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Review

 What are the types of these functions?
f x = [x]

g x = [x+1]

h [] = 0
h (y:ys) = h ys + 1



Review

 How about these?
f1 x y = [x] : [y]

f2 x [] = x
f2 x (y:ys) = f2 y ys

f3 [] ys = ys
f3 xs [] = xs
f3 (x:xs) (y:ys) = f3 ys xs



Review

 How about these?
foo x y = x (x (x y))

bar x y z = x (y z)

baz x (x1:x2:xs) = (x1 `x` x2) : baz xs
baz x _          = []

What does baz do?



Review

 Recall that map is defined as:
map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

What does this function do?
mystery f l = map (map f) l



Trees
 Trees are used all over the place in programming.
 Trees have interesting properties:

 They are (usually!) finite, but potentially unbounded in size.
 They often contain other types of data (ints, strings, lists) within.
 They can be polymorphic.
 They may have differing “branching factors”.
 They may have different flavors of leaves and branching nodes.

 Lots of interesting data structures are tree-like:
 lists  (linear branching)
 arithmetic expressions (see SOE)
 parse trees (for programming or natural languages)
 etc., etc.

 In a lazy language like Haskell, we can even build infinite trees!



Examples

data List a         = Nil
                    | MkList a (List a)
data Tree a         = Leaf a
                    | Branch (Tree a) (Tree a)
data IntegerTree    = IntLeaf Integer
                    | IntBranch IntegerTree IntegerTree
data SimpleTree     = SLeaf
                    | SBranch SimpleTree SimpleTree
data InternalTree a = ILeaf
                    | IBranch a (InternalTree a)
                                (InternalTree a)
data FancyTree a b  = FLeaf a
                    | FBranch b (FancyTree a b)
                                (FancyTree a b)

Note that this type
declaration is recursive:
List is mentioned on its

right-hand side



Match up the Trees

 IntegerTree

 Tree

 SimpleTree

 List

 InternalTree

 FancyTree
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Functions on Trees

 Transforming a tree of as into a tree of bs :

mapTree :: (a->b) -> Tree a -> Tree b
mapTree f (Leaf x)       = Leaf (f x)
mapTree f (Branch t1 t2) = Branch (mapTree f t1)
                                  (mapTree f t2)

 Collecting the items in a tree:
fringe               :: Tree a -> [a]
fringe (Leaf x)       = [x]
fringe (Branch t1 t2) = fringe t1 ++ fringe t2



More Functions on Trees

treeSize               :: Tree a -> Integer
treeSize (Leaf x)       = 1
treeSize (Branch t1 t2) = treeSize t1 + treeSize t2

treeHeight               :: Tree a -> Integer
treeHeight (Leaf x)       = 0
treeHeight (Branch t1 t2) = 1 + max (treeHeight t1)
                                    (treeHeight t2)



Capturing a Pattern
of Recursion

Many of our functions on trees have similar structure.  Can we apply the
abstraction principle?

Of course we can!

foldTree :: (a -> a -> a) -> (b -> a) -> Tree b -> a
foldTree combineFn leafFn (Leaf x) =
           leafFn x
foldTree combineFn leafFn (Branch t1 t2) =
           combineFn (foldTree combineFn leafFn t1)
                     (foldTree combineFn leafFn t2)



Using foldTree
With foldTree we can redefine the previous

functions like this:
mapTree f  = foldTree Branch fun
             where fun x = Leaf (f x)

fringe     = foldTree (++) fun
             where fun x = [x]
treeSize   = foldTree (+) (const 1)
             where const x y = x
treeHeight = foldTree fun (const 0)
             where const x y = x
                   fun x y = 1 + max x y

Partial application again!



Arithmetic Expressons

data Expr = C Float
          | Add Expr Expr
          | Sub Expr Expr
          | Mul Expr Expr
          | Div Expr Expr

Or, using infix constructor names:

data Expr = C Float
          | Expr :+ Expr
          | Expr :- Expr
          | Expr :* Expr
          | Expr :/ Expr

Infix constructors begin with
a colon (:) , whereas ordinary 

constructor functions begin with 
an upper-case character.



Example

e1 = (C 10 :+ (C 8 :/ C 2)) :* (C 7 :- C 4)

evaluate           :: Expr -> Float
evaluate (C x)      = x
evaluate (e1 :+ e2) = evaluate e1 + evaluate e2
evaluate (e1 :- e2) = evaluate e1 - evaluate e2
evaluate (e1 :* e2) = evaluate e1 * evaluate e2
evaluate (e1 :/ e2) = evaluate e1 / evaluate e2

Main> evaluate e1
42.0



A Taste of Infinity



Infinite Lists

 Lists in Haskell need not be finite.  E.g.:
list1 = [1..]       -- [1,2,3,4,5,6,...]

f x = x : (f (x+1))
list2 = f 1         -- [1,2,3,4,5,6,...]

list3 = 1:2:list3   -- [1,2,1,2,1,2,...]



Working with Infinite Lists

 Of course, if we try to perform an operation
that requires consuming all of an infinite list
(such as printing it or finding its length), our
program will loop.

 However, a program that only consumes a
finite part of an infinite list will work just fine.
      take 5 [10..]   [10,11,12,13,14]



Lazy Evaluation

 The feature of Haskell that makes this possible
is lazy evaluation.

 Only the portion of a list that is actually needed
by other parts of the program will actually be
constructed at run time.

 We will discuss the mechanics of lazy
evaluation in much more detail later in the
course.  Today, let’s look at a real-life example
of its use...



Shapes III: Perimeters of Shapes
(Chapter 6)



 To compute the perimeter we need a function with
 four equations (1 for each Shape constructor).

 The first three are easy …
  perimeter :: Shape -> Float
  perimeter (Rectangle  s1 s2) = 2*(s1+s2)
  perimeter (RtTriangle s1 s2) =
                        s1 + s2 + sqrt (s1^2+s2^2)
  perimeter (Polygon pts)      =
                        foldl (+) 0 (sides pts)

-- or: sumList (sides pts)
 This assumes that we can compute the lengths of the sides of a polygon.

This shouldn’t be too difficult since we can compute the distance between
two points with distBetween.

The Perimeter of a Shape
s1

s2

s1

s2



Recursive Def’n of Sides

  sides       :: [Vertex] -> [Side]
  sides  []    = []
  sides (v:vs) = aux v vs
    where
     aux v1 (v2:vs’) = distBetween v1 v2 : aux v2 vs’
     aux vn []       = distBetween vn v  : []

     -- i.e. aux vn [] = [distBetween vn v]

 But can we do better?  Can we remove the direct recursion, as a
seasoned functional programmer might?



Visualize What’s Happening

 The list of vertices is:  vs = [A,B,C,D,E]
 We need to compute the distances between the pairs of points

(A,B), (B,C), (C,D), (D,E), and (E,A).
 Can we compute these pairs as a list?

   [(A,B),(B,C),(C,D),(D,E),(E,A)]
 Yes, by “zipping” the two lists:

   [A,B,C,D,E] and [B,C,D,E,A]
as follows:
  zip vs (tail vs ++ [head vs])

A

B

C

DE



New Version of sides
This leads to:

sides   :: [Vertex] -> [Side]
sides vs = zipWith distBetween vs
                   (tail vs ++ [head vs])



There is one remaining case: the ellipse.  The perimeter
of an ellipse is given by the summation of an infinite
series.  For an ellipse with radii r1 and r2:

    p = 2πr1(1 - Σ si)
where s1  = 1/4 e2

          si   = si-1 (2i-1)(2i-3) e2      for i > 1
                            4i2
       e   = sqrt (r1

2 – r2
2) / r1

Given si, it is easy to compute si+1.

Perimeter of an Ellipse

n.b.: not >= as in handout



Computing the Series

nextEl:: Float -> Float -> Float -> Float
nextEl e s i = s*(2*i-1)*(2*i-3)*(e^2) / (4*i^2)

Now we want to compute [s1,s2,s3, …].
To fix e, let’s define:
    aux s i = nextEl e s i
So, we would like to compute:

[s1, s2 = aux s1 2, s3 = aux s2 3 = aux (aux s1 2) 3, s4 = aux s3 4 = aux (aux (aux s1 2) 3) 4, ...
]

si+1 = si (2i-1)(2i-3) e2

                   4i2

Can we capture
this pattern?



Scanl (scan from the left)
 Yes, using the predefined function scanl:

scanl :: (a -> b -> b) -> b -> [a] -> [b]
scanl f seed  []    = seed : []
scanl f seed (x:xs) = seed : scanl f newseed xs
      where newseed =  f x seed

 For example:
  scanl (+) 0 [1,2,3]
   [ 0,
       1 = (+) 0 1,
       3 = (+) 1 2,
       6 = (+) 3 3 ]
   [ 0, 1, 3, 6 ]

 Using scanl, the result we want is:
scanl aux s1 [2 ..]



r2 = 1.5

r1 = 2.1
[s1 = 0.122449,
 s2 = 0.0112453,
 s3 = 0.00229496,
 s4 = 0.000614721,
 s5 = 0.000189685,
 ...]

Note how quickly
the values in the 
series get smaller ...

Sample Series Values



Putting it all Together

perimeter (Ellipse r1 r2)
   | r1 > r2   = ellipsePerim r1 r2
   | otherwise = ellipsePerim r2 r1
   where ellipsePerim r1 r2
           = let e = sqrt (r1^2 - r2^2) / r1
                 s = scanl aux (0.25*e^2)
                             (map intToFloat [2..])
                 aux s i = nextEl e s i
                 test x = x > epsilon
                 sSum = foldl (+) 0 (takeWhile test s)
             in 2*r1*pi*(1 - sSum)

note use of
“pattern guards”



Case Study:
A Module of Regions



The Region Data Type

 A region represents an area on the two-dimensional Cartesian plane.
 It is represented by a tree-like data structure.

data Region =
   Shape Shape               -- primitive shape
 | Translate Vector Region   -- translated region
 | Scale Vector Region       -- scaled region
 | Complement Region         -- inverse of region
 | Region `Union` Region     -- union of regions
 | Region `Intersect` Region -- intersection of regions
 | Empty

type Vector = (Float, Float)



Questions about Regions

 What is the strategy for writing functions over regions?

 Is there a fold-function for regions?
 How many parameters does it have?
 What is its type?

 Can one define infinite regions?

 What does a region mean?



Sets and Characteristic
Functions
 How can we represent an infinite set in Haskell?  E.g.:

 the set of all even numbers
 the set of all prime numbers

 We could use an infinite list, but then searching it might take a very long
time!  (Membership becomes semi-decidable.)

 The characteristic function for a set containing elements of type z is a
function of type  z -> Bool that indicates whether or not a given element
is in the set.  Since that information completely characterizes a set, we can
use it to represent a set:
  type Set a = a -> Bool

 For example:
    even  :: Set Integer       -- i.e., Integer -> Bool
    even x = (x `mod` 2) == 0



Combining Sets

 If sets are represented by characteristic functions, then how do
we represent the:
 union of two sets?
 intersection of two sets?
 complement of a set?

 In-class exercise – define the following Haskell functions:

 union     s1 s2 =
 intersect s1 s2 =
 complement   s  =

 We will use these later to define similar operations on regions.



Semantics of Regions

The “meaning” (or “denotation”) of a region can be expressed
as its characteristic function -- i.e.,

  a region denotes the set of points contained within it.



Characteristic Functions for
Regions

 We define the meaning of regions by a function:
   containsR :: Region -> Coordinate -> Bool
   type Coordinate = (Float, Float)

 Note that containsR r :: Coordinate -> Bool, which is a
characteristic function.  So containsR “gives meaning to” regions.

 Another way to see this:
   containsR :: Region -> Set Coordinate

 We can define containsR recursively, using pattern matching over the
structure of a Region.

 Since the base cases of the recursion are primitive shapes, we also need a
function that gives meaning to primitive shapes; we will call this function
containsS.



Rectangle

Rectangle s1 s2 `containsS` (x,y)
= let t1 = s1/2
      t2 = s2/2
  in -t1<=x && x<=t1 && -t2<=y && y<=t2

s1

s2t1 t2



Ellipse
Ellipse r1 r2 `containsS` (x,y)
       = (x/r1)^2 + (y/r2)^2 <= 1

r1

r2



The Left Side of a Line

a = (ax,ay)

b = (bx,by)
For a ray directed from point a
to point b, a point p is to the left of
the ray (facing from a to b) when:

isLeftOf :: Coordinate -> Ray -> Bool
(px,py) `isLeftOf` ((ax,ay),(bx,by))
       = let (s,t) = (px-ax, py-ay)
             (u,v) = (px-bx, py-by)
         in  s*v >= t*u
type Ray = (Coordinate, Coordinate)

p = (px,py)



Polygon

A point p is contained within a
(convex) polygon if it is to the
left of every side, when they
are followed in counter-
clockwise order.

p

Polygon pts `containsS` p
  = let shiftpts = tail pts ++ [head pts]
        leftOfList = map isLeftOfp (zip pts shiftpts)
        isLeftOfp p' = isLeftOf p p'
    in and leftOfList



Right Triangle
RtTriangle s1 s2 `containsS` p

 = Polygon [(0,0),(s1,0),(0,s2)] `containsS` p

s1(0,0)

(0,s2)

(s1,0)

s2



Putting it all Together
containsS :: Shape -> Vertex -> Bool
Rectangle s1 s2 `containsS` (x,y)
   = let t1 = s1/2; t2 = s2/2
     in -t1<=x && x<=t1 && -t2<=y && y<=t2
Ellipse r1 r2 `containsS` (x,y)
   = (x/r1)^2 + (y/r2)^2 <= 1
Polygon pts `containsS` p
   = let shiftpts   = tail pts ++ [head pts]
         leftOfList = map isLeftOfp (zip pts shiftpts)
         isLeftOfp p' = isLeftOf p p'
     in and leftOfList
RtTriangle s1 s2 `containsS` p
   = Polygon [(0,0),(s1,0),(0,s2)] `containsS` p



Defining containsR
  containsR :: Region -> Vertex -> Bool
  Shape s `containsR` p = s `containsS` p
  Translate (u,v) r `containsR` (x,y)
                        = r `containsR` (x-u,y-v)
  Scale (u,v) r     `containsR` (x,y)
                        = r `containsR` (x/u,y/v)
  Complement r      `containsR` p
                        = not (r `containsR` p)
  r1 `Union` r2     `containsR` p
            = r1 `containsR` p || r2 `containsR` p
  r1 `Intersect` r2 `containsR` p
            = r1 `containsR` p && r2 `containsR` p
  Empty     `containsR` p = False



Applying the Semantics
Having defined the meanings of regions, what can we use them for?

 In Chapter 10, we will use the containsR function to test whether a
mouse click falls within a region.

 We can also use the interpretation of regions as characteristic functions
to reason about abstract properties of regions.  E.g., we can show (by
calculation) that Union is commutative, in the sense that:

for any regions r1 and r2 and any vertex p ,
         (r1 `Union` r2) `containsR` p
   (r2 `Union` r1) `containsR` p
(and vice versa)

     This is cool: Instead of having a separate “program logic” for reasoning
about properties of programs, we can prove many interesting properties
directly by calculation on Haskell program texts.

Unfortunately, we will not have time to pursue this topic further in
this class.


