
Disconnected Operation in the Coda File System

James J. Kistler and M. Satyanarayanan

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

How can we improve this state of affairs? Ideally, weAbstract
would like to enjoy the benefits of a shared data repository,Disconnected operation is a mode of operation that enables
but be able to continue critical work when that repository isa client to continue accessing critical data during temporary
inaccessible. We call the latter mode of operationfailures of a shared data repository. An important, though

not exclusive, application of disconnected operation is in disconnected operation, because it represents a temporary
supporting portable computers. In this paper, we show that deviation from normal operation as a client of a shared
disconnected operation is feasible, efficient and usable by repository.describing its design and implementation in the Coda File
System. The central idea behind our work is that caching of

In this paper we show that disconnected operation in a filedata, now widely used for performance, can also be
system is indeed feasible, efficient and usable. The centralexploited to improve availability.
idea behind our work is that caching of data, now widely
used to improve performance, can also be exploited to
enhance availability. We have implemented disconnected1. Introduction
operation in the Coda File System at Carnegie MellonEvery serious user of a distributed system has faced
University.situations where critical work has been impeded by a

remote failure. His frustration is particularly acute when
Our initial experience with Coda confirms the viability ofhis workstation is powerful enough to be used standalone,
disconnected operation. We have successfully operatedbut has been configured to be dependent on remote
disconnected for periods lasting four to five hours. For aresources. An important instance of such dependence is the
disconnection of this duration, the process of reconnectinguse of data from a distributed file system.
and propagating changes typically takes about a minute. A
local disk of 100MB has been adequate for us during thesePlacing data in a distributed file system simplifies
periods of disconnection. Trace-driven simulationscollaboration between users, and allows them to delegate
indicate that a disk of about half that size should bethe administration of that data. The growing popularity of
adequate for disconnections lasting a typical workday.distributed file systems such as NFS [15] and AFS [18]

attests to the compelling nature of these considerations.
Unfortunately, the users of these systems have to accept the

2. Design Overviewfact that a remote failure at a critical juncture may seriously
Coda is designed for an environment consisting of a largeinconvenience them.

1collection of untrusted Unix clients and a much smaller
number of trusted Unix file servers. The design is
optimized for the access and sharing patterns typical of
academic and research environments. It is specifically notThis work was supported by the Defense Advanced Research Projects Agency

(Avionics Lab, Wright Research and Development Center, Aeronautical Systems intended for applications that exhibit highly concurrent,
Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio, 45433-6543 under

fine granularity data access.Contract F33615-90-C-1465, ARPA Order No. 7597), National Science Foundation
(PYI Award and Grant No. ECD 8907068), IBM Corporation (Faculty Development
Award, Graduate Fellowship, and Research Initiation Grant), Digital Equipment Each Coda client has a local disk and can communicate
Corporation (External Research Project Grant), and Bellcore (Information

with the servers over a high bandwidth network. At certainNetworking Research Grant).

times, a client may be temporarily unable to communicate
with some or all of the servers. This may be due to a server
or network failure, or due to the detachment of a portable
client from the network.

1Unix is a trademark of AT&T.

mahler vivaldi ravel

x=12 x=12 x=12

x=12
flute harp

x=12

mahler vivaldi ravel

x=87 x=87 x=87

flute
harp

x=87
x=87

viola
x=87

mahler vivaldi ravel

x=33 x=87 x=87

flute
harp

x=87
x=33

x=33

viola
x=12

(a) (b) (c)

x=33 x=87 x=87

mahler vivaldi ravel

flute
harp

x=87
x=45

x=33

x=45 x=87 x=87

mahler vivaldi ravel

flute
harp

x=87
x=45

x=45

mahler vivaldi ravel

x=45 x=45 x=45

harp
x=45

flute
x=45

viola
x=45

(d)(e)(f)

viola viola

viola

Three servers (mahler, vivaldi, and ravel) have replicas of the volume containing file x. This file is potentially of interest to users at three
clients (flute, viola, and harp). Flute is capable of wireless communication (indicated by a dotted line) as well as regular network
communication. Proceeding clockwise, the steps above show the value of x seen by each node as the connectivity of the system changes.
Note that in step (d), flute is operating disconnected.

Figure 1: How Disconnected Operation Relates to Server Replication

Clients view Coda as a single, location-transparent shared cache. Since cache misses cannot be serviced or masked,
Unix file system. The Coda namespace is mapped to they appear as failures to application programs and users.
individual file servers at the granularity of subtrees called When disconnection ends, Venus propagates modifications
volumes. At each client, a cache manager (Venus) and reverts to server replication. Figure 1 depicts a typical
dynamically obtains and caches volume mappings. scenario involving transitions between server replication

and disconnected operation.
Coda uses two distinct, but complementary, mechanisms to
achieve high availability. The first mechanism, server Earlier Coda papers [17, 18] have described server
replication, allows volumes to have read-write replicas at replication in depth. In contrast, this paper restricts its
more than one server. The set of replication sites for a attention to disconnected operation. We discuss server
volume is its volume storage group (VSG). The subset of a replication only in those areas where its presence has
VSG that is currently accessible is a client’s accessible significantly influenced our design for disconnected
VSG (AVSG). The performance cost of server replication is operation.
kept low by caching on disks at clients and through the use
of parallel access protocols. Venus uses a cache coherence
protocol based on callbacks [9] to guarantee that an open of 3. Design Rationale
a file yields its latest copy in the AVSG. This guarantee is At a high level, two factors influenced our strategy for high
provided by servers notifying clients when their cached availability. First, we wanted to use conventional, off-the-
copies are no longer valid, each notification being referred shelf hardware throughout our system. Second, we wished
to as a "callback break." Modifications in Coda are to preserve transparency by seamlessly integrating the high
propagated in parallel to all AVSG sites, and eventually to availability mechanisms of Coda into a normal Unix
missing VSG sites. environment.

Disconnected operation, the second high availability At a more detailed level, other considerations influenced
mechanism used by Coda, takes effect when the AVSG our design. These include the need to scale gracefully, the
becomes empty. While disconnected, Venus services file advent of portable workstations, the very different
system requests by relying solely on the contents of its resource, integrity, and security assumptions made about

clients and servers, and the need to strike a balance The use of portable machines also gave us another insight.
between availability and consistency. We examine each of The fact that people are able to operate for extended
these issues in the following sections. periods in isolation indicates that they are quite good at

predicting their future file access needs. This, in turn,
suggests that it is reasonable to seek user assistance in
augmenting the cache management policy for disconnected3.1. Scalability
operation.Successful distributed systems tend to grow in size. Our

experience with Coda’s ancestor, AFS, had impressed upon
Functionally, involuntary disconnections caused by failuresus the need to prepare for growth a priori, rather than
are no different from voluntary disconnections caused bytreating it as an afterthought [16]. We brought this
unplugging portable computers. Hence Coda provides aexperience to bear upon Coda in two ways. First, we
single mechanism to cope with all disconnections. Ofadopted certain mechanisms that enhance scalability.
course, there may be qualitative differences: userSecond, we drew upon a set of general principles to guide
expectations as well as the extent of user cooperation areour design choices.
likely to be different in the two cases.

An example of a mechanism we adopted for scalability is
callback-based cache coherence. Another such mechanism,
whole-file caching, offers the added advantage of a much 3.3. First vs Second Class Replication
simpler failure model: a cache miss can only occur on an If disconnected operation is feasible, why is server
open, never on a read, write, seek, or close. This, replication needed at all? The answer to this question
in turn, substantially simplifies the implementation of depends critically on the very different assumptions made
disconnected operation. A partial-file caching scheme such about clients and servers in Coda.
as that of AFS-4 [21], Echo [8] or MFS [1] would have

Clients are like appliances: they can be turned off at willcomplicated our implementation and made disconnected
and may be unattended for long periods of time. They haveoperation less transparent.
limited disk storage capacity, their software and hardware

A scalability principle that has had considerable influence may be tampered with, and their owners may not be
on our design is the placing of functionality on clients diligent about backing up the local disks. Servers are like
rather than servers. Only if integrity or security would public utilities: they have much greater disk capacity, they
have been compromised have we violated this principle. are physically secure, and they are carefully monitored and
Another scalability principle we have adopted is the administered by professional staff.
avoidance of system-wide rapid change. Consequently, we

It is therefore appropriate to distinguish between first classhave rejected strategies that require election or agreement
replicas on servers, and second class replicas (i.e., cacheby large numbers of nodes. For example, we have avoided
copies) on clients. First class replicas are of higher quality:algorithms such as that used in Locus [22] that depend on
they are more persistent, widely known, secure, available,nodes achieving consensus on the current partition state of
complete and accurate. Second class replicas, in contrast,the network.
are inferior along all these dimensions. Only by periodic
revalidation with respect to a first class replica can a
second class replica be useful.3.2. Portable Workstations

Powerful, lightweight and compact laptop computers are
The function of a cache coherence protocol is to combinecommonplace today. It is instructive to observe how a
the performance and scalability advantages of a secondperson with data in a shared file system uses such a
class replica with the quality of a first class replica. Whenmachine. Typically, he identifies files of interest and
disconnected, the quality of the second class replica may bedownloads them from the shared file system into the local
degraded because the first class replica upon which it isname space for use while isolated. When he returns, he
contingent is inaccessible. The longer the duration ofcopies modified files back into the shared file system.
disconnection, the greater the potential for degradation.Such a user is effectively performing manual caching, with
Whereas server replication preserves the quality of data inwrite-back upon reconnection!
the face of failures, disconnected operation forsakes quality
for availability. Hence server replication is importantEarly in the design of Coda we realized that disconnected
because it reduces the frequency and duration ofoperation could substantially simplify the use of portable
disconnected operation, which is properly viewed as aclients. Users would not have to use a different name space
measure of last resort.while isolated, nor would they have to manually propagate

changes upon reconnection. Thus portable machines are a
Server replication is expensive because it requireschampion application for disconnected operation.
additional hardware. Disconnected operation, in contrast,

costs little. Whether to use server replication or not is thus the purpose of disconnected operation which is to provide
a tradeoff between quality and cost. Coda does permit a high availability. Worse, updates already made while
volume to have a sole server replica. Therefore, an disconnected have to be discarded.
installation can rely exclusively on disconnected operation

An optimistic approach has its own disadvantages. Anif it so chooses.
update made at one disconnected client may conflict with
an update at another disconnected or connected client. For
optimistic replication to be viable, the system has to be3.4. Optimistic vs Pessimistic Replica Control
more sophisticated. There needs to be machinery in theBy definition, a network partition exists between a
system for detecting conflicts, for automating resolutiondisconnected second class replica and all its first class
when possible, and for confining damage and preservingassociates. The choice between two families of replica
evidence for manual repair. Having to repair conflictscontrol strategies, pessimistic and optimistic [5], is
manually violates transparency, is an annoyance to users,therefore central to the design of disconnected operation.
and reduces the usability of the system.A pessimistic strategy avoids conflicting operations by

disallowing all partitioned writes or by restricting reads and
We chose optimistic replication because we felt that itswrites to a single partition. An optimistic strategy provides
strengths and weaknesses better matched our design goals.much higher availability by permitting reads and writes
The dominant influence on our choice was the low degreeeverywhere, and deals with the attendant danger of
of write-sharing typical of Unix. This implied that anconflicts by detecting and resolving them after their
optimistic strategy was likely to lead to relatively fewoccurence.
conflicts. An optimistic strategy was also consistent with
our overall goal of providing the highest possibleA pessimistic approach towards disconnected operation
availability of data.would require a client to acquire shared or exclusive

control of a cached object prior to disconnection, and to
In principle, we could have chosen a pessimistic strategyretain such control until reconnection. Possession of
for server replication even after choosing an optimisticexclusive control by a disconnected client would preclude
strategy for disconnected operation. But that would havereading or writing at all other replicas. Possession of
reduced transparency, because a user would have faced theshared control would allow reading at other replicas, but
anomaly of being able to update data when disconnected,writes would still be forbidden everywhere.
but being unable to do so when connected to a subset of the
servers. Further, many of the previous arguments in favorAcquiring control prior to voluntary disconnection is
of an optimistic strategy also apply to server replication.relatively simple. It is more difficult when disconnection is

involuntary, because the system may have to arbitrate
Using an optimistic strategy throughout presents a uniformamong multiple requestors. Unfortunately, the information
model of the system from the user’s perspective. At anyneeded to make a wise decision is not readily available.
time, he is able to read the latest data in his accessibleFor example, the system cannot predict which requestors
universe and his updates are immediately visible towill actually use the object, when they will release control,
everyone else in that universe. His accessible universe isor what the relative costs of denying them access would be.
usually the entire set of servers and clients. When failures
occur, his accessible universe shrinks to the set of serversRetaining control until reconnection is acceptable in the
he can contact, and the set of clients that they, in turn, cancase of brief disconnections. But it is unacceptable in the
contact. In the limit, when he is operating disconnected,case of extended disconnections. A disconnected client
his accessible universe consists of just his machine. Uponwith shared control of an object would force the rest of the
reconnection, his updates become visible throughout hissystem to defer all updates until it reconnected. With
now-enlarged accessible universe.exclusive control, it would even prevent other users from

making a copy of the object. Coercing the client to
reconnect may not be feasible, since its whereabouts may

4. Detailed Design and Implementationnot be known. Thus, an entire user community could be at
In describing our implementation of disconnectedthe mercy of a single errant client for an unbounded
operation, we focus on the client since this is where muchamount of time.
of the complexity lies. Section 4.1 describes the physical

Placing a time bound on exclusive or shared control, as structure of a client, Section 4.2 introduces the major states
done in the case of leases [7], avoids this problem but of Venus, and Sections 4.3 to 4.5 discuss these states in
introduces others. Once a lease expires, a disconnected detail. A description of the server support needed for
client loses the ability to access a cached object, even if no disconnected operation is contained in Section 4.5.
else in the system is interested in it. This, in turn, defeats

different volumes, depending on failure conditions in the4.1. Client Structure
system.Because of the complexity of Venus, we made it a user

level process rather than part of the kernel. The latter
approach may have yielded better performance, but would
have been less portable and considerably more difficult to
debug. Figure 2 illustrates the high-level structure of a
Coda client.

Hoarding

Emulation Reintegration

di
sc

on
ne

ct
io

n

physical
reconnection

logical

reconnection

When disconnected, Venus is in the emulation state. It
transits to reintegration upon successful reconnection to
an AVSG member, and thence to hoarding, where it
resumes connected operation.

Figure 3: Venus States and TransitionsCoda MiniCache

Application
Venus

System Call Interface

Vnode Interface

to Coda
servers

4.3. HoardingFigure 2: Structure of a Coda Client
The hoarding state is so named because a key responsibility
of Venus in this state is to hoard useful data in anticipation

Venus intercepts Unix file system calls via the widely-used
of disconnection. However, this is not its only

Sun Vnode interface [10]. Since this interface imposes a
responsibility. Rather, Venus must manage its cache in a

heavy performance overhead on user-level cache managers,
manner that balances the needs of connected and

we use a tiny in-kernel MiniCache to filter out many
disconnected operation. For instance, a user may have

kernel-Venus interactions. The MiniCache contains no
indicated that a certain set of files is critical but may

support for remote access, disconnected operation or server
currently be using other files. To provide good

replication; these functions are handled entirely by Venus.
performance, Venus must cache the latter files. But to be
prepared for disconnection, it must also cache the formerA system call on a Coda object is forwarded by the Vnode
set of files.interface to the MiniCache. If possible, the call is serviced

by the MiniCache and control is returned to the application.
Many factors complicate the implementation of hoarding:

Otherwise, the MiniCache contacts Venus to service the
• File reference behavior, especially in thecall. This, in turn, may involve contacting Coda servers.

distant future, cannot be predicted withControl returns from Venus via the MiniCache to the
certainty.application program, updating MiniCache state as a side

effect. MiniCache state changes may also be initiated by • Disconnections and reconnections are often
unpredictable.Venus on events such as callback breaks from Coda

servers. Measurements from our implementation confirm • The true cost of a cache miss while
that the MiniCache is critical for good performance [20]. disconnected is highly variable and hard to

quantify.

• Activity at other clients must be accounted for,4.2. Venus States
so that the latest version of an object is in theLogically, Venus operates in one of three states: hoarding,
cache at disconnection.emulation, and reintegration. Figure 3 depicts these states

and the transitions between them. Venus is normally in the • Since cache space is finite, the availability of
less critical objects may have to be sacrificedhoarding state, relying on server replication but always on
in favor of more critical objects.the alert for possible disconnection. Upon disconnection, it

enters the emulation state and remains there for the To address these concerns, we manage the cache using a
duration of disconnection. Upon reconnection, Venus prioritized algorithm, and periodically reevaluate which
enters the reintegration state, resynchronizes its cache with objects merit retention in the cache via a process known as
its AVSG, and then reverts to the hoarding state. Since all hoard walking.
volumes may not be replicated across the same set of
servers, Venus can be in different states with respect to

Personal files # X11 files # Venus source files
a /coda/usr/jjk d+ # (from X11 maintainer) # (shared among Coda developers)
a /coda/usr/jjk/papers 100:d+ a /usr/X11/bin/X a /coda/project/coda/src/venus 100:c+
a /coda/usr/jjk/papers/sosp 1000:d+ a /usr/X11/bin/Xvga a /coda/project/coda/include 100:c+

a /usr/X11/bin/mwm a /coda/project/coda/lib c+
System files a /usr/X11/bin/startx
a /usr/bin 100:d+ a /usr/X11/bin/xclock

(c)a /usr/etc 100:d+ a /usr/X11/bin/xinit
a /usr/include 100:d+ a /usr/X11/bin/xterm
a /usr/lib 100:d+ a /usr/X11/include/X11/bitmaps c+
a /usr/local/gnu d+ a /usr/X11/lib/app-defaults d+
a /usr/local/rcs d+ a /usr/X11/lib/fonts/misc c+
a /usr/ucb d+ a /usr/X11/lib/system.mwmrc

(a) (b)

These are typical hoard profiles provided by a Coda user, an application maintainer, and a group of project developers. Each profile is
interpreted separately by the HDB front-end program. The ’a’ at the beginning of a line indicates an add-entry command. Other
commands are delete an entry, clear all entries, and list entries. The modifiers following some pathnames specify non-default priorities
(the default is 10) and/or meta-expansion for the entry. Note that the pathnames beginning with ’/usr’ are actually symbolic links into
’/coda’.

Figure 4: Sample Hoard Profiles

4.3.1. Prioritized Cache Management To resolve the pathname of a cached object while
Venus combines implicit and explicit sources of disconnected, it is imperative that all the ancestors of the
information in its priority-based cache management object also be cached. Venus must therefore ensure that a
algorithm. The implicit information consists of recent cached directory is not purged before any of its
reference history, as in traditional caching algorithms. descendants. This hierarchical cache management is not
Explicit information takes the form of a per-workstation needed in traditional file caching schemes because cache
hoard database (HDB), whose entries are pathnames misses during name translation can be serviced, albeit at a
identifying objects of interest to the user at that performance cost. Venus performs hierarchical cache
workstation. management by assigning infinite priority to directories

with cached children. This automatically forces
A simple front-end program allows a user to update the replacement to occur bottom-up.
HDB using command scripts called hoard profiles, such as
those shown in Figure 4. Since hoard profiles are just files,

4.3.2. Hoard Walkingit is simple for an application maintainer to provide a
We say that a cache is in equilibrium, signifying that itcommon profile for his users, or for users collaborating on
meets user expectations about availability, when noa project to maintain a common profile. A user can
uncached object has a higher priority than a cached object.customize his HDB by specifying different combinations of
Equilibrium may be disturbed as a result of normal activity.profiles or by executing front-end commands interactively.
For example, suppose an object, A, is brought into theTo facilitate construction of hoard profiles, Venus can
cache on demand, replacing an object, B. Further supposerecord all file references observed between a pair of start
that B is mentioned in the HDB, but A is not. Some timeand stop events indicated by a user.
after activity on A ceases, its priority will decay below the
hoard priority of B. The cache is no longer in equilibrium,To reduce the verbosity of hoard profiles and the effort
since the cached object A has lower priority than theneeded to maintain them, Venus supports meta-expansion
uncached object B.of HDB entries. As shown in Figure 4, if the letter ’c’ (or

’d’) follows a pathname, the command also applies to
Venus periodically restores equilibrium by performing animmediate children (or all descendants). A ’+’ following
operation known as a hoard walk. A hoard walk occursthe ’c’ or ’d’ indicates that the command applies to all
every 10 minutes in our current implementation, but onefuture as well as present children or descendents. A hoard
may be explicitly requested by a user prior to voluntaryentry may optionally indicate a hoard priority, with higher
disconnection. The walk occurs in two phases. First, thepriorities indicating more critical objects.
name bindings of HDB entries are reevaluated to reflect
update activity by other Coda clients. For example, newThe current priority of a cached object is a function of its
children may have been created in a directory whosehoard priority as well as a metric representing recent usage.
pathname is specified with the ’+’ option in the HDB.The latter is updated continuously in response to new
Second, the priorities of all entries in the cache and HDBreferences, and serves to age the priority of objects no
are reevaluated, and objects fetched or evicted as needed tolonger in the working set. Objects of the lowest priority
restore equilibrium.are chosen as victims when cache space has to be

reclaimed.

4.4.1. LoggingHoard walks also address a problem arising from callback
During emulation, Venus records sufficient information tobreaks. In traditional callback-based caching, data is
replay update activity when it reintegrates. It maintainsrefetched only on demand after a callback break. But in
this information in a per-volume log of mutating operationsCoda, such a strategy may result in a critical object being
called a replay log. Each log entry contains a copy of theunavailable should a disconnection occur before the next
corresponding system call arguments as well as the versionreference to it. Refetching immediately upon callback
state of all objects referenced by the call.break avoids this problem, but ignores a key characteristic

of Unix environments: once an object is modified, it is
Venus uses a number of optimizations to reduce the lengthlikely to be modified many more times by the same user
of the replay log, resulting in a log size that is typically awithin a short interval [14, 6]. An immediate refetch
few percent of cache size. A small log conserves diskpolicy would increase client-server traffic considerably,
space, a critical resource during periods of disconnection.thereby reducing scalability.
It also improves reintegration performance by reducing
latency and server load.Our strategy is a compromise that balances availability,

consistency, and scalability. For files and symbolic links,
One important optimization to reduce log length pertains toVenus purges the object on callback break, and refetches it
write operations on files. Since Coda uses whole-fileon demand or during the next hoard walk, whichever
caching, the close after an open of a file foroccurs earlier. If a disconnection were to occur before
modification installs a completely new copy of the file.refetching, the object would be unavailable. For
Rather than logging the open, close, and interveningdirectories, Venus does not purge on callback break, but
write operations individually, Venus logs a singlemarks the cache entry suspicious. A stale cache entry is
store record during the handling of a close.thus available should a disconnection occur before the next

hoard walk or reference. The acceptability of stale
Another optimization consists of Venus discarding adirectory data follows from its particular callback
previous store record for a file when a new one issemantics. A callback break on a directory typically means
appended to the log. This follows from the fact that athat an entry has been added to or deleted from the
store renders all previous versions of a file superfluous.directory. It is often the case that other directory entries
The store record does not contain a copy of the file’sand the objects they name are unchanged. Therefore,
contents, but merely points to the copy in the cache.saving the stale copy and using it in the event of untimely

disconnection causes consistency to suffer only a little, but We are currently implementing two further optimizations
increases availability considerably. to reduce the length of the replay log. The first generalizes

the optimization described in the previous paragraph such
that any operation which overwrites the effect of earlier

4.4. Emulation operations may cancel the corresponding log records. An
In the emulation state, Venus performs many actions example would be the cancelling of a store by a
normally handled by servers. For example, Venus now subsequent unlink or truncate. The second
assumes full responsibility for access and semantic checks. optimization exploits knowledge of inverse operations to
It is also responsible for generating temporary file cancel both the inverting and inverted log records. For
identifiers (fids) for new objects, pending the assignment of example, a rmdir may cancel its own log record as well
permanent fids at reintegration. But although Venus is as that of the corresponding mkdir.
functioning as a pseudo-server, updates accepted by it have
to be revalidated with respect to integrity and protection by

4.4.2. Persistencereal servers. This follows from the Coda policy of trusting
A disconnected user must be able to restart his machineonly servers, not clients. To minimize unpleasant delayed
after a shutdown and continue where he left off. In case ofsurprises for a disconnected user, it behooves Venus to be
a crash, the amount of data lost should be no greater than ifas faithful as possible in its emulation.
the same failure occurred during connected operation. To
provide these guarantees, Venus must keep its cache andCache management during emulation is done with the same
related data structures in non-volatile storage.priority algorithm used during hoarding. Mutating

operations directly update the cache entries of the objects
Meta-data, consisting of cached directory and symbolicinvolved. Cache entries of deleted objects are freed
link contents, status blocks for cached objects of all types,immediately, but those of other modified objects assume
replay logs, and the HDB, is mapped into Venus’ addressinfinite priority so that they are not purged before
space as recoverable virtual memory (RVM).reintegration. On a cache miss, the default behavior of
Transactional access to this memory is supported by theVenus is to return an error code. A user may optionally
RVM library [12] linked into Venus. The actual contentsrequest Venus to block his processes until cache misses can

be serviced.

of cached files are not in RVM, but are stored as local Unix 4.5. Reintegration
files. Reintegration is a transitory state through which Venus

passes in changing roles from pseudo-server to cache
The use of transactions to manipulate meta-data simplifies manager. In this state, Venus propagates changes made
Venus’ job enormously. To maintain its invariants Venus during emulation, and updates its cache to reflect current
need only ensure that each transaction takes meta-data from server state. Reintegration is performed a volume at a time,
one consistent state to another. It need not be concerned with all update activity in the volume suspended until
with crash recovery, since RVM handles this transparently. completion.
If we had chosen the obvious alternative of placing meta-
data in local Unix files, we would have had to follow a

4.5.1. Replay Algorithmstrict discipline of carefully timed synchronous writes and
The propagation of changes from client to AVSG isan ad-hoc recovery algorithm.
accomplished in two steps. In the first step, Venus obtains
permanent fids for new objects and uses them to replaceRVM supports local, non-nested transactions and allows
temporary fids in the replay log. This step is avoided inindependent control over the basic transactional properties
many cases, since Venus obtains a small supply ofof atomicity, permanence, and serializability. An
permanent fids in advance of need, while in the hoardingapplication can reduce commit latency by labelling the
state. In the second step, the replay log is shipped incommit as no-flush, thereby avoiding a synchronous write
parallel to the AVSG, and executed independently at eachto disk. To ensure persistence of no-flush transactions, the
member. Each server performs the replay within a singleapplication must explicitly flush RVM’s write-ahead log
transaction, which is aborted if any error is detected.from time to time. When used in this manner, RVM

provides bounded persistence, where the bound is the
The replay algorithm consists of four phases. In phase oneperiod between log flushes.
the log is parsed, a transaction is begun, and all objects
referenced in the log are locked. In phase two, eachVenus exploits the capabilities of RVM to provide good
operation in the log is validated and then executed. Theperformance at a constant level of persistence. When
validation consists of conflict detection as well as integrity,hoarding, Venus initiates log flushes infrequently, since a
protection, and disk space checks. Except in the case ofcopy of the data is available on servers. Since servers are
store operations, execution during replay is identical tonot accessible when emulating, Venus is more conservative
execution in connected mode. For a store, an emptyand flushes the log more frequently. This lowers
shadow file is created and meta-data is updated to referenceperformance, but keeps the amount of data lost by a client
it, but the data transfer is deferred. Phase three consistscrash within acceptable limits.
exclusively of performing these data transfers, a process
known as back-fetching. The final phase commits the

4.4.3. Resource Exhaustion transaction and releases all locks.
It is possible for Venus to exhaust its non-volatile storage
during emulation. The two significant instances of this are If reintegrations succeeds, Venus frees the replay log and
the file cache becoming filled with modified files, and the resets the priority of cached objects referenced by the log.
RVM space allocated to replay logs becoming full. If reintegration fails, Venus writes out the replay log to a

local replay file in a superset of the Unix tar format. The
Our current implementation is not very graceful in log and all corresponding cache entries are then purged, so
handling these situations. When the file cache is full, space that subsequent references will cause refetch of the current
can be freed by truncating or deleting modified files. contents at the AVSG. A tool is provided which allows the
When log space is full, no further mutations are allowed user to inspect the contents of a replay file, compare it to
until reintegration has been performed. Of course, non- the state at the AVSG, and replay it selectively or in its
mutating operations are always allowed. entirety.

We plan to explore at least three alternatives to free up disk Reintegration at finer granularity than a volume would
space while emulating. One possibility is to compress file reduce the latency perceived by clients, improve
cache and RVM contents. Compression trades off concurrency and load balancing at servers, and reduce user
computation time for space, and recent work [2] has shown effort during manual replay. To this end, we are revising
it to be a promising tool for cache management. A second our implementation to reintegrate at the granularity of
possibility is to allow users to selectively back out updates subsequences of dependent operations within a volume.
made while disconnected. A third approach is to allow Dependent subsequences can be identified using the
portions of the file cache and RVM to be written out to precedence graph approach of Davidson [4]. In the revised
removable media such as floppy disks. implementation Venus will maintain precedence graphs

during emulation, and pass them to servers along with the
replay log.

4.5.2. Conflict Handling In the following sections we provide qualitative and
Our use of optimistic replica control means that the quantitative answers to three important questions
disconnected operations of one client may conflict with pertaining to disconnected operation. These are:
activity at servers or other disconnected clients. The only 1. How long does reintegration take?
class of conflicts we are concerned with are write/write

2. How large a local disk does one need?conflicts. Read/write conflicts are not relevant to the Unix
file system model, since it has no notion of atomicity 3. How likely are conflicts?
beyond the boundary of a single system call.

The check for conflicts relies on the fact that each replica 5.1. Duration of Reintegration
of an object is tagged with a storeid that uniquely identifies In our experience, typical disconnected sessions of editing
the last update to it. During phase two of replay, a server and program development lasting a few hours require about
compares the storeid of every object mentioned in a log a minute for reintegration. To characterize reintegration
entry with the storeid of its own replica of the object. If the speed more precisely, we measured the reintegration times
comparison indicates equality for all objects, the operation after disconnected execution of two well-defined tasks.
is performed and the mutated objects are tagged with a new The first task is the Andrew benchmark [9], now widely
storeid specified in the log entry. used as a basis for comparing file system performance.

The second task is the compiling and linking of the current
If a storeid comparison fails, the action taken depends on

version of Venus. Table 1 presents the reintegration times
the operation being validated. In the case of a store of a

for these tasks.
file, the entire reintegration is aborted. But for directories,
a conflict is declared only if a newly created name collides The time for reintegration consists of three components:
with an existing name, if an object updated at the client or the time to allocate permanent fids, the time for the replay
the server has been deleted by the other, or if directory at the servers, and the time for the second phase of the
attributes have been modified at the server and the client. update protocol used for server replication. The first
This strategy of resolving partitioned directory updates is component will be zero for many disconnections, due to
consistent with our strategy in server replication [11], and the preallocation of fids during hoarding. We expect the
was originally suggested by Locus [22]. time for the second component to fall, considerably in

many cases, as we incorporate the last of the replay log
Our original design for disconnected operation called for

optimizations described in Section 4.4.1. The third
preservation of replay files at servers rather than clients.

component can be avoided only if server replication is not
This approach would also allow damage to be confined by

used.
marking conflicting replicas inconsistent and forcing
manual repair, as is currently done in the case of server One can make some interesting secondary observations
replication. We are awaiting more usage experience to from Table 1. First, the total time for reintegration is
determine whether this is indeed the correct approach for roughly the same for the two tasks even though the Andrew
disconnected operation. benchmark has a much smaller elapsed time. This is

because the Andrew benchmark uses the file system more
intensively. Second, reintegration for the Venus make

5. Status and Evaluation takes longer, even though the number of entries in the
Today, Coda runs on IBM RTs, Decstation 3100s and replay log is smaller. This is because much more file data
5000s, and 386-based laptops such as the Toshiba 5200. A is back-fetched in the third phase of the replay. Finally,
small user community has been using Coda on a daily basis neither task involves any think time. As a result, their
as its primary data repository since April 1990. All reintegration times are comparable to that after a much
development work on Coda is done in Coda itself. As of longer, but more typical, disconnected session in our
July 1991 there were nearly 350MB of triply-replicated environment.
data in Coda, with plans to expand to 2GB in the next few
months.

5.2. Cache Size
A version of disconnected operation with minimal A local disk capacity of 100MB on our clients has proved
functionality was demonstrated in October 1990. A more adequate for our initial sessions of disconnected operation.
complete version was functional in January 1991, and is To obtain a better understanding of the cache size
now in regular use. We have successfully operated requirements for disconnected operation, we analyzed file
disconnected for periods lasting four to five hours. Our reference traces from our environment. The traces were
experience with the system has been quite positive, and we obtained by instrumenting workstations to record
are confident that the refinements under development will information on every file system operation, regardless of
result in an even more usable system. whether the file was in Coda, AFS, or the local file system.

Andrew
Benchmark

Venus
Make

Elapsed Time
(seconds)

Reintegration Time (seconds)

Total AllocFid Replay COP2

Size of Replay Log

Records Bytes

Data Back-Fetched
(Bytes)

223 65,010

193 65,919

1,141,315

2,990,120

288 (3)

3,271 (28)

43 (2) 4 (2) 29 (1) 10 (1)

52 (4) 1 (0) 40 (1) 10 (3)

This data was obtained with a Toshiba T5200/100 client (12MB memory, 100MB disk) reintegrating over an Ethernet with an IBM
RT-APC server (12MB memory, 400MB disk). The values shown above are the means of three trials. Figures in parentheses are
standard deviations.

Table 1: Time for Reintegration

Our analysis is based on simulations driven by these traces. We plan to extend our work on trace-driven simulations in
Writing and validating a simulator that precisely models three ways. First, we will investigate cache size
the complex caching behavior of Venus would be quite requirements for much longer periods of disconnection.
difficult. To avoid this difficulty, we have modified Venus Second, we will be sampling a broader range of user
to act as its own simulator. When running as a simulator, activity by obtaining traces from many more machines in
Venus is driven by traces rather than requests from the our environment. Third, we will evaluate the effect of
kernel. Code to communicate with the servers, as well hoarding by simulating traces together with hoard profiles
code to perform physical I/O on the local file system are that have been specified ex ante by users.
stubbed out during simulation.

5.3. Likelihood of Conflicts
In our use of optimistic server replication in Coda for
nearly a year, we have seen virtually no conflicts due to
multiple users updating an object in different network
partitions. While gratifying to us, this observation is
subject to at least three criticisms. First, it is possible that
our users are being cautious, knowing that they are dealing
with an experimental system. Second, perhaps conflicts
will become a problem only as the Coda user community
grows larger. Third, perhaps extended voluntary
disconnections will lead to many more conflicts.

Time (hours)
2 4 6 8 10 12

H
ig

h
-W

at
er

 M
ar

k
(m

eg
ab

yt
es

)

10

20

30

40

50

0

Max
Avg
Min

To obtain data on the likelihood of conflicts at larger scale,
This graph is based on a total of 10 traces from 5 active we instrumented the AFS servers in our environment.
Coda workstations. The curve labelled "Avg" These servers are used by over 400 computer science
corresponds to the values obtained by averaging the

faculty, staff and graduate students for research, programhigh-water marks of all workstations. The curves
development, and education. Their usage profile includes alabelled "Max" and "Min" plot the highest and lowest

values of the high-water marks across all workstations. significant amount of collaborative activity. Since Coda is
Note that the high-water mark does not include space descended from AFS and makes the same kind of usage
needed for paging, the HDB or replay logs.

assumptions, we can use this data to estimate how frequent
Figure 5: High-Water Mark of Cache Usage conflicts would be if Coda were to replace AFS in our

environment.
Figure 5 shows the high-water mark of cache usage as a

Every time a user modifies an AFS file or directory, wefunction of time. The actual disk size needed for
compare his identity with that of the user who made thedisconnected operation has to be larger, since both the
previous mutation. We also note the time interval betweenexplicit and implicit sources of hoarding information are
mutations. For a file, only the close after an open forimperfect. From our data it appears that a disk of
update is counted as a mutation; individual write50-60MB should be adequate for operating disconnected
operations are not counted. For directories, all operationsfor a typical workday. Of course, user activity that is
that modify a directory are counted as mutations.drastically different from what was recorded in our traces

could produce significantly different results.

Type of
Volume

Number of
Volumes

Type of
Object

Total
Mutations Same User

Total < 1min < 10 min < 1hr < 1 day < 1 wk

User 529
Files 3,287,135 99.87 %

108Project

Directories 4,132,066 99.80 %

Files 4,437,311 99.66 %

Directories 5,391,224 99.63 %

System 398
Files 5,526,700 99.17 %

Directories 4,338,507 99.54 %

Different User

0.04 %0.13 %

0.20 % 0.04 %

0.34 % 0.17 %

0.37 % 0.00 %

0.83 % 0.06 %

0.46 % 0.02 %

0.05 %

0.07 %

0.25 %

0.01 %

0.18 %

0.05 %

0.06 %

0.10 %

0.26 %

0.03 %

0.42 %

0.08 %

0.09 %

0.15 %

0.28 %

0.09 %

0.72 %

0.27 %

0.15 %

0.09 %

0.16 %

0.30 %

0.78 %

0.34 %

This data was obtained between June 1990 and May 1991 from the AFS servers in the cs.cmu.edu cell. The servers stored a total of
about 12GB of data. The column entitled "Same User" gives the percentage of mutations in which the user performing the mutation was
the same as the one performing the immediately preceding mutation on the same file or directory. The remaining mutations contribute to
the column entitled "Different User".

Table 2: Sequential Write-Sharing in AFS

Table 2 presents our observations over a period of twelve By providing tools to link local and remote name spaces,
months. The data is classified by volume type: user the Cedar file system [19] provided rudimentary support
volumes containing private user data, project volumes used for disconnected operation. But since this was not its
for collaborative work, and system volumes containing primary goal, Cedar did not provide support for hoarding,
program binaries, libraries, header files and other similar transparent reintegration or conflict detection. Files were
data. On average, a project volume has about 2600 files versioned and immutable, and a Cedar cache manager
and 280 directories, and a system volume has about 1600 could substitute a cached version of a file on reference to
files and 130 directories. User volumes tend to be smaller, an unqualified remote file whose server was inaccessible.
averaging about 200 files and 18 directories, because users However, the implementors of Cedar observe that this
often place much of their data in their project volumes. capability was not often exploited since remote files were

normally referenced by specific version number.
Table 2 shows that over 99% of all modifications were by
the previous writer, and that the chances of two different Birrell and Schroeder pointed out the possibility of
users modifying the same object less than a day apart is at "stashing" data for availability in an early discussion of the
most 0.75%. We had expected to see the highest degree of Echo file system [13]. However, a more recent description
write-sharing on project files or directories, and were of Echo [8] indicates that it uses stashing only for the
surprised to see that it actually occurs on system files. We highest levels of the naming hierarchy.
conjecture that a significant fraction of this sharing arises

The FACE file system [3] uses stashing but does notfrom modifications to system files by operators, who
integrate it with caching. The lack of integration has atchange shift periodically. If system files are excluded, the
least three negative consequences. First, it reducesabsence of write-sharing is even more striking: more than
transparency because users and applications deal with two99.5% of all mutations are by the previous writer, and the
different name spaces, with different consistencychances of two different users modifying the same object
properties. Second, utilization of local disk space is likelywithin a week are less than 0.4%! This data is highly
to be much worse. Third, recent usage information fromencouraging from the point of view of optimistic
cache management is not available to manage the stash.replication. It suggests that conflicts would not be a
The available literature on FACE does not report on howserious problem if AFS were replaced by Coda in our
much the lack of integration detracted from the usability ofenvironment.
the system.

An application-specific form of disconnected operation was6. Related Work
implemented in the PCMAIL system at MIT [Lambert88].

Coda is unique in that it exploits caching for both
PCMAIL allowed clients to disconnect, manipulate

performance and high availability while preserving a high
existing mail messages and generate new ones, and re-

degree of transparency. We are aware of no other system,
synchronize with a central repository at reconnection.

published or unpublished, that duplicates this key aspect of
Besides relying heavily on the semantics of mail, PCMAIL

Coda.
was less transparent than Coda since it required manual

re-synchronization as well as pre-registration of clients changes made while disconnected, and replay them upon
with servers. reconnection.

The use of optimistic replication in distributed file systems Implementing disconnected operation is not so simple. It
was pioneered by Locus [22]. Since Locus used a peer-to- involves major modifications and careful attention to detail
peer model rather than a client-server model, availability in many aspects of cache management. While hoarding, a
was achieved solely through server replication. There was surprisingly large volume and variety of interrelated state
no notion of caching, and hence of disconnected operation. has to be maintained. When emulating, the persistence and

integrity of client data structures become critical. During
Coda has benefited in a general sense from the large body reintegration, there are dynamic choices to be made about
of work on transparency and performance in distributed file the granularity of reintegration.
systems. In particular, Coda owes much to AFS [18], from
which it inherits its model of trust and integrity, as well as Only in hindsight do we realize the extent to which
its mechanisms and design philosophy for scalability. implementations of traditional caching schemes have been

simplified by the guaranteed presence of a lifeline to a
first-class replica. Purging and refetching on demand, a
strategy often used to handle pathological situations in7. Future Work
those implementations, is not viable when supportingDisconnected operation in Coda is a facility under active
disconnected operation. However, the obstacles todevelopment. In earlier sections of this paper we described
realizing disconnected operation are not insurmountable.work in progress in the areas of log optimization,
Rather, the central message of this paper is thatgranularity of reintegration, and evaluation of hoarding.
disconnected operation is indeed feasible, efficient andMuch additional work is also being done at lower levels of
usable.the system. In this section we consider two ways in which

the scope of our work may be broadened.
One way to view our work is to regard it as an extension of
the idea of write-back caching. Whereas write-backAn excellent opportunity exists in Coda for adding
caching has hitherto been used for performance, we havetransactional support to Unix. Explicit transactions
shown that it can be extended to mask temporary failuresbecome more desirable as systems scale to hundreds or
too. A broader view is that disconnected operation allowsthousands of nodes, and the informal concurrency control
graceful transitions between states of autonomy andof Unix becomes less effective. Many of the mechanisms
interdependence in a distributed system. Under favorablesupporting disconnected operation, such as operation
conditions, our approach provides all the benefits of remotelogging, precedence graph maintenance, and conflict
data access; under unfavorable conditions, it provideschecking would transfer directly to a transactional system
continued access to critical data. We are certain thatusing optimistic concurrency control. Although
disconnected operation will become increasingly importanttransactional file systems are not a new idea, no such
as distributed systems grow in scale, diversity andsystem with the scalability, availability, and performance
vulnerability.properties of Coda has been proposed or built.

A different opportunity exists in extending Coda to support
weakly-connected operation, in environments where Acknowledgments
connectivity is intermittent or of low bandwidth. Such We wish to thank Lily Mummert for her invaluable assistance in

collecting and postprocessing the file reference traces used inconditions are found in networks that rely on voice-grade
Section 5.2, and Dimitris Varotsis, who helped instrument thelines, or that use wireless technologies such as packet
AFS servers which yielded the measurements of Section 5.3. Weradio. The ability to mask failures, as provided by
also wish to express our appreciation to past and present

disconnected operation, is of value even with weak contributors to the Coda project, especially Puneet Kumar, Hank
connectivity. But techniques which exploit and adapt to Mashburn, Maria Okasaki, and David Steere.
the communication opportunities at hand are also needed.
Such techniques may include more aggressive write-back
policies, compressed network transmission, partial file References
transfer, and caching at intermediate levels.

[1] Burrows, M.
Efficient Data Sharing.
PhD thesis, University of Cambridge, Computer

8. Conclusion Laboratory, December, 1988.
Disconnected operation is a tantalizingly simple idea. All
one has to do is to pre-load one’s cache with critical data,
continue normal operation until disconnection, log all

[2] Cate, V., Gross, T. [14] Ousterhout, J., Da Costa, H., Harrison, D., Kunze, J.,
Combining the Concepts of Compression and Caching for Kupfer, M., Thompson, J.

a Two-Level File System. A Trace-Driven Analysis of the 4.2BSD File System.
In Proceedings of the 4th ACM Symposium on In Proceedings of the 10th ACM Symposium on Operating

Architectural Support for Programming Languages System Principles. December, 1985.
and Operating Systems. April, 1991.

[15] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon,
[3] Cova, L.L. B.

Resource Management in Federated Computing Design and Implementation of the Sun Network
Environments. Filesystem.

PhD thesis, Department of Computer Science, Princeton In Summer Usenix Conference Proceedings. 1985.
University, October, 1990.

[16] Satyanarayanan, M.
[4] Davidson, S.B. On the Influence of Scale in a Distributed System.

Optimism and Consistency in Partitioned Distributed In Proceedings of the 10th International Conference on
Database Systems. Software Engineering. April, 1988.

ACM Transactions on Database Systems 9(3), September,
[17] Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki,1984.

M.E., Siegel, E.H., Steere, D.C.
[5] Davidson, S.B., Garcia-Molina, H., Skeen, D. Coda: A Highly Available File System for a Distributed

Consistency in Partitioned Networks. Workstation Environment.
ACM Computing Surveys 17(3), September, 1985. IEEE Transactions on Computers 39(4), April, 1990.

[6] Floyd, R.A. [18] Satyanarayanan, M.
Transparency in Distributed File Systems. Scalable, Secure, and Highly Available Distributed File
Technical Report TR 272, Department of Computer Access.

Science, University of Rochester, 1989. IEEE Computer 23(5), May, 1990.

[7] Gray, C.G., Cheriton, D.R. [19] Schroeder, M.D., Gifford, D.K., Needham, R.M.
Leases: An Efficient Fault-Tolerant Mechanism for A Caching File System for a Programmer’s Workstation.

Distributed File Cache Consistency. In Proceedings of the 10th ACM Symposium on Operating
In Proceedings of the 12th ACM Symposium on Operating System Principles. December, 1985.

System Principles. December, 1989.
[20] Steere, D.C., Kistler, J.J., Satyanarayanan, M.

[8] Hisgen, A., Birrell, A., Mann, T., Schroeder, M., Swart, G. Efficient User-Level Cache File Management on the Sun
Availability and Consistency Tradeoffs in the Echo Vnode Interface.

Distributed File System. In Summer Usenix Conference Proceedings. June, 1990.
In Proceedings of the Second Workshop on Workstation

[21] Decorum File SystemOperating Systems. September, 1989.
Transarc Corporation, 1990.

[9] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A.,
[22] Walker, B., Popek, G., English, R., Kline, C., Thiel, G.Satyanarayanan, M., Sidebotham, R.N., West, M.J.

The LOCUS Distributed Operating System.Scale and Performance in a Distributed File System.
In Proceedings of the 9th ACM Symposium on OperatingACM Transactions on Computer Systems 6(1), February,

System Principles. October, 1983.1988.

[10] Kleiman, S.R.
Vnodes: An Architecture for Multiple File System Types

in Sun UNIX.
In Summer Usenix Conference Proceedings. 1986.

[11] Kumar, P., Satyanarayanan, M.
Log-Based Directory Resolution in the Coda File System.
Technical Report CMU-CS-91-164, School of Computer

Science, Carnegie Mellon University, 1991.

[12] Mashburn, H., Satyanarayanan, M.
RVM: Recoverable Virtual Memory User Manual
School of Computer Science, Carnegie Mellon University,

1991.

[13] Needham, R.M., Herbert, A.J.
Report on the Third European SIGOPS Workshop:

"Autonomy or Interdependence in Distributed
Systems".

SIGOPS Review 23(2), April, 1989.

