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Concurrency 

65 

The need for concurrency 

Web server 

Client 1 Client 2 Client 3 Client 4 

 Want one thread (“virtual server”) per client 

 Threads largely independent, but share some 
common resources (e.g. file system) 

66 

Concurrency vs parallelism 

Parallel functional programming: 
 Aim = performance through multiple processors 

(e.g. e1+e2 in parallel) 
 No semantic changes; deterministic results 

Concurrent functional programming 
 Aim = concurrent, I/O-performing threads 
 Makes perfect sense on a uniprocessor 
 Non-deterministic interleaving of I/O is 

inevitable 
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Concurrent web service 

acceptConnections :: Config -> Socket -> IO () 
acceptConnections config socket 
    = forever (do { conn <- accept socket ; 
               forkIO (serviceConn config conn) }) 

forkIO :: IO a -> IO ThreadId 

 forkIO spawns an independent, I/O- 
performing, thread 

 No parameters passed; free variables work 
fine 
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Communication and sharing 

 What if two threads want to communicate?  
Or share data? 

 Example: keep a global count of how many 
client threads are running 

o  Increment count when spawning 

o  Decrement count when dying 

69 

Communication and sharing 

 A value of type  (MVar t) is a location that is 
either 

o  empty, or 

o  holds a value of type t 

data MVar a 
newEmptyMVar :: IO (MVar a) 
putMVar  :: MVar a -> a -> IO () 
takeMVar  :: MVar a -> IO a 

27 
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Communication and sharing 

takeMVar  :: MVar a -> IO a 
putMVar  :: MVar a -> a -> IO () 

Empty Full 

takeMVar Block Return contents, 
leave MVar empty 

putMVar Fill MVar Block 

71 

Using MVars 
acceptConnections :: Config -> Socket -> IO () 
acceptConnections config socket 
  = do { count <- newEmptyMVar ; 
         putMVar count 0 ; 
         forever (do { conn <- accept socket ; 
                       forkIO (do { inc count ;       
                                    serviceConn config 
conn ; 
                                    dec count}) } 

inc,dec :: MVar Int -> IO () 
inc count = do { v <- takeMVar count; putMVar count (v+1) } 
dec count = do { v <- takeMVar count; putMVar count (v-1) } 

MVar is empty at this point, hence no 
race hazard 
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MVars as channels 

An MVar directly implements: 

 a shared data structure 

 a one-place channel 
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Semantics 

Fortunately, most of the infrastructure is there already! 

Step 1: elaborate the program state 

e.g. {putChar ‘c’}t1  |  {putChar ‘d’}t2 
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Semantics 

Step 2: a rule for for forkIO 

The new 
thread 

Restrict the 
new thread 

name 
Return the 

thread name 
to the caller 
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Semantics 

Step 3: rules for new, take, put 

 Same as readIORef, writeIORef, except 
that MVar is filled/emptied 

 Blocking is implicit 

 Non-determinism is implicit 
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Building abstractions 

 MVars are primitive 

 Want to build abstractions on top of them 

 Example: a buffered channel 

77 

A buffered channel 

type Chan a 
newChan :: IO (Chan a) 
putChan  :: Chan a -> a -> IO () 
getChan  :: Chan a -> IO a 
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A buffered channel 
type Chan a  = (MVar (Stream a),MVar (Stream a)) 
type Stream a = MVar (Item a) 
data Item a  = MkItem a (Stream a) 
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A buffered channel 
putChan :: Chan a -> a -> IO () 
putChan (read,write) val 
    = do { new_hole <- newEmptyMVar ; 
 old_hole <- takeMVar write ; 
 putMVar write new_hole 
 putMVar old_hole (MkItem val new_hole) } 
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Summary 

 forkIO + MVars are very simple. 

 MVars are a low-level primitive, but 
surprisingly often Just The Right Thing 

 Some excellent references: 

o  Concurrent programming in ML (Reppy, CUP) 

o  Concurrent programming in Erlang (Armstrong, 
Prentice Hall, 2nd edition) 

81 

Exceptions 
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Why do we need exceptions? 

Robust programs deal gracefully with 
“unexpected” conditions.  E.g. 

o  Disk write fails because disk is full 

o  Client goes away, so server should time out and log an 
error 

o  Client requests seldom-used service; bug in server code 
gives pattern-match failure or divide by zero 

Server should not crash if these things happen! 
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Approach 1: virtue 

“A robust program never goes wrong” 
 (e.g. test for disk full before writing) 

BUT: 
  Can’t test for all errors (e.g. timeouts) 

Need a way to recover from ANY error 

84 

Approach 2: exceptions 

 Provide a way to say “execute this code, but if 
anything (at all) goes wrong, abandon it and do 
this instead”. 

This might be called 

  “Exceptions for disaster recovery” 
  Exception handler typically covers a large chunk of code 

  Recovery action typically aborts a whole chunk of work 

85 

Aside: bad uses of exceptions 

 Exceptions are often (mis-) used in a 
different way:   

  “Exceptions for extra return values” 

  e.g. Look up up something in a table, 
 raising “NotFound” if it’s not there. 

 Exception handler often encloses a single call 

 Recovery action typically does not abort 
anything N.b.: This is Simon’s view, not universally 

shared (though I tend to agree) 
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Exceptions in Haskell 98 
Haskell 98 supports exceptions in I/O actions: 

catch  :: IO a -> (IOError -> IO a) -> IO a 
userError :: String -> IOError 
ioError :: IOError -> IO a 

catch (do { h <- openFile “foo”; 
   processFile h }) 
 (\e -> putStr “Oh dear”) 

Exception 
handler 

Protected 
code 

 Dynamic scope: exceptions raised in 
processFile are also caught 
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Semantics 

Step 1: add a new evaluation context 

 E ::=  [.]   |   E >>= M  |  catch E M 

Says: “evaluate 
inside the first 

argument of catch” 



Lazy functional programming for real 5 

88 

Semantics 

Step 2: add propagation rule for ioError 

An exception before 
the (>>=)…  …discards the part 

after the (>>=) 

Standard stack-unwinding implementation is possible 
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Semantics 

Step 3: add rules for catch 

What to do if an 
exception is raised 

What to do if an 
exception is not raised 
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Synchronous vs asynchronous 

 A synchronous exception is raised as a direct, causal 
result of executing a particular piece of code 

o  Divide by zero 

o  Disk full 

 An asynchronous exception comes from “outside” and 
can arrive at any moment 

o  Timeout 

o  Stack overflow 
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Haskell 98 isn’t enough 

 Pure Haskell 98 deals only with 
synchronous exceptions in the IO monad 

Two big shortcomings 

 Does not handle things that go wrong in 
purely-functional code 

 Does not deal with asynchronous exceptions 
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Exceptions in 
pure code 

93 

Embed exceptions in values 
Idea: embed exceptions in values 

throw :: Exception -> a 

divide :: Int -> Int -> Int 
divide x y = if y==0 then throw DivZero 
    else x/y 

A value is 
•  either an “ordinary” value 
•  or an “exception” value, carrying an exception 

(Just like NaNs in IEEE floating point.) 

In a lazy language an exception value might hide inside 
an un-evaluated data structure, but that’s OK. 

result type 
unchanged 
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Catching exceptions 

getException :: a -> ExVal a 

data ExVal a = OK a 
  | Bad Exception 

New primitive for catching exceptions: BAD BAD! 

Example 

f x = case getException (goop x) of 
   OK result -> result 
   Bad exn   -> recovery_goop x 

95 

A well-known problem 
What exception is raised by “+”? 

(throw ex1) + (throw ex2) 
Usual answer: fix evaluation order 

BAD ENOUGH for call-by-value languages 
•  loss of code-motion transformations 

•  need for effect analyses 

TOTAL CATASTROPHE for Haskell 
•  evaluation order is deliberately unspecified 

•  key optimisations depend on changing evaluation order 
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A cunning idea 
Return both exceptions! 

Operationally, an exceptional value is 
• represented by a single representative 
• implemented by the usual stack-unwinding stuff 

c.f. infinite lists:  
semantically infinite, operationally finite 

A value is 
•  either a “normal value” 
•  or an “exceptional value”  

containing a set of exceptions 
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Semantics without exceptions 

Denotations of Haskell types, 〚T〛 

〚Int〛 ≡ M Z 
〚 t1→t2〛  ≡ M (〚t1〛 → 〚t2〛) 
〚(t1,t2)〛 ≡ M (〚t1〛 x 〚t2〛) 

M t  =  t ∪ {⊥} 

e.g. 〚Int->Int〛 = M (M Int -> M Int)  

98 

〚Int〛 :  Ordinary Haskell 

⊥ 

0 1 -1  2  -2 ... ... 
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Semantics with exceptions 
Denotations of Haskell types, 〚T〛 

〚Int〛  ≡ M Z 
〚t1→t2〛  ≡ M (〚t1〛 → 〚t2〛) 
〚(t1,t2)〛 ≡ M (〚t1〛 x 〚t2〛) 

M t = {Ok x | x in t}   ∪  
  {Bad s | s ⊆ E} ∪   
  {⊥} 

E ≡ {Overflow, DivZero, …}  
Z ≡ the integers 

e.g. 〚Int->Int〛 = M (M Int -> M Int) 
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〚Int〛 :  Exceptional Haskell 

Bad {NT, DZ, OF} 

Bad {DZ, OF} 

Bad {DZ} Bad {OF} 

Bad {} 

OK 0 OK 1 OK -1 OK 2 OK 
-2 

=⊥ 

... 
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Semantics 

〚e1 + e2〛     = OK (m + n) if OK m =〚e1〛  
   OK n = 〚e2〛   

 = Bad (S (〚e1〛) ∪ S(〚e2〛))   otherwise 

where S(Bad s) = s 
          S(OK n) = {} 

Payoff:  〚 e1 + e2 〛 = 〚 e2 + e1 〛 

102 

Whoa!  What about getException? 
Problem: which exception does getException 
choose from the set of possibilities? 

getException :: a -> ExVal a   ????? 
data ExVal a = OK a| Bad Exception 

Solution 1: choose any.  But that makes 
getException non-deterministic.  And 
that loses even β-reduction!   

let x = getException e in x==x  = True 

(getException e) == (getException e) ≠ True 

Verdict: Cure worse than disease. 
103 

Using the IO monad 

Solution 2: put getException in the IO monad: 

evaluate :: a -> IO a 

evaluate evaluates its argument; 
  if it is an ordinary value, it returns it 

  if it is an exceptional value, it chooses one of 
the set of exceptions and raises it as an IO 
monad exception 
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Using the IO monad 

Key idea: 
The choice of which exception to 
raise is made in the IO monad, so 
it can be non-deterministic (like 
so much else in the IO monad) 

evaluate :: a -> IO a 
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Using evaluate 
main = do { i <- getInput; 

 catch (do { r <- evaluate (goop i); 
     do_good_stuff r }) 

  (\ ex -> recover_from ex) 
          } 

You have to be in the IO monad to use evaluate 

You do not have to be in the IO monad to use ioError 
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Semantics 

Add rules for evaluate 
An ordinary value 

An exceptional value 
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Watch out! 

We’ve just changed 
what values look 

like! 

But what if M 
evaluates to (Bad S)??? 
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Watch out! Ordinary value 

Exceptional 
value 

Quiz 
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a1, a2, a3, a4, a5 :: IO () 

a1 = do { x <- evaluate 4; print x } 
a2 = do { evaluate (head []); print "no" } 
a3 = do { return (head []); print "yes" } 
a4 = do { xs <- evaluate [1 ‘div‘ 0]; print (length xs) } 
a5 = do { xs <- evaluate [1 ‘div‘ 0]; print (head xs) } 

What does each of  these programs do? 
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Imprecise exceptions 

  A decent treatment of exceptions in purely-
functional code 

  Quite a lot more to say (see PLDI’99 paper) 

  No transformations lost! 

  Good for disaster recovery, poor for extra 
return values 

111 

Asynchronous 
exceptions 
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Asynchronous exceptions 

A flexible form of asynchronous exception: 

throw  :: Exception -> IO a 
throwTo :: ThreadId -> Exception -> IO a 
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Timeouts 
timeout :: Int -> IO a -> IO (Maybe a) 
timeout n a 
  = do { t <- myThreadId ; 

 s <- forkIO (do { sleep n ; 
     throwTo t TimeOut }); 

 catch (do { r <- a; 
    throwTo s Kill; 
    return (Just r) }); 
  (\ex -> Nothing) 
 } 

Fork a thread 
that sleeps and 
then throws an 
exception to its 

parent 

Do the 
action, and 

then kill 
the 

timeout 
The 

timeout 
won! 
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Semantics 

Add a rule for throwTo 

Replace “current 
action” in target 

thread with ioError 

Make sure we replace 

the innermost 
“current action” 
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What have 
we achieved? 
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Motivation 

Functional programming is SO much fun.   

Plan of attack 
1.  Find an application 
2.  Try to write it in Haskell 
3.  Fail 
4.  Figure out how to fix Haskell 
5. Abstract key ideas, write a paper 
6.  Repeat from (2) 
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What have we achieved? 
  The ability to mix imperative and purely-

functional programming 

Purely-functional 
core 

Imperative 
“skin” 
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What have we achieved? 
  ...without ruining either 
  All laws of pure functional programming 

remain unconditionally true, even of actions 

e.g.  let x=e in ...x....x... 
   = 
  ....e....e..... 
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What we have not achieved 
  Imperative programming is as hard as it 

always was. 
e.g.   do { ...; x <- f 1; y <- f 2; ...} 
   ?=? 
   do { ...; y <- f 2; x <- f 1; ...} 

  ...but there’s less of it! 
  ...and actions are first-class values 
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Not covered in the lectures 

...But in the notes 
  Foreign language interfacing 
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What next? 

  Write applications 
  Real reasoning about monadic Haskell 

programs; proving theorems 
  Alternative semantic models (trace  

semantics) 
  More refined monads (the IO monad is a 

giant sin-bin at the moment) 
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What next? 

http://research.microsoft.com/~simonpj 
http://haskell.org 


