Advanced Programming

The Type of a Type

The Functor Class

H ando ut 1 2 = In previous chapters we discussed:
= Monomorphic types such as Int, Bool, etc. = The Functor class demonstrates the use of high-order types:
= Polymorphic types such as [a], Tree a, etc. class Functor f where
| = Monomorphic instances of polymorphic types such as [Int], Tree fuaplE ol (s b e a4 oD
Higher-Order Types Bool, efc. = Note that £ is applied here to one (type) argument, so should have
= Int, Bool, etc. are nullary type constructors, whereas [], Tree, kind “* -> *”,
etc. are unary type constructors. FiniteMapis a binary type .
(SOE Chapter 18) constructor. I e*anle. LELLLLE A
= The “type of a type” is called a kind. The kind of all monomorphic it 22:: £ (Teat xfee mi:pL (£ x)
types is written “*”: fmap £ (Branch tl t2) = Branch (fmap £ tl) (fmap £ t2)
Int, Bool, [Int], Tree Bool :: * = Or, using the function mapTree previously defined:
= Therefore the type of unary type constructors is: instance Functor Tree where
fmap = mapTree
[1, Tree :: * -> *
= These “higher-order types” can be used in useful ways, = Exercise: Write the instance declaration for /ists.
especially when used with type classes.
The Monad Class Syntacnc Mystery Unveiled Example InVOIVIng 10
] The “do” o T R s for M m “do” syntax can be completely eliminated using these
= Monads are perhaps the most famous (infamous?) " e “do” syntax in Haskell is shorthand for Monad rules:
feature in Haskell. operations, as captured by these rules: do putStr “Hello”
H) doede cl<=
getChar
H They are captured in a type class: do el; e2; ...; enDel > doe2 ; ...; en return c
Cl?j;)“c‘“f?l:‘a"}‘f‘fa L LERL LA AN SRR do pat <- el ; e2 ; ...; en> > putStr “Hello” >> -- by rule (2)
s, b i T e e let ok pat = do e2 ; ...; en do ¢ <- getChar
ECELl X AT 1 101;): i Pt AR return c
fail :: String ->m a 1315 Tk > putStr “Hello” > -- by rule (3a)
do let decllist ; €2 ; ...; en getChar >>= \c ->
-- default implementations: let decllist indo e2 ; ...; en do return c
-;>i k H |ikey (_ -> k) A i > putStr “Hello” >> -- by rule (1)
ail s error s = Note special case of rule 3: PRI S
m The key operations are (>>=) and return. Sajdofxfgletiiic2 (] KELi oA IR il
y el >>=\x ->doe2 ; ...; en > putStr “Hello” >> -- by currying
getChar >>=
return

Page b

Functor and Monad Laws

= Functor laws:
fmap id
fmap (£ . g)
= Monad laws:

return a >>= k
m >>= return
m >>= (\x -> k x >>= h)

Note special case of last law:
ml >> (m2 >> m3) = (ml >> m2) >> m3

id
fmap £ . fmap g

k a

m
(m >>= k) >>=h

= Connecting law:
fmap £ xs = xs >>= (return . f)

Monad Laws Expressed
using “do” Syntax

= do x <- return a ; k x = ka
= do x <- m ; return x = m

" dox<-m;y< kx;hy=doy<- (dox<-m;kx); hy
= doml ; m2 ; m3 =do (doml ; m2) ; m3

= fmap £ xs =do x <- xs ; return (£ x)

For example, using the second rule above, the example given
earlier can be simplified to just:
do putStr “Hello”
getChar

or, after desugaring: putstr “Hello” >> getChar

The Maybe Monad

= Recall the Maybe data type:

data Maybe a = Just a
| Nothing

m |t is both a Functor and a Monad:

instance Monad Maybe where
Just x >>= =

Nothing >>= k = Nothing
returnx = Just x
fail s = Nothing

instance Functor Maybe where
fmap £ Nothing Nothing
fmap £ (Just x) Just (f x)

These instances are indeed “law abiding”.

Using the Maybe Monad

Consider the expression “g (£ x)”. Suppose that
both £ and g could return errors that are encoded as
“Nothing”. We might do:

case f x of
Nothing -> Nothing
Just y -> case g y of
Nothing -> Nothing
Just z -> ...proper result using z...

But since Maybe is a Monad, we could instead do:

doy<-fx
z<-gy
return ...proper result using z...

Simplifying Further

= Note that the last expression can be desugared and
simplified as follows:

£ x >>=\y -> £ x >>=\y ->
gy>»=\z-> D g y >>= return
return z

D> £fx>=\y > > £fx>=g

gy
= So we started with g (£ x) and ended with
f x >>= g.

The List Monad

m The List data type is also a Monad:

instance Monad [] where

m >>=k = concat (map k m)
return x = [x]
fail x = []

= For example:
do x <- [1,2,3]
y <- [4,5]
return (x,y)

D [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
= Note that this is the same as:
[(x,y) | x<-[1,2,3], y <- [4,5]]

Indeed, list comprehension syntax is an alternative to
do syntax, for the special case of lists.

Page b

Useful Monad Operations

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])
where mcons p g = do X <- p
xs <-

a
return (x:xs)

sequence_ :: Monad m => [m a] ->m ()

sequence_ = foldr (>>) (return ())

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM £ as = sequence (map £ as)

mapM :: Monad m => (a ->m b) -> [a] ->m ()
mapM_ £ as = sequence (map £ as)

(=<<) :: Monadm=> (a->mb) >ma->mb

f =<< x = x >»= f

State Monads

State monads are perhaps the most common kind of
monad: they involve updating and threading state
through a computation. Abstractly:

data SM a = SM (State -> (State, a))

instance Monad SM where

return a
SM sm0 >>= fsml

SM $ \s -> (s,a)
SM § \sO ->

let (sl,al) = sm0 sO
SM sml = fsml al
(s2,a2) = sml sl

in (s2,a2)
Haskell’'s /O monad is a state monad, where State
corresponds to the “state of the world”.
But state monads are also commonly user defined.
(For example, tree labeling — see text.)

IO is a State Monad

Suppose we have these operations that implement an
association list:
a -> [(a,b)] -> Maybe b
a ->b ->[(a,b)] => [(a,b)]
: a [(a,b)] -> Bool
A file system is just an association list mapping file
names (strings) to file contents (strings):
type State = [(String, String)]

Then an extremely simplified 10 monad is:
data IO a = IO (State -> (State, a))

whose instance in Monad is exactly as on the
preceding slide, replacing “sm” with “10”.

lookup ::
update
exists :

State Monad Operations

= All that remains is defining the domain-specific
operations, such as:

readFile :: String -> IO (Maybe String)
readFile s = I0 (\fs -> (fs, lookup s £s))

writeFile :: String -> String -> IO ()
writeFile s ¢ = I0 (\fs -> (update s c fs, ()))

fileExists :: String -> IO Bool
fileExists s = I0 (\fs -> (fs, exists s £s))

= Variations include generating an error when
readrile fails instead of using the Maybe type, etc.

Polymorphic State Monad

The state monad can be made polymorphic in the
state, in the following way:

data SM s a = SM (s -> (s, a))

instance Monad (SM s) where

n a =8SM $ \s -> (s,a)
SM sm0 >>= fsml = SM § \s0 ->

let (sl,al) = sm0 sO
SM sml = fsml al
s2,a2) = sml sl

(
in (s2,a2)

Note the partial application of the type constructor SM
in the instance declaration. This works because SM
has kind * -> * -> * s0“sM s” haskind * -> *.

Page b

