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The Type of a Type
 In previous chapters we discussed:

 Monomorphic types such as Int, Bool, etc.
 Polymorphic types such as [a], Tree a, etc.
 Monomorphic instances of polymorphic types such as [Int], Tree

Bool, etc.
 Int, Bool, etc. are nullary type constructors, whereas [], Tree,

etc. are unary type constructors.  FiniteMap is a binary type
constructor.

 The “type of a type” is called a kind.  The kind of all monomorphic
types is written “*”:

Int, Bool, [Int], Tree Bool  ::  *

 Therefore the type of unary type constructors is:
[], Tree  ::  * -> *

 These “higher-order types” can be used in useful ways,
especially when used with type classes.



The Functor Class
 The Functor class demonstrates the use of high-order types:

class Functor f where
fmap :: (a -> b) -> f a -> f b

 Note that f is applied here to one (type) argument, so should have
kind “* -> *”.

 For example:
instance Functor Tree where
    fmap f (Leaf x)   = Leaf (f x)
    fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)

 Or, using the function mapTree previously defined:
instance Functor Tree where
    fmap = mapTree

 Exercise:  Write the instance declaration for lists.



The Monad Class

 Monads are perhaps the most famous (infamous?)
feature in Haskell.

 They are captured in a type class:
class  Monad m  where
  (>>=)   :: m a -> (a -> m b) -> m b   -- “bind”
  (>>)   :: m a -> m b -> m b          -- “sequence”
  return  :: a -> m a
  fail   :: String -> m a

  -- default implementations:
  m >> k =  m >>= (\_ -> k)
  fail s = error s

 The key operations are (>>=) and return.



Syntactic Mystery Unveiled
 The “do” syntax in Haskell is shorthand for Monad

operations, as captured by these rules:
do e  e
do e1; e2; ...; en  e1 >> do e2 ; ...; en
do pat <- e1 ; e2 ; ...; en 

let ok pat = do e2 ; ...; en
     ok _   = fail "..."
in e1 >>= ok

do let decllist ; e2 ; ...; en 
let decllist in do e2 ; ...; en

 Note special case of rule 3:
    3a.  do x <- e1 ; e2 ; ...; en 

e1 >>= \x -> do e2 ; ...; en



Example Involving IO
 “do” syntax can be completely eliminated using these

rules:
                  do putStr “Hello”

     c <- getChar
     return c

 putStr “Hello” >> -- by rule (2)
do c <- getChar
     return c

 putStr “Hello” >> -- by rule (3a)
getChar >>= \c ->
do return c

 putStr “Hello” >> -- by rule (1)
getChar >>= \c ->
return c

 putStr “Hello” >> -- by currying
getChar >>=
return



Functor and Monad Laws
 Functor laws:

fmap id   = id
fmap (f . g)   = fmap f . fmap g

 Monad laws:
return a >>= k      = k a
m >>= return      = m
m >>= (\x -> k x >>= h)  = (m >>= k) >>= h

Note special case of last law:
m1 >> (m2 >> m3) = (m1 >> m2) >> m3

 Connecting law:
fmap f xs  =  xs >>= (return . f)



Monad Laws Expressed
using “do” Syntax

 do x <- return a ; k x =  k a
 do x <- m ; return x =  m
 do x <- m ; y <- k x ; h y = do y <- (do x <- m ; k x) ; h y
 do m1 ; m2 ; m3 = do (do m1 ; m2) ; m3
 fmap f xs = do x <- xs ; return (f x)

 For example, using the second rule above, the example given
earlier can be simplified to just:

do putStr “Hello”
   getChar

or, after desugaring: putStr “Hello” >> getChar



The Maybe Monad

 Recall the Maybe data type:
data Maybe a = Just a

| Nothing

 It is both a Functor and a Monad:
instance  Monad Maybe  where

Just x  >>= k =  k x
Nothing >>= k =  Nothing
return x =  Just x
fail s =  Nothing

instance  Functor Maybe  where
fmap f Nothing    =  Nothing
fmap f (Just x)   =  Just (f x)

 These instances are indeed “law abiding”.



Using the Maybe Monad
 Consider the expression “g (f x)”.  Suppose that

both f and g could return errors that are encoded as
“Nothing”.  We might do:

case f x of
    Nothing -> Nothing
    Just y   -> case g y of

Nothing -> Nothing
Just z   -> …proper result using z…

 But since Maybe is a Monad, we could instead do:
do y <- f x
     z <- g y
     return …proper result using z…



Simplifying Further

 Note that the last expression can be desugared and
simplified as follows:

f x >>= \y ->  f x >>= \y ->
g y >>= \z ->        g y >>= return
return z

 f x >>= \y ->      f x >>= g
g y

 So we started with g (f x) and ended with
f x >>= g.



The List Monad
 The List data type is also a Monad:

instance  Monad []  where
    m >>= k =  concat (map k m)
    return x =  [x]
    fail x =  [ ]

 For example:
do x <- [1,2,3]
     y <- [4,5]
     return (x,y)

 [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
 Note that this is the same as:

[(x,y) | x <- [1,2,3], y <- [4,5]]

Indeed, list comprehension syntax is an alternative to
do syntax, for the special case of lists.



Useful Monad Operations
sequence :: Monad m => [m a] -> m [a]
sequence =  foldr mcons (return [])

      where mcons p q = do x  <- p
    xs <- q
    return (x:xs)

sequence_ :: Monad m => [m a] -> m ()
sequence_ =  foldr (>>) (return ())

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f as =  sequence (map f as)

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
mapM_ f as =  sequence_ (map f as)

(=<<) :: Monad m => (a -> m b) -> m a -> m b
f =<< x =  x >>= f



State Monads

 State monads are perhaps the most common kind of
monad: they involve updating and threading state
through a computation.  Abstractly:

data SM a = SM (State -> (State, a))

instance Monad SM where
     return a = SM $ \s -> (s,a)
     SM sm0 >>= fsm1 = SM $ \s0 ->

  let (s1,a1) = sm0 s0
       SM sm1 = fsm1 a1
       (s2,a2) = sm1 s1
  in (s2,a2)

 Haskell’s IO monad is a state monad, where State
corresponds to the “state of the world”.

 But state monads are also commonly user defined.
(For example, tree labeling – see text.)



IO is a State Monad

 Suppose we have these operations that implement an
association list:

lookup :: a -> [(a,b)] -> Maybe b
update :: a -> b -> [(a,b)] -> [(a,b)]
exists :: a [(a,b)] -> Bool

 A file system is just an association list mapping file
names (strings) to file contents (strings):

type State = [(String, String)]

 Then an extremely simplified IO monad is:
data IO a = IO (State -> (State, a))

whose instance in Monad is exactly as on the
preceding slide, replacing “SM” with “IO”.



State Monad Operations

 All that remains is defining the domain-specific
operations, such as:

readFile :: String -> IO (Maybe String)
readFile s = IO (\fs -> (fs, lookup s fs) )

writeFile :: String -> String -> IO ()
writeFile s c = IO (\fs -> (update s c fs, ()) )

fileExists :: String -> IO Bool
fileExists s = IO (\fs -> (fs, exists s fs) )

 Variations include generating an error when
readFile fails instead of using the Maybe type, etc.



Polymorphic State Monad

 The state monad can be made polymorphic in the
state, in the following way:

data SM s a = SM (s -> (s, a))

instance Monad (SM s) where
     return a = SM $ \s -> (s,a)
     SM sm0 >>= fsm1 = SM $ \s0 ->

  let (s1,a1) = sm0 s0
       SM sm1 = fsm1 a1
       (s2,a2) = sm1 s1
  in (s2,a2)

 Note the partial application of the type constructor SM
in the instance declaration.  This works because SM
has kind * -> * -> *, so “SM s” has kind * -> *.


