
1

Introduction to Concurrency

Adapted by BCP from lectures
by Maurice Herlihy at Brown

© 2007 Herlihy and Shavit 2

From the New York Times …

SAN FRANCISCO, May 7. 2004 -
Intel said on Friday that it was
scrapping its development of two
microprocessors, a move that is a shift
in the company's business strategy….

© 2007 Herlihy and Shavit 3

Moore’s Law

Clock speed
flattening

sharply

Transistor
count still

rising

© 2007 Herlihy and Shavit 4

On Your Desktop:
The Uniprocessor

memory

cpu

© 2007 Herlihy and Shavit 5

In the Enterprise:
The Shared Memory Multiprocessor

(SMP)

cache

Bus Bus

shared memory

cache cache

© 2007 Herlihy and Shavit 6

Your New Desktop:
The Multicore processor

(CMP)

cache
Bus Bus

shared memory

cache cache All on the
same chip

Sun
T2000
Niagara

2

© 2007 Herlihy and Shavit 7

Multicores Are Here
•  “Intel ups ante with 4-core chip. New

microprocessor, due this year, will be
faster, use less electricity...” [San Fran
Chronicle]

•  “AMD will launch a dual-core version of its
Opteron server processor at an event in
New York on April 21.” [PC World]

•  “Sun’s Niagara…will have eight cores, each
core capable of running 4 threads in
parallel, for 32 concurrently running
threads. ….” [The Inquirer]

© 2007 Herlihy and Shavit 8

Why do we care?
• Time no longer cures software bloat

– The “free ride” is over
• When you double the work your

program is doing…
– …you can’t just wait 6 months for it to

run the same speed again!
– Your software must somehow exploit

twice as much concurrency

© 2007 Herlihy and Shavit 9

Traditional Scaling Process

User code

Traditional
Uniprocessor

Speedup

Time: Moore’s law
© 2007 Herlihy and Shavit 10

Multicore Scaling Process

User code

Multicore

Speedup

Unfortunately, not so simple…

© 2007 Herlihy and Shavit 11

Real-World Scaling Process

User code

Multicore

Speedup

Parallelization and Synchronization
require great care…

© 2007 Herlihy and Shavit 12

Sequential Computation

memory

thread

3

© 2007 Herlihy and Shavit 13

Concurrent Computation

memory

th
re

ad
s

© 2007 Herlihy and Shavit 14

Asynchrony

• Sudden unpredictable delays
– Cache misses (short)
– Page faults (long)
– Scheduling quantum used up (really long)

© 2007 Herlihy and Shavit 15

Model Summary

• Multiple threads
– Sometimes called processes

• Single shared memory
• Unpredictable asynchronous delays

© 2007 Herlihy and Shavit 16

Road Map

• Today: background on concurrency
• Monday: semantics of Haskell’s basic

concurrency primitives (threads/
MVars)

• Wednesday: thread programming
• Following week: Software

Transactional Memory (STM)

© 2007 Herlihy and Shavit 17

Concurrency Jargon

• Hardware
– Processors

• Software
– Threads, processes

• Sometimes OK to confuse them,
sometimes not.

© 2007 Herlihy and Shavit 18

Parallel Primality Testing

• Challenge
– Print primes from 1 to 1010

• Given
– Ten-processor multiprocessor
– One thread per processor

• Goal
– Get ten-fold speedup (or close)

4

© 2007 Herlihy and Shavit 19

Load Balancing

Idea:
• Split the work evenly
• Each thread tests range of 109

…

…
109 1010 2·109 1

P0 P1 P9

© 2007 Herlihy and Shavit 20

Procedure for Thread i

void primePrint {
 int i = ThreadID.get(); // IDs in {0..9}
 for (j = i*109+1, j<(i+1)*109; j++) {
 if (isPrime(j))
 print(j);
 }
}

Note Herlihy’s slightly
awkward pseudocode notation

for Haskell

© 2007 Herlihy and Shavit 21

Issues

• Higher ranges have fewer primes
• Yet larger numbers harder to test
• Thread workloads

– Uneven
– Hard to predict

• Need dynamic load balancing

© 2007 Herlihy and Shavit 22

Issues

• Higher ranges have fewer primes
• Yet larger numbers harder to test
• Thread workloads

– Uneven
– Hard to predict

• Need dynamic load balancing
rej

ect
ed

© 2007 Herlihy and Shavit 23

17

18

19

Shared Counter

each thread
takes a number

© 2007 Herlihy and Shavit 24

Procedure for Thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

5

© 2007 Herlihy and Shavit 25

Counter counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Procedure for Thread i

Shared counter
object

© 2007 Herlihy and Shavit 26

Where Things Reside

cache

Bus Bus

cache cache

1

shared counter

shared
memory

void primePrint {
 int i =
ThreadID.get(); // IDs
in {0..9}
 for (j = i*109+1, j<(i
+1)*109; j++) {
 if (isPrime(j))
 print(j);
 }
}

code

Local
variables

© 2007 Herlihy and Shavit 27

Procedure for Thread i

Counter counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Stop when every
value taken

© 2007 Herlihy and Shavit 28

Counter counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Procedure for Thread i

Increment & return
each new value

© 2007 Herlihy and Shavit 29

Counter Implementation

public class Counter {
 private long value;

 public long getAndIncrement() {

 return value++;
 }

}

© 2007 Herlihy and Shavit 30

Counter Implementation

public class Counter {
 private long value;

 public long getAndIncrement() {

 return value++;
 }

}
OK for single thread,

not for concurrent threads

(i.e., not “thread safe”)

6

© 2007 Herlihy and Shavit 31

What It Means

public class Counter {
 private long value;

 public long getAndIncrement() {

 return value++;

 }

}

© 2007 Herlihy and Shavit 32

What It Means

public class Counter {
 private long value;

 public long getAndIncrement() {

 return value++;

 }

}

 temp = value;
 value = value + 1;
 return temp;

© 2007 Herlihy and Shavit 33

time

Not so good…

Value… 1

read
1

read
1

write
2

read
2

write
3

write
2

2 3 2

© 2007 Herlihy and Shavit 34

Is this problem inherent?

If we could only glue reads and writes…

read

write read

write

© 2007 Herlihy and Shavit 35

Challenge

public class Counter {
 private long value;

 public long getAndIncrement() {

 temp = value;
 value = temp + 1;

 return temp;

 }
}

© 2007 Herlihy and Shavit 36

Challenge

public class Counter {
 private long value;

 public long getAndIncrement() {

 temp = value;
 value = temp + 1;

 return temp;

 }
}

Make these steps
atomic (indivisible)

7

© 2007 Herlihy and Shavit 37

Hardware Solution

public class Counter {
 private long value;

 public long getAndIncrement() {

 temp = value;

 value = temp + 1;

 return temp;

 }

}
ReadModifyWrite()

instruction
© 2007 Herlihy and Shavit 38

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {

 synchronized {
 temp = value;

 value = temp + 1;

 }
 return temp;

 }
}

Mutual Exclusion

© 2007 Herlihy and Shavit 39

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {

 synchronized {
 temp = value;

 value = temp + 1;

 }
 return temp;

 }
} © 2007 Herlihy and Shavit 40

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {

 synchronized {
 temp = value;

 value = temp + 1;

 }
 return temp;

 }
}

Synchronized block

Haskell uses slightly
different primitives to
achieve the same effect

© 2007 Herlihy and Shavit 41

Mutual Exclusion, or “Alice &
Bob share a pond”

A B

© 2007 Herlihy and Shavit 42

Alice has a pet

A B

8

© 2007 Herlihy and Shavit 43

Bob has a pet

A B

© 2007 Herlihy and Shavit 44

The Problem

A B

The pets don’t
get along

© 2007 Herlihy and Shavit 45

Formalizing the Problem

• Two types of formal properties in
asynchronous computation:
– Safety Properties

• Nothing bad happens ever
– Liveness Properties

• Something good happens eventually

© 2007 Herlihy and Shavit 46

Formalizing our Problem

• Mutual Exclusion
– Both pets never in pond simultaneously
This is a safety property

• No Deadlock
–  if only one wants in, it gets in
–  if both want in, one gets in
This is a liveness property

© 2007 Herlihy and Shavit 47

Simple Protocol

•  Idea
– Just look at the pond, see if it is empty,

and release pet if so
• Gotcha

– Both look at the same instant
– Both release pets
– Bad thing happens in pond

© 2007 Herlihy and Shavit 48

Telephone Protocol

•  Idea
– Bob calls Alice (or vice-versa)

• Gotcha
– Alice in shower when Bob calls
– Bob recharging phone battery when Alice

calls
– Alice out shopping for pet food when Bob

calls…

9

© 2007 Herlihy and Shavit 49

Patient Telephone Protocol

•  Idea
– Bob calls Alice (or vice-versa) and lets

phone ring until Alice answers
• Gotcha

– Alice goes on vacation for a month...
•  Lesson

– Need to be able to leave persistent
messages (like writing, not speaking)

© 2007 Herlihy and Shavit 50

Can Protocol

co
la

co
la

© 2007 Herlihy and Shavit 51

Bob conveys a bit

A B

co
la

© 2007 Herlihy and Shavit 52

Bob conveys a bit

A B

cola

© 2007 Herlihy and Shavit 53

Can Protocol

•  Idea
– Cans on Alice’s windowsill
– Strings lead to Bob’s house
– Bob pulls strings, knocks over cans

• Gotcha
– Cans cannot be reused
– Bob runs out of cans

© 2007 Herlihy and Shavit 54

Flag Protocol

A B

10

© 2007 Herlihy and Shavit 55

Alice’s Protocol (roughly)

A B

© 2007 Herlihy and Shavit 56

Bob’s Protocol (roughly)

A B

© 2007 Herlihy and Shavit 57

Alice’s Protocol

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
•  Lower flag when pet returns

© 2007 Herlihy and Shavit 58

Bob’s Protocol

• Raise flag
• Wait until Alice’s flag is down
• Unleash pet
•  Lower flag when pet returns

da
ng

er
!

© 2007 Herlihy and Shavit 59

Bob’s Protocol (2nd try)

• Raise flag
• While Alice’s flag is up

– Lower flag
– Wait for Alice’s flag to go down
– Raise flag

• Unleash pet
•  Lower flag when pet returns

Bob defers
to Alice

© 2007 Herlihy and Shavit 60

The Flag Principle

• Raise the flag
•  Look at other’s flag
• Flag Principle:

– If each raises and looks, then
– Last to look must see both flags up

11

© 2007 Herlihy and Shavit 61

Proof of Mutual Exclusion

• Assume both pets in pond
– Derive a contradiction
– By reasoning backwards

• Consider the last time Alice and Bob
each looked before letting the pets in

• Without loss of generality assume
Alice was the last to look…

© 2007 Herlihy and Shavit 62

Proof

time

Alice’s last look

Alice last raised her flag

Bob’s last
looked

QED

Alice must have seen Bob’s Flag. A Contradiction

Bob last raised
flag

© 2007 Herlihy and Shavit 63

Proof of No Deadlock

•  If only one pet wants in, it gets in.

© 2007 Herlihy and Shavit 64

Proof of No Deadlock

•  If only one pet wants in, it gets in.
• Deadlock requires both continually

trying to get in.

© 2007 Herlihy and Shavit 65

Proof of No Deadlock

•  If only one pet wants in, it gets in.
• Deadlock requires both continually

trying to get in.
•  If Bob sees Alice’s flag, he gives her

priority (a gentleman…)

QED

© 2007 Herlihy and Shavit 66

Remarks

•  Protocol is unfair
– Bob’s pet might never get in

•  Protocol uses waiting
– If Bob is eaten by his pet, Alice’s pet

might never get in

12

© 2007 Herlihy and Shavit 67

Moral of Story

• Mutual Exclusion cannot be solved by

– transient communication (cell phones)
– interrupts (cans)

• It can be solved by
–  one-bit shared variables
–  that can be read or written

© 2007 Herlihy and Shavit 68

The Fable Continues

• Alice and Bob fall in love & marry

© 2007 Herlihy and Shavit 69

The Fable Continues

• Alice and Bob fall in love & marry
• Then they fall out of love & divorce

– She gets the pets
– He has to feed them

© 2007 Herlihy and Shavit 70

The Fable Continues

• Alice and Bob fall in love & marry
• Then they fall out of love & divorce

– She gets the pets
– He has to feed them

•  Leading to a new coordination
problem: Producer-Consumer

© 2007 Herlihy and Shavit 71

Bob Puts Food in the Pond

A

© 2007 Herlihy and Shavit 72

mmm…

Alice releases her pets to Feed

B
mmm…

13

© 2007 Herlihy and Shavit 73

Producer/Consumer

• Alice and Bob can’t meet
– Each has restraining order on other
– So he puts food in the pond
– And later, she releases the pets

• Avoid
– Releasing pets when there’s no food
– Putting out food if uneaten food remains

© 2007 Herlihy and Shavit 74

Producer/Consumer

• Need a mechanism so that
– Bob lets Alice know when food has been

put out
– Alice lets Bob know when to put out more

food

© 2007 Herlihy and Shavit 75

Surprise Solution

A B

co
la

© 2007 Herlihy and Shavit 76

Bob puts food in Pond

A B

co
la

© 2007 Herlihy and Shavit 77

Bob knocks over Can

A B

cola

© 2007 Herlihy and Shavit 78

Alice Releases Pets

A B

cola

yum… B
yum…

14

© 2007 Herlihy and Shavit 79

Alice Resets Can when Pets are
Fed

A B

co
la

© 2007 Herlihy and Shavit 80

Pseudocode

while (true) {
 while (can.isUp()){};

 pet.release();
 pet.recapture();

 can.reset();
}

Alice’s code

© 2007 Herlihy and Shavit 81

Pseudocode

while (true) {
 while (can.isUp()){};

 pet.release();

 pet.recapture();

 can.reset();
}

Alice’s code

while (true) {
 while (can.isDown()){};

 pond.stockWithFood();

 can.knockOver();

}

Bob’s code

© 2007 Herlihy and Shavit 82

Correctness
• Mutual Exclusion

 Pets and Bob never together in pond
• No Starvation

 If Bob always willing to feed and pets
always famished, then pets eat infinitely
often.

•  Producer/Consumer
 Pets never enter pond unless there is

food, and Bob never provides food if
there is unconsumed food.

safety

liveness

safety

© 2007 Herlihy and Shavit 83

Could Also Solve Using Flags

A B

© 2007 Herlihy and Shavit 84

Waiting

• Both solutions use waiting
– while (mumble) {}

• Waiting is problematic
– If one participant is delayed, so is

everyone else!
– But delays are common & unpredictable

15

© 2007 Herlihy and Shavit 85

The Fable drags on …

• Bob and Alice still have issues

© 2007 Herlihy and Shavit 86

The Fable drags on …

• Bob and Alice still have issues
• So they need to communicate

© 2007 Herlihy and Shavit 87

The Fable drags on …

• Bob and Alice still have issues
• So they need to communicate
• So they agree to use billboards …

© 2007 Herlihy and Shavit 88

E
1

D
2 C

3

Billboards are Large

B
3 A

1

Letter
Tiles

From Scrabble™ box

© 2007 Herlihy and Shavit 89

E
1

D
2

C
3

Write One Letter at a Time …

B
3 A

1

W
4
A

1
S

1

H
4

© 2007 Herlihy and Shavit 90

To post a message

W
4
A

1
S

1
H

4
A

1
C

3
R

1
T

1
H

4
E

1

whe
w

16

© 2007 Herlihy and Shavit 91

S
1

Let’s send another mesage

S
1
E

1
L

1
L

1
L

1
V

4

L
1 A

1

M
3

A
1

A
1

P
3

© 2007 Herlihy and Shavit 92

Uh-Oh

A
1

C
3

R
1

T
1
H

4
E

1
S

1
E

1
L

1
L

1

L
1

OK

© 2007 Herlihy and Shavit 93

Readers/Writers

• Devise a protocol so that
– Writer writes one letter at a time
– Reader reads one letter at a time
– Reader sees

• Old message or new message
• No mixed messages

© 2007 Herlihy and Shavit 94

Readers/Writers (continued)

• Easy with mutual exclusion
• But mutual exclusion requires waiting

– One waits for the other
– Everyone executes sequentially

• Remarkably
– We can solve R/W without mutual

exclusion

© 2007 Herlihy and Shavit 95

Why do we care?

• We want as much of the code as
possible to execute concurrently (in
parallel)

• A larger sequential part implies
reduced performance

• Amdahl’s law: this relation is not
linear…

© 2007 Herlihy and Shavit 96

Amdahl’s Law

Speedup=

…of computation given n CPUs instead of 1

17

© 2007 Herlihy and Shavit 97

Amdahl’s Law

Speedup=

Parallel
fraction

€

1

1− p +
p
n

Sequential
fraction

Number of
processors

© 2007 Herlihy and Shavit 98

Example
•  Ten processors
•  60% concurrent, 40% sequential
•  How close to 10-fold speedup?

© 2007 Herlihy and Shavit 99

Example
•  Ten processors
•  60% concurrent, 40% sequential
•  How close to 10-fold speedup?

Speedup=2.17=

© 2007 Herlihy and Shavit 100

Example
•  Ten processors
•  80% concurrent, 20% sequential
•  How close to 10-fold speedup?

© 2007 Herlihy and Shavit 101

Example
•  Ten processors
•  80% concurrent, 20% sequential
•  How close to 10-fold speedup?

Speedup=3.57=

© 2007 Herlihy and Shavit 102

Example
•  Ten processors
•  90% concurrent, 10% sequential
•  How close to 10-fold speedup?

18

© 2007 Herlihy and Shavit 103

Example
•  Ten processors
•  90% concurrent, 10% sequential
•  How close to 10-fold speedup?

Speedup=5.26=

© 2007 Herlihy and Shavit 104

Example
•  Ten processors
•  99% concurrent, 01% sequential
•  How close to 10-fold speedup?

© 2007 Herlihy and Shavit 105

Example
•  Ten processors
•  99% concurrent, 01% sequential
•  How close to 10-fold speedup?

Speedup=9.17=

© 2007 Herlihy and Shavit 106

The Moral

• The small % of a program that is hard
to parallelize may have a large impact
on overall speedup.

:-(

