
CIS552: Advanced Programming

Handout 20

Tail Recursion

Recall...

Ordinary factorial function:

fact n = if n==0 then 1 else fact(n-1)

Recall...

Tail-recursive factorial:

fact’ n a = if n==0 then a
else fact’ (n-1) (a*n)

fact’’ n = fact’ n 1

The second one will be compiled to much more efficient code,
because the compiler can see that the recursive call to fact’ is in
tail position—i.e., its result is the result of the whole body of fact’.

This means that the stack frame for the current call to fact’ is not
needed any more, so the recursive call can just re-use the same
stack frame. (The “call” instruction becomes a “jump.”)

I.e., fact’ will be compiled to a loop.

Tail Position

But what, exactly, is this notion of “tail position”?

Not “rightmost subexpression,” because this also describes the
(non-tail) recursive call in the original fact.

And conversely, tail calls may also occur in non-rightmost
positions, textually:

fact4 n a = if n/=0 then fact (n-1) (a*n)
else a

We can make the notion precise by introducing the idea of
continuations.

Continuations

Continuations

At each point during a computation, we can think of (1) some
subcomputation that is eventually going to yield a value and, (2)
some context that is waiting for this value and is going to use it to
finish computing the final value of the whole program.

(2) is called the continuation of (1).

E.g., the continuation of the subexpression fact 3 in the
computation of fact 6 is.

6 * (5 * (4 * �)),

where � indicates the place where the value of fact 3 will be
used.

Making Continuations Explicit

A continuation can be thought of as a function from the result of the
subexpression to the final result of the whole computation. I.e., we
can write the continuation from the previous slide as

\x -> 6 * (5 * (4 * x))

Making Continuations Explicit

We can use this observation to write another version of fact that
makes these continuations explicit:

fact_cps n k =
if n==0

then k 1
else fact_cps (n-1) (\x -> k (n*x))

Note that all calls in fact_cps are in tail position. I.e., every call
can be compiled as a jump. (A continuation can be described as a
“goto with arguments.”)

Q: So when does the stack grow?

CPS

This programming style is called continuation-passing style: every
function is explicitly passed its continuation—i.e., another function
to which it should send its result.

Another Example

Here’s a CPS variant of another familiar function:

length_cps [] k = k 0
length_cps (_:xs) k = length_cps xs (\x -> k (x+1))

Q: What is the type of length_cps?

Continuations for control

Continuation-passing style makes the control structure of the
program explicit.

This can be applied to achieve a wide variety of useful effects.

Continuations for control

prodlist [] = 1
prodlist (x:xs) = x * prodlist xs

main1 = print $ prodlist
[1,2,3,4,5,6,7,8,9,
0,
10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34,35,36,37,38,39
]

How many multiplications?

Continuations for control

prodlistCAux [] k = k 1
prodlistCAux (0:_) _ = 0
prodlistCAux (x:xs) k = prodlistCAux xs

(\r -> k (x * r))

prodlistC xs = prodlistCAux xs (\x -> x)

main3 = print $ prodlistC
[1,2,3,4,5,6,7,8,9,
0,
10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34,35,36,37,38,39
]

Now how many?

CPS Transform

It is possible to rewrite any program in continuation-passing style.

Indeed, there is a mechanical procedure (called a CPS transform)
that will take an arbitrary program and produce an equivalent CPS
program.

This transformation plays a critical role in some compilers for
functional languages.

Continuations for Backtracking

It is sometimes useful to define functions taking multiple
continuations.

For example, programs that perform some kind of search can often
be expressed very naturally using continuations. A searching
function is passed two continuations:

• a success continuation that tells it what to do if this subtask
succeeds, and

• a failure continuation that tells it how to “unwind” to a previous
choice point, if something fails.

Example: Searching in CPS

data Tree a b = Leaf a b | Node (Tree a b) (Tree a b)
myTree = Node (Leaf 5 3) (Leaf 2 4)

findk :: Eq a => a -> (Tree a b) -> (Maybe b -> r) -> r -> r
findk a t sk fk =
case t of
Leaf a’ b | a==a’ -> sk (Just b)

| a/=a’ -> fk
Node t1 t2 -> findk a t1 sk (findk a t2 sk fk)

find a t = findk a t (\b -> b) Nothing

main4 =
do print (find 1 myTree)

print (find 2 myTree)

Example: Searching in CPS

To make the failure continuation more interesting, let’s keep track of
how many nodes had to be searched to find the given key (or run
out of nodes to search).

findk :: Eq a => a -> (Tree a b) -> Int ->
(Maybe (b,Int) -> r) -> (Int->r) ->
r

findk a t count sk fk =
case t of
Leaf a’ b | a==a’ -> sk (Just (b,count))

| a/=a’ -> fk count
Node t1 t2 -> findk a t1 (count+1)

sk (\c -> findk a t2 c sk fk)

find a t = findk a t 1 (\b -> b) (_ -> Nothing)

main5 =
do print (find 1 myTree)

print (find 2 myTree)

Call/CC

Many functional languages (including Scheme, the SMLNJ
implementation of Standard ML, and Haskell) provide an operator
for gaining explicit access to the “current continuation” at any point
in a program.

This operator is traditionally called call/cc (“call with current
continuation”).

It can be used for many amazing and mind-bending programming
tricks.

In Haskell, the call/cc operator is (of course) packaged in a monad
— the continuation monad, Cont.

