
CIS552: Advanced Programming

Handout 10

QuickCheck

Overview

QuickCheck is a lightweight tool for random testing of Haskell
programs, developed by Koen Claessen and John Hughes.

• Based on specifications of desired properties, expressed as
Haskell functions

• Properties are verified on randomly generated test data.
• The class system is used in clever ways to make everything

look simple.

A Simple Property of Lists

prop_RevApp :: [Int] -> [Int] -> Bool
prop_RevApp xs ys =

reverse (xs ++ ys) == reverse ys ++ reverse xs

Prelude Main> Quickcheck.quickCheck prop_RevApp
OK, passed 100 tests.

N.b.: the type declaration on the property is required here, because
we need to restrict its type to a particular instance — only
monomorphic properties can be checked by QuickCheck.

A Simple Property of Lists

prop_RevApp :: [Int] -> [Int] -> Bool
prop_RevApp xs ys =

reverse (xs ++ ys) == reverse ys ++ reverse xs

Prelude Main> Quickcheck.quickCheck prop_RevApp
OK, passed 100 tests.

N.b.: the type declaration on the property is required here, because
we need to restrict its type to a particular instance — only
monomorphic properties can be checked by QuickCheck.

A Simple Property of Lists

prop_RevApp :: [Int] -> [Int] -> Bool
prop_RevApp xs ys =

reverse (xs ++ ys) == reverse ys ++ reverse xs

Prelude Main> Quickcheck.quickCheck prop_RevApp
OK, passed 100 tests.

N.b.: the type declaration on the property is required here, because
we need to restrict its type to a particular instance — only
monomorphic properties can be checked by QuickCheck.



A Bad Property

Suppose we mess up the specification:

prop_BadRevApp :: [Int] -> [Int] -> Bool
prop_BadRevApp xs ys =

reverse (xs ++ ys) == reverse xs ++ reverse ys

Prelude Main> Quickcheck.quickCheck prop_BadRevApp
Falsifiable, after 4 tests:
[-3,-4,-4]
[-4,-1,1,1]

A Bad Property

Suppose we mess up the specification:

prop_BadRevApp :: [Int] -> [Int] -> Bool
prop_BadRevApp xs ys =

reverse (xs ++ ys) == reverse xs ++ reverse ys

Prelude Main> Quickcheck.quickCheck prop_BadRevApp
Falsifiable, after 4 tests:
[-3,-4,-4]
[-4,-1,1,1]

Conditional Properties

Many properties are not true universally (for all inputs of
appropriate types), but only for inputs satisfying some conditions.

ins :: Ord a => a -> [a] -> [a]
ins a [] = [a]
ins a (a’:as) = if a < a’

then a:a’:as
else a’:(ins a as)

ordered :: Ord a => [a] -> Bool
ordered (a:a’:as) = (a<=a’) && (ordered (a’:as))
ordered _ = True

prop_BadIns :: Int -> [Int] -> Bool
prop_BadIns a as = ordered (ins a as)

Conditional Properties

Prelude Main> Quickcheck.quickCheck prop_BadIns
Falsifiable, after 9 tests:
4
[5,-3]

Conditional Properties

We can make a property conditional by writing it as
<condition> ==> <property>:

prop_Ins :: Int -> [Int] -> Property
prop_Ins a as = (ordered as) ==> (ordered (ins a as))

Prelude Main> Quickcheck.quickCheck prop_Ins
OK, passed 100 tests.

Note that the result type of prop_Ins has changed from Bool to
Property. This is because the “testing semantics” of conditional
properties is a little more tricky than for simple properties.

Conditional Properties

We can make a property conditional by writing it as
<condition> ==> <property>:

prop_Ins :: Int -> [Int] -> Property
prop_Ins a as = (ordered as) ==> (ordered (ins a as))

Prelude Main> Quickcheck.quickCheck prop_Ins
OK, passed 100 tests.

Note that the result type of prop_Ins has changed from Bool to
Property. This is because the “testing semantics” of conditional
properties is a little more tricky than for simple properties.



A Pitfall of Conditional Properties

insWrong :: Ord a => a -> [a] -> [a]

insWrong a [] = [a]
insWrong a as

| (length as) == 6 = as ++ [a]
| otherwise = ins a as

prop_InsWrong :: Int -> [Int] -> Property
prop_InsWrong a as =

(ordered as) ==> (ordered (insWrong a as))

Prelude Main> Quickcheck.quickCheck prop_InsWrong
OK, passed 100 tests.

What Went Wrong?

QuickCheck provides combinators for investigating the distribution
of test cases.

collect :: Show a => a -> Property -> Property
classify :: Bool -> String -> Property -> Property
trivial :: Bool -> Property -> Property

To see information about distribution, use verboseCheck instead of
quickCheck.

prop_InsWrong’ :: Int -> [Int] -> Property
prop_InsWrong’ a as =

(ordered as) ==>
collect (length as) $
classify (ordered (a:as)) "at-head" $
classify (ordered (as++[a])) "at-tail" $
(ordered (insWrong a as))

Prelude Main> Quickcheck.verboseCheck prop_InsWrong’
...
OK, passed 100 tests.
42% 0, at-head, at-tail.
12% 1, at-tail.
11% 2, at-tail.
9% 2, at-head.
7% 2.
7% 1, at-head.
6% 1, at-head, at-tail.
2% 3, at-tail.
2% 3.
1% 4, at-head.
1% 3, at-head.

Fixing the distribution — First try

We can try to fix the distribution by adding another condition:

prop_InsWrong’’ :: Int -> [Int] -> Property
prop_InsWrong’’ a as =

(ordered as) && (length as >= 5) ==>
(ordered (insWrong a as))

However:

Prelude Main> Quickcheck.quickCheck prop_InsWrong’’
Arguments exhausted after 0 tests.

Fixing the distribution — First try

We can try to fix the distribution by adding another condition:

prop_InsWrong’’ :: Int -> [Int] -> Property
prop_InsWrong’’ a as =

(ordered as) && (length as >= 5) ==>
(ordered (insWrong a as))

However:

Prelude Main> Quickcheck.quickCheck prop_InsWrong’’
Arguments exhausted after 0 tests.



Generating Random Test Data

class Arbitrary a where
arbitrary :: Gen a

QuickCheck provides generators for most base types such as Int,
Char, Float, and lists.

QuickCheck also provides combinators for building custom
generators...

Generating Random Test Data

class Arbitrary a where
arbitrary :: Gen a

QuickCheck provides generators for most base types such as Int,
Char, Float, and lists.

QuickCheck also provides combinators for building custom
generators...

Generating Random Test Data

newtype Gen a = Gen (Rand -> a)
-- (roughly!)

choose :: (Int,Int) -> Gen Int

oneof :: [Gen a] -> Gen a
oneof [return Heads, return Tails]

frequency :: [(Int, Gen a)] -> Gen a
frequency [(1, return Heads), (2, return Tails)]

etc...

N.b.: The returns here are because Gen is a monad.

Generating Random Test Data

We can use these primitives to build generators for a variety of
types. E.g. ...

instance Arbitrary Int where
arbitrary = choose (-20,20)

instance (Arbitrary a, Arbitrary b)
=> Arbitrary (a,b) where

arbitrary = liftM2 (,) arbitrary arbitrary

(Actually, both of these are predefined.)

A Custom Generator for Ordered Lists

orderedList :: Gen [Int]
orderedList =

do a <- frequency
[(1, return []),
(7, liftM2 (:) arbitrary arbitrary)]

return (sort a)

Using Custom Generators

The forAll combinator uses a specified custom generator instead
of the default one.

prop_InsWrong’’’ :: Int -> Property
prop_InsWrong’’’ a =

forAll orderedList $ \ as -> ordered (insWrong a as)

Prelude Main> Quickcheck.quickCheck prop_InsWrong’’’
Falsifiable, after 19 tests:
0
[-5,0,3,5,7,8]

Whew.



Generators for Recursive Types

Here is a naive definition of arbitrary lists:

instance Arbitrary a => Arbitrary [a] where
arbitrary =

oneof [return [],
liftM2 (:) arbitrary arbitrary]

Why is this not what we want?

Better:

instance Arbitrary a => Arbitrary [a] where
arbitrary =

frequency [(1, return []),
(7, liftM2 (:) arbitrary arbitrary)]

Generators for Recursive Types

Here is a naive definition of arbitrary lists:

instance Arbitrary a => Arbitrary [a] where
arbitrary =

oneof [return [],
liftM2 (:) arbitrary arbitrary]

Why is this not what we want?

Better:

instance Arbitrary a => Arbitrary [a] where
arbitrary =

frequency [(1, return []),
(7, liftM2 (:) arbitrary arbitrary)]

Generators for Trees

However, in some cases we need to be even more careful...

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving Show

instance Arbitrary a => Arbitrary (Tree a) where
arbitrary =

frequency
[(1, liftM Leaf arbitrary),
(2, liftM2 Branch arbitrary arbitrary)]

What goes wrong?

Prelude Main> Quickcheck.quickCheck prop_SomeTreeProperty
Stack space overflow: current size 1048576 bytes.

Generators for Trees

However, in some cases we need to be even more careful...

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving Show

instance Arbitrary a => Arbitrary (Tree a) where
arbitrary =

frequency
[(1, liftM Leaf arbitrary),
(2, liftM2 Branch arbitrary arbitrary)]

What goes wrong?

Prelude Main> Quickcheck.quickCheck prop_SomeTreeProperty
Stack space overflow: current size 1048576 bytes.

The Problem

Given our definition, an arbitrary tree has only a 50% chance of
being finite!

Intuition: If the first few choices yield Branches, then the only way
for the tree to be finite is for many subtrees to choose (with 1/3
probability each time) to be leaves.

Sized Generators

We need to be able to control the size of the generated data.

This is accomplished by changing the definition of the Gen monad:

newtype Gen a = Gen (Int -> Rand -> a)



Sized Generators

The sized combinator allows the programmer to access the
“current size bound.”

sized :: (Int -> Gen a) -> Gen a

sized f = Gen (\n r -> m n r
where Gen m = f n)

Using Sized Generators

instance Arbitrary a => Arbitrary (Tree a) where
arbitrary = sized arbTree

arbTree 0 = liftM Leaf arbitrary
arbTree n =

frequency
[(1, liftM Leaf arbitrary),
(4, liftM2 Branch (arbTree (n ‘div‘ 2))

(arbTree (n ‘div‘ 2)))]

The Gen Monad

instance Monad Gen where
return a = Gen (\n r -> a)
Gen m >>= k =

Gen (\n r0 -> let (r1,r2) = split r0
Gen m’ = k (m n r1)

in m’ n r2)

Generating Random Functions

Since Haskell encourages higher-order programming, we may well
want to use QuickCheck to test functions that take other functions
as parameters.

To do so, we need to be able to generate random functions.

Surprisingly, this is possible.

Intuition

We want to build a function generator of type Gen (a->b).

Unpacking the definition of Gen, we find that this is
Int->Rand->a->b.

But this type is isomorphic to a->Int->Rand->b, which is the
representation of a -> Gen b.

Promote

I.e., we can define a function

promote :: (a -> Gen b) -> (Gen (a->b))

promote f = Gen (\n r ->
\a ->

m n r
where Gen m = f a)

We can now use promote to build a generator for a function type
a->b, given a function that takes an a and uses it to construct a b
generator that depends in some way on the a argument.

Where do such functions come from?



Arbitrary Class, Take 2

class Arbitrary a where
arbitrary :: Gen a
coarbitrary :: a -> Gen b -> Gen b

I.e., coarbitrary takes a value of a and yields a generator
transformer that takes a b generator and yields a new b generator
whose behavior depends on the a argument.

Generating Random Functions

We can now use arbitrary and coarbitrary, together with
promote, to generate random functions as needed:

instance (Arbitrary a, Arbitrary b) => Arbitrary (a -> b)
where

arbitrary = promote (‘coarbitrary‘ arbitrary)
coarbitrary f gen = ...later...

All we need to do now is to define appropriate coarbitrary
functions for each instance of the Arbitrary class.

Defining coarbitrary

Recall that all our generators were ultimately based on the choose
function (which generates uniformly distributed integers from a
given range).

Similarly, the foundation of all our generator transformers is a
function

variant :: Int -> Gen a -> Gen a

defined in such a way that

(variant i1 . variant i2 . · · · . variant im) g
6=

(variant j1 . variant j2 . · · · . variant jn) g

(with high probability) whenever [i1,...,im] 6= [j1,...,jn].

coarbitrary for Booleans

instance Arbitrary Bool where
arbitrary = ...
coarbitrary b = if b then variant 0 else variant 1

coarbitrary for Ints

instance Arbitrary Int where
arbitrary = ...
coarbitrary n = variant (if n >= 0

then 2*n
else 2*(-n) + 1)

coarbitrary for pairs

instance (Arbitrary a, Arbitrary b) => Arbitrary (a, b)
where

arbitrary = ...
coarbitrary (a, b) = coarbitrary a . coarbitrary b

Note how function composition (.) is used to combine the
generator transformers for types a and b.



coarbitrary for lists

The same idea can be applied to lists:

instance Arbitrary a => Arbitrary [a] where
arbitrary = ...
coarbitrary [] = variant 0
coarbitrary (a:as) = coarbitrary a

. variant 1

. coarbitrary as

Defining variant

Here is the actual definition of the variant function:

variant :: Int -> Gen a -> Gen a

variant v (Gen m) =
Gen (\n r -> m n (rands r !! (v+1)))

where rands r0 = r1 : rands r2
where (r1, r2) = Random.split r0

coarbitrary for functions

instance (Arbitrary a, Arbitrary b) => Arbitrary (a -> b)
where

arbitrary = ...
coarbitrary f gen = arbitrary >>=

(coarbitrary (f a) gen)

All we need to do now is to define appropriate coarbitrary
functions for each instance of the Arbitrary class.

Closing Thoughts

• Thinking about properties (specifications) of functions is useful
even when no errors are found by testing them.

• Indeed, many users report that, when errors are found by
QuickCheck, they are just as often errors in the properties as
in the code!

• The properties make excellent documentation, in part because
they can be re-verified automatically as part of regression
testing.

Acknowledgment

These slides are partly based on a nice presentation of
QuickCheck by Jue Wang.


