Advanced Programming
Handout 11

Programming With
Streams

(SOE Chapter 14)

Streams

m A stream s an infinite sequence of values.
m We could define a special data type for them:

data Stream a = a :* Stream a

but in practice it's easier to use conventional lists,
ignoring [], so that we can reuse the many operations
on lists.

m Streams are often defined recursively, such as:
twos = 2 : twos

m By calculation:
twos = 2:twos=2> 2:2:twos=2> 2:2:2 :twos = ...

m This calculation does not terminate — yet it is not the
same as _|_, in that it yields useful information.

m [Another example: numsfrom n =n : numsfrom (n+1) |

Lazy Evaluation

m [wo ways to calculate “head twos”:

head twos head twos

= head (2 : twos) = head (2 : twos)

> 2 = head (2 : 2 : twos)
:)) head (2:2: 2 :twos)

m One strategy terminates, the other doesn’t.

m Normal order calculation guarantees finding a
terminating sequence if one exists.

m Normal order calculation: always choose the
outermost calculation (e.g.: unfolding “head” above
iInstead of unfolding “twos”).

m Also called /azy evaluation, or non-strict evaluation.
m (In contrast to eager or strict evaluation.)

Example: Fibonacci Sequence

m Well-known sequence:
1,1,2,3,5,8, 13, 21, 34, 55, 89, ...

m Here is a Haskell program that mimics the
mathematical definition:
fib O
fib 1
fib n b (n-1) + fib (n-2)
m Unfortunately, this program is terribly inefficient
(perform the calculation to see this). Indeed, it has an
exponential blow-up.

m Perhaps surprisingly, it is more efficient to create the
infinite stream of Fibonacci numbers first, then select
to the one we need.

1
1
fi

Fibs, cont’d

m Note this relationship:

fibs 112 3 5 813 21 34
+ tailfios 1 2 3 5 8 13 21 34 55

tail (tail fibs) 2 3 5 8 13 21 34 55 89
m This is easily transcribed into Haskell:

fibs = 1:1 :add fibs (tail fibs)
I '
tail (tail fibs)
where add = zipWith (+)

= And then finally:
fib n = fibs ' n

_/

Chasing One’s Tall

= Notice In:
fibs = 1 : 1 : add fibs (tail fibs)
al

that “tail fibs” starts right here . ~
m Introduce a name for that value so it can be shared-:

fibs = 1 : tf where tf =1 : add fibs (tail fibs)
= 1 :tf where tf =1 : add fibs tf

m Doing this again for the tail of the tail yields:

=>» 1:tf wheretf =1 :f2
where tf2 = add fibs tf

m Finally, unfold add:

=>» 1:tf wheretf =1 :f2
where tf2 = 2 : add tf tf2

Garbage Collection

m Because of sharing, exponential blowup is avoided.
= In a few more steps we have:

fibs =» 1 : tf
where tf = 1 ; tf2
where tf2 = 2 : tf3
where tf3 = 3 : add tf2 tf3

® Now note that “tf” is only used in one place, and thus
might as well be eliminated, yielding:

= 1:1:1f2
where tf2 = 2 : tf3
where tf3 = 3 : add tf2 tf3

m Think of this as “garbage collection” of names.

Stream Diagrams

m An alternative fibsl 112358,

(perhaps better)
way to depict
sharing is
graphically using a
Stream diagram.

m Another example:
client-server
Interactions.

