Introduction to Concurrency

Adapted by BCP from lectures
by Maurice Herlihy at Brown

From the New York Times ...

SAN FRANCISCO, May 7. 2004 -
Intel said on Friday that it was
scrapping its development of two
microprocessors, a move that is a shift
in the company's business strategy....

&=
&

%ﬁ BROWN © 2007 Herlihy and Shavit 2

Moore's Law

Transistor
nnnnnnn count still
rising

oooooo

nnnnn

- Clock speed
Fipead flattening
sharply

01
171 178 te7e wee3 197 mem 1e9s 1998 2003 2007
$ BROWN © 2007 Herlihy and Shavit 3

On Your Desktop:
The Uniprocessor

&=
&

%ﬁ BROWN © 2007 Herlihy and Shavit

In the Enterprise:
The Shared Memory Multiprocessor
(SMP)

PR

<

| shared memory |

&=
&

%ﬁ BROWN © 2007 Herlihy and Shavit 5

Your New Desktop:
The Multicore processor

All on the Sun
same chip T?OOO
Niagara
@ BROWN © 2007 Herlihy and Shavit

Multicores Are Here

+ "Intel ups ante with 4-core chip. New
microprocessor, due this year, will be
faster, use less electricity..." [San Fran
Chronicle]

+ "AMD will launch a dual-core version of its
Opteron server processor at an event in
New York on April 21." [PC World]

- "Sun’s Niagara...will have eight cores, each
core capable of running 4 threads in
parallel, for 32 concurrently running
threads." [The Inquirer]

&=
&

Eﬁ BROWN © 2007 Herlihy and Shavit 7

Why do we care?

+ Time no longer cures software bloat
- The “free ride" is over

* When you double the work your
program is doing...
- ..you can't just wait 6 months for it to
run the same speed again!

- Your software must somehow exploit
twice as much concurrency

&=
&

Eﬁ BROWN © 2007 Herlihy and Shavit 8

Traditional Scaling Process

7x

Speedup 3.6x
1.8x

User code ‘ ‘ ‘ ‘ ‘ ‘

Traditional l
Uniprocessor
Time: Moore's law

2JS BROWN © 2007 Herlihy and Shavit 9

)

&

Multicore Scaling Process

7x

3.6x

Speedup 1.8x

User code D] (0]
L1 0000

Multicore = : : =
|

'

Unfortunately, not so simple...

)

Real-World Scaling Process

Speedup

1.8x xS

@J‘
L]
Ear

User code g Ii Q
CIC]]

]
i
Multicore = :

Parallelization and Synchronization
require great care...

&=
EE BROWN © 2007 Herlihy and Shavit 1"

%Ei BROWN © 2007 Herlihy and Shavit 10
Sequential Computation
thread
memory C o N ,
A AN - ‘I é g :
: ©E> ':> ; IQ O :
S D !
@ BROWN © 2007 Her‘lihy_ar; s_ha;r _______ 12

Concurrent Computation

3
S
9
<

memory

&
EE BROWN © 2007 Herlihy and Shavit 13

Asynchrony

i’ Sudden unprfedictable delays \
- Cache misses (short) :
- Page faults (long) :
- Scheduling quantum used up (really IongjI

1

P
N

4 R ——>

SfS BROWN © 2007 Herlihy and Shavit 14

&

Model Summary

+ Multiple threads
- Sometimes called processes

* Single shared memory
* Unpredictable asynchronous delays

&=
EE BROWN © 2007 Herlihy and Shavit 15

Road Map

* Today: background on concurrency

* Monday: semantics of Haskell's basic
concurrency primitives (threads/
MVars)

* Wednesday: thread programming

* Following week: Software
Transactional Memory (STM)

&=
EE BROWN © 2007 Herlihy and Shavit 16

Concurrency Jargon

+ Hardware
- Processors

- Software
- Threads, processes

+ Sometimes OK to confuse them,
sometimes not.

&=
EE BROWN © 2007 Herlihy and Shavit 17

Parallel Primality Testing

* Challenge
- Print primes from 1 to 1010
* Given
- Ten-processor multiprocessor
- One thread per processor
* Goal
- Get fen-fold speedup (or close)

&=
EE BROWN © 2007 Herlihy and Shavit 18

Load Balancing

1100 210° ..

| | | | | | | | |

I I I I I I I I I I]
Pb P .. P

Idea:

* Split the work evenly

+ Each thread tests range of 10°

EE BROWN © 2007 Herlihy and Shavit 19

Procedure for Thread i

void primePrint {
int i = ThreadiD.get(); // IDs in {0..9}
for (G = i*10%1, j<(i+1)*10% j++) {
if (isPrime(j))

print(3);
Note Herlihy's slightly
awkward pseudocode notation
for Haskell
@ BROWN © 2007 Herlihy and Shavit 20

Issues

* Higher ranges have fewer primes
* Yet larger numbers harder to test
* Thread workloads

- Uneven
- Hard to predict

* Need dynamic load balancing

EE BROWN © 2007 Herlihy and Shavit 21

Issues

* Higher ranges have fewer primes
* Yet larger numbers harder fo test

* Thread workloads ’&6
- Uneven -\zc
- Hard to predict 7

* Need dynamic load balancing

EE BROWN © 2007 Herlihy and Shavit 22

Shared Counter

each thread
takes a number

EE BROWN © 2007 Herlihy and Shavit 23

Procedure for Thread i

int counter = new Counter(l);

void primePrint {
Tong j = 0;
while (3 < 1019 {
j = counter.getAndIncrement();
if (isPrime(j))
print(3);

}

EE BROWN © 2007 Herlihy and Shavit 24

Procedure for Thread i

[Counter counter = new Counter(l);

Shared counter
object

EE BROWN © 2007 Herlihy and Shavit 25

Where Things Reside

. %} Local
code m f@ ‘/ variables
D

A [EED [eacke]

. shared
memory

shared counter

EE BROWN © 2007 Herlihy and Shavit 26

Procedure for Thread i

(while (i < 101 { = Stop when every

Value taken
EE BROWN © 2007 Herlihy and Shavit 27

Procedure for Thread i

if (isPrime(3))

j = counter.getAndIncrement();
print(j);

Increment & return
each new value

S BROWN © 2007 Herlihy and Shavit 28

)

&

Counter Implementation

public class Counter {
private long value;

public Tong getAndincrement() {
return value++;
}
}

EE BROWN © 2007 Herlihy and Shavit 29

Counter Implementation

public class Counter {
private long value;

public long getAndIncrem

EE BROWN © 2007 Herlihy and Shavit 30

What It Means

public class Counter {
private long value;

public long getAndIncrement() {
return value++;

What It Means

return value++;
temp = value;

value value + 1;
return temp;

)

S5 BROWN © 2007 Herlihy and Shavit 32

&

}
}
@ BROWN © 2007 Herlihy and Shavit 31
Not so good...
Value.. . .
1

1 1
read write read write
1 2 2 3

Is this problem inherent?

m write m
;EU’ ‘/1
0 0 0

write read
If we could only glue reads and writes...

)

write
2
$ BROWN © 2007 Herlihy and Shavit 33
Challenge
public class Counter {
private long value;
public long getAndIncrement() {
temp = value;
value = temp + 1;
return temp;
}
Py
$ BROWN © 2007 Herlihy and Shavit 35

$ BROWN © 2007 Herlihy and Shavit 34
Challenge
Make these steps
atomic (indivisible)
@ BROWN © 2007 Herlihy and Shavit 36

Hardware Solution

ReadModifyWrite()
insTrucTionw

o=
$ BROWN © 2007 Herlihy and Shavit

An Aside: Java™

Mutual Exclusion

P
$ SROWN © 2007 Herlihy and Shavit 38

An Aside: Java™

public class Counter {
private long value;

public long getAndIncrement() {
synchronized {
temp = value;
value = temp + 1;
}
return temp;
}
}

@

An Aside: Java™

Haskell uses slightly
different primitives to
achieve the same effect

synchronized {
temp = value;
value = temp + 1;

1

Synchronized block

P
$ SROWN © 2007 Herlihy and Shavit 40

Mutual Exclusion, or "Alice &
Bob share a pond”

» P
U

@ BROWN © 2007 Herlihy and Shavit

Alice has a pet

=

o
$ BROWN © 2007 Herlihy and Shavit 42

Bob has a pet

* T

P

o
$ BROWN © 2007 Herlihy and Shavit 43

The Problem
The pets don't
get along
@ BROWN © 2007 Herlihy and Shavit 44

Formalizing the Problem

+ Two types of formal properties in
asynchronous computation:
- Safety Properties
* Nothing bad happens ever
- Liveness Properties
+ Something good happens eventually

o
$ BROWN © 2007 Herlihy and Shavit 45

Formalizing our Problem

* Mutual Exclusion
- Both pets never in pond simultaneously
This is a safety property
* No Deadlock
- if only one wants in, it gets in
- if both want in, one gets in
This is a liveness property

o
$ BROWN © 2007 Herlihy and Shavit 46

Simple Protocol

- Idea

- Just look at the pond, see if it is empty,
and release pet if so

* Gotcha
- Both look at the same instant
- Both release pets
- Bad thing happens in pond

o
$ BROWN © 2007 Herlihy and Shavit 47

Telephone Protocol

+ Idea

- Bob calls Alice (or vice-versa)
+ Gotcha

- Alice in shower when Bob calls

- Bob recharging phone battery when Alice
calls

- Alice out shopping for pet food when Bob
calls...

o
$ BROWN © 2007 Herlihy and Shavit 48

Patient Telephone Protocol

« Idea

- Bob calls Alice (or vice-versa) and lets
phone ring until Alice answers

* Gotcha
- Alice goes on vacation for a month...
* Lesson

- Need to be able to leave persistent
messages (like writing, not speaking)

=3
BROWN © 2007 Herlihy and Shavit

49

Can Protocol

@
[oJg] BROWN

© 2007 Herlihy and Shavit

50

Bob conveys a bit

Bob conveys a bit

=3
BROWN © 2007 Herlihy and Shavit

51

@
[oJg] BROWN

© 2007 Herlihy and Shavit

52

Can Protocol

+ Idea

- Cans on Alice's windowsill

- Strings lead to Bob's house

- Bob pulls strings, knocks over cans
+ Gotcha

- Cans cannot be reused

- Bob runs out of cans

=3
BROWN © 2007 Herlihy and Shavit

53

LT

@
[oJg] BROWN

Flag Protocol

© 2007 Herlihy and Shavit

P

54

Alice's Protocol (roughly)

m‘!j‘ | K

3
EHBROWN

© 2007 Herlihy and Shavit 55

Alice's Protocol

* Raise flag

+ Wait until Bob's flag is down
* Unleash pet

* Lower flag when pet returns

o
$ BROWN © 2007 Herlihy and Shavit 57

Bob's Protocol (roughly)

& | z_@

o
$ BROWN © 2007 Herlihy and Shavit 56

Bob's Protocol (2 try)

Bob defers
to Alice

* Raise flag
+ While Alice's flag i

- Lower flag

[— Wait for Alice's flag to go down
- Raise flag

* Unleash pet

* Lower flag when pet returns

o
$ BROWN © 2007 Herlihy and Shavit 59

Bob's Protocol

* Raise flag

+ Wait until Alice's flag is down

* Unleash pet N

.]
Lower flag when pet returns O

bo

o
$ BROWN © 2007 Herlihy and Shavit 58

The Flag Principle

* Raise the flag
+ Look at other's flag
* Flag Principle:
- If each raises and looks, then
- Last to look must see both flags up

o
$ BROWN © 2007 Herlihy and Shavit 60

10

Proof of Mutual Exclusion

* Assume both pets in pond
- Derive a contradiction
- By reasoning backwards
+ Consider the last time Alice and Bob
each looked before letting the pets in
+ Without loss of generality assume
Alice was the last to look...

o=
g

'd'éi BROWN © 2007 Herlihy and Shavit 61

Proof

Bob last raised]
flag Alice last raised her flag

Alice's last look

Alice must have seen Bob's Flag. A Confradic’rion|

Proof of No Deadlock

+ If only one pet wants in, it gets in.

o=
g

'd'éi BROWN © 2007 Herlihy and Shavit 63

Proof of No Deadlock

* If only one pet wants in, it gets in.

+ Deadlock requires both continually
trying to get in.

o=
g

%E BROWN © 2007 Herlihy and Shavit

64

Proof of No Deadlock

+ If only one pet wants in, it gets in.

+ Deadlock requires both continually
trying to get in.

* If Bob sees Alice's flag, he gives her

pl"iOl"H’y (a gentleman..)

2JS BROWN © 2007 Herlihy and Shavit 65

)

&

Remarks

* Protocol is unfair
- Bob's pet might never get in
* Protocol uses waiting

- If Bob is eaten by his pet, Alice's pet
might never get in

)

2JS BROWN © 2007 Herlihy and Shavit

&

66

11

Moral of Story

* Mutual Exclusion cannot be solved by
- transient communication (cell phones)
- interrupts (cans)
* It can be solved by
- ohe-bit shared variables
- that can be read or written

o
$ BROWN © 2007 Herlihy and Shavit 67

The Fable Continues

+ Alice and Bob fall in love & marry

o
$ BROWN © 2007 Herlihy and Shavit 68

The Fable Continues

* Alice and Bob fall in love & marry

+ Then they fall out of love & divorce
- She gefts the pets
- He has to feed them

)

S5 BROWN © 2007 Herlihy and Shavit 69

&

The Fable Continues

+ Alice and Bob fall in love & marry

+ Then they fall out of love & divorce
- She gefts the pets
- He has to feed them

* Leading to a new coordination
problem: Producer-Consumer

o
$ BROWN © 2007 Herlihy and Shavit 70

Bob Puts Food in the Pond

C(C((

S5 BROWN © 2007 Herlihy and Shavit 7

)

&

Alice releases her pets to Feed

)

S5 BROWN © 2007 Herlihy and Shavit 72

&

12

Producer/Consumer

+ Alice and Bob can't meet
- Each has restraining order on other
- So he puts food in the pond
- And later, she releases the pets
+ Avoid
- Releasing pets when there's no food
- Putting out food if uneaten food remains

=3
BROWN © 2007 Herlihy and Shavit

73

Surprise Solution

BROWN © 2007 Herlihy and Shavit 75

@
[oJg] BROWN

Producer/Consumer

Need a mechanism so that

- Bob lets Alice know when food has been
put out

- Alice lets Bob know when to put out more
food

© 2007 Herlihy and Shavit 74

BROWN © 2007 Herlihy and Shavit

Bob puts food in Pond

76

Bob knocks over Can

=3
BROWN © 2007 Herlihy and Shavit

7

@
[oJg] BROWN

Alice Releases Pets

© 2007 Herlihy and Shavit 78

13

Alice Resets Can when Pets are
Fed

o
$ BROWN © 2007 Herlihy and Shavit e

Pseudocode

while (true) {
while (can.isup()){};
pet.release();

pet.recapture();
can.reset();

Pseudocode

while (true) {
while (can.isupQ){};
pet.release();
pet.recapture()-

can.reset(); while (true) {
while (can.isbown()){};
pond. stockwithFood();
can.knockover(Q);

Bob's code

.]
Alice's code |3
=
$ BROWN © 2007 Herlihy and Shavit 81

}
Alice’s code
@ BROWN © 2007 Herlihy and Shavit 80
Correctness

* [Mutual Exclusion J——— safe’ry

Pets and Bob never together in pond
+|No Starvation lveness
If Bob always willing to feed and pets

always famished, then pets eat infinitely
often.

+(Producer/Consumery— safety

Pets never enter pond unless there is
food, and Bob never provides food if
there is unconsumed food.

@ BROWN © 2007 Herlihy and Shavit 82

Could Also Solve Using Flags

Pl W
L g

o
$ BROWN © 2007 Herlihy and Shavit 83

Waiting

+ Both solutions use waiting
-while (mumble) {}
* Waiting is problematic
- If one participant is delayed, so is
everyone elsel
- But delays are common & unpredictable

o
$ BROWN © 2007 Herlihy and Shavit 84

14

The Fable drags on ...

+ Bob and Alice still have issues

D

55 BROWN © 2007 Herlihy and Shavit 85

&

The Fable drags on ...

+ Bob and Alice still have issues
+ So they need to communicate

D

The Fable drags on ...

+ Bob and Alice still have issues
+ So they need to communicate
* So they agree to use billboards ...

<l

;_ﬁ BROWN © 2007 Herlihy and Shavit 87

Write One Letter at a Time ...

w[A]s

EE BROWN © 2007 Herlihy and Shavit 89

‘aﬁ BROWN © 2007 Herlihy and Shavit 86
Billboards are Large
Letter
Tiles
& From Scrabble™ box
To post a message
w A [] [T w[] [] Al =
RS RS RS RS
Ei?ﬁ BROWN © 2007 Herlihy and Shavit %

15

Let's send another mesage

=)

'Il)
BRIWN

+

© 2007 Herlihy and Shavit 91

Uh-Oh

JERMEDEERR

& o

n ROWN © 2007 Herlihy and Shavit

Readers/Writers

+ Devise a protocol so that
- Writer writes one letter at a time
- Reader reads one letter at a time
- Reader sees

+ Old message or hew message
* No mixed messages

&=
%ﬁ BROWN © 2007 Herlihy and Shavit 93

Readers/Writers (continued)

* Easy with mutual exclusion

* But mutual exclusion requires waiting
- One waits for the other
- Everyone executes sequentially

* Remarkably

- We can solve R/W without mutual
exclusion

&=
%ﬁ BROWN © 2007 Herlihy and Shavit 94

Why do we care?

+ We want as much of the code as

possible to execute concurrently (in
parallel)

* A larger sequential part implies
reduced performance

« Amdahl's law: this relation is not
linear...

&=
%ﬁ BROWN © 2007 Herlihy and Shavit 95

Amdahl's Law

OldExecutionTime
NewExecutionTime

Speedup=

..of computation given N CPUs instead of 1

&=
%ﬁ BROWN © 2007 Herlihy and Shavit 96

16

Amdahl's Law

Sequential
fraction

Parallel
fraction

Numberof,,éﬁ“:{::]

processors

Eﬁ BROWN © 2007 Herlihy and Shavit 97

&=
&

Example

* Ten processors
+ 60% concurrent, 40% sequential
+ How close to 10-fold speedup?

&=
&

Eﬁ BROWN © 2007 Herlihy and Shavit

98

Example

* Ten processors
+ 60% concurrent, 40% sequential
+ How close to 10-fold speedup?

Example

* Ten processors
- 80% concurrent, 20% sequential
+ How close to 10-fold speedup?

&=
&

Eﬁ BROWN © 2007 Herlihy and Shavit

100

1
Speedup=2.17= ——3¢
1-06+——
6+ 10
@ BROWN © 2007 Herlihy and Shavit 99
Example

* Ten processors
- 80% concurrent, 20% sequential
+ How close to 10-fold speedup?

1
Speedup=3.57= m
10
@ BROWN © 2007 Herlihy and Shavit 101

Example

* Ten processors
+ 90% concurrent, 10% sequential
+ How close to 10-fold speedup?

&=
&

Eﬁ BROWN © 2007 Herlihy and Shavit

102

17

Example

* Ten processors
+ 90% concurrent, 10% sequential
+ How close to 10-fold speedup?

Example

* Ten processors
+ 99% concurrent, 01% sequential
+ How close to 10-fold speedup?

=
EE BROWN © 2007 Herlihy and Shavit 104

1
Speedup=5.26= — g
1-09+—=
9+ 10
@ BROWN © 2007 Herlihy and Shavit 103
Example

* Ten processors
+ 99% concurrent, 01% sequential
+ How close to 10-fold speedup?

1
Speedup=9.17= —————===
peectp 1_0.99+Lig9

=
EE BROWN © 2007 Herlihy and Shavit 105

The Moral

* The small % of a program that is hard
to parallelize may have a large impact
on overall speedup.

|
~

=
EE BROWN © 2007 Herlihy and Shavit 106

18

