
4/9/08

1

One solution: language support for
concurrency abstractions

Market leader: locks / synchronised methods

deq(x) deq(y) Double-ended queue

No interference if
ends “far enough”

apart

deq(x) deq(y) Double-ended queue

Interference can
happen if ends
“close enough”

together

[Michael & Scott, PODC 1996]

4/9/08

2

Our main weapon in controlling program
complexity is modular decomposition:
build a big program by gluing together

smaller ones

IDEA!

4/9/08

3

Optimistic
concurrency

6
bal

Transaction log

Thread 1 Thread 2

Transaction log

6
bal

Transaction log

Thread 1 Thread 2

Transaction log

6
bal

Transaction log

Thread 1 Thread 2

Transaction log

6
bal

Transaction log

Thread 1 Thread 2

Transaction log

4/9/08

4

6
bal

Transaction log

Thread 1 Thread 2

Transaction log

7
bal

•  Thread 1 commits
•  Shared ‘bal’ is written
•  Transaction log discarded

Thread 1 Thread 2

Transaction log

7
bal

•  Attempt to commit thread 2
fails, because value in
memory ≠ value in log

•  Transaction re-runs from the
beginning

Thread 1 Thread 2

Transaction log

Optimistic
concurrency

Realising
STM in
Haskell

4/9/08

5

NB: r is a
free variable
of the forked

thread

Two new ideas

4/9/08

6

Try this

...and if it
retries,
try this

...and then (in either
case) do this

4/9/08

7

thread states

shared heap (n.b.!)

observable event

New thread
states and heap

allocation
records

(for later)

two
flavors of
evaluation
contexts

no need for restriction, since this rule can
see all currently allocated thread ids

4/9/08

8

choose a
globally fresh

address for the
new TVar

add the new TVar to
both the heap and

the allocation record

allocation record remembers
which TVars have been

allocated in this transaction

First
branch

succeeds

First
branch
retries

First
branch
raises

exception

Odds and ends

4/9/08

9

Shared
(transational

) memory

Transactional output I/O thread

4/9/08

10

