
© 1997 ObjectSpace, Inc. • All rights reserved • Version 1.0 • September 1997

 OBJECTSPACE VOYAGER
 CORE TECHNOLOGY

THE

AGENT ORB

FOR JAVA

Voyager and RMI
Comparison

This paper compares Version 1.0 of the ObjectSpace
Voyager™ Core Technology (Voyager) with JavaSoft’s
RMI product.

Voyager is a full-featured, intuitive object request broker
(ORB) that has support for mobile objects and
autonomous agents. Voyager also includes services for
persistence, scalable group communication, and basic
directory service. This core Voyager technology is free for
most commercial uses.

RMI—which stands for remote method invocation—is the
first commercially available system to attempt to more
closely mirror the Java language. RMI is part of the JDK
1.1 and is also free for most commercial use.

This text presents a high-level comparison of Voyager and
RMI. A table summarizing each product’s features is
presented first, followed by a more detailed explanation of
each feature.

2

Contents

Overview ...3

Remote-Enabling a Class..5

Constructing a Remote Object ..6

Exporting a Named Remote Object...7

Connecting to a Named Object ...8

Exception Handling ...9

Executing a Remote Static Method ...10

Object Mobility...11

Agents ...12

Distributed Persistence ...13

Scalability ..14

Multicast Messaging..15

Distributed Events ...16

Publish/Subscribe ...17

Federated Directory Service..18

Message Types...19

Evolution of Remote References...20

Garbage Collection ...21

Applet Connectivity ...22

Network Class Loading ...23

Product Size..24

Performance..25

Stubs and Skeletons ...26

Voyager and RMI Comparison

3

Overview

Because ORBs such as CORBA™ and DCOM are designed to work across languages,
they are unable to leverage the full power of Java™. CORBA users know first-hand that
mapping .idl constructs into the Java language is clumsy and unnatural at best.

JavaSoft addresses this problem with the RMI product, included as part of JDK 1.1. By
making a free, basic ORB available, JavaSoft sets the baseline for subsequent competitive
efforts.

ObjectSpace responds with the ObjectSpace Voyager Core Technology, an advanced,
100% Java ORB designed as a Java-centric distributed computing platform. We believe
Voyager surpasses RMI’s ORB capabilities in terms of ease of use and features without
sacrificing performance.

The following table summarizes Voyager and RMI features. Each feature is described in
detail after this summary.

Voyager and RMI Comparison

4

Feature ObjectSpace Voyager RMI

Cost Free to most developers Free to most developers

Constructing a remote object Supported via regular Java syntax Not supported

Remote-enabling a class Requires one simple step Requires five tedious steps

Exporting a named object Seamlessly integrated Requires external registry

Connecting to a named object Seamlessly integrated Requires external registry

Exception handling Explicit or run-time exceptions allowed Only explicit exceptions
allowed

Executing a remote static
method

Supported via regular Java syntax Not supported

Object mobility Fully supported, even when objects are
active

Not supported

Agents Can execute as they move and can move
themselves

Not supported

Distributed persistence § Supported with a transparent, default
database

§ Requires no modification of your
classes

§ Autoload and autoflush supported

Not supported

Scalability Global-scale, fault-tolerant, persistent,
distributed computing supported with
innovative Space™ architecture

No similar features

Multicast messaging § Fully supported

§ 100% nonintrusive

Not supported

Distributed events § Compliant with JavaBeans™

§ 100% nonintrusive

Not supported

Publish/subscribe § Messages and events supported

§ 100% nonintrusive

Not supported

Federated directory service § Fully supported

§ Integrated with the persistence
subsystem

Not supported

Message types Synchronous, one-way, one-way
multicast, and future messages supported
via smart, lightweight messenger agents

Only synchronous
messages supported

Evolution of classes Supported Not supported

Garbage collection Lease- and time-based garbage collection
supported

Only lease-based garbage
collection supported

Applet connectivity Unrestricted Restricted

Network class loading Built-in Requires Web server

Product size About 270KB About 180KB

Performance See “Performance” on page 25 of this document.

Stubs and skeletons 80% less support code generated than RMI 400% more support code
generated than Voyager

Voyager and RMI Comparison

5

Remote-Enabling a Class

Using RMI

The following steps are required to enable an existing class for remote method invocation
in RMI.

1. Create an interface that extends Remote and redeclare every public nonstatic
function.

2. Add RemoteException to every method signature.

3. Modify the existing class to implement the interface and extend
UnicastRemoteObject.

4. Add throws RemoteException to every method implementation.

5. Modify each method that takes or returns an implementation to use a remote interface
instead.

Note that constructors do not appear in the interface. The RMI documentation
recommends that you do not override hashCode(), equals(), or toString() in
your implementation because each is defined to work correctly in a superclass of
UnicastRemoteObject.

Another restriction is that instances of classes defined as Remote cannot be passed by
value. Therefore, if you define a RemoteVector class and pass it as an argument, a
remote reference to the vector is always passed rather than a copy of the vector. This is
not always the desired effect.

Using Voyager

To enable an existing class for remote method invocation in Voyager, simply run vcc on
the .class or .java file to produce a virtual version of the class. The name of the
virtual class is equal to the original class name preceded by the letter V. The virtual class
implements the same interfaces as the original class, as well as a superset of its
constructors and methods. You need not modify the original class in any way—you do
not even need access to its source code. This means that you can effortlessly enable any
third-party library class for remote method invocation. For example, use the following
command to remote enable a JDK Vector and create VVector:

vcc java.util.Vector

Voyager and RMI Comparison

6

Constructing a Remote Object

Using RMI

RMI does not directly support remote object construction. However, you can emulate this
feature using the following steps.

1. In advance, construct a custom factory object on the server.

2. Pass the name of the class and the URL of the codebase to the factory object.

Then, to create a remote instance, program the factory object to perform the following
actions.

1. Use RMIClassLoader to load the class across the network

2. Use reflection to construct a remote instance using the default constructor

This method of constructing a remote object works with the default constructor only. To
construct an object using parameters is considerably more work.

Using Voyager

Voyager is designed to make remote construction effortless. Use regular Java
construction syntax to construct a remote object and supply a destination address as an
additional argument. For example, use the following commands to create a remote JDK
Vector in a program on tokyo:8000 and add two elements:

VVector vector = new VVector("tokyo:8000");
vector.addElement(new Integer(42));
vector.addElement("voyager");

Voyager and RMI Comparison

7

Exporting a Named Remote Object

Using RMI

RMI includes a registry service for binding an object to an alias, then retrieving the object
via its alias. To create an object in a server and then export the object for use by remote
clients, the following steps are required.

1. Start an rmiregistry process on the server.

2. Create the object on the server.

3. Bind the object to an alias.

Using Voyager

Voyager includes an integrated directory service that allows you to associate an object
with an alias without the need for a separate registry process. To create an object in a
program and then export the object for use by remote clients, simply construct the object
in the program and supply its alias during construction. For example, to create a remote
JDK Vector with alias MyVector in a program on tokyo:9000, use the following
command:

VVector vector = new VVector("tokyo:9000/MyVector");

Voyager’s integrated directory service supports most simple use cases. Voyager also
includes a federated directory service, described on page 18.

Voyager and RMI Comparison

8

Connecting to a Named Object

Using RMI

To connect to an object using its alias in RMI, first perform a lookup using the object’s
name, and then cast the returned remote reference to the correct type.

Using Voyager

To connect to an object using its alias in Voyager, use the static method
VObject.forObjectAt(); then, cast the returned virtual reference to the correct
type. For example, use the following commands to connect to an existing remote JDK
Vector with alias MyVector in a program on tokyo:9000:

VVector vector = (VVector) VObject.forObjectAt("tokyo:9000/MyVector");

Voyager and RMI Comparison

9

Exception Handling

Using RMI

RMI approaches exception handling by forcing developers to program safely. Every
remote method invocation in a try..catch block must be explicitly wrapped, even if
the communicating objects are on the same machine or on the same virtual machine.

Using Voyager

Voyager supports a superset of the RMI exception handling strategy.

By default, every function in a virtual class throws a VoyagerException that must be
wrapped with an explicit try..catch block. This exception does not have to be
declared in the original class.

To process a class that implements an interface whose methods do not explicitly throw a
VoyagerException (such as java.util.EventListener or java.applet),
you can use vcc with the -r option. This causes each VoyagerException to be
wrapped and rethrown as a VoyagerRuntimeException.

Unlike RMI, all remote Voyager exceptions are automatically annotated with useful trace
information to assist in remote debugging.

Voyager and RMI Comparison

10

Executing a Remote Static Method

Using RMI

Because RMI deals exclusively with interfaces, RMI has no support for executing a
remote static method.

Using Voyager

To execute a remote static method in Voyager, invoke the method and supply the
destination address as an additional argument. For example, use the following command
to execute the static function Account.getNumberOfAccounts() in a program on
tokyo:9000:

int count = VAccount.getNumberOfAccounts("tokyo:9000");

Voyager and RMI Comparison

11

Object Mobility

Using RMI

RMI does not support object mobility. Once created, an object remains on the same
machine for its lifetime.

Using Voyager

Voyager allows any serializable object to move to a new program, even while the object
is receiving remote messages. By default, messages sent to the object’s old location are
automatically forwarded to the new location. The new location is attached to the return
value so that subsequent messages are delivered directly to the object at its new location.

Use the following commands to connect to the Vector with alias MyVector in a
program on tokyo:9000, and then move MyVector to a program on dallas:8000:

VVector vector = (VVector) VObject.forObjectAt("tokyo:9000/MyVector");
vector.moveTo("dallas:8000");

Voyager and RMI Comparison

12

Agents

Using RMI

RMI does not support mobile agents.

Using Voyager

Voyager allows a developer to createin minutesan agent that continues to execute as
it moves between programs. An agent can independently move to a remote object and get
a local reference to the object to communicate using high-speed, local messaging. An
agent can move to an object even if the object is moving.

Voyager and RMI Comparison

13

Distributed Persistence

Using RMI

RMI does not include seamless integration for persistence of objects.

Using Voyager

Voyager includes seamless support for object persistence. In many cases, you can persist
an object without modifying its source in any way.

Every Voyager program can be associated with a database. The type of database can vary
from program to program and is transparent to a Voyager programmer. Voyager includes
a high-performance object storage system called VoyagerDb and will soon include
bindings that work with most popular relational and object databases as well.

To save an object to its program’s database, send saveNow()to the object. This method
causes a copy of the object to be written to the database, overwriting the previous copy if
one exists. If the program is shut down and then restarted, the persistent object remains in
the database. An attempt to communicate with the persistent object causes the object to
be immediately reloaded from the database.

If a persistent object is moved from one program to another, the persistent copy of the
object is automatically removed from the source program’s database and added to the

To conserve memory, you can use one of the flush() family of methods to flush a
persistent object from memory to a database. A subsequent attempt to communicate with
a flushed persistent object causes the object to be immediately reloaded from the
database.

By default, Voyager’s database system persists Java classes that are loaded into a
program across a network so they need not be reloaded when the program is restarted.

Voyager and RMI Comparison

14

Scalability

Using RMI

RMI does not include a scalable architecture for multicast messaging, distributed events,
or publish/subscribe.

Using Voyager

Many distributed systems like those listed below require features for communicating with
groups of objects.

• Stock quote systems use a distributed event feature to send stock price events to
customers around the world.

• A voting system uses a distributed messaging feature (multicast messaging) to send
messages to voters around the world and ask them for their views on a particular
matter.

• News services use a distributed publish/subscribe feature to ensure each broadcast is
received only by readers interested in the topic of the broadcast.

Most traditional systems use a single repeater object to replicate a message or event to
each object in the target group. This approach works fine if few objects reside in the
target group, but does not scale well when large numbers of objects are involved.

Voyager uses an innovative architecture for message and event replication called Space
that can scale to global proportions. Clusters of objects in the target group are stored in
local groups called subspaces. The subspaces are linked together across a network to
form a larger logical group, or Space. When a message or event is sent into one of the
subspaces in a Space, the message or event is cloned to each of the other subspaces in the
Space before being delivered to every object in every subspace. This results in a very
rapid, parallel fanout of the message or event to every object in the Space. A special
mechanism in each subspace ensures that no message or event is accidentally processed
more than once, regardless of how the subspaces are linked together.

Voyager’s multicast messaging, distributed events, and publish/subscribe features all use
and benefit from the same underlying Space architecture.

Voyager and RMI Comparison

15

Multicast Messaging

Using RMI

RMI does not support multicast messaging, although the RMI user documentation
suggests a technique that might be used to implement it. The documentation also
mentions that a future version of RMI will include MulticastRemoteObject, an
alternative to UnicastRemoteObject. That is, if you want to create a class that you
can multicast messages to, you must extend MulticastRemoteObject instead of
UnicastRemoteObject. We believe this technique is an example of poor object-
oriented design—the implementation of an object is coupled with how the object is used.

Using Voyager

Voyager includes seamless support for large-scale multicast messaging that does not
require modifying your classes in any way. To perform multicast messaging, add objects
to a Space, establish a virtual reference to the Space, and send the Space a message as if
you were sending it to a single object. The message is propagated in a fault-tolerant and
parallel fashion to every object in the Space.

Use the commands below to create two sports fans, and then add them to the sports
Space:

VSportsFan fan1 = new VSportsFan("localhost");
VSportsFan fan2 = new VSportsFan("localhost");
sports.add(fan1);
sports.add(fan2);

To send every sports fan in the sports Space a one-way score() message, use the
following commands:

VSportsFan fans = new VSportsFan(space); // attach to space
fans.score("bulls", 40, "lakers", 50); // multicast

Voyager and RMI Comparison

16

Distributed Events

Using RMI

RMI does not support distributed events.

Using Voyager

Voyager includes seamless support for large-scale, distributed JavaBeans™ events. To
send an event to a group of objects, first process the event listener class using vcc. Then
add the group of objects to a Space and attach the appropriate virtual event listener to the
Space. Finally, add the virtual event listener to the event source. When an event is sent to
the virtual event listener, the event is sent to every object in the Space that implements
the appropriate event listener interface. The Voyager events system allows you to send
any JavaBeans event to a network of distributed listeners without modifying the bean in
any way.

For example, assume that the SportsFan class implements a NewsEventListener
interface that accepts a NewsEvent via the newsFlash() method. Use the following
commands to create two sports fans and then add them to the sports Space:

VSportsFan fan1 = new VSportsFan("localhost");
VSportsFan fan2 = new VSportsFan("localhost");
sports.add(fan1);
sports.add(fan2);

Use the following commands to send every sports fan in the sports Space a NewsEvent:

VNewsEventListener fans = new VNewsEventListener(space);
NewsEvent event = new NewsEvent("the cowboys win!");
fans.newsFlash(event); // send event to every fan in space

Voyager and RMI Comparison

17

Publish/Subscribe

Using RMI

RMI does not support publish/subscribe capabilities.

Using Voyager

Voyager includes seamless support for large-scale, distributed publish/subscribe of
messages and events. To send a message or event to all objects in a Space that are
interested in a particular subject, use a OneWayMulticast message with a selector.
All objects in the Space that are registered subscribers of the selected subject receive the
message or event. To register an object with a particular subject, use Voyager’s built-in
property mechanism. The Voyager publish/subscribe feature is 100% nonintrusive,
supports wildcards, and does not require modifying the communicating objects in any
way.

For example, to create a sports fan and register its interest in the Bulls and Mavericks
scores being broadcast in the sports Space, use the following commands:

VSportsFan fan = new VSportsFan("localhost");
fan.addProperty(Subscription.SUBSCRIBE, "scores.bulls");
fan.addProperty(Subscription.SUBSCRIBE, "scores.mavericks");
sports.add(fan);

Use the commands below to publish Bulls and Lakers scores in the sports Space:

VSportsFan fans = new VSportsFan(space); // attach to space
Subscription subscription = new Subscription();
subscription.addSubject("scores.bulls");
subscription.addSubject("scores.lakers");
Messenger m = new OneWayMulticast(subscription);
fans.score("bulls", 40, "lakers", 50, m); // publish

Voyager and RMI Comparison

18

Federated Directory Service

Using RMI

RMI does not support federated directories.

Using Voyager

Voyager includes a directory service that allows you to create and connect network
directories to form a large, federated directory service. You can associate an object with a
hierarchical name, such as sports/basketball/lakers or
chemistry/symbols/calcium. The federated directory service is fully integrated
with Voyager’s persistence subsystem.

Voyager and RMI Comparison

19

Message Types

Using RMI

RMI supports synchronous messages only.

Using Voyager

Voyager supports four different message types: synchronous, one-way, one-way
multicast, and future messages.

By default, Voyager messages are synchronous (the sender blocks until the message
completes and the return value is received). Voyager also supports one-way messages
(the sender discards the result), future messages (the sender returns immediately with a
placeholder that allows the result to be retrieved later), and one-way multicast messages
(the message is sent to all objects in a Space). You can also send a one-way multicast
message to only certain objects in a group by using a selector.

Voyager method invocations are performed by smart messengers, which are lightweight,
active objects rather than passive data structures. Smart messengers can route themselves,
resend themselves, take actions on failures, and so on. Source code licensees can create
customized messengers without modifying the core system.

Voyager also supports dynamic message creation. You can set a messenger’s signature
and arguments at run time before a message is sent. This is a powerful feature that can be
used for many purposes; for example, you can easily create a scheduler that sends a user-
supplied message to any kind of object at a particular point in time.

Voyager and RMI Comparison

20

Evolution of Remote References

Using RMI

When the RMI rmic compiler generates client and server stubs, it associates hardcoded
numbers with each function; that is, foo() might be associated with 1, bar() might be
associated with 2, and so on. These numbers are used by the client stub to remotely
activate a function via the server stub. Thus, if you deploy a class remotely and then
modify its class, you might be unable to use the new client stub to communicate with
older instances of the class. The only recourse at this point is to shut down and restart the
entire system. RMI, therefore, does not support evolution of remote references in a
network environment.

Using Voyager

When used to generate client stubs, the Voyager vcc utility embeds method signatures in
the virtual class instead of hardcoded numbers. These signatures are used by the
reflection mechanism on the server to find and execute a remote method. Therefore, if
you deploy a class remotely and then modify its class, you can continue to execute
methods on older instances of the class using the new virtual class. Voyager, therefore,
supports smooth evolution of remote references in a network environment.

Voyager and RMI Comparison

21

Garbage Collection

Using RMI

RMI has a lease-based garbage collection system. When a client obtains a reference to a
remote object, the client is granted a lease that must be renewed periodically to prevent
the remote object from being garbage-collected. A remote object is garbage-collected
when all its leases expire.

Using Voyager

Voyager offers a superset of the RMI garbage collection system that supports both lease-
based and time-based garbage collection. An object’s life span can be defined based on a
specific length of time or a particular point in time. The object is garbage-collected at the
end of its life span. Time-based garbage collection is often used to create roaming agents
that automatically self-destruct in a few days. Voyager’s garbage collection system is
fully integrated with its support for persistence thus correctly garbage-collects persistent
objects.

Voyager and RMI Comparison

22

Applet Connectivity

Using RMI

Most browsers allow an applet to open a socket connection only to its server. This means
that in the absence of any higher-level routing mechanism, an applet can only
communicate with objects located on the same server. RMI has no additional routing
mechanism thus is subject to this limitation.

Using Voyager

Voyager includes a lightweight software router that allows both applet-to-applet and
applet-to-program connectivity. An object inside an applet can communicate with another
object no matter where each object resides. That is, an object can communicate with
objects in another applet, whether the applet is on the same server or on a different server,
firewalls permitting.

Voyager and RMI Comparison

23

Network Class Loading

Using RMI

For an RMI program to act as a source for classes that can be loaded across the network,
the program must be running an HTTP server. Although reasonable when the client is an
applet accessed from a Web site, this requirement is clumsy in other cases. For example,
to build an intranet system in which the server program is running an internal Windows
NT system, you would have to install an HTTP server on the Windows NT machine,
even though the machine does not actually service the Web. JavaSoft supplies developers
with a mini-Web server to overcome this difficulty.

Using Voyager

Voyager programs can transmit classes to other Voyager programs using regular socket
connections. Therefore, you need not install any additional software to write programs
that make full use of Java’s code mobility, which results in much simpler deployment of
Voyager programs.

Voyager and RMI Comparison

24

Product Size

Using RMI

RMI’s total class file size is approximately 180KB. This includes all primary RMI
.class files, the registry, and the distributed garbage collection system, but excludes
the HTTP firewall support.

Using Voyager

Voyager’s total class file size is approximately 270KB. This includes the entire Voyager
system—the integrated directory service, the distributed garbage collection system, smart
messengers, mobility, and agent support.

Voyager and RMI Comparison

25

Performance

The table below lists a few benchmarks that compare RMI and Voyager performance on
remote method calls between objects on the same virtual machine and between objects on
different virtual machines. Each function was defined to take a specific kind of argument
and to perform no operation. The benchmarks were performed on a 150Mhz Tecra laptop
with 80MB of RAM. Times are in milliseconds per function call. The following interface
definition was used.

package benchmarks;

import java.util.Vector;
import java.rmi.*;

public interface IServer extends Remote
 {
 public void noArguments() throws RemoteException;
 public int twoInts(int a, int b) throws RemoteException;
 public int vectorIntegers(Vector integers) throws RemoteException;
 public int vectorStrings(Vector strings) throws RemoteException;
 }

No
Arguments

Two
Integers

Vector of
100 Integers

Vector of
100 Strings

Same Virtual Machine

RMI 2.1 2.3 437.83 193.48

Voyager 0.2 0.5 0.3 0.4

Different Virtual Machines

RMI 2.1 3.01 436.02 190.28

Voyager 3.0 3.21 117.87 193.98

Voyager and RMI Comparison

26

Stubs and Skeletons

RMI and Voyager each use a utility to generate custom code for remote method
invocation. RMI generates both client code and server code, whereas Voyager generates
client code only. This section shows the code that each product generates for the
twoInts() method of the following interface.

public interface IServer extends Remote
 {
 public void noArguments() throws RemoteException;
 public int twoInts(int a, int b) throws RemoteException;
 public int vectorIntegers(Vector integers) throws RemoteException;
 public int vectorStrings(Vector strings) throws RemoteException;
 }

As the following code examples demonstrate, Voyager typically emits 80 percent less
support code than RMI.

Voyager and RMI Comparison

27

Using RMI

Stub code generated by twoInts():

// Implementation of twoInts
 public int twoInts(int $_int_1, int $_int_2) throws java.rmi.RemoteException {
 int opnum = 1;
 java.rmi.server.RemoteRef sub = ref;
 java.rmi.server.RemoteCall call =
 sub.newCall((java.rmi.server.RemoteObject)this, operations, opnum, interfaceHash);
 try {
 java.io.ObjectOutput out = call.getOutputStream();
 out.writeInt($_int_1);
 out.writeInt($_int_2);
 } catch (java.io.IOException ex) {
 throw new java.rmi.MarshalException("Error marshaling arguments", ex);
 };
 try {
 sub.invoke(call);
 } catch (java.rmi.RemoteException ex) {
 throw ex;
 } catch (java.lang.Exception ex) {
 throw new java.rmi.UnexpectedException("Unexpected exception", ex);
 };
 int $result;
 try {
 java.io.ObjectInput in = call.getInputStream();
 $result = in.readInt();
 } catch (java.io.IOException ex) {
 throw new java.rmi.UnmarshalException("Error unmarshaling return", ex);
 } catch (Exception ex) {
 throw new java.rmi.UnexpectedException("Unexpected exception", ex);
 } finally {
 sub.done(call);
 }
 return $result;
 }

Skeleton code generated by twoInts():

case 1: { // twoInts
 int $_int_1;
 int $_int_2;
 try {
 java.io.ObjectInput in = call.getInputStream();
 $_int_1 = in.readInt();
 $_int_2 = in.readInt();
 } catch (java.io.IOException ex) {
 throw new java.rmi.UnmarshalException("Error unmarshaling arguments", ex);
 } finally {
 call.releaseInputStream();
 };
 int $result = server.twoInts($_int_1, $_int_2);
 try {
 java.io.ObjectOutput out = call.getResultStream(true);
 out.writeInt($result);
 } catch (java.io.IOException ex) {
 throw new java.rmi.MarshalException("Error marshaling return", ex);
 };
 break;
 }

Voyager and RMI Comparison

28

Using Voyager

Stub code generated by twoInts(), default version:

public Result twoInts(int arg1, int arg2, Messenger __messenger)
 {
 __messenger.writeInt(arg1);
 __messenger.writeInt(arg2);
 return __instanceMethod(__messenger, instance1);
 }

Stub code generated by twoInts(), smart messenger version:

public int twoInts(int arg1, int arg2)
 {
 return twoInts(arg1, arg2, new Sync()).readIntRuntime();
 }

There is no skeleton code for twoInts()because Voyager does not require skeleton
code on the server side.

29

For additional technical information on ObjectSpace
products and programs or for information on how to order and evaluate

ObjectSpace technology, contact us today!

14850 Quorum Drive, Suite 500
Dallas TX 75240

972.726.4100
1.800.OBJECT.1
Fax: 972.715.9099

Java is a trademark of Sun Microsystems.
ObjectSpace Voyager and Space are trademarks of ObjectSpace, Inc.
All other trademarks are the property of their respective companies.

E-mail: sales@objectspace.com
Web: www.objectspace.com

Dallas • Austin • Chicago •
San Francisco • Washington DC

