
© 1997 ObjectSpace, Inc. • All rights reserved • September 1997

THE

AGENT ORB

FOR JAVA

��������	��
���	��

����
�	��	�
�������
���

�������	�
��������

The ObjectSpace Voyager™ Core Technology (Voyager)
contains the core features and architecture of the ObjectSpace
Voyager platform, including a full-featured, intuitive ORB with
support for mobile objects and autonomous agents. Also in the
core package are services for persistence, scalable group
communication, and basic directory services. Voyager can be
downloaded for free commercial use from www.objectspace.com
and is everything you need to get started building high-impact
systems in Java™ today.

This text presents a high-level overview of Version 1.0 of the
Voyager Core Technology. It first presents Voyager concepts,
then an example of Voyager in action.

There are three models of distributed computing:
client/server, peer-based, and agent-based. ObjectSpace’s
Voyager is the only product that offers the ability to build

applications that mix all three models. This makes Voyager
a leading tool in distributed application development.

—J.P. Morgenthal, President, New Horizon Computing
Corp., leading analyst on Java

2

What Is Voyager?

ObjectSpace Voyager is the ObjectSpace product line designed to help developers produce
high-impact distributed systems quickly. Voyager is 100% Java and is designed to use the Java
language object model. Voyager allows you to use regular message syntax to construct remote
objects, send them messages, and move them between programs. This reduces learning curves,
minimizes maintenance, and, most importantly, speeds your time to market for new advanced
systems. Voyager’s architecture is designed to provide developers full flexibility and powerful
expansion paths.

The root of the Voyager product line is the ObjectSpace Voyager Core Technology. This product
contains the core features and architecture of the platform, including a full-featured, intuitive
object request broker (ORB) with support for mobile objects and autonomous agents. Also in the
core package are services for persistence, scalable group communication, and basic directory
services. The ObjectSpace Voyager Core Technology is everything you need to get started building
high-impact systems in Java today.

As the industry evolves, other companies providing distributed technologies struggle as they try to
adapt to the new Java language. These companies are required to adapt older object models to fit
Java. This results in a series of compromises that together have a dramatic impact on time to
market and development costs. Voyager, on the other hand, is developed to use the Java language
as its fundamental interface.

One of Java’s primary differentiations is the ability to load classes into a virtual machine at run
time. This capability enables infrastructures to use mobile objects and autonomous agents as
another tool for building distributed systems. Adding this capability to older distributed
technologies is often impractical and results in difficult-to-use infrastructures. Voyager provides
seamless support for mobile objects and autonomous agents.

Future CORBA Integration

Complete bidirectional CORBA integration is scheduled for release as part of the Voyager Core
Technology 1.1.0. This additional Java package allows Voyager to be used as a CORBA 2 client or
server. You will be able to generate a Voyager remote interface from any IDL file. You will be able
to use this interface to communicate with any Voyager or CORBA server. Without modifying the
code, you will be able to export any Java class as a CORBA server in seconds, automatically
generating IDL for use by CORBA implementations.

As part of the Voyager Core Technology, the CORBA integration will also be free for most
commercial use. For more information, read the ObjectSpace Voyager CORBA Integration
Technical Overview paper on www.objectspace.com.

3

Developing with Voyager

Voyager was designed from the ground up to solve problems encountered in the development of
distributed systems in Java. As the premier Java distributed systems architecture, Voyager is a
technology that enables developers to solve these problems quickly and efficiently.

Consider the following issues.

� Problem

Time to market is crucial and development time is expensive. Extra months spent in development
mean extra months for competitors to gain market share.

Solution

Voyager is the easiest way to build distributed systems in Java. Previous technologies require you
to follow a tedious, clumsy, and error-prone multistep process to prepare a class for remote
programming. A single Voyager command replaces this hassle and automatically enables any
class for distributed computing and persistence in just seconds. Voyager does not require Java
classes to be altered. You can remotely construct and communicate with any Java class, even
third-party libraries, without accessing the source code. You can remotely persist any serializable
object. Other technologies typically require the use of .idl files, interface definitions, and
modifications to the original class, all of which consume development time and couple your
domain classes tightly to a particular ORB or database technology.

� Problem

Enterprise networks are often comprised of many hardware and operating system platforms.
Systems built with legacy ORBs often require separate binaries for each platform. This increases
developer load and system complexity, and complicates system maintenance.

Solution

Voyager is 100% Java. Voyager applications can be written once and run anywhere Java 1.1 is
supported.

� Problem

Resources in a distributed system need to be used wisely. When a machine is being overused, load
should be shifted to other, less utilized machines. Existing ORBs do not help developers solve
this problem.

Solution

Voyager is dynamic. Mobile objects and agents can be used to encapsulate processing, and can
migrate through the network, carrying their work load with them. Instead of having only static
processes occurring in a given virtual machine, developers now have the ability to exploit the
natural connection between agents and processing. The result is effortless, dynamic load
balancing.

4

� Problem

Information access needs vary. Sometimes information needs to be broadcast across the
enterprise; sometimes it should be filtered based on the needs of the user. Sometimes it is
transient, while at others it is stored for future use.

Solution

Voyager is comprehensive. It allows development of high performance "push" systems using the
built-in publish/subscribe technology. Voyager also supports distributed persistence,
multicasting, and a rich set of message types.

� Problem

Developers need to leverage their JavaBeans™ components in a distributed context, but cannot
afford to modify their architecture with wrapper code or spend time developing complex glue
logic.

Solution

Voyager is JavaBeans enabled. It provides support for distributed JavaBeans events without any
modifications to the beans. No other ORB has such a seamless beans event distribution model.

� Problem

Large systems and congested networks often result in sluggish software. Today’s high
performance needs require responsive software.

Solution

Voyager is fast. Remote messages with Voyager are as fast as the CORBA ORBs. Messages
delivered by mobile agents can be up to 1,000,000 times quicker.

� Problem

Today’s embedded systems require small runtime footprints. Similarly, Web applets have to be
small to minimize download times.

Solution

Voyager is compact. The entire Voyager system is less than 200KB, not including the JDK classes
it uses. It is only 100K when compressed in a .jar file. Voyager is a fully functional,
agent-enhanced object request broker and does not require any additional software beyond
JDK 1.1.

5

Concepts

This section describes the concepts behind the ObjectSpace Voyager Core Technology
architecture, using a mix of text, example code, and drawings.

Objects

Objects are the building blocks of all Voyager programs. An object is a software component that
has a well-defined set of public functions and encapsulates data. The following object is an
instance of the class Store with a public function to accept new stock.

Store store = new Store();
store.stock("widget", 43);

Voyager-Enabled Programs

When a Voyager-enabled program starts, it automatically spawns threads that provide timing
services, perform distributed garbage collection, and accept network traffic. Each Voyager-enabled
program has a network address consisting of its host name and a communications port number,
which is an integer unique to the host.

Port numbers are usually randomly allocated to programs. This is sufficient for clients
communicating with remote objects and for creating and launching agents into a network.
However, if a program will be addressed by other programs, you can assign a well-known port
number to the program at startup.

Voyager.startup(7000); // assign port number 7000 to this program
Store store = new Store();

store
stock("widget",43)

An object
(an instance
of class Store)

A Voyager-enabled
program on the host
london with port 7000

store

london:7000

Agent technology will be as important for the Internet as the Internet has
been for personal computing. Voyager is the most powerful and

easy-to-use solution for agent-enabled distributed computing I have seen.

—John Nordstrom, Sabre Decision Technologies

6

Remote-Enabled Classes and Virtual References

A class is remote-enabled if its instances can be created outside the local address space of a
program and if these instances can receive messages as if they were local. Voyager allows an
object to communicate with an instance of a remote-enabled class via a special object called a
virtual reference. When messages are sent to a virtual reference, the virtual reference forwards the
messages to the instance of the remote-enabled class. If a message has a return value, the target
object sends the return value to the virtual reference, which returns this message to the sender.

After remote-enabling a class, you can:

� Construct instances remotely, even if the class code does not exist on the remote machine.

� Send messages to remote instances using regular Java syntax.

� Connect to existing remote instances in other programs.

� Move objects to other programs, even if the class code is not already in the destination program.

� Persist the object.

Generating a Remote-Enabled Class

Use Voyager’s vcc utility to generate a remote-enabled class from an existing class. The vcc
utility reads a .class or .java file and generates a new virtual class. The virtual class contains
a superset of the original class functions and allows function calls to occur even when objects are
remote or moving.

The virtual class name is V plus the original class name. For example, if the file Store.java
contains the source code for class Store , the compiled class file is Store.class . You can
remote-enable the Store class by running vcc on either Store.java or Store.class to
create a new, virtual class named VStore .

For more detailed information about remote enabling, refer to Chapter 5 of the ObjectSpace
Voyager Core Technology User Guide.

store

dallas:8000

vstore

london:7000

remote message

return value

message

return value

7

Constructing a Remote Object

After remote-enabling a class, you can use the class constructors of the resulting virtual class to
create a remote instance of the original class. The remote instance can reside in your current
program or a different program, and a virtual reference to the remote instance is created in your
current program.

To construct a remote instance of a class, give the virtual class constructor the address of the
destination program where the remote instance will reside. If the original class code for the remote
instance does not exist in the destination program, the Voyager network class loader automatically
loads the original class code into the destination program.

Voyager.startup(7000);
VStore vstore = new VStore("dallas:8000/Acme"); // alias is Acme

When a remote object is constructed, it is automatically assigned a 16-byte globally unique
identifier (GUID), which uniquely identifies the object across all programs worldwide. Optionally,
you can assign an alias to an object during construction. The GUID or the optional alias can be
used to locate or connect to the object at a later point in time. This directory service is a basic
Voyager feature. Voyager also includes an advanced federated directory service for more complex
directory requirements. Refer to Chapter 16 of the ObjectSpace Voyager Core Technology User
Guide for more information.

Sending a Message to a Remote Object

When a message is sent to a virtual reference, the virtual reference forwards the message to its
associated remote object. If the message requires a return value, the remote object passes the return
value to the virtual reference, which forwards it to the sender. Similarly, if the remote object
throws an exception, the exception is caught and passed back to the virtual reference, which
throws it to the caller.

vstore.stock("widget", 43);

store

dallas:8000

remote construction
vstore

london:7000

construct

A virtual object
(an instance of VStore)

A remote object
(an instance of Store)

store

dallas:8000

vstore

london:7000

stock("widget", 43)

return value

stock("widget", 43)

return value

8

Connecting to an Existing Remote Object

A remote object can be referenced by any number of virtual references. To create a new virtual
reference and associate it with an existing remote object, supply the address of the program where
the existing remote object currently resides and the alias of the remote object to the static
VObject.forObjectAt() method.

// connect using alias
Voyager.startup(9000);
VStore vstore2 = (VStore) VObject.forObjectAt("dallas:8000/Acme");
int price = vstore2.buy("widget");

Mobility

You can move any serializable object from one program to another by sending the moveTo()
message to the object via its virtual reference. Supply the address of the destination program as a
parameter.

vstore.moveTo("tokyo:9000");

The object waits until all pending messages are processed and then moves to the specified
program, leaving behind a forwarder to forward messages and future connection requests.

store

dallas:8000

vstore

london:7000

buy("widget")buy("widget")

tokyo:9000

buy("widget") buy("widget")
vstore2

tokyo:9000

store

dallas:8000

moveTo("tokyo:9000")
vstore

london:7000

moveTo("tokyo:9000")

store

tokyo:9000dallas:8000

vstore

london:7000

tokyo:9000

9

You can send a message to an object even if the object has moved from one program to another.
Simply send the message to the object at its last known address. When the message cannot locate
its target object, the message searches for a forwarder. If the message locates a forwarder
representing the object, the forwarder sends the message to the object’s new location.

int price = vstore.buy("widget");

The return value is tagged with the remote object’s new location, so the virtual reference can
update its knowledge of the remote object’s location.

Subsequent messages are sent directly to the remote object at its new location, bypassing the
forwarder.

store

tokyo:9000dallas:8000

vstore

london:7000

buy("widget") buy("widget") buy("widget")

tokyo:9000

store

tokyo:9000dallas:8000

vstore

london:7000

return value with new location

return value

tokyo:9000

tokyo:9000
store

tokyo:9000dallas:8000

vstore

london:7000

buy("widget") buy("widget")

10

Agents

An agent is a special object type. Although there is no single definition of an agent, all definitions
agree that an agent has autonomy. An autonomous object can be programmed to satisfy one or
more goals, even if the object moves and loses contact with its creator.

Some definitions state that an agent has mobility as well as autonomy. Mobility is the ability to
move independently from one device to another on a network. Voyager agents are both
autonomous and mobile. They have all the same features as simple objects—they can be assigned
aliases, have virtual references, communicate with remote objects, and so on.

To create an agent, extend the base class COM.objectspace.voyager.Agent , and then use
Voyager’s vcc utility to remote-enable the agent’s class. Use the resulting virtual class to
instantiate an agent object and use virtual references to communicate with this object even if it
moves.

Like all objects, an agent can be moved from one program to another. However, unlike simple
objects, an agent can move itself autonomously. An agent can move to other programs, allowing
the execution of distributed itineraries, or an agent can move to other objects, allowing
communication using high-speed, local messaging.

An agent can move to another program and continue to execute when it arrives by sending itself
moveTo() with the address of the destination program and the name of the member function that
should be executed on arrival.

For example, an agent in dallas:8000 is told to travel. The agent sends itself a moveTo()
message with two parameters: dallas:9000 , the destination address, and atTokyo , the name
of the callback function.

public void travel() // defined in Shopper
{
moveTo("tokyo:9000", "atTokyo");

 }

The agent then moves to tokyo:9000 , leaving behind a forwarder to forward messages.

dallas:8000

travel()

london:7000

travel()

moveTo("tokyo:9000:, "atTokyo")

tokyo:9000

london:7000 tokyo:9000dallas:8000

tokyo:9000

11

After arriving at its new location, the agent automatically receives the atTokyo() message.

The following code in the agent is then executed.

public void atTokyo() // defined in Shopper
{
// this code is executed when I move successfully to tokyo:9000.
}

If an agent wants to have a high-speed conversation with a remote object, the agent can move to
the object and then send it local Java messages. The easiest way for an agent to move to an object
is by sending itself a variation of moveTo() that specifies both a virtual reference to the
destination object and a callback parameter.

For example, an agent in dallas:8000 is told to buy from a store object. The agent sends itself a
moveTo() message with two parameters: vstore , a virtual reference to the remote store object,
and shop , the name of a callback function.

public void buyFrom(VStore vstore) // defined in Shopper
{
moveTo(vstore, "shop");
}

After leaving behind a forwarder and moving to tokyo:9000 , the agent receives the callback
message shop() with a local native Java reference to the object store .

london:7000 tokyo:9000

atTokyo()

dallas:8000

tokyo:9000

dal las:8000

buyFrom(vstore)

london:7000

buyFrom(vstore)

moveTo(vstore, "shop")

store

tokyo:9000

A remote store object
referenced by vstore

london:7000 tokyo:9000

shop(store)

dallas:8000

storebuy()
tokyo:9000

High-speed, local message

12

The following code in the agent is then executed.

public void shop(Store store) // defined in Shopper
{
// this code is executed when I successfully move to the store
// note that store is a regular Java reference to the store
int price = store.buy("widget");
}

13

JavaBeans Integration

Voyager is designed to integrate with the JavaBeans™ component model. Existing JavaBeans can
be used in a Voyager system. Voyager extends the beans delegation event model by allowing all
events to be transmitted across the network. This is possible without modifying the bean or event
classes in any way.

Voyager also uses the beans event model for object- and system-level monitoring. Every remote
Voyager object is automatically a source of events. Objects can listen to remote objects and
monitor every aspect of the remote object’s behavior. In particular, listeners are notified when the
remote object receives messages, moves, is saved to or loaded from a database, and dies.

Voyager allows system-level monitoring with the beans event model as well. Listeners can monitor
when the system garbage-collects remote objects, when classes are loaded into the system, when
messages are sent and received, and when agents and mobile objects arrive and depart.

Voyager extends the beans event model further by introducing persistent listeners. Typically,
developers use standard beans listeners for transient listening. However, more complex systems
often require listeners that can move with objects or listeners that can automatically be stored to
and retrieved from databases with the source objects. Voyager adds this critical piece of
functionality to all listeners of Voyager events.

Voyager’s integration with the JavaBeans event model allows developers to leverage their bean
knowledge and experience and apply it directly to their Voyager systems. The event system
provides a wealth of information useful for monitoring, auditing, logging, and other higher-level,
application-specific actions.

Dynamic Properties

Voyager allows developers to attach key value properties to remote objects. These properties are
dynamically attached to any object without requiring modification to the object’s source. This
property mechanism is used by the publish/subscribe system to allow objects to specify what
subjects they are interested in and can also be used to attach application-specific information to an
object at runtime.

myObject.addProperty(Subscription.SUBSCRIBE, "sports.basktball.*");

14

Database-Independent Persistence

A persistent object has a backup copy in a database. A persistent object is automatically recovered
if its program is unexpectedly terminated or if it is flushed from memory to the database to make
room for other objects. Voyager includes seamless support for object persistence. In many cases,
you can persist an object without modifying its source.

Each Voyager program can be associated with a database. The type of database can vary from
program to program and is transparent to a Voyager programmer. Voyager includes a
high-performance object storage system called VoyagerDb , but provides an interface layer to
allow developers to drop in their own custom bindings to other popular relational and object
databases.

To save an object to the program’s database, send saveNow() to the object. This method writes a
copy of the object to the database, overwriting any previous copy. If the program is shut down and
then restarted, the persistent objects are left in the database. Any attempt to communicate with a
persistent object causes the object to be reloaded from the database.

See Chapter 14 of the ObjectSpace Voyager Core Technology User Guide for more details about
Voyager persistence.

The saveNow() message writes
a copy of the persistent object to
the database.

When the system restarts, the copy of
the object remains in the database,

When a message arrives, a copy of
the persistent object is autoloaded

The object is restored, the message is
delivered to the object, and a return
value is sent.

System is shut down temporarily.

into memory.

but the actual object is not
immediately restored in its original
location.

london:7000

saveNow()

london:7000

london:7000

message

london:7000

return value

autoload

System Shutdown

15

If a persistent object is moved from one program to another, the copy of the object is automatically
removed from the source program’s database and added to the destination program’s database.

You can conserve memory by using one of the flush() family of methods to remove a persistent
object from memory and store it in a database. Any subsequent attempt to communicate with a
flushed persistent object reloads the object from the database.

By default, Voyager’s database system automatically persists Java classes loaded into a program
across a network, thus avoiding a reload of these classes when the program is restarted.

l ondon :7000

moveTo("da l las :8000")

da l las :8000

A persistent object in london:7000 and its copy
in the database.

l ondon :7000 da l las :8000

da l las :8000

da l las :8000

The persistent object is moved to dallas:8000,
and a copy of the persistent object is entered

Forwarders are left behind in
london:7000 and in the london:7000

into the dallas:8000 database.database.

london:7000

flushNow()

london:7000

The flushNow() message writes a
copy of the persistent object to the
database and causes the actual
object to be garbage-collected from
its original location. The object is
restored the first time a message is
sent to it.

16

Space – Scalable Group Communication

Many distributed systems require features for communicating with groups of objects. For
example:

� Stock quote systems use a distributed event feature to send stock price events to customers
around the world.

� A voting system uses a distributed messaging feature (multicast) to send messages around the
world to voters, asking their views on a particular matter.

� News services use a distributed publish/subscribe feature so that broadcasts are received only
by readers interested the broadcast topic.

Most traditional systems use a single repeater object to replicate the message or event to each
object in the target group.

london:7000 dallas:8000

tokyo:9000 perth:10000

repeater
message

Message being forwarded
and delivered

17

This traditional approach works well if the number of objects in the target group is small, but does
not scale well when large numbers of objects are involved.

Voyager uses a different and innovative architecture for message/event replication called Space™
that can scale to global proportions. Clusters of objects in the target group are stored in local
groups called subspaces. Subspaces are linked to form a larger logical group called a Space. When
a message or event is sent into one of the subspaces, the message or event is cloned to each of the
neighboring subspaces before being delivered to every object in the local subspace. This process
results in a rapid parallel fanout of the message or event to every object in the Space. A special
mechanism in each subspace ensures that no message or event is accidentally processed more than
once, regardless of how the subspaces are linked.

Voyager’s multicast, distributed events, and publish/subscribe features all use and benefit from the
same underlying Space architecture.

london:7000 dal las:8000

tokyo:9000 perth:10000

message

Subspace Link

Cloned message being
duplicated

Subspace

Message being delivered
to local objects

18

Message Types

Unlike traditional object request brokers, which use a simple, on-the-wire message protocol,
Voyager messages are delivered by lightweight agents called messengers. Voyager has four
predefined message types.

Synchronous Messages

By default, Voyager messages are synchronous. When a caller sends a synchronous message, the
caller blocks until the message completes and the return value is received. You can use regular
Java syntax to send a synchronous message to an object. Arguments are automatically encoded on
the sender side and decoded on the receiver side.

int price = vstore.buy("Killer Rabbits");

One-Way Messages

Although messages are synchronous by default, Voyager supports one-way messages as well.
One-way messages do not return a value. When a caller sends a one-way message, the caller does
not block while the message completes.

vstore.buy("Killer Rabbits", new OneWay()); // no return
...

Future Messages

Voyager also supports future messages. When a caller sends a future message, the caller does not
block while the message completes. The caller receives a placeholder that can be used to retrieve
the return value later by polling, blocking, or waiting for a callback.

Result result = vstore.buy("Killer Rabbits", new Future());
...

int price = result.readInt(); // Block for price.

One-Way Multicast Messages

One-way multicast messages can be used to send one-way messages to all objects in a Space using
a single operation.

VStore stores = new VStore(space); // gateway into space
stores.stock("video", 25); // send stock() to all stores in space

To send a one-way message to only certain objects in a Space, use a one-way multicast message
with a selector.

Selective Multicast Messages

Multicast messages can be selective broadcast to a subset of objects in a space. For instance,
Voyager supports traditional publish/subscribe multicasting where objects are selected based on
whether or not they are subscribed to given subjects (defined as heirarchical strings). However,
Voyager also supports a more general selection mechanism in that messages can be multicast to
objects that meet any user-defined criterion.

VAccount accounts = new VAccount(space); // gateway into space
Selector selector = new DelinquentSelector(); // select if delinquent
accounts.close(selector); // close account if delinquent in payment

19

Federated Directory Service

Voyager provides a directory service for remote object lookup. Using the directory service, an
object can get a references to a remote or mobile object without advance knowledge of its location.
Voyager’s directory service avoids the single-server bottleneck/point-of-failure associated with
monolithic directory services by allowing distributed directory services to be linked together to
form a single, federated directory service.

All directories are completely integrated with Voyager’s persistence mechanism and like any
object, can be saved to a database with a single command.

Dynamic Messaging

Voyager supports dynamic message construction at run time. The following code creates a
synchronous message at run time using the Java virtual machine syntax for signature definition.

// Dynamically create and execute a synchronous message.
Sync sync = new Sync();
sync.setSignature("buy(Ljava.lang.String;)I");
sync.writeObject("Killer Rabbits");
Result result = vstore.send(sync);
int price = result.readInt(); // price

Life Spans and Garbage Collection

Each instance of a remote-enabled class has a life span. When an object reaches the end of its life
span, the object dies and is garbage-collected. Garbage collection destroys an object, freeing the
object’s memory for reclamation by the Java virtual machine.

Voyager includes a distributed garbage collector that supports a variety of life spans.

� An object can live forever.

� An object can live until there are no more local or virtual references to it. By default, an instance
of any class that does not extend Agent has this kind of reference-based life span.

� An object can live for a specified amount of time. By default, an instance of any class that
extends Agent lives for one day.

� An object can live until a particular point in time.

You can change an object’s life span at any time.

Voyager leverages Java’s run-anywhere code mobility to provide true
agent-based computing as well as traditional distributed object communication.

The ability of agents to move seamlessly about the new network provides a
significant advantage for multitier, client/server, and peer-to-peer architectures.

—Michael Greenspon, Sequential Interface, Inc.

20

Guided Tour

This section guides you through an example project to demonstrate the power and simplicity of the
ObjectSpace Voyager Core Technology. All steps necessary to build an agent-enhanced, persistent
electronic shopping system are presented, complete with full, annotated source code from the directory
\voyager1.0.0\examples\shopper .

This section is not a technical reference. For information about a particular aspect of Voyager, consult
Parts 2 and 3 of the ObjectSpace Voyager Core Technology User Guide.

Introduction

One of the hot areas of computer technology is electronic commerce. As companies begin to allow
customers to purchase goods and services electronically, an interesting opportunity arises for the
consumer. Rather than scan the yellow pages for stores that sell the product you want, why not use
a personal shopping agent that can do this for you automatically? Such an agent could learn your
tastes and requirements over time and tirelessly scour the network to find you the best possible
deal. Another advantage of such agents is their proactive abilities—they could be smart enough to
locate items similar to those you purchased in the past and suggest them to you, rather than relying
on you to continually prompt them into action.

This section demonstrates how to build a simple version of an agent-based shopping system in the
following phases.

Phase 1: Building Stores. In the first phase, a Java class is defined to represent a store. Two
persistent stores are constructed in different Voyager servers, and each store is added to a
well-known registry. The Voyager servers are then shut down.

Phase 2: Launching a Shopping Agent. In the second phase, a Java class is defined to
represent a shopping agent. The Voyager servers are restarted, and a persistent shopping agent
named Alfred is constructed in one of the servers and told the location of the store registry and
the name of the desired product. Alfred sets his itinerary to the contents of the registry, visits
each store in turn, and then moves to the store with the best price to await further instructions.

Phase 3: Buying an Item. In the third and final phase, a program is written that contacts
Alfred to request the store location offering the best price. The program then tells Alfred to die
and contacts the recommended store to purchase the item directly.

The remainder of this section describes how to complete each phase of the shopping system using
Voyager. The program in this section is text based. For an applet-based version of the same
program, consult Chapter 10 of the ObjectSpace Voyager Core Technology User Guide.

21

Phase 1: Building Stores

The first phase of the shopping system project constructs two persistent stores and adds virtual
references to each store into a registry by performing the following steps:

1. Define a Java class named Store that represents a store and generate a virtual version of
Store so it can be constructed remotely.

2. Choose a class for the registry and generate a virtual version of this class.

3. Write a program named Build.java that creates two persistent stores and populates the
remote registry.

4. Compile the Phase 1 programs.

5. Start Voyager servers to hold the persistent remote stores.

6. Run Build.class to create the stores and registry.

7. Shut down the Voyager servers.

The rest of this section discusses these steps in detail.

Step 1. Define a Java class named Store that represents a store and generate a virtual version of
Store so it can be constructed remotely.

For the purposes of this example, a store has limited behavior. The Store.java program below
gives the Store class a name and a hash table that maps the name of a product to its price. Store
defines functions for adding, pricing, and purchasing a product. Several functions contain print
statements used to track transactions as they occur. Store is defined to be serializable so it can be
stored persistently in the default Voyager database.

22

Class voyager1.0.0\examples\shopper\Store.java

// Copyright(c) 1997 ObjectSpace, Inc.

import java.util.Hashtable; // utilize a JDK Hashtable

public class Store implements java.io.Serializable
 {
 String name;
 Hashtable products = new Hashtable(); // contains product->price pairs

 public Store(String name)
 {
 this.name = name;
 System.out.println("Build " + this);
 }

 public String toString()
 {
 return "Store(" + name + ")";
 }

 public void stock(String product, int price)
 {
 System.out.println("stock " + product + " @ $" + price);
 products.put(product, new Integer(price)); // add product to stock
 }

 public int getPrice(String product)
 {
 Integer integer = (Integer) products.get(product); // get price
 return integer == null ? 0 : integer.intValue(); // zero if not in stock
 }

 public int buy(String product) throws IllegalArgumentException
 {
 int price = getPrice(product);

 if(price == 0)
 throw new IllegalArgumentException("no " + product + " found");

 System.out.println("purchase " + product + " @ $" + price);
 return price;
 }
 }

23

Run the Voyager vcc utility on Store . The vcc utility uses the most recently modified version of
the Store.java or Store.class file to create a virtual class named VStore . For the rest of
this guided tour, assume commands are typed from a command line in the directory
voyager1.0.0\examples\shopper .

Like all virtual classes, VStore directly or indirectly extends VObject , which contains the
functionality common to all virtual objects.

Step 2. Choose a class for the registry and generate a virtual version of this class.

This guided tour uses the JDK class java.util.Vector as the registry class. Run vcc to create
a virtual version of Vector . The following code creates the virtual class VVector and places it in
the current directory.

>vcc Store
vcc 1.0.0, copyright objectspace 1997
note: VoyagerException not thrown by java.lang.Object:java.lang.String
toString()
>dir Vstore.*
VSTORE~1 JAV 4,658 08-22-97 10:17a VStore.java
>

>vcc java.util.Vector
vcc 1.0.0, copyright objectspace 1997
note: java.* virtual classes are not placed in a package
note: VoyagerException not thrown by java.lang.Object:java.lang.Object
clone()
note: VoyagerException not thrown by java.lang.Object:java.lang.String
toString()
>dir VVector.*
VVECTO~1 JAV 21,434 08-22-97 11:04a VVector.java
>

24

Step 3. Write a program named Build.java that creates two persistent stores and populates the
remote registry.

The Build.java program below constructs two persistent instances of Store in local Voyager
servers and populates the persistent registry.

Application voyager1.0.0\examples\shopper\Build.java

// Copyright(c) 1997 ObjectSpace, Inc.

import COM.objectspace.voyager.*;
import VVector;

public class Build
 {
 public static void main(String args[])
 {
 try
 {
 // create store in local server @ port 8000
 VStore store1 = new VStore("VideoHeaven", "localhost:8000");
 store1.liveForever(); // prevent garbage collection
 store1.stock("Killer Rabbits", 25); // stock item
 store1.stock("Jaws XXIII", 29); // stock item
 store1.saveNow(); // become persistent, save copy to database

 // create store in local server @ port 7000
 VStore store2 = new VStore("MegaHits", "localhost:7000");
 store2.liveForever(); // prevent garbage collection
 store2.stock("Killer Rabbits", 35); // stock item
 store2.stock("Jaws XXIII", 30); // stock item
 store2.saveNow(); // become persistent, save copy to database

 // create vector with alias "Registry" in local server @ port 8000
 VVector registry = new VVector("localhost:8000/Registry");
 registry.liveForever();
 registry.addElement(store1);
 registry.addElement(store2);
 registry.saveNow(); // store in database

 System.out.println("Registry is " + registry);
 Voyager.shutdown(); // shutdown program
 }
 catch(VoyagerException exception)
 {
 System.err.println(exception);
 }
 }
 }

25

The Build.java program uses the VStore constructor to instantiate a Store . Virtual class
constructors have the same arguments as their original classes plus an additional string that
specifies the address of the destination program. In other words, the virtual counterpart of the
constructor Store(String name) is VStore(String name, String address) . The
format of an object’s address resembles a URL and usually includes the host name and port
number of the program in which the object is to be created. You can supply a specific host name or
use the built-in host name localhost to denote your current local host.

The Build.java program also creates a remote Vector and assigns it the alias Registry in a
single step. Voyager allows you to assign an alias to a new object using standard URL syntax. A
separate name-binding step is not required.

The following excerpt from Build.java demonstrates how to prevent an object from being
garbage-collected. By default, a simple (non-agent) remote object is garbage-collected when there
are no more local or virtual references to it. Sending the liveForever() message to an object
prevents its garbage collection; that is, the object lives forever unless you explicitly send it the
dieNow() message. Because the stores and the registry must survive beyond the lifetime of the
program, they are made immortal.

store1.liveForever(); // prevent garbage collection

The saveNow() method instructs an object to become persistent and save itself into its program’s
database.

store1.saveNow(); // become persistent, save copy to database

Step 4. Compile the Phase 1 programs.

Use the javac command to compile the Phase 1 source code.

javac Store.java Build.java VStore.java VVector.java

// create store in the program @ port 8000 in my local host
VStore store1 = new VStore("VideoHeaven", "localhost:8000");

Virtual constructor

Store name Store address

// create vector with alias "Registry"
VVector registry = new VVector("localhost:7000/Registry");

Alias

Constructs the registry

Program address

26

Step 5. Start Voyager servers to hold the persistent remote stores.

Start a Voyager server on each of ports 7000 and 8000 by running the voyager command in two
separate windows. As shown below, this command accepts the required port number as an
argument. The -d option instructs Voyager to use the named database file for its persistent storage.
The -c option clears the database file if one already exists. Note that a Voyager server runs until it
is explicitly terminated, and two Voyager programs cannot share the same port.

Window 1

Window 2

Step 6. Run Build.class to create the stores and registry.

Run Build.class in a third window. The following output is initially displayed.

Window 3

>voyager 7000 -cd 7000.db
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000
database = 0 objects, 0 classes

>voyager 8000 -cd 8000.db
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000
database = 0 objects, 0 classes

>java Build
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1187

27

Window 3 remains inactive while Build.java constructs the persistent stores and populates the
registry. As Build.java executes, additional output displays in the first two windows:

Window 1

Window 2

After the stores are constructed and the registry is populated, the Build.java program displays
an additional line of output in Window 3, then terminates.

Window 3

Step 7. Shut down the Voyager servers.

Phase 1 is now complete. Shut down the two Voyager servers by pressing ������ in Windows 1 and
2.

>voyager 7000 -cd 7000.db
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000
database = 0 objects, 0 classes
Build Store(MegaHits)
stock Killer Rabbits @ $35
stock Jaws XXIII @ $30

>voyager 8000 -cd 8000.db
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000
database = 0 objects, 0 classes
Build Store(VideoHeaven)
stock Killer Rabbits @ $25
stock Jaws XXIII @ $29

>java Build
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1187
Registry is [Store(VideoHeaven), Store(MegaHits)]
>

28

Phase 2: Launching a Shopping Agent

In this phase, a persistent shopping agent named Alfred is used to find the best price for a
product. When launched, Alfred sets his itinerary to the contents of the registry, visits each store
in the itinerary to find the best price, and then parks at the server that contains the best store to
await further instructions. Phase 2 is comprised of the following steps:

1. Define a class named Shopper that represents a shopping agent.

2. Write a program named Shop.java to instantiate and launch an instance of Shopper .

3. Create a virtual version of Shopper .

4. Compile the Phase 2 programs.

5. Restart the Voyager servers.

6. Run Shop.class to launch the shopper.

The rest of this section discusses these steps in detail.

Step 1. Define a class named Shopper that represents a shopping agent.

The Shopper class defined below extends the Agent class and adds behavior specific for a
shopping agent. The program does not need to override any special functions for the agent to
operate correctly. Because Agent implements Serializable , all the nontransient, nonstatic
fields in the agent are automatically maintained as the agent moves.

Class voyager1.0.0\examples\shopper\Shopper.java

// Copyright(c) 1997 ObjectSpace, Inc.

import COM.objectspace.voyager.*;
import java.util.Vector;
import VVector;

public class Shopper extends Agent
 {
 String product; // the product to locate
 Vector itinerary; // list of stores to visit
 int index; // index into itinerary
 VStore bestStore = null; // store with cheapest price
 int bestPrice = Integer.MAX_VALUE; // current best price
 boolean parked = false; // have I finished?

 public void findBestPriceFor(String product, VVector registry)
 {
 this.product = product;

 try
 {
 moveTo(registry, "atRegistry");
 }
 catch(VoyagerException exception)
 {
 System.err.println(exception);
 }
 }

29

 public void atRegistry(Vector registry)
 {
 itinerary = (Vector) registry.clone(); // get local copy of registry
 System.out.println("shopping using itinerary: " + itinerary);

 try
 {
 moveTo((VStore) itinerary.elementAt(index), "shop");
 }
 catch(VoyagerException exception)
 {
 System.err.println(exception);
 }
 }

 public void shop(Store store)
 {
 int price = store.getPrice(product);

 if(price == 0)
 {
 System.out.println("at " + store + ", " + product + " not sold");
 }
 else
 {
 System.out.println("at " + store + ", " + product + " is $" + price);

 if(price < bestPrice) // best store so far
 {
 // obtain virtual reference to store
 try
 {
 bestStore = (VStore) VObject.forObject(store);
 }
 catch(VoyagerException exception)
 {
 System.err.println(exception);
 }

 bestPrice = price;
 }
 }

 // delay to make execution easier to follow
 try{ Thread.sleep(5000); } catch(InterruptedException exception) {}

 try
 {
 if(++index < itinerary.size())
 moveTo((VStore) itinerary.elementAt(index), "shop"); // next store
 else
 moveTo(bestStore.getProgramAddress(), "park"); // best store
 }
 catch(VoyagerException exception)
 {
 System.err.println(exception);
 }
 }

30

 public void park()
 {
 parked = true;
 System.out.println("at " + bestStore + ", best price $" + bestPrice);
 System.out.println("shopper parks at " + Voyager.getAddress());

 if(getPersistent()) // if i'm persistent save my final state
 {
 try
 {
 flushNow(); // save copy to database and flush from memory
 }
 catch(VoyagerException exception)
 {
 System.err.println(exception);
 }
 }
 }

 public VStore getBestStore()
 {
 if(!parked)
 throw new IllegalStateException("not parked yet");

 return bestStore;
 }
 }

A shopper uses two variations of moveTo() to move and continue execution on arrival:

� When moveTo() is passed a program address and a function name, the agent is moved to the
specified program and is then resumed by executing the callback function with no arguments.

� When moveTo() is passed a virtual reference and a function name, the agent is moved to the
referenced object and is then resumed by executing the callback function with a local reference
to the target object as the single argument. The agent can then communicate with the target
object using high-speed, local Java method calls.

This callback style of programming, familiar to any programmer who has created a graphical user
interface, neatly avoids Java’s inability to maintain an execution stack across virtual machine
boundaries.

If an error occurs at any time during a move, an exception is thrown when the agent calls
moveTo() . Because an agent is deactivated conceptually when it executes moveTo() , a
programming error occurs if any code other than exception-handling code follows these methods.

31

Step 2. Write a program named Shop.java to instantiate and launch an instance of Shopper.

The Shop.java program below creates a persistent instance of Shopper with alias Alfred and
tells him to find the best price for a video named Killer Rabbits.

Application voyager1.0.0\examples\shopper\Shop.java

// Copyright(c) 1997 ObjectSpace, Inc.

import COM.objectspace.voyager.*;
import VVector;

public class Shop
 {
 public static void main(String[] args)
 {
 try
 {
 // connect to vector with alias "Registry" in local server @ port 8000
 VVector registry =
 (VVector) VObject.forObjectAt("localhost:8000/Registry");

 // create a shopper with alias "Alfred" in local server @ port 7000
 VShopper shopper = new VShopper("localhost:7000/Alfred");
 shopper.saveNow(); // become persistent, save copy to database

 // ask the shopper to use the registry to find the best price of product
 shopper.findBestPriceFor("Killer Rabbits", registry);

 // shutdown program
 Voyager.shutdown();
 }
 catch(VoyagerException exception)
 {
 System.err.println(exception);
 }
 }
 }

The first line of Shop.java uses the static method VObject.forObjectAt() to obtain a
virtual reference to the existing remote Vector named Registry .

The second and third lines of Shop.java create a persistent Shopper with alias Alfred .
Unlike a simple (non-agent) object, an agent lives for one day by default. This allows an agent to
roam a network and perform duties without requiring any local or virtual references. The Voyager
User Guide explains how you can specify an agent’s life span so that the agent can either live
forever or die when it has no local or virtual references.

The fourth line of Shop.java instructs Alfred to find the best price for the Killer Rabbits
video. When Alfred receives the message findBestPriceFor() , he saves the name of the
product for future use and then executes the following code:

moveTo(registry, "atRegistry");

32

This function deactivates Alfred , moves him from server 8000 to the registry in server 7000, and
then reactivates him by sending him the message atRegistry() with the registry as its single
argument. Because Alfred is persistent, his database backup copy is automatically moved
between servers when Alfred moves. When Alfred arrives at server 7000, the original call to
findBestPriceFor() returns, and the Shop.java program terminates. Alfred , however,
continues to execute in the Voyager server. He stores a clone of the registry and then executes the
following code:

moveTo((VStore) registry.elementAt(index), "shop");

This causes Alfred to move to the first store (located in server 8000) and execute shop() with
the store as its single argument. This function gets the price of the product from the store, updates
the variable bestStore if appropriate, and then moves Alfred to the next store. This sequence
continues until the itinerary is exhausted, at which point Alfred executes the following code:

moveTo(bestStore.getProgramAddress(), "park");

This variation of moveTo() causes Alfred to move into the program that holds the best store
and then execute park() with no arguments. The park() method displays a status message and
flushes the final state of Alfred to the local database. When park() completes, Alfred ’s
thread of execution finishes, but Alfred does not die.

Step 3. Create a virtual version of Shopper.

Use vcc to create a virtual version of Shopper .

Step 4. Compile the Phase 2 programs.

Use the javac command to compile the Phase 2 source files.

javac Shopper.java VShopper.java Shop.java

>vcc Shopper
vcc 1.0.0, copyright objectspace 1997
>dir VShopper.*
VSHOPP~1 JAV 5,926 08-25-97 9:37a VShopper.java
>

33

Step 5. Restart the Voyager servers.

Restart a Voyager server on each of ports 7000 and 8000 in two different windows. As in Phase 1,
use the -d option to load the handles of all persistent objects in a database.

Window 1

Window 2

>voyager 7000 -d 7000.db
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000
database = 1 object, 0 classes

>voyager 8000 -d 8000.db
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000
database = 2 objects, 0 classes

34

Step 6. Run Shop.class to launch the shopper.

Run Shop.class in a third window. This program launches Alfred and then immediately
terminates. The following output is displayed.

Window 3

As Alfred moves from server to server to find the best price, additional output displays in the
first two windows.

Window 1

Window 2

After Alfred finds the best price for Killer Rabbits, he parks in server 8000 to await further
instructions. Phase 2 is now complete. Because the stores, registry, and shopper are all persistent,
the Voyager servers could be shut down and restarted at this point without causing problems.

>java Shop
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1191
>

>voyager 7000 -d 7000.db
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000
database = 1 object, 0 classes
at Store(MegaHits), Killer Rabbits is $35

>voyager 8000 -d 8000.db
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000
database = 2 objects, 0 classes
shopping using itinerary: [Store(VideoHeaven), Store(MegaHits)]
at Store(VideoHeaven), Killer Rabbits is $25
at Store(VideoHeaven), best price $25
shopper parks at 208.6.239.200:8000

35

Phase 3: Buying an Item

In the final phase of the shopping system project, a program is created that contacts Alfred , asks
for the best store, tells Alfred to die, and then makes a remote purchase from the store. When
Alfred dies, his resources are reclaimed by the local Java virtual machine. Phase 3 is comprised
of the following steps:

1. Write a program called Buy.java that uses Alfred ’s recommendation to purchase a product.

2. Compile Buy.java .

3. Run Buy.class .

Step 1. Write a program called Buy.java that uses Alfred’s recommendation to purchase a
product.

The following is the Buy.java source code:

Application voyager1.0.0\examples\shopper\Buy.java

// Copyright(c) 1997 ObjectSpace, Inc.

import COM.objectspace.voyager.*;

public class Buy
 {
 public static void main(String[] args)
 {
 try
 {
 // connect to Alfred, whose last known location was server @ port 7000
 VShopper shopper =
 (VShopper) VObject.forObjectAt("localhost:7000/Alfred");

 // ask the shopper for the best store, waiting if not ready yet
 VStore bestStore = getBestStore(shopper);

 // tell the shopper to die
 System.out.println("sorry Alfred, but i have to kill you now");
 shopper.dieNow(); // kill and remove from database

 // buy the product
 int price = bestStore.buy("Killer Rabbits");
 System.out.println("bought video for $" + price + " @ " + bestStore);

 // shutdown program
 Voyager.shutdown();
 }
 catch(VoyagerException exception)
 {
 System.err.println(exception);
 }
 }

 /**
 * Get the best store from the agent, waiting until the store is available
 */
 static VStore getBestStore(VShopper shopper) throws VoyagerException

36

 {
 while(true)
 {
 try
 {
 return shopper.getBestStore();
 }
 catch(IllegalStateException exception)
 {
 System.out.println("Shopper not parked yet");
 try { Thread.sleep(2000); } catch(InterruptedException ie) {}
 }
 }
 }
 }

Step 2. Compile Buy.java.

Use the javac command to compile the Phase 3 program.

javac Buy.java

Step 3. Run Buy.class.

The Buy.java program connects to Alfred , using his last known location at server 7000, even
though by this time he has moved to the best store in server 8000. This is possible due to the trail
of forwarders Alfred leaves behind as he moves. Buy.java then attempts to obtain a virtual
reference to the best store. If Alfred has not yet parked, an exception is thrown, which the
Buy.java program catches. Buy.java continues to attempt to get a virtual reference to the best
store. When successful, the program kills Alfred (removing him from the local database) and
makes the purchase.

Running Buy.java generates the output below.

This concludes the guided tour.

>java Buy
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1195
sorry Alfred, but i have to kill you now
bought video for $25 @ Store(VideoHeaven)
>

37

Product Evolution

Many people ask us, “If Voyager is free, then how will you make money?” We believe that years
from now, companies will not make much money selling basic middleware. DCOM will be
embedded and distributed everywhere. CORBA price points are already plummeting. In the
not-too-distant future, the bulk of the features currently in the Voyager Core Technology will be
freely available in several forms and locations. Your cost is in development time, and your
revenues are increasingly dependent on time to market. ObjectSpace believes Voyager’s
Java-centric binding, advanced mobile object features and innovative services provide the best
basis for rapid development of distributed systems in Java.

As the industry changes, ObjectSpace will continue to develop and sell partnerships, support, and
other services, but will also begin to unveil more and more next-generation add-on features for the
ObjectSpace Voyager platform. These add-ons will progress in areas of security, group
communication, and persistence concurrency and will deliver the same time-to-market and rapid
development advantages found in the Voyager Core Technology today. Unlike the Voyager Core
Technology, these add-ons will not be free.

ObjectSpace is also pursuing several partnerships for the creation of technology integrations and
enhanced development tools. Our relationships, based on the deployment of JGL, will enable the
rapid distribution, adoption, and integration of the ObjectSpace Voyager platform.

As you look further into the future, you will see ObjectSpace using the Voyager technology base as
the platform for its own next-generation product lines. As definite product release dates approach,
we will announce these longer-term projects. Be assured that we will use the advantages of
Voyager, such as agent technology, to deliver products that, until now, you have only speculated
about.

For additional information on Voyager, visit the ObjectSpace Web site at www.objectspace.com.
There you will find several additional white papers, user stories, and of course, the complete
Voyager Core Technology download. This download includes a comprehensive user guide that
covers additional details on the Voyager 1.0 feature set.

ObjectSpace also offers several packaged services to help you in the evaluation, adoption, and use
of ObjectSpace Voyager.

� ObjectSpace Voyager Core Technology Support

� ObjectSpace Voyager Core Technology Training

� ObjectSpace Voyager Platinum Partners Program

� ObjectSpace Voyager QuickStart Adoption Program

For additional information or to purchase any of these packaged services, contact us at our North
American corporate offices.

38

Java is a trademark of Sun Microsystems.
ObjectSpace Voyager and Space are trademarks of ObjectSpace, Inc.
All other trademarks are the property of their respective companies.

14881 Quorum Drive, Suite 400
Dallas TX 75240

972.726.4500
1.800.OBJECT.1
Fax: 972.715.9099

E-mail: sales@objectspace.com
Web: www.objectspace.com

