map (averagelRun) (parseRuns (geg3) (xs))

Exact same semantics as the fold in Flink!

27

But Wait, There’s Even More!

28

What about
multiple parallel inputs?

What about
multiple parallel inputs?

S1 >

> Tl
SQ > T
Sg > g 2

What about
multiple parallel inputs?

slusgusg~.~T1HTz

Multiple inputs are products!

“Parallel Substreams” Type

S|

"A stream of type S interleaved with a stream of type T”

(with elements tagged to indicate their source)

Parallel inputs risk
nondeterminism!

Problem: Multiple Equivalent Interleavings

Int”||Char”

Problem: Multiple Equivalent Interleavings

Int”||Char”
000060 0000 0000
| |

‘+0 Streams with parallel are actually

°+° partially ordered

We don’t want to be able to write this:

fun i1mposeOrder(x : Int || Char) : Int =
<.. 1f the Int arrives first,
send 1t along and drop the Chary;
if the Char arrives first,
send 42 and drop the Int..>

34

Core Idea 2;

If variables corresponding to unordered
parts of the data are never used in an
ordered way, the program is deterministic

Core Idea 2;

If variables corresponding to unordered
parts of the data are never used in an
ordered way, the program is deterministic

delta is deterministic by default

(programmers can selectively introduce nondeterminism)

Parallel Right Rule

I'Fe: S TFHe:T

I'F (e, e): S||T

Parallel Right Rule

I'Fe: S TFHe:T

' (e,e'): S||T

(e, €')

Parallel Right Rule

I'Fe: S TFHe:T

' (e,e'): S||T

T S »

— (67 6/)

>

T

Parallel Left Rule, Take 1

I?2?22: IV Fe: R

[2:8|T;TF let (z,y) = zine: R

Parallel Left Rule, Take 1

I?2?22: IV Fe: R

[2:8|T;TF let (z,y) = zine: R

(z:9);(y:T)

Parallel Left Rule, Take 1

I?2?22: IV Fe: R

[2:8|T;TF let (z,y) = zine: R

(:c:bxy:T)

Parallel Left Rule, Take 1

I?2?22: IV Fe: R
[2:8|T;TF let (z,y) = zine: R

(@ Yy T) (y:T): (x: S)

Parallel Left Rule, Take 1

I?2?22: IV Fe: R
[2:8|T;TF let (z,y) = zine: R

(x:,%y:T) (y:Tx:E:S)

Parallel Left Rule, Take 1

I?2?22: IV Fe: R

[2:8|T;TF let (z,y) = zine: R

“Bunched” Contexts

o=z S|, 1T

“Bunched” Contexts

o=z S|, 1T

Unordered Ordered

“Bunched” Contexts

o=z S|, 1T

Unordered Ordered

Corresponds to parallel Corresponds to concat

Unordered data can’t be used in
an ordered way

(:E:S),(y:T).I— (x;y) :S-T

Formally: Cat-R rule
requires semicolon context

Unordered data can’t be used in
an ordered way

(x:S),(y:T).)F(x;y):S-T

Formally: Cat-R rule
requires semicolon context

A Stream Partitioner

fun partition[s] (p : s->Bool) (xs : s*) : s*||s* =
Looks like list case xs of
it lik nil => nil
partition, runs fike | y::ys => let (zs,ws) = partition(p) (ys) 1in
stream partition! if p(y) then (y::zs,ws) else (zs,y::ws)

40

A Stream Partitioner

fun partition[s] (p : s->Bool) (xs : s*) : s*||s* =
Looks like list case xs of
e . nil => nil
partition, runs like

N | y::ys => let (zs,ws) = partition(p) (ys) 1in
stream partition! if p(y) then (y::zs,ws) else (zs,y::wWs
q.ﬁ\s' . .].p\v‘
Again, we can recover many standard parallelism

combinators as stream programs in this style!

40

Deterministic Merging of Parallel Streams

fun mergel[s] (xs : s*, ys : s*) : (s || s)* =
case xs of
nil => nil
| X" ::xs’ =>
case ys of
nil => nil
| y'iiys’ => (x",y’) :: merge(xs’,ys’)

0%0 %9 - (00) (00) (00

Execution model

42

Today Soon

Single-node Compiler to Rust-based

Haskell interpreter runtime above Hydro
dataflow engine

Single-Node Compiler o

Vec<Data>

fun foo(x : s) : t = .. Vec<Datai

foo

Multi-Node Compiler

fun foo(x : s) : t =
let (y,z) = (el,e2) <

44

Wrapping up...

45

Future Directions

Compile Targets

Distributed Systems Hardware Streaming DBs

Theory
I:[-]:I ’a signal A~y
Denotational FRP Rewriting &

Semantics Connections Optimization

46

Case Studies

8000%0
00,0
o O
O o
W 000

loT and Edge Financial Data

<Your Application Here>

ML Streaming

Thank you!!

B jwc@seas.upenn.edu
bcpierce@seas.upenn.edu

‘ https://www.seas.upenn.edu/~jwc/assets/stream-types.pdf

(’ https://github.com/alpha-convert/delta

Questions?

47

mailto:jwc@seas.upenn.edu
mailto:jwc@seas.upenn.edu

