
A Flexible Object Merging Framework

Jonathan P. Munson and Prasun Dewan
University of North Carolina-Chapel Hill

Chapel Hill, NC 27599-3175
E-mail: {munson, dewan} @cs.unc.edu

ABSTRACT

The need to merge different versions of an object to a common

state arises in collaborative computing due to several reasons

including optimistic concurrency control, asynchronous cou-

pling, and absence of access control. We have developed a

flexible object merging framework that allows definition of

the merge policy based on the particular application and the

context of the collaborative activity. It performs automatic,

semi-automatic, and interactive merges, supports semantics-

deterrnined merges, operates on objects with arbitrary struc-

ture and semantics, and allows ftne-grained specification of

merge policies. It is based on an existing collaborative

applications framework and consists of a merge matrix, which

defines merge functions and their parameters and allows

definition of multiple merge policies, and a merge algorithm,

which performs the merge based on the results computed by

the merge functions, In conjunction with our framework we

introduce a set of merge policies for several useful kinds of

merges we have identified, This paper motivates the need

for a general approach to merging, identifies some impor-

tant merging issues, surveys previous research in merging,

identifies a list of merge requirements, describes our merging

framework and illustrates it with examples, and evaluates

the iiamework with respect to the requirements and other

research effotts in merging objects,

KEYWORDS: cliff, flexible coupling, optimistic concur-

rency control, merging, undo, versions.

INTRODUCTION

In the course of collaboratively producing a document or

some other artifact, collaborators often find that they have

created two versions, each containing revisions that they wish

to have in a single version. It then becomes a task to take

the set of revisions from one version and re-apply them to the

other vcision of the object. A tool that points out the differ-

ences between the versions may be employed to ease the task,

if such a tool is available, but merging the versions remains

essentially a manual process, This situation is objectionable

Permission to copy without fee all or part of this. material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
titie of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CSCW 84- 10/94 Chapei Hiil, NC, USA
@ 1994 ACM 0-89791 -689-1/94/0010..$3.50

on two counts: first, the needed differencing tools may be

unsatisfactory or unavailable, and second, the process of

re-applying one set of changes to an object to another version

of the object is error-prone and time-consuming. A tool that

performs the merge automatically, responding appropriately

to conflicting changes, would be highly useful.

A number of merge tools already exist, Tools for merg-

ing plain-text files include the UNIX difi tool, the RCS

rcsmerge tool [11], and thefileresolve tool in Sun’s Network

Software Environment [1]. Research efforts include the work

of Hotwitz, Prins, and Reps with a program merging tool that

detects an inconsistent merge through the use of program

dependency graphs [6], and the GINA collaborative appli-

cation framework [2], which allows users to merge revised

versions by merging command histories. Work related to

object merging includes the PREPflexible di~tool [9], which

gives users flexibility in Iinding and pinpointing differences,

and the concurrency control model of Ellis and Gibbs [4],

which determines a consistent ordering of operations at all

sites in a distributed collaborative environment by merging

concurrent operations.

Current merge tools are either limited by being based on

plain text files, or are not adaptable to particular collaboration

contexts. We have developed a novel, flexible object merging

framework that allows definition of the merge on the basis of

the particular application and the context of the collaborative

activity. It performs automatic, semi-automatic, and interac-

tive merges, supports semantics-determined merges, operates

on objects with arbitrary structure and semantics, and allows

ftne-grained specification of merge policies. It is based on an

existing collaborative applications framework and consists of

of a merge matrix which defines merge functions and their

parameters and allows definition of multiple merge policies,

and a merge algorithm which performs the merge based on

the results of the merge functions. In conjunction with our

merge framework we introduce a set of merge policies for

several useful kinds of merges we have identified,

The rest of the paper is organized as follows, We begin by

identifying collaboration scenarios in which the problem of

merging arises. We then highlight some of the issues that
confront a generai approach to merging, follow this with a

discussion of existing merge tools and previous research in

merging, and motivate and describe a set of requirements for

231

merge tools. We then describe our merge scheme and provide

examples of its use. Finally, we evaluate our merge scheme

with respect to its ability to simulate the existing merge tools

discussed previously.

NEED FOR OBJECT MERGING

The problems of merging do not arise in all collaborations,

For instance, if the collaboration consists of brainstorming,

then there is no need for producing a final merged artifact,

In a large number of artifact- based collaborations, however,

the need for merging potentially conflicting changes arises.

In this section we identify conditions in such collaborations

under which this problem arises, in terms of the functions

collaboration environments may provide, We will use as

examples two collaboration scenarios that we feel are typical

situations requiring object merging. They will be referred to

throughout the paper.

1

2<

Two authors are collaborating on a journal article. As

the deadline approaches, it becomes necessary for the

authors to work on the document simultaneously, instead

of the back-and-forth editing they had been doing. One

corrects scattered figures and the associated references

to them, and the other adds citations. They are us-

ing ordinary text editors and so are forced to work on

different copies of the text, thus creating two different

versions that will need to be merged before the article is

submitted.

Two programmers collaborating on a compiler project

are using the Unix parser generating tool, Yacc, to

create the grammar of the compiler. They have a basic

grammar completed and now work on separate versions

so that they may develop different portions of the gram-

mar. One works on all the productions that are program

statements and the other works on the productions that

define legal expressions in the language. At some point

they will need to merge the versions before they can

make further progress on the compiler.

Coup/ing Merging is not useful in those collaborative activi-

ties where an artifact is always WYSIWIS (What You See Is

What I See) [8] coupled. In this case concurrent edits never

produce separate versions of an artifact. Merging is primarily

useful where the coupling between views, or versions, of an

object allow asynchronous collaboration. Concurrent editing

with existing tools that do not offer coupling will of course

result in separate versions, as is the case in our text document

collaboration example above. The Yacc grammar collabo-

ration provides an example of when uncoupled concurrent

editing is in fact desired: during the time the programmers

are working individually, the need to repeatedly edit, compile,

and test requires the grammar versions to be kept in separately

consistent states,

Merging may also be useful in cases where views of an object

are normally coupled but become temporarily uncoupled

when coupling mechanisms are unable to operate. As an

example, take the case where a teleconference is interrupted

by a communications failure. Conferees at both ends may

continue to work, and as a result, when communications

are restored, their work needs to be merged, Mobile, or

“nomadic,” computing, where users’ environments follow

them when they are out of the office, may also provide cases

of this kind,

Concurrency control Merging may be useful in an optimistic

long transaction model. Under this model, collaborators

who have made inconsistent changes would typically wish

to merge these changes rather than abort one of their transac-

tions. Merging in general provides “late” concurrency control

for collaborations where concurrency control is required but

cannot be enforced—due to lack of tool support, for example.

Access Confro/ In situations where collaborators work on

separate versions of an object and access control mechanisms

cannot enforce the access control policy desired, a suitably-

defined merge procedure can provide late access control by

accepting revisions in the merged object on the basis of the

author of the changes, An example of this use is given later.

Access control used in conjunction with partitioning-where

the collaborators divide the object into sections to which one

or the other has exclusive access—can prevent the need for

merging, but this is not always a viable solution. Partitioning

may not be practical when the object is not modularized, such

as the Yacc grammar, or when users’ changes need to span

multiple, overlapping, modules. Moreover, the partitioning

needed for a particular situation maybe difficult to anticipate

because it is not known beforehand who will make what

changes. Furthermore, the appropriate patiitioning may well

change over the course of the collaboration. In the example of

the journal article writers, all these objections to partitioning

may be relevant.

Undo/Redo In systems that provide collaborative undo/redo

[7], the need for a merge capability maybe somewhat less-
ened. Collaborators can merge their versions of the object

by simply stepping through their edits and using a “redo”

mechanism to apply one collaborator’s changes to the other’s

version of the object. This is how merging is performed

in the GINA environment. But as the edit histones grow

in length, this becomes a less attractive merging procedure.

The usefulness is also sensitive to the granularity of the edit

histories: the finer grained the history, the more tedious

merging becomes.

ISSUES IN OBJECT MERGING

In the preceding section we described how different versions

of an object may arise in a computer-supported collaboration,

thus engendering the need for tools to merge the versions. In

this section we describe the merge problem itself, presenting

informally what we regard as two different aspects of the

problem. The first recognizes the fact that different col-

laboration contexts require different kinds of merging. The

second focuses on the fact that the different kinds of objects

we wish to merge have different properties, which influence

the merge procedure. Our examples exhibit differences in

both respects,

Merging in different collaboration contexts

In the text document example the only reason the two authors

created versions of the document was so that they could

work on it simultaneously, They would not have done so

if their editing system had supported concurrent access to

the file. The authors had different tasks and did not expect

their changes to affect anything the other was doing. In

the example of the compiler writers the case is somewhat

different. The programmers had different tasks but their

different tasks may have involved changes to the same “parts

of the grammar. Versions arose in this case not accidentally

but intentionally, We might therefore expect the kind of

merge performed for the two collaborations to differ. In the

case of the two authors working on the journal article, we

may expect the collaborators to want to simply include all

changes in the merged documen$ in the case of the compiler

writers, we may expect them to include some and negotiate

over others-in fact, they may wish to discuss all changes.

The merge procedure will operate somewhat differently in

each case, We will refer to the first as a consolidation merge

and the second as a reconciliation merge.

A consolidation merge assumes that each of the two revisions

to be merged is a revision of a common version. There is

also an assumption that while there may be some overlap or

conflict between the changes, for the most part the changes

are complementary, That is, a consolidation merge assumes

that a meaningful version can be created that incorporates all

non-overlapping changes. The merged version includes all

objects that were inserted in either input version, does not in-

clude any objects that were deleted from either input version,

includes all changed objects in either version, and includes all

unchanged objects common to both versions. Collaborators

choose between overlapping changes interactively.

A reconciliation merge does not assume complementary re-

visions between the two versions to be merged. It assumes

that the reason for merging is to resolve conflicts, As a

variation on the Yacc grammar example given above, suppose

the two programmers have decided to each prepare alternative

versions of that part of the grammar that defines expressions,

When the two versions are completed, the programmers

compare the versions side by side in order to choose the

version they think better. They find, however, that tlhey

would like to take parts of both as the final grammar, In

this case, they will perform a reconciliation merge of their

two versions, and the merge procedure will consist mainly of

making a selection of one of two choices. A definition of this

kind of merge will be quite different from a definition for a

consolidation merge. A reconciliation merge will not include

all non-overlapping revisions as a consolidation merge will,

In its most extreme form, a reconciliation merge will include

only those revisions that both collaborators agree upon, For

practical purposes, however, it would be desirable to allow

certain kinds of revisions unchallenged—any additions would

be accepted but agreement of the collaborators would be

required for replacements and deletions.

Reconciliation merging and consolidation merging each rep-

resent what we call a merge “policy.” A merge policy is a

set of rules that determine which revisions will be included

in the merged objec~ or a policy may provide the criteria that

will used to determine which revisions will be included in

the merged object. Later, when we have described our merge

framework, a merge policy will have a concrete representa-

tion, allowing policies to be described more formally.

Merge policies may use mechanisms other than user inter-

action to determine which of a pair of conflicting revisions

appear in the merged object. Suppose a salesperson keeps a

file of contact information on both an office desktop machine

and a laptop computer, The information is kept current by

periodically merging the two files, which is done automati-

cally whenever the computers are linked. It is possible that

between merges the salesperson has modified the same piece

of information on both systems, thereby causing a conflict

when the two files are merged. An appropriate merge policy

for this situation may be to examine the time stamp of each

revision and keep the most recent one. Here we see a

policy using an object attribute (time of last modification)

to determine the merge result. It is also an example of a

policy using automatic conflict resolution.

A merge policy may also examine the value of the objects

to determine which revisions to accept. Let us suppose that

two students collaborating on a short paper as a homework

assignment both work on the paper the night before it is

due, and although they worked on separate sections, both

made changes to the Abstract section, Just before class the

next day the students need to merge their revisions quickly,

without time to view each other’s changes. They feel that it

is important to not submit anything with spelling errors, so

they set up their merge policy so that, in case of overlapping

changes to a sentence, the sentence that passes the spell

checker is chosen for the merged version. If both pass the

spell checker, the sentence of the fit author is chosen, This

is an example of a semantics-determined merge.

As a different kind of semantics-determined merge example,

let us suppose an executive gave a project’s proposed budget

to two managers and received back their two counter propos-

als as versions of the original budget, To get a feel for the

range of costs expected, the executive produces two merged

versions of the budget: one in which for all items the lowest

value of both versions is chosen, and another in which the

233

highest value is chosen. The executive thus gets high and low

estimates for the project.

Merging different kinds of objects

The two objects in our examples, a text document and a

Yacc grammar, differ substantially in their structure and

semantics. A text document may be defined as a sequence

of paragraphs, where each paragraph is a sequence of sen-

tences, each sentence is a sequence of words with some

terminating punctuation, and each word is a sequence of

characters. A Yacc grammar, on the other hand, is composed

of production rules with a nonterrninal on the left-hand side

and a sequence of terminals and nonterminals (and perhaps

semantic actions) on the right-hand side. In addition to being

structural] y different, the two objects are semantically y quite

distinct, A Yacc input object represents a grammar with

explicit relationships between productions, whereas a text

document has some simple dependencies such as between

figures and references to figures, and some dependencies too

complex to be machine-checked, e.g., “the new term was

adequately” defined before it was used.”

We may thus expect merge policies for the two objects to

differ in those aspects of the merge policy related to the object

structure. One such aspect is how the policy defies a merge

conflict, by which we mean that situation when revisions

from one version and revisions from the other version either

overlap or, if both are accepted for the merged object, would

potentially leave the object in an inconsistent state, A merge

policy for a text document may define a conflict as changes to

the same sentence, while a merge policy for a Yacc grammar

may define a conflict as a change to the same production,

Another aspect of a merge policy that is object-dependent

is the conflict resolution mechanism, A tool which resolves

changes to the same procedure in a program in one language

will not be appropriate for programs in another language.

Collaborators may desire different policies for different par-

ticular structures, not just different types of structures as

in the example of conflict definition above. For example,

the compiler grammar programmers may designate certain

nonterminal declarations as changeable by only one person,

so that any concurrent changes to these declarations are in

conflict. This is an example of a policy to enforce late

access control, To accommodate these intra-object policy

differences, we must be able to define fine- grained merge

policies.

High-level requirements for merge tools

Based on the issues in object merging that we discussed

above, we have identified a set of requirements for general

merge tools. A merge tool should:

● offer automatic differencing, i.e., not require users to

manually fmd differences between two sets of changes.

offer interactive merging, i.e., allow users to interac-

tively select which revisions are included in the merged

result.

operate on general objects, A merge tool should not be

restricted to objects represented as text files.

provide conflict detection based on the structure of the

object. This means that conflicts will be defined in terms

of object structures (text sentences, program statements)

instead of representation structures (lines in a text file),

allow semantics-determined merges (i.e., provide mech-

anisms for the object semantics to determine the merge

result). This may be through functions that evalu-

ate which revisions to accept or functions that simply

present semantic information to the users during the

merge.

let users speci~ the merge policy. Users should have

the ability to tailor the merge policy according to their

specific needs. This includes defining what sets of

changes constitute a conflict.

permit fine-grained definition of merge policies.

offer automatic conflict resolution. A merge tool should

allow users to determine beforehand how certain con-

flicts should be resolved, whether based on the kinds of

changes made or the circumstances of the changes.

PREVIOUS RESEARCH IN MERGING

Object merging is not a new idea, not even for collaboration

systems. Previous efforts have ranged from relatively simple

systems for text documents to sophisticated semantics-based

systems for computer programs. In this section we review

these efforts and discuss them in light of the merge issues and

requirements discussed above.

Software development tools

UNIX cfh73 The UNIX difi program compares three files

and can output an ed script that, when applied to one of the

three files, will produce a file that combines the changes in

the other two, thus producing, in effec~ a merged file, di@

is based on the di~program and so is strictly a text-oriented

merging program.

RCS rcsmerge The rcsmerge program is, like difl, a text-

onented merge program, but is based on the mechanisms of

the RCS system [11]. The same observations made about

dzjlil above apply to rcsmerge. The advantages of rcsmerge

over dif? are that it will warn of overlapping changes and

that it is integrated with the safety and code management

mechanisms of a versioning system.

Sun ‘S NSE fileresolve The$leresolve tool in Sun’s Network
Software Environment [1] is a differencing-based text merge

tool that allows users to do side-by-side comparisons of two

234

sets of changes to a file, and can automatically merge changes

that do not overlap. Overlapping changes are flagged and

presented to the user performing the merge, who may select

one change or the other, or modify the file by hand. Changes

may also be undone,

Semantic cliff Horwitz, Prins, and Reps [6] present an al-

gorithm (which we refer to as “Semantic cliff”) to merge

two different versions of a program in a semantically correct

fashion. That is, if the two versions do not “interfere” with

each other, Semantic cliff will produce a merged program

that incorporates the semantics of both versions, In brief,

their merging algorithm first constructs program dependence

graphs for the base version and the two revised versions, then

merges the three dependence graphs into one dependence

graph, checks the merged dependence graph for interferences,

and finally produces the merged program from the merged

dependence graph,

Collaboration tools

Flexible cliff jlexible difl [9] is a tool in the PREP writing

environment that finds and reports differences in text docu-

ments and computes scripts for automatically combining the

differences in a merged document. jZexible dt~ is different

ffom the UNIX cliff tool in that it allows users to choose the

kind of differences that are found and how they are reported.

Users first indicate to-jexible dz~the granularity of the differ-

ences they want found, with the choices being word, phrase,

sentence, or paragraph, They are also offered a number of

parameters which control how the differences are reported.

One is granularity of the pinpointing, with the choices again

being word, phrase, sentence, or paragraph. If the user

chooses a pinpointing granularity of sentence, then any word

differences will be shown as an old sentence deleted and

a new sentence inserted. Other reporting parameters allow

users to choose fine granularity finding and reporting but in

cases where there are many word changes close together, have

jkxible dtfireport them as a phrase or sentence change-thus

improving the difference report’s readability.

The research on ji’exible difl has inspired our effort in this

area by identifying the resolution of concurrent changes as a

first-class research issue in collaboration systems and mo-

tivating the need for performing this task flexibly. The

merge parameters of our work complement the differencing

parametersflexible di~work has identified.

GINA GINA [2] takes an approach wholly different from

any of the previous merge procedures. Instead of basing

the merge procedure on differences between object versions,

GINA bases the merge on the command histories it keeps.

The command history is central to the entire GINA sys-

tem. GINA is a replicated architecture; applications maintain

consistency with each other through exchanging commands.

An application passes each command it receives from the

user on to the other replicated applications in the form of

a command object. Each application maintains a history

of command objects. This history is the basis of GINA’s

undoh-edo capabilities.

Command histories are used in the GINA merge procedure

as follows. If two authors of a document begin with the same

version and create different versions by executing different

editing commands, the command history associated with

the object forms a two-branched tree, where each author’s

changes form one branch of the tree. A merge of the two

authors’ changes is performed by taking one of the com-

mand object branches and applying it at the end of the other

branch-in effect, redoing one author’s changes on the other

author’s version of the object. This is the same principle

by which di&i’ and rcsrnerge work, except that these two

programs are based on computed version differences rather

than change histories. If one author has changed a part of

the object that the other has deleted or has also changed, the

authors are notified and will have to choose which change

to keep. They may undo the affected operation of the first

branch and redo the operation of the second branch, or simply

not redo the operation of the second branch,

Groupware concurrency control (Ellis and Gibbs) The con-

currency control model of Ellis and Gibbs [4] uses merging

to ensure that each site in a distributed collaborative envi-

ronment sees the same order of operations, At each site, the

scheme merges the operations that are received from the other

sites with the site’s own operations according to a priority

based on the site ID and the target object of the operation.

No operations are aborted, but one operation may nullify the

effects of another. The consistency achieved in this model is

that each site sees the same order of operations.

Discussion of current systems

Table 1 shows how current merge tools compare with the

requirements discussed discussed above. Only GINA is

shown as supporting general objects. di#3, rcsmerge, and

jileresolve merge line-oriented text objects, a class which

includes a wide range of common entities such as text doc-

uments and computer programs, but does not include more

structurally-complex objects such as spreadsheets and draw-

ings. Semantic cliff, because it is based on the semantics of a

particularprogramming language, is restricted to operating on

programs of that language, GINA offers true generality with

respect to the object merged because it is based on command

histories, which are common to all GINA applications.

Semantic cliff is the only merge tool that offers object-based

conflict detection; jkxible cliff offers object-based differenc-

ing. Semantic cliffs conflict detection is based on the seman-

tics of the object, i e., whether a given statement modifies a

certain variable, while jlexible difls difference detection is

based on the structure of the objecg i.e., word or sentence

or paragraph. rcsmerge and jileresolve detect when both

versions contain changes to the same line, but we do not

235

object-
semantics-

automatic interact ive general based
determined

user-set fine-grained ::fly’*’c

differencing merging objects conflict policies policies

detection
merging resolution

d&’ e

rcsmerge ●

jileresolve ● ●

Semantic cliff ● e ●

GINA ● ● b b

jlexible cliff ● ● ●

Table 1: Merge tool requirements.

regard this as object-based conflict detection unless the object

structure is simply “sequence of lines.” For example, if the

object was a text document and both versions of the document

contained changes to the same sentence, these tools would

notify the users if the changes were on the same line of the

file, but not if the changes were on different lines. GINA

conflict detection is object-based since command histories

are specific to the type of object.

A FLEXIBLE OBJECT MERGING FRAMEWORK

Basis and overview

The basis of our flexible object merging framework is the

Suite collaboration system [3], which provides general swuc-

tured objects, fme-grained object attributes, functions for

checking the semantic correctness of user changes, and flex-

ible coupling between object views. Although Suite does

not provide a version model as such, Suite’s flexible coupling

gives us the support for versions that we require for a basic im-

plementation of a merging system. A basis of general struc-

tured objects allows us to take an application-independent

approach to merging and to utilize the object’s structure in

the merge. Suite objects are constructed from basic types

such as integers, reals, and strings, and aggregate types such

as records and sequences. Finally, Suite’s fine-grained object

attributes, which may be inherited via type or structure, are

used for flexible definition of merge policies.

Our merge framework consists of two elements: a merge
matrix construct and an algorithm that uses the merge matrix

to accomplish the merge of two object versions. The merge

algorithm recursively traverses the structure of the object,

top-down, and for each substructure takes both users’ edits of

the substructure and consults the merge matrix to determine

which edits should be accepted for the merged result. We

first describe the merge matrix in detail and then present the

procedure that implements our merge algorithm.

The merge matrix

The merge matrix is a mechanism in the spirit of the access

control matrix of operating systems theory [5] and the lock

compatibility table developed by the research in object trans-

actions [10]. The merge matrix has a row and column for

each editing operation that can be performed on the object.

The rows represent the edits of one user and the columns

represent the edits of the other user. The entries of the matrix

specify the action the merge procedure is to take for the pair

of edits indicated by the (row, column) address of the entry.

The general form of an entry is a function that returns the edit

action to take. Function inputs may include anything that is

relevant to choosing the action to take. We have identified a

set of predefine merge functions and associated parameters,

including functions that select changes on the basis of the

time the changes were made or who made them. A function

may invoke other functions, such as validation functions to

check the consistencies of the revised objects. Typically,

however, the enrnes of a merge matrix are the row or column

edits themselves.

Table 2 shows a sample merge matrix for a Sequence object.

The row and column operations in the marnx-’’modify

element #,” “delete element #,” and “insert after element

#“-are for operations on the same element. If the elements

of the sequence are structured objects, the “mod. elt. W

operation stands for all operations on that elemenq for a

simple object the modify operation means “replace.” We

use several shorthand notations: “0” indicates that the user

performed no operation on the element; “row” and “column”

stand for the edits of the row or column use~ “both” means

that both edits should be accepted; “users” stands for the

function that presents the users with the alternative changes

and requests that they select one or the other, or another edit,

then returns their choice to the merge procedure. Entries

are blank where the two operations are never paired for

comparison.

The value “merge edits” in the “mod. elt. #/mod. elt. $+”
entry of the merge matrix indicates that edits to an element

that boti users modified should be merged according to that

element’s merge matrix. This is done by invoking the merge

procedure (shown in the next section) on that element. The

particular policy of Table 2 is to request user selection if one

user modified an element and the other deleted i~ insertions

of either user are always accepted.

Merge matrices are also defined for simple types such as

integers and character stings (Table 3). Such merge matrices

236

Table 2: Merge matrix for a Sequence object.

Table 3: Merge matrix for an atomic object.

are called “atomic” merge matrices because the object is

treated as an atomic unit. Atomic merge matrices are also

used for structured objects when it would not make sense to

merge changes to the object. For example, the article writers

may feel that it never makes sense to merge changes to the

same sentence. Users may want to set this atomicity property

flexibly. In the early stages of their collaboration the writers

allow changes to the same paragraph to be merged. But

as the paper becomes more stable they decide that merging

changes to the same paragraph is not safe, and wish to make

the paragraphs atomic units, For this purpose, objects which

have element operations, such as sequences, have two merge

matrices defined: an atomic merge matrix and an element-

operations merge matrix. Which is used by the algorithm is

determined by a boolean attribute introduced for this purpose

called the “atomic merge unit” attribute.

A merge matrix is deftned for each structural level of an object

and is implemented as a set of object attributes. In Suite,

object attributes may be inherited from the parent structure

(e.g., a record field may inherit the attributes of the record), or

from type, or both (type first or structure first). Atomic merge

matrices may be inherited via arty of the four choices, since

they are common to all types. Element-operations merge

marnces are type-specific, however, having rows and columns

for the operations of the structures they are defined for. Thus

these matrices are inherited only from type.

Our merge matrix bears a resemblance to Schwarz’s and

Spector’s lock compatibility table [10]. There are a number

of differences, however. First, the outcome of consulting a

lock compatibility table is solely the function of the pair of

operations, whereas the outcome of consulting a merge matrix

may be, in addition to the pair of operations, a function of the

particular users doing the merge, the time the two operations

were performed, or any other factor the users deem relevant.

Second, a merge matrix is deftned for each level of a struc-

tured object while a lock compatibility table is defined once
for the whole object. Third, and following from the second,

the lock compatibility table is defined for single operations,

whereas the merge matrix includes a “modify” operation that

may stand for multiple operations. Operations covered by a

single “modify” operation are deferred to lower-level merge

matrices.

The merge algorithm

We define the merge algorithm as a simple recursive proce-

dure (in pseudo code), shown below. A change report is a

list of changes to the object in terms of the operations in the

object’s merge matrix. Corresponding edits are edits by two

users to the same element or field. If an edit in one version

has no corresponding edit in another version, the entry for

the version without an edit is “no edit.” An edit triple is an

object identifier followed by two corresponding edits to the

object, Our algorithm first looks to see if the object should be

treated atomically; if so, it invokes the appropriate function in

the atomic merge matrix and performs the edits the function

returns. Otherwise, the procedure gets the two change reports

from the two revised versions of tie object, computes a list

of corresponding edit rnples, and presents the list, element

by element, to the merge matrix.

procedure MergeObject(X: Object)
if X.atomicdnerge.uttit

do X.atotnicmerge-matrix[row edit, column edit]
else

get change reports for each version of object X
compute list of corresponding edit triples
for each triple <element Y of X, row edit, column edit>:

if X.element merge matrix [row, column] = “merge edits”
MergeObject(element Y of X)

else
do X.elementme~ematrix[row edit, column edit]

end if
end for

end if
end MergeObject

AN EXAMPLE MERGING APPLICATION: A YACC EDITOR

To demonstrate our merge scheme we wrote a simple struc-

tured editing application, an editor for Yacc grammars. (The

application was motivated by the first author’s experience of

collaboratively writing a Yacc grammar, the need to merge

versions arising repeatedly throughout the collaboration.)

Production: Sequence of String;

Productions: Sequence of Production;

Rule: Record of {

nonterm: String:

prods: Productions; 1

Rules: Sequence of Rule;

The merge matrix is presented in a Suite control panel,

entitled “merge matrix window,” shown in Figure 1. This

window is opened from the window entitled “merge window,”

where users select the value or type in whose merge matrix

they are interested, use the “Atomic Merge Unit” toggle

button to choose the atomic or element-operations merge

matrix (if applicable) and then open the merge matrix window

237

3
? Path: lUa I ue: <ru I es)
,
; fltomic Merge Unit Merge Matrix
3

~RJ ChJnu?tswl: merfy mui?’h l&dw@P&Yunmlw
merge Ret , D115

row

\-
both

insert e I t delete elt modify elt no ed i t users

Figure 1: Merge matrix window.

with the “Merge Matrix” button. The edit actions for merge

matrix enrnes are selected from a popup window, also shown.

The “Path” button at the top of the merge window sets the

view whose merge matrix attributes will be loaded with the

values shown in the window’s matrix entries when the user

clicks on the “Set” button, “Load” loads the existing values

of the merge matrix into the window’s marnx entries. The

“Policies” button presents a pop-up menu of typical merge

policies; these are used to set all the entries of the merge

matrix with a single interaction. The “Merge” button invokes

the merge procedure,

Example of object-based conflict detection

Our first example shows a case where no conflict exists but

would be reported as a conflict by a non-structure-based tool

such as NSE’S fderesolve. Users Munson and Dewan are

each modifying the expression section of their compiler’s

grammar, part of which is shown in Figure 2. Munson

is adding relational operators and changes the name of the

expr nonterminal to s imp I e.expr. Dewan is altering

the grammar so that multiplication and division have higher

priority than addition and subtraction and changes op in the

second production for expr to add-op. They decide to

merge at this point, with their versions as shown in Figure 3.

[~ dm_i-mmson: Objectwkdow&gnunmur Qll

I

\
-:; expr op term /

OP
\ .-
$ -> +

$ _> _
J

Figure 2: expr and op before revision.

The merge policy for this application consists of merge marn-

[

expr $

-> term

–} expr add_op term i

add-op I

i

—> + I
/ —> – i

s I mp1e_expr
.—-—_———___ I

‘> term

-> simple-expr 0p term

Figure 3: Dewan’s and Munson’s revisions.

Table 4: Merge matrix for Rul e.

ces for each structural level of the grammac Ru 1 es, Rule,

Productions, and Production. Table 2 is used for
production, productions, and Rules, and Table 4

is used for Ru 1 e. As mentioned before, “merge edits” in

the “modify field/modify field” entry indicates that the merge

marnx of the field object will be consulted. In all matrices

Dewan’s edits are the rows and Munson’s are the columns.

An overview of the merge procedure for this example is as

follows: change reports for the Rul es sequence will indicate

that both users changed the same elements (those for expr

and op). The merge matrix for Rul es indicates that the two

238

sets of changes should be merged, so MergeObject is called

on the expr element and change reports are generated. These

indicate that only Munson changed the nonterm field, so

his changes are accepted, but that both changed the prods

field, The merge matrix calls for the changes to be merged,

so MergeObject is called on the prods sequence. Change

reports show that no element was modified by both users,

so both sets of changes are accepted. Changes to the op

nonterminal are merged likewise, with the result as shown in

Figure 4.

At some point in the collaboration Dewan and Munson may

feel that concurrent edits to the same production are likely to

cause trouble and should not be merged, In this case they may

set the “atomic merge unit” attribute of Produc t i on to True

and use the default atomic merge matrix shown in Table 3.

This will force them to select interactively one production or

the other when both have changed the production.

:❑ dm.munson: ObjetwMw@vgrrunnw

;
----------- ?

-> simp 1e-expr add-op term
t

add_op

i -;> +

. -----)

-.. _

Figure 4: Merged version of grammar.

Example of fine-grained merge policy

Dewan and Munson have divided responsibility for the gram-

mar so that Dewan has responsibility for all productions

stemming from the stat ement nonterminal and Munson

has responsibility for productions from the expr nonter-

tninal. Rather than enforcing this with access rights, they

decide to set the merge policy to choose the changes of

the responsible user over those of the other for overlapping

changes at the nonterminal level, To do this, they set expr,

s impl e.expr, add-op, and all other nonterrninals under-

neath expr to be atomic units and set their atomic merge

matrices to Table 5 (Dewan is row user). They do likewise

for stat ement and its nonterminals but set the “mod-

ify/modify” entry to “column” so that Munson’s changes are

taken.

Unfortunately, a nomertninal called subr tn appears in pro-

ductions for both stat eatent and expr because it repre-

sents both a procedure call and a function invocation, Since

both Munson and Dewan are working on sections of the

grammar that use subrtn, they decide that any changes

should be agreed to by both users before the changes go into

a merged version. They thus choose Table 6 for the merge
matrix of the rule that defines subrtn.

Table 5: Atomic merge matrix for Rule.

EEs
Table 6: Merge matrix for subrtn rule.

OTHER MERGE POLICIES

In this section we present seven merge policies, some of which

have been discussed earlier: consolidation merging, recon-

ciliation merging, merging when collaborators have strictly

enforced roles, merging based on validation of changes, and

merging based on computing changes as a function of the

users’ changes.

The merge matrix shown in Table 7 implements the merge

policy we referred to earlier as a consolidation merge. Mod-

ifications to an element are chosen over a deletion of the

element, as the conservative choice, but if both users have

deleted the element the deletion is accepted. Insertions are

always accepted.

The policy for reconciliation merging in Table 8 reflects a

scenario where users are expecting many conflicts between

their versions and will resolve these conflicts interactively. In

particular, all deletions are handled interactively.

In the policy of Table 9, the collaborators are assigned strict

roles. A scenario may be when one author is the primary

contributor to the document and the other is a reader who

is allowed to insert comments but may not change or delete

anything, but the tools used do not offer this kind of access

control. The rows of the matrix represent the edits of the

primary contributor while the columns represent the edts of

the reader. Disallowed edits of the reader are simply ignored.

The policy of Table 10 represents the case where an object

temporarily exists as separate copies. This case may fre-

quently arise in mobile computing, where a user may for a

short period revise a home copy of some object (an address

list for example) as well as an office copy. Since we assume

that the user is aware of both sets of changes, we may assume

r Seuuence I ins. elt. # [del. elt. # mod. elt. # 1 0 1

ins. elt. # both row

del. elt. # row column row

mod. elt. # row meme edits row

10 I column I column I column I I

Table 7: Policy for consolidation merge.

239

Sequence I ins. elt. # I del. elt. # mod. elt. # 0

ins. elt. # users row

del. elt. # users users users

mod. elt. # users merge edits row

VI column users column

Table 8: Policy for reconciliation merge.

Sequence ins. elt, #] del. elt. # mod. elt. # a

ins. elt. # both row

del. elt. # row row row

mod. elt. # row merge edits row

Table 9: Policy for merging with strict user roles.

that in cases where changes overlap the most recent change

is the one desired.

The policy of Table 11 formalizes the ad hoc policy that

the two grammar programmers used when they assigned

responsibilities for different sections of the grammar. It is

similar to the one with strict user roles, except that in this

case, both the identity of the user and the particular object

involved are considered. Here, the users have divided respon-

sibility for the document between themselves by attaching

their ID to different sections (or in some other manner),

When users’ changes conflict, the changes of the user who

has responsibility for the object involved are given priority.

Conflicting changes to non-designated objects are selected

by the users interactively, We could avoid a merge altogether

in this situation with fine-grained access control, but then we

would prevent the users from making helpful, non-conflicting

changes to each other’s sections,

Table 12 shows a merge policy which is parameterized by

an application-specific validation function. The “row” and

“column” arguments to the “validated” function stand for

“row object version” and “column object version.” The spell-

checked homework example mentioned earlier would use this

policy, using a spell-checker as the “validated” function,

Table 13 shows a merge policy parametrized by a function

which computes the edit action for the merged object based on

the edits of the object versions. For F, users may select from
system-deiined functions which include MIN, MAX, AVER-

Object modify 0

if row edit later than column edit I

Table 10: Merging according to latest revision time

Object modify Ill

if Object .designated.user = row user I
I row edit; II

elsif Obj ect designated -user = column user
modify row

column edit;

else

merge edits;

o column

Table 11: Designated responsible user merge.

Object

modify

0

modify

if vaIidated(row) A -wdidated(column)

row edit;

elsif -walidated(row) A validated(column)

column edit;

elsif validated(row) A validated (column)

users chocwq (or arbitrary choice)

else

no edit:

column

0

row

Table 12: Validation merge.

AGE, SUM, and other arithmetic functions, string fimctions

such as concatenation, or their own application-specific func-

tions. The budget example with the low and high estimates

would use this policy using MIN and MAX for F.

EVALUATION

In this section we evaluate the extent to which our merging

scheme fulfills the requirements listed above and consider the

degree to which it can simulate the merging tools discussed

earlier, Following that we discuss the contributions we be-

lieve our merge scheme makes, and, finally, we identify areas

of future research.

Fulfillment of requirements

Automatic differencing and interactive merging Our scheme is

fully automatic, or fully manual, or semi-automatic, accord-

ing to the merge policies the collaborators select. Setting

an entry of a merge matrix to the “users” function makes

the selection for that pair of edits on that object interactive.

Thus interactive or automatic operation may be chosen for

particular substructures or particular types, giving users great

flexibility in defining merge policies.

General objects Our merge framework is based on the Suite

system, which includes a type system of basic types and

several type constructors, It therefore supports general, struc-

Object modify 0
modify rep] ace with F(row, column) row

0 column

Table 13: Computed merge.

240

tured, arbitrarily-complex objects. Additionally, since our

framework is based on the object structure, it merges objects

independently of how they are dkplayed to the user. We

may merge an object modified by one user with a graphical

interface (e.g., by changing the position of the top of a bar

in a bar graph) and edited by another user as text (e.g., by

changing the value of a cell in a table),

Object-based conflict detection Our merge algorithm detects

overlapping changes to objects, and so recognizes conflicts to

the extent that overlapping changes represent conflicting op-

erations. Our merge scheme also accommodates the detection

of semantic inconsistencies by allowing verification functions

to be called 1) before accepting one version’s change to verify

that the change did not bring the version to an inconsistent

state, and 2) after an object or substructure versions have been

merged, to veri~ that the merged result is consistent.

Semantics-determined merging The validation merge policy

and the computed merge policy were designed for semantics-

based merging, The policies themselves do not include no-

tions of object semantics but must be supplied with application-

specific semantics functions.

User-set merge policies Our fkunework provides two kw-

els of flexibility in defining merge policies. At the lower

level is the merge matrix, defined per structure, with general

editing-action functions as its entries. At the higher level

are the predeiined, parametrized, merge policies. Some

are parametenzed by the value of a user-set object attribute,

such as the designated responsibility policy, while others

are parametrized by application-specific or user-supplied

functions, such as the computed merge policy.

Fine-grained policies Because merge policies are imple-

mented as Suite object attributes, they are defined at each

structural level of the object, Objects inherit a default merge

matrix according to their type but this may be modhled by

users for particular structures.

Automatic conflict resohtion Our merge scheme allows con-

flicts to be resolved on the basis of any information users

wish to encode in object attributes and to base functions upon.

Our framework provides predefine policies, using functions

based on revision time and designated “owner: and supports

the creation of new policies parametenzed by application-

specific attributes and functions,

Coverage of other merge tools

UNIX diff3, RCS rcsmerge and IVSEfileresolve Our scheme,

as presently implemented, does not utilize a shortest-edit-

sequence algorithm to compute the differences between the

base version of the object and the revised versions, as the
dz#3, rcsmerge, and (we presume) the jileresolve tools do.

We may emulate their policiesl by using the merge marnces

1There is one feature of dz~’s policy we are unableto emulate. If in

Text change line range I append lines @

change 1ine range both both I row I
append lines I both 1 both row

0 co] unm column I I

Table 14: Policy to emulate difl.

Text change 1ine range append lines i?

change line range users users I row

i azmend lines i users I users I row I

VI column I co] umn I 1

Table 15: Policy to emulate rcsmerge and fileresolve.

of Tables 14 and 15.

Semantic ditf Semantic cliff maybe simulated by using the

computed merge policy supplied with the function used by

Semantic cliff to compute the merged program. This kind of

use, of course, does not involve much of the generic support

for merging our framework offers.

GINA We may simulate the GINA merge procedure using the

merge policy of Table 16. The difference remains, however,

that the edits our merge procedure operates on are accumu-

lated edits, whereas GINA uses actual edit histories.

Contributions

Our work towards a framework for flexible object merging

has yielded the following contributions:

●

●

●

●

●

a set of high-level requirements for merge tools;

an evaluation of current merge tools with respect to these

requirements;

a new flexible object merging fl-amework consisting of

a merge matrix and a structure-based algorithm;

several useful merge policies;

an evacuation of our merge scheme with respect to gen-

erality and usefulness,

Future work

Our task of immediate importance is to gain more experience

with merging in collaborative work. As our understanding

botb versions a particular line is deleted, dii deletes both that line and the

line fotlowing it in the merged version.

I Obiec[I anv edit I 0

t5eta5
Table 16: Policy to emulate GINA.

241

of merging’s role in collaboration grows, we hope to retie

the merge tool requirements we identified and develop other

important merge policies based on actual and hypotheti-

cal collaboration scenarios. We will also consider various

user-interface alternatives, The user interface should not

only offer various merge policies but also allow convenient

customization of those policies; we do not yet have the

experience to know what kind of convenience will be needed.

There are also more fundamental issues to explore. One

such is T/-Way merging, i.e, merging n versions of an object.

The merge matrix may be straightforwardly extended to n

dimensions, but then what is the appropriate user interface?

The number of merge matrix entries for 7/ users and an object

with m operations is O (m”), which even for two users is

tedious to fill in. Applications will of course provide defaults,

but users will still need to customize the marnx for particular

situations.

Another interesting issue is how to handle whole-object op-

erations. Currently we treat a sequence as either an atomic

object or as a simple collection of elements, without regard

to its property of being ordered. How should operations that

modify a sequence with respect to this property, such as move-

element operations, be treated in our merge flamework? A

related issue, but larger, is how to integrate user-defined

abstract types into our framework.

Acknowledgments

The comments of the reviewers were helpful in improving

the presentation of our work, as were discussions held with

other members of the UNC Colab group. This research was

supported in part by National Science Foundation grant IRI-

9496184 and in part by a grant from the Software Engineering

Research Center at Purdue University, a National Science

Foundation IndustryiUniversity Cooperative Research Center

(NSF Grant No. ECD-8913133).

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Berlage, T., and Genau, A. A framework for shared

applications with replicated architecture, In Proceedings

of Conference on User Inte~ace Systems and Technology

(November 1993).

Dewan, P., and Choudhary, R. A high-level and

flexible framework for implementing multi-user user

interfaces. ACM Transactions on Information Systems

10,4 (October 1992), 345-380.

Ellis, C. A., and Gibbs, S. J. Concurrency control

in groupware systems. In Proceedings of the ACM

SIGMOD Conference on Management of Data (May

1989), ACM, New York, pp. 399-407.

Graham, G., and Denning, P. Protection-principles and

practice. In Proc. Spring Jt. Computer Conf (1972),

pp. 417-429.

Horwitz, S., Prins, J., and Reps, T. Integrating non-

interfering versions of programs. ACM Transactions on

Programming Languages and Systems 11,3 (July 1989),

345-387.

Knister, M. J., and Prakash, A. Undoing actions in

collaborative work. In Proceedings of the Conference

on Computer Supported Cooperative Work (Nov. 1992).

Lauwers, J., and Lantz, K. Collaboration awareness

in support of collaboration transparency: Requirements

for the next generation of shared window systems, In

Proceedings of ACM CHI’90 (Apr. 1990), pp. 303-311,

Neuwirth, C, M., Chandhok, R., Kaufer, D. S., Erion,

P., Morris, J, H,, and Miller, D, Flexible diff-ing in a

collaborative writing system, In Proceedings of ACM

Conference on Computer Supported Cooperative Work

(October 1992), pp. 147-154.
Schw~, P. M., and Spector, A. Z. Synchronizing shared

abstract types, ACM Transactions on Computer Systems

2,1 (August 1984), 223-250.

Tichy, W. F. RCS—a system for version control.

Sojiware-Practice and Experience 17, 7 (July 1985),

637-654.

REFERENCES

1, Adams, E., Honda, M., and Miller, T. Object

management in a CASE environment. In Proceedings

of the 1lth International Conference on So~are

Engineering (May 1989), pp. 154–163.

242

