
CSE399: Advanced Programming

Handout 1

What is Advanced Programming?

Good programmers...

• write code that gets the job done

Excellent programmers...

• write code that other people can read, understand,
maintain, and modify

• rewrite code to make it clear and elegant

• design with abstractions

• design for reuse

• etc.

This course is about developing these skills.

What This Course is Not

CSE350, Software Engineering, takes a different perpsective
on “advanced programming.”

• CSE350 focuses on programming in the large — the
special problems that arise in software projects that are
too large for one person
Specific topics include

• Software lifecycle models
• Project management
• Design modeling notations (e.g., UML)
• Formal specification
• etc.

• The present course is mostly about the skills that make
excellent individual programmers.

Naturally, there is some overlap. However, the courses are
designed so that you can productively take both, if you want.
(Plans are to offer CSE350 in Spring ’06.)

Logistics

Basics

Web page: http://www.cis.upenn.edu/

∼bcpierce/courses/advprog

Newsgroup: upenn.cis.cse399

Textbook: The Haskell School of Expression,
by Paul Hudak

(hereafter SOE)

Note: The newsgroup is intended for announcements and for
discussions among class participants; we will not be
monitoring it continuously.

Personnel

Instructor: Benjamin Pierce
Levine 304
bcpierce at cis.upenn.edu
Office hours: TBA

Guest instructors: Fernando Pereira (Mon, Wed this week)
Brian Aydemir (Fri this week)

Teaching Assistant: Dimitrios Vytiniotis
Levine 565
dimitriv at cis.upenn.edu
Office hours: TBA

Administrative Assistant: Jennifer Finley, Levine 308

Missing Professor

Both Benjamin Pierce and Dimitris Vytiniotis are out of town
this week (presenting papers at a programming languages
conference).
We’ve arranged an exciting lineup of guest lecturers, who
should be able to answer most of your questions about the
material.
We can also both be reached by email.

Grading

Course grades will be based on:

• Class participation [20%]

• Weekly programming assignments [40%]

• Final project [40%]

Assignments will be accepted late, but will lose 10% of their
value for each day (or partial day) after the due date.

There will be reading assignments following most lectures.
“Class participation” means (among other things) staying on
top of these.

First Homework Assignment

• The first homework assignment (on basic Haskell
programming) is due this Sunday.

• You will need:
• a machine where Haskell is installed, such as the Linux
lab machines in Moore 100 (you can also install Haskell on
your own machine if you like — see the Resources page
of the course web site)

• Chapters 1 and 2 of SOE as background reading

• Read the Haskell Style Guide on the course web page.
The rules listed on that page will be strictly enforced
when homework sets and projects are graded.
(Exception: no testing code is needed for the first
assignment.)

• Please read Chapter 1 of SOE before Wednesday’s
lecture.

Rough Course Outline

• Haskell (first 200 or so pages of SOE), interleaved with
material on...

• Efficient functional data structures
• XML transformation
• Modular design
• Unit testing
• Performance tuning
• Debugging

• Larger case study:
• Web server design

• Concurrency (time allowing)

• Transplanting ideas from Haskell to Java/C#

N.b.: This is the first time this course is being offered, so
there are sure to be many revisions to the plans!

On to Haskell

Programming Languages Don’t Matter

• Languages come and go.

• You have probably used several by now (Java, C,
assembly language, HTML, PHP, JavaScript, etc.); in the
course of your career, you will use many more.

• The hardest aspects of software construction —
understanding requirements, specification, design, etc. —
are largely independent of the language(s) being used.

Programming Languages Matter

• However, a programming language is a power tool.

• Many details must be mastered in order to use it
effectively.

• Moreover, each language embodies some style of
programming — some particular view of how software
should be constructed. To use it well, you have to be
able to get into this mindset.
Trying to use a language “against the grain” tends to
lead to abominations.

Functional Programming

Haskell is a functional programming language — i.e., one in which
the functional programming style is the dominant idiom. Other
well-known functional languages include Lisp, Scheme, OCaml, and
Standard ML. The functional style can be described as a
combination of...

• persistent data structures (which, once built, are never
changed)

• recursion as a primary control structure

• heavy use of higher-order functions (functions that take
functions as arguments and/or return functions as results)

Imperative languages, by contrast, emphasize

• mutable data structures

• looping rather than recursion

• first-order programming (though many object-oriented “design
patterns” involve higher-order idioms—e.g., Subscribe/Notify,
Visitor, etc.)

Applications of Functional Languages

• compilers, theorem provers, and other symbol processing
applications

• web programming (e.g., Yahoo shopping engine)

• systems programming (e.g., Unison file synchronizer,
MLDonkey p2p client)

• high-assurance crypto software (e.g., Galois)

• military and manufacturing planning, financial decision
making (e.g., Aetion)

• etc.

Haskell Geneology

� � � � � � �
� � � � 	
 � �

� � �
 � � � � � � �

� � � � �
� � � � 	
 � �

� � � �
 � � � � � � � � � � �

 � �
 � � � � � �
� � � 	
 � �

� � ! � � � � � � � " � � # � �
� � � � $ � �

 � � � � �
� $ � � 	
 � �

� % &
� ' � � � � � � �

� (� � � � � �

) �
 � � � �
 � � � �
 � � � � � �

" � � � � � � * + � �
 � � � � � �
� � � � � � � + " �
 � � �
 � " � � + � � � " � � � �

Haskell vs. OCaml

• Both Haskell and OCaml were strong contenders for this
course

• Both have
• rich type systems based on parametric polymorphism
• type inference
• powerful algebraic pattern matching
• excellent support for declarative and higher-order
programming

• OCaml has...
• probably the world’s best module language
• support for object-oriented programming

• Haskell has...
• type classes
• monads
• fully lazy evaluation

• In the end, Haskell won (by a hair) as being a little more
mind-expanding

Haskell Implementations

• There are two main implementations of Haskell:
• The Glasgow Haskell Compiler (GHC)
• The Hugs interpreter

• For most of the course, we will use Hugs. Some
assignments (in particular those involving graphics)
require Hugs.

• Hugs is installed on the Linux systems in Moore 100.

• If you want to use your own computer for assignments,
you’ll need to install Hugs, plus a couple of additional
libraries. See the Resources page under the main course
web page for instructions.

Programming in Haskell

Computation by Calculation

• Computation by calculation is a simple, familiar concept:
replacement of equals by equals according to some set
of given laws:

3 * (4 + 5)

⇒ { add }
3 * 9

⇒ { multiply }
27

• This sort of thing can be found in pretty much every
language. What is unusual about Haskell is that
computation by calculation is all you need to know, to
understand everything about how programs behave.

Abstraction

• We are also interested in abstraction: the process of
recognizing a repeating pattern and capturing it
succinctly in one place instead of many.

• For example, the repeating pattern in

3*(4+5) 9*(1+3) 333*(123+567)

can be captured as a function

easy x y z = x * (y + z)

and specific instances can be written as:

easy 3 4 5 easy 9 1 3 easy 333 123 567

Abstraction

The process of computation by calculation is extended to
deal with function abstractions by folding and unfolding
definitions:

easy 3 4 5

⇒ { unfold }
3 * (4 + 5)

⇒ { add }
3 * 9

⇒ { multiply }
27

Symbolic Calculation

In addition to computing with concrete quantities, we can
use computation by calculation to reason symbolically:

easy a b c

⇒ { unfold }
a * (b + c)

⇒ { commutativity of + }
a + (c + b)

⇒ { fold }
easy a c b

Expressions, Values, and Types

• The phrases on which we calculate are called expressions.

• When no more unfolding (of either primitives or user-defined
functions) is possible, the resulting expression is called a value.

• A type is a collection of expressions with common attributes.
Every expression (and thus every value) belongs to a type.

• We write exp :: T to say that expression exp has type T.

Basic Types

Haskell offers the usual assortment of primitive types and
associated operators:

• Integers:
3 + 4 * 5 :: Integer

• Floats:
3 + 4.5 * 5.5 :: Float

• Characters:
’a’ :: Char

• Strings are just lists of characters

Note that the + and * operators are overloaded. We will
have (much) more to say about this later.

Functions

The type of a function taking arguments of types A and B

and returning a result of type C is written A->B->C.

(+) :: Integer -> Integer -> Integer

easy :: Integer -> Integer -> Integer -> Integer

Note that (+) is syntax for treating a symbolic (infix) name
as a regular one. Conversely, an alphabetic name enclosed in
backquotes can be used in infix position. E.g., if we define

plus x y = x + y

then 6 ‘plus‘ 7 is a valid expression.

Tuples

A tuple is a sequence of values enclosed in parens and
separated by commas.
(’b’,4) :: (Char,Integer)

The types of tuples are written according to the same
convention.

Tuples are destructed by pattern matching:

easytoo :: (Integer,Integer,Integer) -> Integer

easytoo (x,y,z) = x+y*z

Lists

One very handy structure for storing collections of data
values is a list. Lists are provided as a built-in type in Haskell
and a number of other popular languages (e.g., OCaml,
Scheme, and Prolog—but not, unfortunately, Java or C#).
We can build a list in Haskell by writing out its elements,
enclosed in square brackets and separated by commas.

[1, 3, 2, 5] :: [Integer]

The empty list, written [], is also pronounced “nil.”

The Types of Lists

We can build lists whose elements are drawn from any of
the basic types (Integer, Char, etc.).

[1, 2, 3] :: [Integer]

[’a’, ’b’, ’c’] :: [Char]

We can also build lists of lists:

[[1, 2], [2, 3, 4], [5]] :: [[Integer]]

Indeed, for every type T, we can build lists of type [T].

Lists are Homogeneous

Haskell does not allow different types of elements to be
mixed within the same list:

[1, 2, ’c’]

No instance for (Num Char)

arising from the literal ‘1’ at <interactive>:1

In the list element: 1

In the definition of ‘it’: it = [1, 2, ’c’]

(Promise: This sort of error message will make sense in a
few weeks!)

Constructing Lists

Haskell provides a number of built-in operations that return
lists. The most basic one creates a new list by adding an
element to the front of an existing list. It is written : and
pronounced “cons” (because it constructs lists).

1 : [2, 3] :: [Ingeger]

add123 :: [Integer] -> [Integer]

add123 l = 1 : 2 : 3 : l

add123 [5, 6, 7]

⇒ [1, 2, 3, 5, 6, 7]

add123 []

⇒ [1, 2, 3]

Constructing Lists

In fact, the square bracket syntax for lists is just syntactic
sugar for expressions using cons and nil:

[x1, x2, . . . , xn]

is simply a shorthand for

x1 : x2 : . . . : xn : []

Some Recursive Functions that Generate Lists

copies :: Integer -> Integer -> [Integer]

copies k n = -- A list of n copies of k

if n == 0 then []

else k : copies k (n-1)

fromTo :: Integer -> Integer -> [Integer]

fromTo m n = -- A list of the numbers from m to n

if n < m then []

else m : fromTo (m+1) n

copies 7 12

⇒ [7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7]

fromTo 9 18

⇒ [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

Destructing Lists

Like tuples, lists can be destructed by pattern matching in
function headers.

listSum :: [Integer] -> Integer

listSum [] = 0

listSum (x:xs) = x + listSum xs

We have split the definition of listSum into two separate
clauses, one for empty lists and the other for lists with at
least one element.

The Interactive Top Level

The Hugs interpreter can be used inb two modes:

• The batch interpreter, invoked by the command runhugs,
is the standard way of executing larger programs. We’ll
come back to it next time.

• The interactive top level, invoked by the command hugs,
is a convenient way of experimenting with small
programs.

The mode of interacting with the top level is typing in a
series of expressions; Hugs evaluates them as they are typed
and displays the results.
When run with a filename as a command-line argument,
hugs loads this file and makes its definitions available for
interactive testing.

Hugs Example

Suppose file foo.hs contains the following:
module Foo where

foo x y = x + y*3

bar x = foo x 7

Then...

Hugs Example

~/advprog/lectures> hugs foo.hs

__ __ __ __ ____ ___ ___

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2003

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Report bugs to: hugs-bugs@haskell.org

|| || Version: November 2003 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help

Foo> bar 6

27

Foo> foo 4 6

22

Local Definitions

Names need not be declared at the top level, if their use is
confined to a local scope:

foo1 z =

let triple x = x*3

in triple z

Or:
foo2 z = triple z

where triple x = x*3

Type Synonyms

It is often convenient (and a useful aid to reading) to give
names to compound types:

type Coordinate = (Float,Float)

Using type names introduced in this way does not change
the meaning of programs: writing Coordinate is exactly the
same as writing (Float,Float).

Data Types

Haskell also provides another — much more powerful —
facility for defining new types, called “data types.”

As a motivating example, suppose we are building a (very
simple) graphics program that displays circles and squares.
We can represent each of these with three real numbers...

Data Types

A circle is represented by the co-ordinates of its center and
its radius. A square is represented by the co-ordinates of its
bottom left corner and its width. So we can represent both
shapes as elements of the type:

type CircleType = (Float, Float, Float)

type SquareType = (Float, Float, Float)

However, because their types are identical, there is nothing
to prevent us from mixing circles and squares. For example,
if we write

areaOfSquare (_,_,d) = d * d

we might accidentally apply the areaOfSquare function to a
circle and get a nonsensical result.

Data Types

We can improve matters by defining Circle and Square as
data types:

data CircleDataType = Circle (Float,Float,Float)

data SquareDataType = Square (Float,Float,Float)

These declarations do two things:
• They create new types called CircleDataType and
SquareDataType that are different from any other type in
the system.

• They create constructors called Circle and Square that
can be used to create a circle or square from three
floats.

For example:

mySquare :: SquareDataType

mySquare = Square (1.1, 2.2, 3.3)

Deconstructing Data Types

We take instances of data types apart with (surprise,
surprise...) pattern matching.

areaOfSquare1 :: SquareDataType -> Float

areaOfSquare1 (Square (_,_,d)) = d*d

I.e., the Square constructor can be used both as a function
and as a pattern.

Note that, since SquareDataType and CircleDataType are
different types, there is no danger of applying areaOfSquare

to a circle.

Variant Types

Going back to the idea of a graphics program, we obviously
want to have several shapes on the screen at once. For this
we’d probably need a list of circles and squares, but such a
list would be heterogenous. How do we make such a list?
The solution is to declare a data type whose instances can
be either circles or squares.

data CircleOrSquare =

Circle (Float,Float,Float)

| Square (Float,Float,Float)

mySquare :: CircleOrSquare

mySquare = Square (1.1, 2.2, 3.3)

myCircle :: CircleOrSquare

myCircle = Circle (0, 0, 10)

Variant Types

A data type that can have more than one form is often
called a variant type.

We can also write functions that do the right thing on all
forms of a variant type. Again we use pattern matching:

area :: CircleOrSquare -> Float

area (Circle (_,_,r)) = pi * r * r

area (Square (_,_,d)) = d * d

Another Datatype of Shapes

Chapter 3 of SOE develops a more sophisticated data type
of geometric shapes.

data Shape =

Rectangle Float Float

| Ellipse Float Float

| RtTriangle Float Float

| Polygon [(Float,Float)]

(Quick check: why is the pair of floats enclosed in parens in
one place and not the other?)

Another Datatype of Shapes

We can make this a bit more readable with a few auxiliary
type synonyms.

data Shape =

Rectangle Side Side

| Ellipse Radius Radius

| RtTriangle Side Side

| Polygon [Vertex]

type Side = Float

type Radius = Float

type Vertex = (Float,Float)

Calculating Areas

area :: Shape -> Float

area (Rectangle s1 s2) = s1*s2

Calculating Areas

area (RtTriangle s1 s2) = s1*s2/2

area (Ellipse r1 r2) = pi*r1*r2

Calculating Areas

What about polygons?

Calculating Areas

What about polygons?

The area of a convex polygon can be calculated as follows:

1 Compute the area of the triangle formed by the first
three vertices.

2 Deleted the second vertex to form a new polygon.

3 Sum the area of this new polygon and the area of the
triangle from (1).

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Calculating Areas

In Haskell:
area (Polygon (v1:v2:v3:vs))

= triArea v1 v2 v3 + area (Polygon (v1:v3:vs))

area (Polygon _)

= 0

(triArea, which calculates the area of a triangle, is defined in
the book.)

Polygon Areas Again

SOE goes on to reformulate the polygon area code as
follows:

area (Polygon (v1:vs)) = polyArea vs

where polyArea :: [Vertex] -> Float

polyArea (v2:v3:vs’) = triArea v1 v2 v3

+ polyArea (v3:vs’)

polyArea _ = 0

Is this an improvement?

Polygon Areas Again

Optimizations:

• Avoids reconstructing a Polygon on each recursive call.

• Performs only one cons instead of two on each recursive
call (by holding on to v1 in a local variable)

Polygon Areas Again

Optimizations:

• Avoids reconstructing a Polygon on each recursive call.

• Performs only one cons instead of two on each recursive
call (by holding on to v1 in a local variable)

Pessimizations:

• Somewhat harder to read, write, and understand

Polygon Areas Again

Optimizations:

• Avoids reconstructing a Polygon on each recursive call.

• Performs only one cons instead of two on each recursive
call (by holding on to v1 in a local variable)

Pessimizations:

• Somewhat harder to read, write, and understand

I.e., the new version trades a small decrease in readability for
a small increase in efficiency.

Polygon Areas Again

Optimizations:

• Avoids reconstructing a Polygon on each recursive call.

• Performs only one cons instead of two on each recursive
call (by holding on to v1 in a local variable)

Pessimizations:

• Somewhat harder to read, write, and understand

I.e., the new version trades a small decrease in readability for
a small increase in efficiency.

This is not a good trade!!

Premature Optimization

1 In most programs, the vast majority of the time is spent
in a tiny portion of the code.

2 Programmers (even good ones) are notoriously bad at
predicting which portion.

3 Machines are real fast and getting faster. Programmers
(even good ones) are not getting faster.

Premature Optimization

1 In most programs, the vast majority of the time is spent
in a tiny portion of the code.

2 Programmers (even good ones) are notoriously bad at
predicting which portion.

3 Machines are real fast and getting faster. Programmers
(even good ones) are not getting faster.

Moral:

• Write code that is manifestly correct

• Measure performance

• Tune bottlenecks as needed.

(flame off)

