
Lazy functional programming for real 1

64

Concurrency

65

The need for concurrency

Web server

Client 1 Client 2 Client 3 Client 4

 Want one thread (“virtual server”) per client

 Threads largely independent, but share some
common resources (e.g. file system)

66

Concurrency vs parallelism

Parallel functional programming:
 Aim = performance through multiple processors

(e.g. e1+e2 in parallel)
 No semantic changes; deterministic results

Concurrent functional programming
 Aim = concurrent, I/O-performing threads
 Makes perfect sense on a uniprocessor
 Non-deterministic interleaving of I/O is

inevitable

67

Concurrent web service

acceptConnections :: Config -> Socket -> IO ()
acceptConnections config socket
 = forever (do { conn <- accept socket ;
 forkIO (serviceConn config conn) })

forkIO :: IO a -> IO ThreadId

 forkIO spawns an independent, I/O-
performing, thread

 No parameters passed; free variables work
fine

68

Communication and sharing

 What if two threads want to communicate?
Or share data?

 Example: keep a global count of how many
client threads are running

o  Increment count when spawning

o  Decrement count when dying

69

Communication and sharing

 A value of type (MVar t) is a location that is
either

o  empty, or

o  holds a value of type t

data MVar a
newEmptyMVar :: IO (MVar a)
putMVar :: MVar a -> a -> IO ()
takeMVar :: MVar a -> IO a

27

Lazy functional programming for real 2

70

Communication and sharing

takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()

Empty Full

takeMVar Block Return contents,
leave MVar empty

putMVar Fill MVar Block

71

Using MVars
acceptConnections :: Config -> Socket -> IO ()
acceptConnections config socket
 = do { count <- newEmptyMVar ;
 putMVar count 0 ;
 forever (do { conn <- accept socket ;
 forkIO (do { inc count ;
 serviceConn config
conn ;
 dec count}) }

inc,dec :: MVar Int -> IO ()
inc count = do { v <- takeMVar count; putMVar count (v+1) }
dec count = do { v <- takeMVar count; putMVar count (v-1) }

MVar is empty at this point, hence no
race hazard

72

MVars as channels

An MVar directly implements:

 a shared data structure

 a one-place channel

73

Semantics

Fortunately, most of the infrastructure is there already!

Step 1: elaborate the program state

e.g. {putChar ‘c’}t1 | {putChar ‘d’}t2

74

Semantics

Step 2: a rule for for forkIO

The new
thread

Restrict the
new thread

name
Return the

thread name
to the caller

75

Semantics

Step 3: rules for new, take, put

 Same as readIORef, writeIORef, except
that MVar is filled/emptied

 Blocking is implicit

 Non-determinism is implicit

Lazy functional programming for real 3

76

Building abstractions

 MVars are primitive

 Want to build abstractions on top of them

 Example: a buffered channel

77

A buffered channel

type Chan a
newChan :: IO (Chan a)
putChan :: Chan a -> a -> IO ()
getChan :: Chan a -> IO a

78

A buffered channel
type Chan a = (MVar (Stream a),MVar (Stream a))
type Stream a = MVar (Item a)
data Item a = MkItem a (Stream a)

79

A buffered channel
putChan :: Chan a -> a -> IO ()
putChan (read,write) val
 = do { new_hole <- newEmptyMVar ;
 old_hole <- takeMVar write ;
 putMVar write new_hole
 putMVar old_hole (MkItem val new_hole) }

80

Summary

 forkIO + MVars are very simple.

 MVars are a low-level primitive, but
surprisingly often Just The Right Thing

 Some excellent references:

o  Concurrent programming in ML (Reppy, CUP)

o  Concurrent programming in Erlang (Armstrong,
Prentice Hall, 2nd edition)

81

Exceptions

Lazy functional programming for real 4

82

Why do we need exceptions?

Robust programs deal gracefully with
“unexpected” conditions. E.g.

o  Disk write fails because disk is full

o  Client goes away, so server should time out and log an
error

o  Client requests seldom-used service; bug in server code
gives pattern-match failure or divide by zero

Server should not crash if these things happen!

83

Approach 1: virtue

“A robust program never goes wrong”
 (e.g. test for disk full before writing)

BUT:
  Can’t test for all errors (e.g. timeouts)

Need a way to recover from ANY error

84

Approach 2: exceptions

 Provide a way to say “execute this code, but if
anything (at all) goes wrong, abandon it and do
this instead”.

This might be called

 “Exceptions for disaster recovery”
  Exception handler typically covers a large chunk of code

  Recovery action typically aborts a whole chunk of work

85

Aside: bad uses of exceptions

 Exceptions are often (mis-) used in a
different way:

 “Exceptions for extra return values”

 e.g. Look up up something in a table,
 raising “NotFound” if it’s not there.

 Exception handler often encloses a single call

 Recovery action typically does not abort
anything N.b.: This is Simon’s view, not universally

shared (though I tend to agree)

86

Exceptions in Haskell 98
Haskell 98 supports exceptions in I/O actions:

catch :: IO a -> (IOError -> IO a) -> IO a
userError :: String -> IOError
ioError :: IOError -> IO a

catch (do { h <- openFile “foo”;
 processFile h })
 (\e -> putStr “Oh dear”)

Exception
handler

Protected
code

 Dynamic scope: exceptions raised in
processFile are also caught

87

Semantics

Step 1: add a new evaluation context

 E ::= [.] | E >>= M | catch E M

Says: “evaluate
inside the first

argument of catch”

Lazy functional programming for real 5

88

Semantics

Step 2: add propagation rule for ioError

An exception before
the (>>=)… …discards the part

after the (>>=)

Standard stack-unwinding implementation is possible

89

Semantics

Step 3: add rules for catch

What to do if an
exception is raised

What to do if an
exception is not raised

90

Synchronous vs asynchronous

 A synchronous exception is raised as a direct, causal
result of executing a particular piece of code

o  Divide by zero

o  Disk full

 An asynchronous exception comes from “outside” and
can arrive at any moment

o  Timeout

o  Stack overflow

91

Haskell 98 isn’t enough

 Pure Haskell 98 deals only with
synchronous exceptions in the IO monad

Two big shortcomings

 Does not handle things that go wrong in
purely-functional code

 Does not deal with asynchronous exceptions

92

Exceptions in
pure code

93

Embed exceptions in values
Idea: embed exceptions in values

throw :: Exception -> a

divide :: Int -> Int -> Int
divide x y = if y==0 then throw DivZero
 else x/y

A value is
•  either an “ordinary” value
•  or an “exception” value, carrying an exception

(Just like NaNs in IEEE floating point.)

In a lazy language an exception value might hide inside
an un-evaluated data structure, but that’s OK.

result type
unchanged

Lazy functional programming for real 6

94

Catching exceptions

getException :: a -> ExVal a

data ExVal a = OK a
 | Bad Exception

New primitive for catching exceptions: BAD BAD!

Example

f x = case getException (goop x) of
 OK result -> result
 Bad exn -> recovery_goop x

95

A well-known problem
What exception is raised by “+”?

(throw ex1) + (throw ex2)
Usual answer: fix evaluation order

BAD ENOUGH for call-by-value languages
•  loss of code-motion transformations

•  need for effect analyses

TOTAL CATASTROPHE for Haskell
•  evaluation order is deliberately unspecified

•  key optimisations depend on changing evaluation order

96

A cunning idea
Return both exceptions!

Operationally, an exceptional value is
• represented by a single representative
• implemented by the usual stack-unwinding stuff

c.f. infinite lists:
semantically infinite, operationally finite

A value is
•  either a “normal value”
•  or an “exceptional value”

containing a set of exceptions

97

Semantics without exceptions

Denotations of Haskell types, 〚T〛

〚Int〛 ≡ M Z
〚 t1→t2〛 ≡ M (〚t1〛 → 〚t2〛)
〚(t1,t2)〛 ≡ M (〚t1〛 x 〚t2〛)

M t = t ∪ {⊥}

e.g. 〚Int->Int〛 = M (M Int -> M Int)

98

〚Int〛 : Ordinary Haskell

⊥

0 1 -1 2 -2

99

Semantics with exceptions
Denotations of Haskell types, 〚T〛

〚Int〛 ≡ M Z
〚t1→t2〛 ≡ M (〚t1〛 → 〚t2〛)
〚(t1,t2)〛 ≡ M (〚t1〛 x 〚t2〛)

M t = {Ok x | x in t} ∪
 {Bad s | s ⊆ E} ∪
 {⊥}

E ≡ {Overflow, DivZero, …}
Z ≡ the integers

e.g. 〚Int->Int〛 = M (M Int -> M Int)

Lazy functional programming for real 7

100

〚Int〛 : Exceptional Haskell

Bad {NT, DZ, OF}

Bad {DZ, OF}

Bad {DZ} Bad {OF}

Bad {}

OK 0 OK 1 OK -1 OK 2 OK
-2

=⊥

...

101

Semantics

〚e1 + e2〛 = OK (m + n) if OK m =〚e1〛
 OK n = 〚e2〛

 = Bad (S (〚e1〛) ∪ S(〚e2〛)) otherwise

where S(Bad s) = s
 S(OK n) = {}

Payoff: 〚 e1 + e2 〛 = 〚 e2 + e1 〛

102

Whoa! What about getException?
Problem: which exception does getException
choose from the set of possibilities?

getException :: a -> ExVal a ?????
data ExVal a = OK a| Bad Exception

Solution 1: choose any. But that makes
getException non-deterministic. And
that loses even β-reduction!

let x = getException e in x==x = True

(getException e) == (getException e) ≠ True

Verdict: Cure worse than disease.
103

Using the IO monad

Solution 2: put getException in the IO monad:

evaluate :: a -> IO a

evaluate evaluates its argument;
  if it is an ordinary value, it returns it

  if it is an exceptional value, it chooses one of
the set of exceptions and raises it as an IO
monad exception

104

Using the IO monad

Key idea:
The choice of which exception to
raise is made in the IO monad, so
it can be non-deterministic (like
so much else in the IO monad)

evaluate :: a -> IO a

105

Using evaluate
main = do { i <- getInput;

 catch (do { r <- evaluate (goop i);
 do_good_stuff r })

 (\ ex -> recover_from ex)
 }

You have to be in the IO monad to use evaluate

You do not have to be in the IO monad to use ioError

Lazy functional programming for real 8

106

Semantics

Add rules for evaluate
An ordinary value

An exceptional value

107

Watch out!

We’ve just changed
what values look

like!

But what if M
evaluates to (Bad S)???

108

Watch out! Ordinary value

Exceptional
value

Quiz

109

a1, a2, a3, a4, a5 :: IO ()

a1 = do { x <- evaluate 4; print x }
a2 = do { evaluate (head []); print "no" }
a3 = do { return (head []); print "yes" }
a4 = do { xs <- evaluate [1 ‘div‘ 0]; print (length xs) }
a5 = do { xs <- evaluate [1 ‘div‘ 0]; print (head xs) }

What does each of these programs do?

110

Imprecise exceptions

  A decent treatment of exceptions in purely-
functional code

  Quite a lot more to say (see PLDI’99 paper)

  No transformations lost!

  Good for disaster recovery, poor for extra
return values

111

Asynchronous
exceptions

Lazy functional programming for real 9

112

Asynchronous exceptions

A flexible form of asynchronous exception:

throw :: Exception -> IO a
throwTo :: ThreadId -> Exception -> IO a

113

Timeouts
timeout :: Int -> IO a -> IO (Maybe a)
timeout n a
 = do { t <- myThreadId ;

 s <- forkIO (do { sleep n ;
 throwTo t TimeOut });

 catch (do { r <- a;
 throwTo s Kill;
 return (Just r) });
 (\ex -> Nothing)
 }

Fork a thread
that sleeps and
then throws an
exception to its

parent

Do the
action, and

then kill
the

timeout
The

timeout
won!

114

Semantics

Add a rule for throwTo

Replace “current
action” in target

thread with ioError

Make sure we replace

the innermost
“current action”

115

What have
we achieved?

116

Motivation

Functional programming is SO much fun.

Plan of attack
1.  Find an application
2.  Try to write it in Haskell
3.  Fail
4.  Figure out how to fix Haskell
5. Abstract key ideas, write a paper
6.  Repeat from (2)

117

What have we achieved?
  The ability to mix imperative and purely-

functional programming

Purely-functional
core

Imperative
“skin”

Lazy functional programming for real 10

118

What have we achieved?
  ...without ruining either
  All laws of pure functional programming

remain unconditionally true, even of actions

e.g. let x=e in ...x....x...
 =
 e....e.....

119

What we have not achieved
  Imperative programming is as hard as it

always was.
e.g. do { ...; x <- f 1; y <- f 2; ...}
 ?=?
 do { ...; y <- f 2; x <- f 1; ...}

  ...but there’s less of it!
  ...and actions are first-class values

120

Not covered in the lectures

...But in the notes
  Foreign language interfacing

121

What next?

  Write applications
  Real reasoning about monadic Haskell

programs; proving theorems
  Alternative semantic models (trace

semantics)
  More refined monads (the IO monad is a

giant sin-bin at the moment)

122

What next?

http://research.microsoft.com/~simonpj
http://haskell.org

