
CSE399: Advanced Programming

Handout 16

Web Scripting in Haskell

CGI Scripting

CGI Scripts are a popular means of providing dynamic
functionality for web sites.

• Web server (e.g. Apache) recognizes certain “magic
URLs” as dynamically generated. E.g.,
http://fling-l.seas.upenn.edu/~bcpierce/cgi-bin/ex1.cgi

• When one of these URLs is requested, the server runs
the corresponding program (ex1.cgi) as an external
process.

Demo: ex1

CGI Scripting

• If the URL being requested comes from a FORM in an
HTML page, the values in the form are also passed to
the CGI script.

• The details of how this happens depend on whether the
form uses the GET or POST method.

• If GET, then the parameters are passed in an enviroment
variable called QUERY_STRING.

• If POST, then the parameters are sent to the CGI program
on stdin.

In either case, a bunch of other information is passed in
environment variables.

• The server takes whatever this program prints on its
stdout (generally an HTML page) and sends it back to
the requesting client.

CGI Scripting on SEAS Machines

• Because badly written CGI scripts can open security
holes, CETS does not allow CGI scripts to be run on the
regular SEAS web server.

• Instead, a special machine, fling-lseas, is provided for
this purpose.

• fling-l runs the same version of linux as the lab
machines

• However, it runs the same version of linux as the lab
machines and has access to the same filesystem, so you
can compile things using GHC on minus or wherever
and put the binary in your ~/html/cgi-bin directory

• Caveat: make sure your executable program has the
extension .cgi — otherwise the server won’t recognize
it.

WASH/CGI

CGI Scripting in Haskell

Most languages these days have libraries that handle
low-level details like parsing the information from forms.

However, writing CGI scripts that present complex
functionality to the user is a harder problem. In particular,
the “one-shot” request/response model provided by the
HTTP and CGI protocols doesn’t directly support extended
conversations between a browser and a server.

For this, we need a higher-level notion of sessions.

WASH/CGI

WASH is a collection of Haskell libraries that provides such a
session abstraction (along with numerous other goodies).

Demo: Adventure.cgi (via browser and text)

bcpierce@minus:~/html/cgi-bin> ./Adventure.cgi

Content-Type: text/html; charset=utf-8

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-trans

><!-- generated by WASH/HTML 0.11

--><html xmlns="http://www.w3.org/1999/xhtml"><head><title>Adventures in Haskell...</title

></head

><body><h1>Adventures in Haskell...</h1

><script type="text/javascript"><!--

var SubmitAction=[];function OnSubmit(){var r=true;for(var i=0;i<SubmitAction.length;i++){r=r&&SubmitAction[

//

--></script

><form enctype="application/x-www-form-urlencoded" target="_self" onsubmit="return OnSubmit();" method="post"

/><img name="if0x0" align="center" title="non empty string expected" alt="non empty string expected" src="?nothing.g

/><input onclick="this.form.WASHsub.value=this.name; return true" name="s0x1" value="Go" type="submit"

/><p>Shortcuts: <input onclick="this.form.WASHsub.value=this.name; return true" name="s0x2" value="n" type="submit"

/> <input onclick="this.form.WASHsub.value=this.name; return true" name="s0x3" value="s" type="submit"

/> <input onclick="this.form.WASHsub.value=this.name; return true" name="s0x4" value="e" type="submit"

/> <input onclick="this.form.WASHsub.value=this.name; return true" name="s0x5" value="w" type="submit"

/></p

><p style="color: red; background: #bbbbbb; "></p

><hr width="95%"

/><p>Welcome... </p

><p>Enter a command (such as n, s, e, or w) to move to the next node.</p

><input value="" name="WASHsub" type="hidden"

/><input value="W10=" name="=CGI=parm=" type="hidden"

/></form

><script type="text/javascript"><!--

document.forms[0].f0x0.focus();

document.forms[0].f0x0.select();

// --></script

></body

></html

>

bcpierce@minus:~/html/cgi-bin>

The Document Sublanguage

Composing Documents

Wash provides functions corresponding to all the HTML tags.
So we can write, for example,

html (body (p (ul (li (text "Hello world")))))

Composing Documents

Each html constructor yields a (singleton) list of html nodes,
and these lists can be concatenated using the sequencing
combinator >>.

ul (li (text "a") >> li (text "b") >> li (text "c"))

Also, these sequences of HTML nodes are an instance of the
Monad class, so we can use the do syntax for composing
documents.

do p (text "This is a very")

p (text "complicated way")

p (do text "of saying"

ul (do li (text "nothing")

li (text "very")

li (text "important")))

Composing Documents

This makes it easy to write parameterized documents:

standardPage ttl nodes =

html (do head (title (text ttl))

body (do h1 (text ttl)

nodes))

HTML Quasi-Validation

Wash includes some sophisticated (and interesting) trickery
using Haskell’s type classes to perform “quasi-validation” of
generated HTML.

We’ll return to this on Wednesday. For now, just think of

WithHTML x y m a

as “the type of HTML”.

The Session Language

Sessions

The ask and tell functions are used to send responses to
the client browser.

ask :: WithHTML x CGI a -> CGI ()

tell :: (CGIOutput a) => a -> CGI ()

tell is lower-level: it just takes soem content (like HTML)
and ships it out. It is seldom used.

ask is implemented in terms of tell. It takes some HTML
with embedded forms, makes the necessary arrangements
(filling in hidden fields, etc.) for restarting the session at the
right place when these forms are activated, and uses tell to
ship out the resulting HTML.

Whole Programs

To actually execute a CGI action, we need to turn it into an
IO action. This is accomplished by the run function.

run :: CGI () -> IO ()

There is also a function

io :: (Read a, Show a) => IO a -> CGI a

that embeds an IO action in a CGI action. The result of the
IO must be Readable and Showable, so that it can be
recorded in the session log.

The Widget Sublanguage

Wash-Style Input

Input forms play a critical role in many interactive web sites.
Wash provides very powerful (but initially somewhat tricky
and puzzling!) facilities for dealing with forms in a high-level
way.

HTML Forms

<form method=POST action="http://www.kumquat.com/demo">

Name:

<input type=text name=name size=32 maxlength=80>

<p>

Sex:

<input type=radio name=sex value="M"> Male

<input type=radio name=sex value="F"> Female

<p>

<input type=submit>

</form>

WASH Forms

Wraps an HTML form around its arguments. All standard
attributes are computed and need not be supplied explicitly.

makeForm :: WithHTML x CGI a -> WithHTML y CGI ()

Convenient workhorse. Takes the title of a page and a
monadic HTML value for the contents of the page. Wraps
the contents in a form so that input fields and buttons may
be used inside.

standardQuery :: String -> H.WithHTML x CGI a -> CGI ()

standardQuery ttl elems =

ask (standardPage ttl (makeForm elems))

Continuation Buttons

Standard “wrapper type” for all kinds of input elements. The
argument conveys the attributes that determine precisely
how this INPUT behaves.

type HTMLField x y a = WithHTML x CGI () -> WithHTML y CGI

For example, submit0 creates a continuation button that
takes no parameters.

submit0 :: CGI () -> HTMLField x y ()

