
Advanced Programming

Handout 4

Introductions

 Me: Benjamin C. Pierce
 (known as Benjamin, or, if you prefer, Dr.

Pierce, but not Ben or Professor)

 You?

Review

 What are the types of these functions?
f x = [x]

g x = [x+1]

h [] = 0
h (y:ys) = h ys + 1

Review

 How about these?
f1 x y = [x] : [y]

f2 x [] = x
f2 x (y:ys) = f2 y ys

f3 [] ys = ys
f3 xs [] = xs
f3 (x:xs) (y:ys) = f3 ys xs

Review

 How about these?
foo x y = x (x (x y))

bar x y z = x (y z)

baz x (x1:x2:xs) = (x1 `x` x2) : baz xs
baz x _ = []

What does baz do?

Review

 Recall that map is defined as:
map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

What does this function do?
mystery f l = map (map f) l

Review

Challenge 2: Use foldr to define map

 Recall that foldr is defined as:
foldr :: (a->b->b) -> b -> [a] -> b

foldr op init [] = init
foldr op init (x:xs) =
 x `op` foldr op init xs

 Challenge: Use foldr to define a function
maxList :: [Integer] -> Integer that returns the
maximum element from its argument.

N.b.: This was part of HW 2

Review

 Recall that the function
zip :: [a] -> [b] -> [(a,b)]

 takes a pair of lists and returns a list of
pairs of their corresponding elements:
zip [1,2,3] [True,True,False]
 [(1,True), (2,True), (3,False)]

 What is its definition?

 The function
zipWith :: (a->b->c) -> [a] -> [b] -> [c]

 generalizes zip:
zipWith (+) [1,2,3] [4,5,6]
 [5,7,9]

 What is its definition?

Review

 Can zip be defined in terms of zipWith?

 Can zip be defined in terms of foldr or foldl?

A Quick Footnote

(We’re all in this together...)

Clarification

 Handout 3 said:
“When we write (1,2,3,4) we really mean
(1,(2,(3,4))).”

 This is “morally true” but misleading: tuple
types in Haskell are n-ary, so
(Integer,Integer,Integer,Integer) and
(Integer,(Integer,(Integer,Integer))) are
distinct types and expressions like
(1,2,3,4)==(1,(2,(3,4))) are not legal.

Infinite Lists

Infinite Lists

 Lists in Haskell need not be finite.
E.g.:
list1 = [1..] -- [1,2,3,4,5,6,...]

f x = x:(f(x+1))
list2 = f 1 -- [1,2,3,4,5,6,...]

list3 = 1:2:list3 -- [1,2,1,2,1,2,...]

Working with Infinite Lists

 Of course, if we try to perform an
operation that requires consuming all
of an infinite list (such as finding its
length), our program will loop.

 However, a program that only
consumes a finite part of an infinite
list will work just fine.
take 5 [10..]  [10,11,12,13,14]

Lazy Evaluation

 The feature of Haskell that makes all this
work is lazy evaluation.

 Only the portion of a list that is actually
needed by other parts of the program will
actually be constructed at run time.

 We will discuss the mechanics of lazy
evaluation in much more detail later in the
course. Today, let’s look at a more
interesting example of its use...

Shapes III: Perimeters of Shapes
(Chapter 6)

 To compute the perimeter we need a function with
 four equations (1 for each Shape constructor).

 The first three are easy …
 perimeter :: Shape -> Float
 perimeter (Rectangle s1 s2) = 2*(s1+s2)
 perimeter (RtTriangle s1 s2) =
 s1 + s2 + sqrt (s1^2+s2^2)
 perimeter (Polygon pts) =
 foldl (+) 0 (sides pts)

-- or: sumList (sides pts)
 This assumes that we can compute the lengths of the sides of a

polygon. This shouldn’t be too difficult since we can compute the
distance between two points with distBetween.

The Perimeter of a Shape
s1

s2

s1

s2

Recursive Def’n of Sides

 sides :: [Vertex] -> [Side]
 sides [] = []
 sides (v:vs) = aux v vs
 where
 aux v1 (v2:vs’) = distBetween v1 v2 : aux v2 vs’
 aux vn [] = distBetween vn v : []
 -- i.e. aux vn [] = [distBetween vn v]

 But can we do better? Can we remove the direct recursion, as a
seasoned functional programmer might?

Visualize What’s Happening

 The list of vertices is: vs = [A,B,C,D,E]
 We need to compute the distances between the pairs of

points (A,B), (B,C), (C,D), (D,E), and (E,A).
 Can we compute these pairs as a list?

 [(A,B),(B,C),(C,D),(D,E),(E,A)]
 Yes, by “zipping” the two lists:

 [A,B,C,D,E] and [B,C,D,E,A]
as follows:
 zip vs (tail vs ++ [head vs])

A

B

C

DE

New Version of sides

This leads to:

sides :: [Vertex] -> [Side]
sides vs = zipWith distBetween
 vs
 (tail vs ++ [head vs])

There is one remaining case: the ellipse. The
perimeter of an ellipse is given by the summation
of an infinite series. For an ellipse with radii r1and r2:

 p = 2πr1(1 - Σ si)
where s1 = 1/4 e2

 si = si-1 (2i-1)(2i-3) e2 for i >= 1
 4i2
 e = sqrt (r1

2 – r2
2) / r1

Given si, it is easy to compute si+1.

Perimeter of an Ellipse

Computing the Series

nextEl:: Float -> Float -> Float -> Float
nextEl e s i = s*(2*i-1)*(2*i-3)*(e^2) / (4*i^2)

Now we want to compute [s1,s2,s3, …].
To fix e, let’s define:
 aux s i = nextEl e s i

So, we would like to compute:
[s1, s2 = aux s1 2, s3 = aux s2 3 = aux (aux s1 2) 3, s4 = aux s3 4 = aux (aux (aux s1 2) 3) 4, ...
]

si+1 = si (2i-1)(2i-3) e2

 4i2

Can we capture
this pattern?

Scanl (scan from the left)

 Yes, using the predefined function scanl:
scanl :: (a -> b -> b) -> b -> [a] -> [b]
scanl f seed [] = seed : []
scanl f seed (x:xs) = seed : scanl f newseed xs
 where newseed = f x seed

 For example:
 scanl (+) 0 [1,2,3]
  [0,
 1 = (+) 0 1,
 3 = (+) 1 2,
 6 = (+) 3 3]
  [0, 1, 3, 6]

 Using scanl, the result we want is:
scanl aux s1 [2 ..]

r2 = 1.5

r1 = 2.1
[s1 = 0.122449,
 s2 = 0.0112453,
 s3 = 0.00229496,
 s4 = 0.000614721,
 s5 = 0.000189685,
 ...]

Note how quickly
the values in the
series get smaller ...

Sample Series Values

Putting it all Together

perimeter (Ellipse r1 r2)
 | r1 > r2 = ellipsePerim r1 r2
 | otherwise = ellipsePerim r2 r1
 where ellipsePerim r1 r2
 = let e = sqrt (r1^2 - r2^2) / r1
 s = scanl aux (0.25*e^2)
 (map intToFloat [2..])
 aux s i = nextEl e s i
 test x = x > epsilon
 sSum = foldl (+) 0 (takeWhile test s)
 in 2*r1*pi*(1 - sSum)

