Concurrency Unlocked

transactional memory
for
composable concurrency

Adapted by BCP
from slides by Simon Peyton Jones

Based on work by Tim Harris, Maurice Herlihy,
Simon Marlow, and Simon Peyton Jones

Locks are broken
1 Races: due to forgotten locks
1 Deadlock: locks acquired in “wrong” order.

1 Lost wakeups: forgotten notify to condition
variable

1 Error recovery tricky: need to restore
invariants and release locks in exception
handlers

a1 Simplicity vs scalability tension

More sadism

[Michael & Scott, PODC 1996]

Double-ended queue
o
. £

= N
Interference can

happen if ends

“close enough”

together

4/9/08

Concurrent programming is hard

1 Programmers have to think about all
possible interleavings (and they aren’t
good at it)

1 Testing is horrible: too many interleavings,
lack of control

1 Bugs are irreproducible
One solution: language support for

concurrency abstractions
Market leader: locks / synchronised methods

Sadistic Homework Assignment

oA

No interference if
ends “far enough”
apart

Locks are broken

...but worst of all...

Locks do not compose

You cannot build a big working program from

small working pieces

1 A.withdraw(3): withdraw $3 from account A.

Easy; use a synchronised method

1 A.withdraw(3); B.deposit(3)
Uh oh: an observer could see a state in
which the money was in neither account

Composition of alternatives

1 Method m1 does a WaitAny(h1,h2) on two
WaitHandles h1, h2. Ditto m2

1 Can we WaitAny(m1,m2). No way!

1 Instead, we break the abstraction and
bubble up the WaitHandles we want to
wait on to a top-level WaitAny, and then
dispatch back to the handler code

1 Same in Unix (select)

IDEA!

1 Software Transactional Memory:
Herlihy/Moss ISCA 1993

a8 STM in Java: Harris/Fraser OOPSLA
2003

4/9/08

Loss of composition

1 Expose the locking
A.lock(); B.lock(); A.withdraw(3);
B.deposit(3); A.unlock(); B.unlock()

1 Uh oh. Danger of deadlock
if A<B then
A.lock(); B.lock()
else
B.lock(); A.lock()
end if

1 Now transfer money from A's deposit account if
A doesn't have enough money....

This way lies madness

Our main weapon in controlling program
complexity is modular decomposition:
build a big program by gluing together

smaller ones

Locks eviscerate our
main weapon

Transactional memory

atomic
A.withdraw(3)
B.deposit(3)
end

1 Steal ideas from the database folk

1 atomic does what it says on the tin

1 Directly supports what the programmer is trying
to do: an atomic transaction against memory

1 “Write the simple sequential code, and wrap
atomic around it”. (Recall sadistic homework.)

Transactional memory

1 No races: no locks, so you can't forget to
take one

2 No lock-induced deadlock, because no
locks

1 No lost wake-ups, because no wake-up
calls to forget [needs retry; wait a few slides]

1 Error recovery trivial: an exception inside
atomic aborts the transaction

1 Simple code is scalable

Transaction logs

Thread 1 Thread 2

=> V = read(bal) = V= read(bal)
write(bal, v+1) write(bal, v-3)
end end

read | written

Transaction log Transaction log

Transaction logs
Thread 2

atomic atomic

Thread 1

v = read(bal) v = read(bal)

Transaction log Transaction log

How does it work?

1 Execute <body> without taking any locks

1 Each read and write in <body> is logged to a
thread-local transaction log

1 Writes go to the log only, not to memory

1 At the end, the transaction tries to commit to
memory

1 Commit may fail; then transaction is re-run

Transaction logs
Thread 2

atomic
v = read(bal)

Thread 1

=> V = read(bal)
write(bal, v+1)
end

read | written

Transaction log Transaction log

Transaction logs
Thread 1 Thread 2

atomic atomic
v = read(bal) v = read(bal)
write(bal, v+1)

end

Transaction log Transaction log

4/9/08

Transaction logs
Thread 1 Thread 2
atomic atomic
v = read(bal) y= read(bal)
write(bal, v+1) write(bal, v-3)

Transaction log Transaction log

Transaction logs
Thread 1 Thread 2
atomic
v = read(bal) = v = read(bal)

write(bal, v+1) write(bal, v-3)
end end

Attempt to commit thread 2

read | written

fails, because value in
memory = value in log
Transaction re-runs from the

beginning Transaction log

Realising
STM in
Haskell

Transaction logs
Thread 1 Thread 2
atomic atomic
v = read(bal) v = read(bal)
write(bal, v+1) write(bal, v-3)
end

* Thread 1 commits

» Shared ‘bal’ is written
» Transaction log discarded

Transaction log

What can you do in <body>?
atomic <body> end
1 Inside <body> you can:
— Read and write memory
— Call arbitrary functions (that obey some rules)
— Raise exceptions

1 But you can'’t do I/O, because that can’t be
undone or redone

1 All this can be checked with a type system.

Realising STM in Haskell

main = do { putStr)
; putStr “no” }

1 Effects are explicit in the type system
— (reverse “yes”) :: String - No effects

— (putStr “no™) :: IO () -- Can have effects
1 The main program is an effect-ful computation
— main :: 10 ()

4/9/08

References
main = do { r <- newRef 0
SincR r
s <-readRef r

1 Reads and writes
are 100%
explicit! You

Effectful computations are first-class

ntimes :: Int-> 10 () -> 10 ()
ntimes 0 action = return ()
ntimes n action = do { action; ntimes (n-1) action }

4/9/08

can't say (r + 6),
because
r::Ref Int

s print s }
rint “yes”)
incR :: Ref Int -> O ()

incR r = do {V <- readRef r Refs are totally 1 fork spawns a thread; takes an action as its argument
- writeRef r (v+1) } non thread-safe

) | fork :: 10 a -> |O Threadld
(e.g. two
concurrent calls - NB:ris a
to incR may step main = do {r <- newRef 0 e e
on each other). ; fork (incR r) of the forked
: incR r thread

newRef :: a -> |O (Ref a)
readRef:: Refa-> 10 a
writeRef :: Refa->a-> 10 ()

STM in Haskell
1 Key idea:

main = do { r <- newRef 0
; fork (atomic (incR r))
; atomic (incR r)

STM in Haskell

1 Better idea: |atomic 1 STMa->10a
newTVar :a->STM (TVara)
readTVar ::TVara->STMa
writeTVar :: TVara->a->STM ()

incR :: TVar Int -> STM ()
incR r=do {v <- readTVar r
;writeTVar r (v+1) }

main = do { r <- atomic (newTVar 0)

; fork (atomic (incR r))
; atomic (incR r)

1 atomic is a function, not a syntactic construct

3 Aworry: what stops you doing incR outside
atomic?

STM in Haskell

1 Can't fiddle with TVars outside atomic
block [good]

1 Can'’t do IO inside atomic block [sad, but
also good]

Two new ideas

Idea 1: modular blocking

withdraw :: TVar Int -> Int -> STM ()
withdraw acc n = do { bal <- readTVar acc

; if bal < n then retry;

; writeTVar acc (bal-n) }

retry :: STM ()
1 retry means “abort the current transaction
and re-execute it from the beginning”.

1 Implementation avoids needless repetition
by using reads in the transaction log (i.e.
acc) to wait until something has changed

How is this “modular’?

1 Because retry can appear anywhere inside an
atomic block, including nested deep within a call.

1 Contrast standard idiom:
atomic (n > 0) { ...stuff... }
which breaks the abstraction inside “...stuff...”
a Difficult to do that in a lock-based world,

because you must release locks before blocking;
but which locks?

1 With STM, no locks => no danger of blocking
while holding locks. This is a very strong
property.

Idea 2: Choice

atomic (do {
withdraw a1 3
...and if it
retries,
try this

‘orelse’
withdraw a2 3
; deposit b 3 })

...and then (in either
case) do this

orElse :: STMa->STM a->STM a

No condition variables

2 No condition variables!

1 Retrying thread is woken up automatically
when acc is changed. No lost wake-ups!

1 No danger of forgetting to test everything
again when woken up; the transaction
runs again from the beginning.

e.g. atomic (do { withdraw a1 3
; withdraw a2 7 })

Farsite project (Jon Howell MSR)

“Your idea of using the writes from one transaction
to wake up sleepy transactions is wonderful. We
wanted to report on the effect your paper draft has
already had on our project.

“...I'told JD that I'd try to hack the Harris-and-
company unblocking scheme into our stuff, but that
he should slap me around if it ended up taking too
long. We decided to check in after three days, and
abandon after five. It took a day and a half....

“...In summary, using your composable blocking
model is wonderful: it rips out a big chunk of our
control flow related to liveness, and takes with it a
whole class of potential bugs.”

Choice is composable too

transfer :: TVar Int -> TVar Int atomic

->TVar Int-> STM () (transfera1 a2 b

transfer a1 a2 b = do ‘orElse’
{ withdraw a1 3 transfer a3 a4 b)
‘orElse’
withdraw a2 3

; depositb 3
end

1 transfer has an orElse, but calls to transfer
can still be composed with orElse

4/9/08

Algebra

1 Nice equations:
—orElse is associative (but not commutative)
—retry "orElse’ s =s
—s ‘orElse’ retry = s

1 [For monad hackers] STM is an instance
of MonadPlus.

But what does it all
mean?

1 Everything so far is intuitive and arm-wavey

1 But what happens if you are inside an orElse and you
throw an exception that contains a value that
mentions...?

1 We need a precise specification

M, | (P|Q)
r—M
r—M

Evaluation i [1]| E>>=M | catch EM
contexts i E, | (P|P) | (P|P)
flavors of Action i e | 7¢ | e
evaluation
contexts

PlputChar ¢J; © - P[return (0]; © (PUTC)
PlgetChar]; ® <5 P[returnc]; © (GETC)
P[forkI0 M]; © (P[returnt] | M:); © t¢P,0,M (FORK)

no need for rest ince this rule can
see all currently allocated thread ids

4/9/08

Exceptions
1 STM monad supports exceptions:

throw :: Exception -> STM a
catch :: STM a -> (Exception ->

1 In the call (atomic s), if s throws an
exception, the transaction is aborted with
no effect; and the exception is propagated
into the IOG monad

1 No need to restore invariants or release
locks!

But what does it all mean?

1 Small-step transition rules, in a similar (but not
identicall) style to the Awkward Squad semantics

M, | (P|Q)
M

New thread

shared heap (n.b.!) states and heap

observable event

Administrative steps

(ADMIN)

N
P[

N]; ©

lAdminisﬂative transitions M — N |

M 4
return N>>=M MN
throw N >>=M throw N
retry >>=M
catch (throw M) N
catch (return M) N return M

fV[M] =V and M £V

Thread soup
Heap

Tra nsa Ctl (o) g ESTl Atocations
Evaluation

contexts

Action

M | (P]Q)
r—=M
r—=M

[]| E>>=M | catch EM
E | (PIP) | (P|P)

e | 7| e

1 atomic turns many STM steps (=>*) into

one IO step (->):

M; ©,{} > return N; ©',A’

Platomic M]; ® — P[return NJ; ©'

1 So what are the STM steps?

Thread soup
Heap
Allocations

Evaluation
contexts
Action

1 Here are the rules for retry

Thread soup
Heap
Allocations
Evaluation

contexts
Action

Mi; ©,A 3 return N; ©', A’

E[M; ‘orElse‘ M]; ©,A = E[return N]; ©',A'

Mi; ©,A 3 retry; ©',A'

(OR1)

E[M; ‘orElse‘ Ms]; ©,A = E[Ms]; ©,A'

M;; ©,A 3 throw N; O/, A’

E[M; ‘orElse‘ M>]; ©,A = [E[throw N]; ©’

(ARET)

M | (P]Q)

=M

r—=M

[] | E>>=M | catch EM
Ei | (PIP) | (P[P)

e | 7| e

M, | (P|Q)
r—M
resM

[] | E>>=M | catch EM
E | (PIP) | (P|P)
e | 7| e

First
branch
succeeds

First
branch
retries

OR2
— (0R2)

First
branch
raises
exception

4/9/08

Thread soup P,Q == M, \A;P Q)
g Hea
STM transitions [NEs g}

Evaluation []| E>>=M | catch E M
contexts E | (P|P) | (P|P)
Action te | 7c|e

allocation record remembers
which TVars have been
allocated in this transaction

1 Easy ones:

|STM transitions M;0,A = N;@',A_|

E[readTVar r]; ©,A
E[writeTVar r M]; ©,A
E[newTVar M]; ©,A

E[return O(r)]; ©,A
E[return OJ; O[r = M], A
E[returnr]; O[r — M],Alr — M] ifr ¢ dom(©

add the new TVar to choose a
both the heap and globally fresh
the allocation record address for the

new TVar

Thread soup P, M, | (P]Q)
Heap r—M
Allocations r—M
Evaluation [1| E>>=M | catch E M
contexts E | (P|P) | (P|P)
Action a te| 7| e

1 Here are the rules for retry

...there are none!
(apart from an admin transition)...

1 In particular, no rule for

Platomic retry], ® -> ...

Odds and ends

Input/output

1 You can'’t do I/O in a memory transaction
(because there’s no general way to undo

19)
1 The STM monad ensures you don’t make
a mistake about this

1 To support transactional I/O: .

= S

Transactional output 1/0 thread

Progress

1 A worry: could the system “thrash” by
continually colliding and re-executing?

1 No: one transaction can be forced to re-
execute only if another succeeds in
committing. That gives a strong progress
guarantee.

1 But a particular thread could perhaps
starve.

No silver bullet

1 Transactional memory is fantastic
1 But you can still write buggy programs

1 But it's like using a high-level language
instead of assembly code: whole classes of
low-level errors are eliminated

1 It's a classic abstraction: a simple interface
hides a complex and subtle implementation

4/9/08

Transactional input

1 Same plan as for output, where input
request size is known

1 Variable-sized input is harder, because if
there is not enough data in the buffer, the
transaction may block (as it should), but
has no observable effect.

1 So the |/O thread doesn’t know to get
more data :~(

1 Still thinking about what to do about
this...not sure it matters that much

Is this all a pipe dream?

Surely it's impractical to log every read and write?
Do you want working programs or not?

Tim built an implementation of TM for Java that
showed a 2x perf hit. Things can only improve!

We only need to log reads and writes to
persistent variables (ones outside the
transaction); many variables are not.

Caches already do much of this stuff; maybe
we could get hardware support.

...but in truth this is an open question

What we have now

1 A complete implementation of
transactional memory in Concurrent
Haskell [in GHC 6.4]. Try it!

http://haskell.org/ghc

1 A C# transactional-memory library. A bit
clunky, and few checks, but works with
unchanged C# [Marurice Herlihy]

1 PPoPP’05 paper
http://research.microsoft.com/~simonpj

Open questions

a Are the claims that transactional memory
supports “higher-level programming”
validated by practice?

1 You can't do |/O within a transaction,
because it can’t be undone. How
inconvenient is that?

1 Can performance be made good enough?

1 Starvation: a long-running transaction may
be repeatedly “bumped” by short
transactions that commit. How bad is this?

CML

1 No way to wait for complex conditions

1 No atomicity guarantees

1 An event is a little bit like a transaction: it
happens or it doesn’t; but explicit user
undo:

wrapAbort :: Event a -> |10 () -> Event a

1 Events have a single “commit point”. Non
compositional:
?7?7 .. Event a -> Event b -> Event (a,b)

4/9/08

CML

1 CML, a fine design, is the nearest
competitor
receive :: Chan a -> Event a
guard :: IO (Event a) -> Event a
wrap :: Event a -> (a->IO b) -> Event b
choose :: [Event a] -> Event a
sync ;. Eventa -> 10 a

1 A lot of the program gets stuffed inside the
events => somewhat inside-out structure

10

