Introduction to Concurrency

Adapted by BCP from lectures
by Maurice Herlihy at Brown

From the New York Times ...

SAN FRANCISCO, May 7. 2004 -
Intel said on Friday that it was
scrapping its development of two
microprocessors, a move that is a shift
in the company's business strategy....
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Moore's Law
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On Your Desktop:
The Uniprocessor
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In the Enterprise:
The Shared Memory Multiprocessor
(SMP)
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Your New Desktop:
The Multicore processor

All on the Sun
same chip T?OOO
Niagara
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Multicores Are Here

+ "Intel ups ante with 4-core chip. New
microprocessor, due this year, will be
faster, use less electricity..." [San Fran
Chronicle]

+ "AMD will launch a dual-core version of its
Opteron server processor at an event in
New York on April 21." [PC World]

- "Sun’s Niagara...will have eight cores, each
core capable of running 4 threads in
parallel, for 32 concurrently running
threads. ...." [The Inquirer]
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Why do we care?

+ Time no longer cures software bloat
- The “free ride" is over

* When you double the work your
program is doing...
- ..you can't just wait 6 months for it to
run the same speed again!

- Your software must somehow exploit
twice as much concurrency
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Traditional Scaling Process

7x

Speedup 3.6x
1.8x

User code ‘ ‘ ‘ ‘ ‘ ‘

Traditional l
Uniprocessor
Time: Moore's law
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Multicore Scaling Process

7x

3.6x

Speedup 1.8x
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Unfortunately, not so simple...
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Real-World Scaling Process
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Parallelization and Synchronization
require great care...
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Concurrent Computation
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Asynchrony

i’ Sudden unprfedictable delays \
- Cache misses (short) :
- Page faults (long) :
- Scheduling quantum used up (really IongjI
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Model Summary

+ Multiple threads
- Sometimes called processes

* Single shared memory
* Unpredictable asynchronous delays
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Road Map

* Today: background on concurrency

* Monday: semantics of Haskell's basic
concurrency primitives (threads/
MVars)

* Wednesday: thread programming

* Following week: Software
Transactional Memory (STM)
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Concurrency Jargon

+ Hardware
- Processors

- Software
- Threads, processes

+ Sometimes OK to confuse them,
sometimes not.
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Parallel Primality Testing

* Challenge
- Print primes from 1 to 1010
* Given
- Ten-processor multiprocessor
- One thread per processor
* Goal
- Get fen-fold speedup (or close)
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Load Balancing

1100 210° ..
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Idea:

* Split the work evenly

+ Each thread tests range of 10°
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Procedure for Thread i

void primePrint {
int i = ThreadiD.get(); // IDs in {0..9}
for (G = i*10%1, j<(i+1)*10% j++) {
if (isPrime(j))

print(3);
Note Herlihy's slightly
awkward pseudocode notation
for Haskell
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Issues

* Higher ranges have fewer primes
* Yet larger numbers harder to test
* Thread workloads

- Uneven
- Hard to predict

* Need dynamic load balancing
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Issues

* Higher ranges have fewer primes
* Yet larger numbers harder fo test

* Thread workloads ’&6
- Uneven -\zc
- Hard to predict 7

* Need dynamic load balancing
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Shared Counter

each thread
takes a number
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Procedure for Thread i

int counter = new Counter(l);

void primePrint {
Tong j = 0;
while (3 < 1019 {
j = counter.getAndIncrement();
if (isPrime(j))
print(3);

}
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Procedure for Thread i

[Counter counter = new Counter(l);

Shared counter
object
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Where Things Reside

. %} Local
code m f@ ‘/ variables
D

A [EED [eacke]

. shared
memory

shared counter
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Procedure for Thread i

(while (i < 101 { = Stop when every

Value taken
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Procedure for Thread i

if (isPrime(3))

j = counter.getAndIncrement();
print(j);

Increment & return
each new value
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Counter Implementation

public class Counter {
private long value;

public Tong getAndincrement() {
return value++;
}
}
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Counter Implementation

public class Counter {
private long value;

public long getAndIncrem
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What It Means

public class Counter {
private long value;

public long getAndIncrement() {
return value++;

What It Means

return value++;
temp = value;

value value + 1;
return temp;

)
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}
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Not so good...
Value.. . .
1

1 1
read write read write
1 2 2 3

Is this problem inherent?

m write m
;EU’ ‘/1
0 0 0

write read
If we could only glue reads and writes...
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Challenge
public class Counter {
private long value;
public long getAndIncrement() {
temp = value;
value = temp + 1;
return temp;
}
Py
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Challenge
Make these steps
atomic (indivisible)
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Hardware Solution

ReadModifyWrite()
insTrucTionw

o=
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An Aside: Java™

Mutual Exclusion

P
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An Aside: Java™

public class Counter {
private long value;

public long getAndIncrement() {
synchronized {
temp = value;
value = temp + 1;
}
return temp;
}
}

@

An Aside: Java™

Haskell uses slightly
different primitives to
achieve the same effect

synchronized {
temp = value;
value = temp + 1;

1

Synchronized block

P
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Mutual Exclusion, or "Alice &
Bob share a pond”

» P
U

@ BROWN © 2007 Herlihy and Shavit

Alice has a pet
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Bob has a pet

* T

P

o
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The Problem
The pets don't
get along
@ BROWN © 2007 Herlihy and Shavit 44

Formalizing the Problem

+ Two types of formal properties in
asynchronous computation:
- Safety Properties
* Nothing bad happens ever
- Liveness Properties
+ Something good happens eventually

o
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Formalizing our Problem

* Mutual Exclusion
- Both pets never in pond simultaneously
This is a safety property
* No Deadlock
- if only one wants in, it gets in
- if both want in, one gets in
This is a liveness property

o
$ BROWN © 2007 Herlihy and Shavit 46

Simple Protocol

- Idea

- Just look at the pond, see if it is empty,
and release pet if so

* Gotcha
- Both look at the same instant
- Both release pets
- Bad thing happens in pond
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Telephone Protocol

+ Idea

- Bob calls Alice (or vice-versa)
+ Gotcha

- Alice in shower when Bob calls

- Bob recharging phone battery when Alice
calls

- Alice out shopping for pet food when Bob
calls...

o
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Patient Telephone Protocol

« Idea

- Bob calls Alice (or vice-versa) and lets
phone ring until Alice answers

* Gotcha
- Alice goes on vacation for a month...
* Lesson

- Need to be able to leave persistent
messages (like writing, not speaking)
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Can Protocol
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Bob conveys a bit

Bob conveys a bit
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Can Protocol

+ Idea

- Cans on Alice's windowsill

- Strings lead to Bob's house

- Bob pulls strings, knocks over cans
+ Gotcha

- Cans cannot be reused

- Bob runs out of cans
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Flag Protocol
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Alice's Protocol (roughly)
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Alice's Protocol

* Raise flag

+ Wait until Bob's flag is down
* Unleash pet

* Lower flag when pet returns

o
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Bob's Protocol (roughly)
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Bob's Protocol (2 try)

Bob defers
to Alice

* Raise flag
+ While Alice's flag i

- Lower flag

[— Wait for Alice's flag to go down
- Raise flag

* Unleash pet

* Lower flag when pet returns

o
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Bob's Protocol

* Raise flag

+ Wait until Alice's flag is down

* Unleash pet N

. ]
Lower flag when pet returns O

bo
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The Flag Principle

* Raise the flag
+ Look at other's flag
* Flag Principle:
- If each raises and looks, then
- Last to look must see both flags up

o
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Proof of Mutual Exclusion

* Assume both pets in pond
- Derive a contradiction
- By reasoning backwards
+ Consider the last time Alice and Bob
each looked before letting the pets in
+ Without loss of generality assume
Alice was the last to look...

o=
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Proof

Bob last raised ]
flag Alice last raised her flag

Alice's last look

Alice must have seen Bob's Flag. A Confradic’rion|

Proof of No Deadlock

+ If only one pet wants in, it gets in.

o=
g
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Proof of No Deadlock

* If only one pet wants in, it gets in.

+ Deadlock requires both continually
trying to get in.
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g
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Proof of No Deadlock

+ If only one pet wants in, it gets in.

+ Deadlock requires both continually
trying to get in.

* If Bob sees Alice's flag, he gives her

pl"iOl"H’y (a gentleman..)
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Remarks

* Protocol is unfair
- Bob's pet might never get in
* Protocol uses waiting

- If Bob is eaten by his pet, Alice's pet
might never get in

)
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Moral of Story

* Mutual Exclusion cannot be solved by
- transient communication (cell phones)
- interrupts (cans)
* It can be solved by
- ohe-bit shared variables
- that can be read or written

o
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The Fable Continues

+ Alice and Bob fall in love & marry

o
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The Fable Continues

* Alice and Bob fall in love & marry

+ Then they fall out of love & divorce
- She gefts the pets
- He has to feed them

)
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The Fable Continues

+ Alice and Bob fall in love & marry

+ Then they fall out of love & divorce
- She gefts the pets
- He has to feed them

* Leading to a new coordination
problem: Producer-Consumer

o
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Bob Puts Food in the Pond

C(C((
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Alice releases her pets to Feed

)
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Producer/Consumer

+ Alice and Bob can't meet
- Each has restraining order on other
- So he puts food in the pond
- And later, she releases the pets
+ Avoid
- Releasing pets when there's no food
- Putting out food if uneaten food remains
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BROWN © 2007 Herlihy and Shavit

73

Surprise Solution
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Producer/Consumer

Need a mechanism so that

- Bob lets Alice know when food has been
put out

- Alice lets Bob know when to put out more
food
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Bob puts food in Pond

76

Bob knocks over Can
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Alice Releases Pets
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Alice Resets Can when Pets are
Fed

o
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Pseudocode

while (true) {
while (can.isup()){};
pet.release();

pet.recapture();
can.reset();

Pseudocode

while (true) {
while (can.isupQ){};
pet.release();
pet.recapture()-

can.reset(); while (true) {
while (can.isbown()){};
pond. stockwithFood();
can.knockover(Q);

Bob's code

. ]
Alice's code |3
=
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}
Alice’s code
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Correctness

* [Mutual Exclusion J——— safe’ry

Pets and Bob never together in pond
+|No Starvation lveness
If Bob always willing to feed and pets

always famished, then pets eat infinitely
often.

+(Producer/Consumery— safety

Pets never enter pond unless there is
food, and Bob never provides food if
there is unconsumed food.

@ BROWN © 2007 Herlihy and Shavit 82

Could Also Solve Using Flags

Pl W
L g

o
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Waiting

+ Both solutions use waiting
-while (mumble) {}
* Waiting is problematic
- If one participant is delayed, so is
everyone elsel
- But delays are common & unpredictable

o
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The Fable drags on ...

+ Bob and Alice still have issues

D
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The Fable drags on ...

+ Bob and Alice still have issues
+ So they need to communicate

D

The Fable drags on ...

+ Bob and Alice still have issues
+ So they need to communicate
* So they agree to use billboards ...
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Write One Letter at a Time ...

w[A]s
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Billboards are Large
Letter
Tiles
& From Scrabble™ box
To post a message
w A [ ] [T w[ ] [] Al =
RS RS RS RS
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Let's send another mesage
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Uh-Oh

JERMEDEERR
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Readers/Writers

+ Devise a protocol so that
- Writer writes one letter at a time
- Reader reads one letter at a time
- Reader sees

+ Old message or hew message
* No mixed messages
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Readers/Writers (continued)

* Easy with mutual exclusion

* But mutual exclusion requires waiting
- One waits for the other
- Everyone executes sequentially

* Remarkably

- We can solve R/W without mutual
exclusion

&=
%ﬁ BROWN © 2007 Herlihy and Shavit 94

Why do we care?

+ We want as much of the code as

possible to execute concurrently (in
parallel)

* A larger sequential part implies
reduced performance

« Amdahl's law: this relation is not
linear...
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Amdahl's Law

OldExecutionTime
NewExecutionTime

Speedup=

..of computation given N CPUs instead of 1
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Amdahl's Law

Sequential
fraction

Parallel
fraction

Numberof,,éﬁ“:{::]

processors
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Example

* Ten processors
+ 60% concurrent, 40% sequential
+ How close to 10-fold speedup?
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Example

* Ten processors
+ 60% concurrent, 40% sequential
+ How close to 10-fold speedup?

Example

* Ten processors
- 80% concurrent, 20% sequential
+ How close to 10-fold speedup?
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1
Speedup=2.17= ——3¢
1-06+——
6+ 10
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Example

* Ten processors
- 80% concurrent, 20% sequential
+ How close to 10-fold speedup?

1
Speedup=3.57= m
10
@ BROWN © 2007 Herlihy and Shavit 101

Example

* Ten processors
+ 90% concurrent, 10% sequential
+ How close to 10-fold speedup?
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Example

* Ten processors
+ 90% concurrent, 10% sequential
+ How close to 10-fold speedup?

Example

* Ten processors
+ 99% concurrent, 01% sequential
+ How close to 10-fold speedup?

=
EE BROWN © 2007 Herlihy and Shavit 104

1
Speedup=5.26= — g
1-09+—=
9+ 10
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Example

* Ten processors
+ 99% concurrent, 01% sequential
+ How close to 10-fold speedup?

1
Speedup=9.17= —————===
peectp 1_0.99+Lig9
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The Moral

* The small % of a program that is hard
to parallelize may have a large impact
on overall speedup.
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