A parser is a program that analyzes a piece of text to determine its Almost every real-life program involves some kind of parsing...
structure (and, typically, returns a tree representing this structure).

Hugs and GHC parse Haskell programs

Unix shells (bash, sh, etc.) parse shell scripts
Explorer, Mozilla, etc., parse HTML
Command-line utilities parse command lines
etc., etc.

In Haskell, a parser is naturally viewed as a function: However, a parser might not actually use up the whole string, so
we also return the unused portion of the input:

type Parser = String -> Tree
type Parser = String -> (Tree,String)




Also, a given string might be parseable in many ways (including
zerol), so we generalize to a list of results:

type Parser = String -> [(Tree,String)]

Finally, for the sake of readability, let's change the type declaration
into a newtype and add a constructor on the right-hand side. The
convenience function parse takes a parser and applies it to a given
string.

newtype Parser a = Parser (String -> [(a,String)])

parse :: Parser a -> String -> [(a,String)]
parse (Parser p) = p

The parser iten fails if the input is empty, and consumes the first
character otherwise:

item :: Parser Char

item = Parser (\cs -> case cs of
nn -> []
(c:cs) —> [(c,cs)])

parse item "hello"
= [(:h) ,"6110")]

parse item "'
=0

The result returned by a parser might not always be a tree, so we
generalize once more to make the Parser type polymorphic:

type Parser a = String -> [(a,String)]

The parser returnP a always succeeds, returning the value a
without consuming any input:

returnP :: a -> Parser a
returnP a = Parser (\cs -> [(a,cs)])

parse (returnP 5) "hello"
= [(5,"hello")]




p ‘seqP‘ qis a parser that first applies p and then applies q to
each result from p.

seqP :: Parser a -> (a -> Parser b) -> Parser b

p ‘seqP q =
Parser
(\cs —-> concat [parse (q a) cs’
| (a,cs’) <- parse p cs])

Having made this instance declaration, we can use do syntax to
simplify the presentation of the parseTwo function:

parseTwo2 :: Parser (Char,Char)
parseTwo2 = do x <- item
y <- item

return (x,y)

parseTwo :: Parser (Char,Char)

parseTwo = item
‘seqP‘ \x -> item
‘seqP‘ \y -> return (x,y)

parse parseTwo "hello"
= [((’h’ s :e:) ,"110")]
parse parseTwo "h"

=[]

Note that, if any parser in a sequence fails, then the whole
sequence fails.

The definitions of returnP and seqP have the right types (and obey
the required laws) to make Parser into a monad.

instance Monad Parser where
return = returnP
(>>=) = seqP




The parser zeroP always fails:

zeroP :: Parser a

zeroP = Parser (\cs —> [])

char :: Char -> Parser Char
char c sat (c ==

alphachar :: Parser Char
alphachar = sat isAlpha

numchar :: Parser Char
numchar sat isDigit

digit :: Parser Int
digit do {c <- numchar; return (ord ¢ - ord ’0’)}

(isAlpha and isDigit come from the Char module in the standard
library.)

p = do { x <- item; return ("Got "++[x]) }
‘chooseP*
do { x <- item; return ("Parsed "++[x]) }

parse p "xyz"
= [("GOt x“,"yz"),("Parsed X","yZ")]

The parser sat p behaves like iten if the first character on the
input string satisfies the predicate p; otherwise it fails.

sat :: (Char -> Bool) -> Parser Char

sat p = do c <- item
if p ¢ then return c else zeroP

parse (sat (==’h’)) "hello"
= [(;h) ,"9110")]

parse (sat (==’x’)) "hello"
=

p ‘chooseP‘ qyields all the results of applying either p or q to the
whole input string.

chooseP :: Parser a -> Parser a -> Parser a

p ‘chooseP¢ q = Parser
(\cs -> parse p cs ++ parse q cs)

alphanum :: Parser Char

alphanum = alphachar ‘chooseP‘ numchar

This parser yields a function:
addop :: Parser (Int -> Int -> Int)
addop = do {char ’+’; return (+)}

‘chooseP*
do {char ’-’; return (-)}

For example:

calc = do x <- digit; op <- addop; y <- digit
return (x ‘op‘ y)

parse calc "1+2"
= [(3,""]




string s is a parser that recognizes (and returns) exactly the

string s:

string :: String -> Parser String

string "" = return ""

string (c:cs) = do {char c; string cs; return (c:cs)}
many :: Parser a -> Parser [a] calcl = do x <- digit
many p = manyl p ‘chooseP‘ return [] op <- addop

y <- calcl

manyl :: Parser a -> Parser [a] return (x ‘op‘ y)
manyl p = do {a <- p; as <- many p; return (a:as)} ‘chooseP*¢

digit

parse (many numchar) "123ab"

= Q2R el QUi kg QU Wkt (0 )T parse calcl "3+4-1"
:> [(6’"") s (7’“_1") s (3,|l+4_1||)]

Note that, for simplicity, we’re taking + and - to be right-associative
for the moment.

Query: What happens if we exchange the arguments to chooseP?

As before...
mulop :: Parser (Int -> Int -> Int)
mulop = do {char ’*’; return (x)}
‘chooseP*¢

do {char ’/’; return (div)}




do x <- term; op <- addop; y <- expr
return (x ‘op‘ y)

‘chooseP*

term

do x <- factor; op <- mulop; y <- term
return (x ‘op‘ y)

‘chooseP ¢

factor

digit
‘chooseP*
do {char ’(’; n <- expr; char ’)’; return n}

parse expr "(3+4)*5"
= [(35,""),(7,"*5")]

The parser chainl p op consumes a non-empty sequence of ps
from the front of the input and combines them together (in the style
of fold1) using op.

chainll :: Parser a —-> Parser (a -> a -> a)
-> Parser a
p ‘chainll‘ op =
do {a <- p; rest a}
where
rest a = do {f <- op; b <- p; rest (f a b)}
‘chooseP‘ return a

A similar chaining function also works for empty sequences:

chainl :: Parser a -> Parser (a -> a -> a) -> a
-> Parser a
chainl p op a =
(p ‘chainll‘ op) ‘chooseP‘ return a

As a side-benefit, our new expression parser also makes
subtraction and division (and addition and multiplication)
left-associative:
parse expr "9-3-2" -- old
= [(8,""),(6,"-2"),(9,"-3-2")]

parse expr2 "9-3-2" —— new
= [(4,uu) s (6, u_2n) ) (9’"_3_2,,)]

Note the similarity in the definitions of expr and term.

expr = do x <- term; op <- addop; y <- expr
return (x ‘op‘ y)
‘chooseP*¢
term

do x <- factor; op <- mulop; y <- term
return (x ‘op‘ y)

‘chooseP¢

factor

Can we express them both as instances of a common abstraction?

expr2,term2,factor2 :: Parser Int

expr2 = term2  ‘chainll‘ addop
term2 = factor2 ‘chainll‘ mulop
factor2 = digit

‘chooseP*¢

do {char ’(’; n <- expr2; char ’)’; return n}




Deterministic Choice

Usually, we are interested in getting just one parse of the input
string, not all possible parses.

The parser p +++ q yields just the first result from by p, if any, and
otherwise the first result from q.

(+++) : Parser a -> Parser a -> Parser a
p +++ q = Parser (\cs -> case parse (p ‘chooseP‘ q) cs of
1 -> [

(x:xs) -> [x])

More Efficient Sequencing

We can now redefine many in terms of +++.

many :: Parser a -> Parser [al
many p = manyl p +++ return []
many1 :: Parser a -> Parser [a]

manyl p = do {a <- p; as <- many p; return (a:as)}

This change ensures that many always returns exactly one result.

More Efficient Chaining

Similarly, we can redefine chainl and chainl1 in terms of +++.

chainll :: Parser a -> Parser (a -> a -> a)
-> Parser a

p ‘chainll‘ op =

do {a <- p; rest a}

where

rest a = do {f <- op; b <- p; rest (f a b)}
+++ return a
chainl :: Parser a -> Parser (a -> a -> a) -> a
-> Parser a

chainl p op a =

(p ‘chainll® op) +++ return a

Wrap Up

More on Functional Parsing

Parsing technology is a large and complex research area,
extending back to the 1950s and still continuing today. (E.g., see
many recent papers on “Generalized LR parsing,” “packrat
parsing”, etc.)
Functional parsing is also an active research topic, whose surface
we have just scratched here.

o further efficiency improvements

e error reporting and correction

¢ infix operator precedence

e support for “almost deterministic” grammars

The MonadPlus Class

MonadP1lus is an extension of the Monad class that adds a couple of
extra operations. It is not as critical as Monad, but there are some
library functions that rely on MonadP1lus for a few useful things.

class Monad m => MonadPlus m where
mzero :: m a
mplus :: ma ->ma ->ma

Parsers are an instance of MonadPlus:

instance MonadPlus Parser where
mzero = zeroP
mplus = chooseP




