
Advanced Programming
Handout 7

Monads and Friends
(SOE Chapter 18)

The Type of a Type
 In previous chapters we discussed:

 Monomorphic types such as Int, Bool, etc.
 Polymorphic types such as [a], Tree a, etc.
 Monomorphic instances of polymorphic types such as [Int], Tree

Bool, etc.
 Int, Bool, etc. are nullary type constructors, whereas [], Tree,

etc. are unary type constructors. FiniteMap is a binary type
constructor.

 The “type of a type” is called a kind. The kind of all monomorphic
types is written “*”:

Int, Bool, [Int], Tree Bool :: *

 Therefore the type of unary type constructors is:
[], Tree :: * -> *

 These “higher-order types” can be useful in various ways,
especially with type classes.

The Functor Class

 The Functor class demonstrates the use of high-order types:
class Functor f where

fmap :: (a -> b) -> f a -> f b

 Note that f is applied here to one (type) argument, so should have
kind “* -> *”.

 For example:
instance Functor Tree where
 fmap f (Leaf x) = Leaf (f x)
 fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)

 Or, using the function mapTree previously defined:
instance Functor Tree where
 fmap = mapTree

 Exercise: Write the instance declaration for lists.

The Monad Class

 Monads are perhaps the most famous (infamous?)
feature in Haskell.

 They are captured in a type class:
class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b -- “bind”
 (>>) :: m a -> m b -> m b -- “sequence”
 return :: a -> m a
 fail :: String -> m a

 -- default implementations:
 m >> k = m >>= (_ -> k)
 fail s = error s

 The key operations are (>>=) and return.

Syntactic Mystery Unveiled
 The “do” syntax in Haskell is shorthand for Monad

operations, as captured by these rules:
do e e
do e1; e2; ...; en e1 >> (do e2 ; ...; en)
do pat <- e1 ; e2 ; ...; en

let ok pat = do e2 ; ...; en
 ok _ = fail "..."
in e1 >>= ok

do let decllist ; e2 ; ...; en
let decllist in (do e2 ; ...; en)

 Note special case of rule 3:
 3a. do x <- e1 ; e2 ; ...; en

e1 >>= \x -> do e2 ; ...; en

Example Involving IO
 “do” syntax can be completely eliminated using these

rules:
 do putStr “Hello”

 c <- getChar
 return c

 putStr “Hello” >> -- by rule (2)
do c <- getChar
 return c

 putStr “Hello” >> -- by rule (3a)
getChar >>= \c ->
do return c

 putStr “Hello” >> -- by rule (1)
getChar >>= \c ->
return c

 putStr “Hello” >> -- by currying
getChar >>=
return

Functor and Monad Laws
 Functor laws:

fmap id = id
fmap (f . g) = fmap f . fmap g

 Monad laws:
return a >>= k = k a
m >>= return = m
m >>= (\x -> k x >>= h) = (m >>= k) >>= h

Note special case of last law:
m1 >> (m2 >> m3) = (m1 >> m2) >> m3

 Connecting law:
fmap f xs = xs >>= (return . f)

Monad Laws Expressed
using “do” Syntax

 do x <- return a ; k x = k a
 do x <- m ; return x = m
 do x <- m ; y <- k x ; h y = do y <- (do x <- m ; k x) ; h y
 do m1 ; m2 ; m3 = do (do m1 ; m2) ; m3
 fmap f xs = do x <- xs ; return (f x)

 For example, using the second rule above, the example given
earlier can be simplified to just:

do putStr “Hello”
 getChar

or, after desugaring: putStr “Hello” >> getChar

The Maybe Monad

 Recall the Maybe data type:
data Maybe a = Just a

| Nothing

 It is both a Functor and a Monad:
instance Monad Maybe where

Just x >>= k = k x
Nothing >>= k = Nothing
return x = Just x
fail s = Nothing

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

 These instances are indeed “law abiding”.

Using the Maybe Monad
 Consider the expression “g (f x)”. Suppose that

both f and g could return errors that are encoded as
“Nothing”. We might do:

case f x of
 Nothing -> Nothing
 Just y -> case g y of

Nothing -> Nothing
Just z -> …proper result using z…

 But since Maybe is a Monad, we could instead do:
do y <- f x
 z <- g y
 return …proper result using z…

Simplifying Further

 Note that the last expression can be desugared and
simplified as follows:

f x >>= \y -> f x >>= \y ->
g y >>= \z -> g y >>= return
return z

 f x >>= \y -> f x >>= g
g y

 So we started with g (f x) and ended with f
x >>= g.

The List Monad
 The List data type is also a Monad:

instance Monad [] where
 m >>= k = concat (map k m)
 return x = [x]
 fail x = []

 For example:
do x <- [1,2,3]
 y <- [4,5]
 return (x,y)

 [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
 Note that this is the same as:

[(x,y) | x <- [1,2,3], y <- [4,5]]

Indeed, list comprehension syntax is an alternative to
do syntax, for the special case of lists.

Useful Monad Operations
sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

 where mcons p q = do x <- p
 xs <- q
 return (x:xs)

sequence_ :: Monad m => [m a] -> m ()
sequence_ = foldr (>>) (return ())

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f as = sequence (map f as)

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
mapM_ f as = sequence_ (map f as)

(=<<) :: Monad m => (a -> m b) -> m a -> m b
f =<< x = x >>= f

State Monads

 State monads are perhaps the most common kind of
monad: they involve updating and threading state
through a computation. Abstractly:

data SM a = SM (State -> (State, a))

instance Monad SM where
 return a = SM $ \s -> (s,a)
 SM sm0 >>= fsm1 = SM $ \s0 ->

 let (s1,a1) = sm0 s0
 SM sm1 = fsm1 a1
 (s2,a2) = sm1 s1
 in (s2,a2)

 Haskellʼs IO monad is a state monad, where State
corresponds to the “state of the world”.

 But state monads are also commonly user defined.
(For example, tree labeling – see text.)

IO is a State Monad

 Suppose we have these operations that implement an
association list:

lookup :: a -> [(a,b)] -> Maybe b
update :: a -> b -> [(a,b)] -> [(a,b)]
exists :: a [(a,b)] -> Bool

 A file system is just an association list mapping file
names (strings) to file contents (strings):

type State = [(String, String)]

 Then an extremely simplified IO monad is:
data IO a = IO (State -> (State, a))

whose instance in Monad is exactly as on the
preceding slide, replacing “SM” with “IO”.

State Monad Operations

 All that remains is defining the domain-specific
operations, such as:

readFile :: String -> IO (Maybe String)
readFile s = IO (\fs -> (fs, lookup s fs))

writeFile :: String -> String -> IO ()
writeFile s c = IO (\fs -> (update s c fs, ()))

fileExists :: String -> IO Bool
fileExists s = IO (\fs -> (fs, exists s fs))

 Variations include generating an error when readFile
fails instead of using the Maybe type, etc.

Polymorphic State Monad

 The state monad can be made polymorphic in the
state, in the following way:

data SM s a = SM (s -> (s, a))

instance Monad (SM s) where
 return a = SM $ \s -> (s,a)
 SM sm0 >>= fsm1 = SM $ \s0 ->

 let (s1,a1) = sm0 s0
 SM sm1 = fsm1 a1
 (s2,a2) = sm1 s1
 in (s2,a2)

 Note the partial application of the type constructor SM
in the instance declaration. This works because SM
has kind * -> * -> *, so “SM s” has kind * -> *.

