
Advanced Programming
Handout 5

Purely Functional Data Structures:
A Case Study in Functional

Programming

Persistent vs. Ephemeral
 An ephemeral data structure is one for

which only one version is available at a
time: after an update operation, the
structure as it existed before the update is
lost.

 A persistent structure is one where
multiple versions are simultaneously
accessible: after an update, both old and
new versions can be used.

Persistent vs. Ephemeral
 In imperative languages, most data structures

are ephemeral.
• It is generally accepted that persistent variants, when they

are possible at all, will be more complex to code and
asymptotically less efficient.

 In purely functional languages like Haskell, all
data structures are persistent!

• Since there is no assignment, there is no way to destroy old
information. When we are done with it, we just drop it on
the floor and let the garbage collector take care of it.

 So one might worry that efficient data structures
might be hard or even impossible to code in
Haskell.

Enter Okasaki
 Interestingly, it turns out that many common

data structures have purely functional variants
that are easy to understand and have exacly
the same asymptotic efficiency as their
imperative, ephemeral variants.

 These structures have been explored in an
influential book, Purely Functional Data
Structures, by Chris Okasaki, and in a long
series of research papers by Okasaki and
others.

Simple Example
 To get started, let’s take a quite simple

trick that was known to functional
programmers long before Okasaki...

Functional Queues
 A queue (of values of type a) is a structure

supporting the following operations:

 We expect that each operation should run in
O(1) --- i.e., constant --- time, no matter the size
of the queue.

enqueue :: a -> Queue a -> Queue a
dequeue :: Queue a -> (a, Queue a)

Naive Implementation
 A queue of values of type a is just a list of as:

type Queue a = [a]

 To dequeue the first element of the queue, use
the head and tail operators on lists:

dequeue q = (head q, tail q)

 To enqueue an element, append it to the end of
the list:

enqueue e q = q ++ [e]

Naive Implementation
 This works, but the efficiency of enqueue

is disappointing: each enqueue requires
O(n) cons operations!

Of course, cons operations are not the only
things that take time! But counting just
conses actually yields a pretty good
estimate of the (asymptotic) wall-clock
efficiency of programs. Here, it is certainly
clear that the real efficiency can be no
better than O(n).

Better Implementation
 Idea:

 Represent a queue using two lists:
1. the “front part” of the queue
2. the “back part” of the queue in reverse order

 E.g.:
 ([1,2,3],[7,6,5,4]) represents the queue

with elements 1,2,3,4,5,6,7
 ([],[3,2,1]) and ([1,2,3],[]) both

represent the queue with elements 1,2,3

Better Implementation
 To enqueue an element, just cons it onto

the back list.
 To dequeue an element, just remove it

from the front list...
 ...unless the front list is empty, in which

case we reverse the back list and use it
as the front list from now on.

Better Implementation
data Queue a = Queue [a] [a]

enqueue :: a -> Queue a -> Queue a
enqueue e (Queue front back) =
 Queue front (e:back)

dequeue :: Queue a -> (a, Queue a)
dequeue (Queue (e:front) back) =
 (e, (Queue front back))
dequeue (Queue [] back) =
 dequeue (Queue (reverse back) [])

Efficiency
 Intuition: a dequeue may require O(n)

cons operations (to reverse the back list),
but this cannot happen too often.

Efficiency
In more detail:

 Note that each element can participate in at most
one list reversal during its “lifetime” in the queue.

 When an element is enqueued, we can “charge two
tokens” for two cons operations. One of these is
performed immediately; the other we put “in the
bank.”

 At every moment, the number of tokens in the bank
is equal to the length of the back list.

 When we find we need to reverse the back list to
perform a dequeue, we will always have just enough
tokens in the bank to pay for all of the cons
operations involved.

Efficiency
 So we can say that the amortized cost of

each enqueue operation is two conses.
 The amortized cost of each dequeue is

zero (i.e., no conses --- just some pointer
manipulation).

Caveat: This efficiency argument is
somewhat rough and ready --- it is
intended just to give an intuition for
what is going on. Making everything
precise requires more work, especially
in a lazy language.

Moral
 We can implement a persistent queue

data structure whose operations have the
same (asymptotic, amortized) efficiency
as the standard (ephemeral, double-
pointer) imperative implementation.

Binary Search Trees
 Suppose we want to implement a type
Set a supporting the following
operations:

 One very simple implementation for sets
is in terms of binary search trees...

empty :: Set a
member :: Ord a => a -> Set a -> Bool
insert :: Ord a => a -> Set a -> Set a

Binary Search Trees
data Set a =
 E -- empty
 | T (Set a) a (Set a) -- nonempty

empty = E

member x E = False
member x (T a y b)
 | x < y = member x a
 | x > y = member x b
 | True = True

insert x E = T E x E
insert x (T a y b)
 | x < y = T (insert x a) y b
 | x > y = T a y (insert x b)
 | True = T a y b

Quick Digression on Patterns
 The insert function is a little hard to read

because it is not immediately obvious that
the phrase “T a y b” in the body just
means “return the input.”

insert x E = T E x E
insert x (T a y b)
 | x < y = T (insert x a) y b
 | x > y = T a y (insert x b)
 | True = T a y b

Quick Digression on Patterns
 Haskell provides @-patterns for such situations.

 The pattern “t@(T a y b)” means “check that the
input value was constructed with a T, bind its
parts to a, y, and b, and additionally let t stand
for the whole input value in what follows...”

insert x E = T E x E
insert x t@(T a y b)
 | x < y = T (insert x a) y b
 | x > y = T a y (insert x b)
 | True = t

Balanced Trees
 If our sets grow large, we may find that the

simple binary tree implementation is not fast
enough: in the worse case, each insert or
member operation may take O(n) time!

 We can do much better by keeping the trees
balanced.

 There are many ways of doing this. Let’s look
at one fairly simple (but still very fast) one that
you have probably seen before in an imperative
setting: red-black trees.

Red-Black Trees
 A red-black tree is a binary search tree

where every node is additionally marked
with a color (red or black) and in which
the following invariants are maintained...

Invariants
 The empty nodes at the leaves are

considered black.
4

2 8

6 9

7 12

1 3

Invariants
 The root is always black.

4

2 8

6 9

7 12

1 3

Invariants
 From each node, every path to a leaf has the

same number of black nodes.
 Red nodes have black children

4

2 8

6 9

7 12

1 3

4

2 8

6 9

7 12

1 3

4

2 8

6 9

7 12

1 3

Invariants
 Together, these invariants imply that every red-

black tree is “approximately balanced,” in the
sense that the longest path to an empty node is
no more than twice the length of the shortest.

 From this, it follows that all operations will run in
O(log2 n) time.

Now let’s look at the details...

Type Declaration
 The data declaration is a straightforward

modification of the one for unbalanced
trees:

data Color = R | B

data RedBlackSet a =
 E
 | T Color
 (RedBlackSet a)
 a
 (RedBlackSet a)

Membership
 The empty tree is the same as before.

Membership testing requires just a trivial
change.

empty = E

member x E = False
member x (T _ a y b)
 | x < y = member x a
 | x > y = member x b
 | True = True

Insertion is more interesting...

pronounced “where…”

Insertion
 Insertion is implemented in terms of a recursive

auxiliary function ins, which walks down the
tree until it either gets to an empty leaf node, in
which case it constructs a new (red) node
containing the value being inserted...
ins E = T R E x E

Insertion
 ... or discovers that the value being inserted is

already in the tree, in which case it returns the
input unchanged:

 The recursive cases are where the real work
happens...

ins s@(T color a y b)
 | x < y = ...
 | x > y = ...
 | True = s

Insertion
 In the recursive case, ins determines whether

the new value belongs in the left or right
subtree, makes a recursive call to insert it there,
and rebuilds the current node with the new
subtree.

ins s@(T color a y b)
 | x < y = ... (T color (ins a) y b)
 | x > y = ... (T color a y (ins b))
 | True = s

Insertion
 Before returning it, however, we may need to

rebalance to maintain the red-black invariants.
The code to do this is encapsulated in a helper
function balance.

ins s@(T color a y b)
 | x < y = balance (T color (ins a) y b)
 | x > y = balance (T color a y (ins b))
 | True = s

Balancing
 The key insight in writing the balancing function

is that we do not try to rebalance as soon as
we see a red node with a red child. Instead,
we return this tree as-is and wait until we are
called with the black parent of this node.

 I.e., the job of the balance function is to
rebalance trees with a black-red-red path
starting at the root.

 Since the root has two children and four
grandchildren, there are four ways in which
such a path can happen.

Balancing

z

dx

y

b c

a

y

x

a c

z

db

Balancing

y

x

a c

z

db

z

dy

cx

a b

y

x

a c

z

db

Balancing

y

x

a c

z

db

x

a y

b z

dc

y

x

a c

z

db

Balancing

x

a z

y

cb

d

y

x

a c

z

db

All that remains is to turn these
pictures into code...

y

x

a c

z

db

Balancing
balance (T B (T R (T R a x b) y c) z d)
 = T R (T B a x b) y (T B c z d)

balance (T B (T R a x (T R b y c)) z d)
 = T R (T B a x b) y (T B c z d)

balance (T B a x (T R (T R b y c) z d))
 = T R (T B a x b) y (T B c z d)

balance (T B a x (T R b y (T R c z d)))
 = T R (T B a x b) y (T B c z d)

balance t = t

One Final Detail
 Since we only rebalance black nodes with

red children and grandchildren, it is
possible that the ins function could return
a red node with a red child as its final
result.

 We can fix this by forcing the root node of
the returned tree to be black, regardless
of the color returned by ins.

Final Version

insert x t = makeRootBlack (ins t)
 where
 ins E = T R E x E
 ins s@(T color a y b)
 | x < y = balance (T color (ins a) y b)
 | x > y = balance (T color a y (ins b))
 | True = s
 makeRootBlack (T _ a y b) = T B a y b

The Whole Banana
data Color = R | B
data RedBlackSet a = E | T Color (RedBlackSet a) a (RedBlackSet a)

empty = E

member x E = False
member x (T _ a y b)
 | x < y = member x a
 | x > y = member x b
 | otherwise = True

balance (T B (T R (T R a x b) y c) z d) = T R (T B a x b) y (T B c z d)
balance (T B (T R a x (T R b y c)) z d) = T R (T B a x b) y (T B c z d)
balance (T B a x (T R (T R b y c) z d)) = T R (T B a x b) y (T B c z d)
balance (T B a x (T R b y (T R c z d))) = T R (T B a x b) y (T B c z d)
balance t = t

insert x t = colorRootBlack (ins t)
 where
 ins E = T R E x E
 ins s@(T color a y b)
 | x < y = balance (T color (ins a) y b)
 | x > y = balance (T color a y (ins b))
 | otherwise = s
 colorRootBlack (T _ a y b) = T B a y b

For Comparison...
/* This function can be called only if K2 has a left child */
 /* Perform a rotate between a node (K2) and its left child */
 /* Update heights, then return new root */

 static Position
 SingleRotateWithLeft(Position K2)
 {
 Position K1;

 K1 = K2->Left;
 K2->Left = K1->Right;
 K1->Right = K2;

 return K1; /* New root */
 }

 /* This function can be called only if K1 has a right child */
 /* Perform a rotate between a node (K1) and its right child */
 /* Update heights, then return new root */

 static Position
 SingleRotateWithRight(Position K1)
 {
 Position K2;

 K2 = K1->Right;
 K1->Right = K2->Left;
 K2->Left = K1;

 return K2; /* New root */
 }

 /* Perform a rotation at node X */
 /* (whose parent is passed as a parameter) */
 /* The child is deduced by examining Item */

 static Position
 Rotate(ElementType Item, Position Parent)
 {

 if(Item < Parent->Element)
 return Parent->Left = Item < Parent->Left->Element ?
 SingleRotateWithLeft(Parent->Left) :
 SingleRotateWithRight(Parent->Left);
 else
 return Parent->Right = Item < Parent->Right->Element ?
 SingleRotateWithLeft(Parent->Right) :
 SingleRotateWithRight(Parent->Right);
 }

 static Position X, P, GP, GGP;

 static
 void HandleReorient(ElementType Item, RedBlackTree T)
 {
 X->Color = Red; /* Do the color flip */
 X->Left->Color = Black;
 X->Right->Color = Black;

 if(P->Color == Red) /* Have to rotate */
 {
 GP->Color = Red;
 if((Item < GP->Element) != (Item < P->Element))
 P = Rotate(Item, GP); /* Start double rotate */
 X = Rotate(Item, GGP);
 X->Color = Black;
 }
 T->Right->Color = Black; /* Make root black */
 }

 RedBlackTree
 Insert(ElementType Item, RedBlackTree T)
 {
 X = P = GP = T;
 NullNode->Element = Item;
 while(X->Element != Item) /* Descend down the tree */
 {
 GGP = GP; GP = P; P = X;
 if(Item < X->Element)
 X = X->Left;
 else
 X = X->Right;
 if(X->Left->Color == Red && X->Right->Color == Red)
 HandleReorient(Item, T);
 }

 if(X != NullNode)
 return NullNode; /* Duplicate */

 X = malloc(sizeof(struct RedBlackNode));
 if(X == NULL)
 FatalError("Out of space!!!");
 X->Element = Item;
 X->Left = X->Right = NullNode;

 if(Item < P->Element) /* Attach to its parent */
 P->Left = X;
 else
 P->Right = X;
 HandleReorient(Item, T); /* Color it red; maybe rotate */

 return T;
 }

