
Advanced Programming (CIS 552)

Homework Assignment 2

Due Monday, January 28, at 3PM

Warm-up

1. Read chapters 5 and 7 of SOE.

2. Work problem 5.2 from SOE (on paper — no need to turn this one in).

3. Work problems 5.3, 5,4, 5.5, 5.6, 7.1, and 7.2 from SOE (and turn them in as described below).

4. Show how to define map in terms of foldr (ditto).

Preliminaries

This assignment involves transforming XML documents. To keep things simple, we will not deal with the
full generality of XML, or with issues of parsing. Instead, we will represent XML documents as instances of
the following simplified type:

data SimpleXML =
PCDATA String

| Element ElementName [SimpleXML]
deriving Show

type ElementName = String

That is, a SimpleXML value is either a PCDATA (“parsed character data”) node containing a string or else an
Element node containing a tag and a list of sub-nodes.

A collection of files that form the starting point of this assignment is available on the main course web
page. Begin by grabbing these files, unpacking them, and making sure that you can successfully run the
main program (in Main.hs). We’ve provided a Makefile, which you can use if you like. You should see this
output:

Converting... Results differ: ’WRITE ME!’ vs ’<html><body><h1>A Mi’

Next, have a look at the provided files.

• Main.hs is the main program — it’s just a test harness for the rest.

• Mine.hs is your part. This is where you will put the code you write, and it’s the only file you will turn
in. At the moment, it contains just stubs.

• XMLTypes.hs contains the type definitions for our simplified XML trees.

• Play.hs contains a sample XML value. To avoid getting into details of parsing actual XML concrete
syntax, we’ll work with just this one value for purposes of this assignment.

The XML value in Play.hs has the following structure (in standard XML syntax):

<PLAY>
<TITLE>TITLE OF THE PLAY</TITLE>

<PERSONAE>
<PERSONA> PERSON1 </PERSONA>
<PERSONA> PERSON2 </PERSONA>
... -- MORE PERSONAE

</PERSONAE>

<ACT>
<TITLE>TITLE OF FIRST ACT</TITLE>
<SCENE>

<TITLE>TITLE OF FIRST SCENE</TITLE>
<SPEECH>

<SPEAKER> PERSON1 </SPEAKER>
<LINE>LINE1</LINE>
<LINE>LINE2</LINE>
... -- MORE LINES

</SPEECH>
... -- MORE SPEECHES

</SCENE>
... -- MORE SCENES

</ACT>

... -- MORE ACTS
</PLAY>

• sample.html contains a (very basic) HTML rendition of the same information as Play.hs. You may
want to have a look at it in your favorite browser.

The HTML in sample.html has the following structure (with whitespace added for readability).

<html>
<body>
<h1>TITLE OF THE PLAY</h1>
<h2>Dramatis Personae</h2>
PERSON1

PERSON2

...
<h2>TITLE OF THE FIRST ACT</h2>
<h3>TITLE OF THE FIRST SCENE</h3>
PERSON1

LINE1

LINE2

...
PERSON2

LINE1

LINE2

2

...
<h3>TITLE OF THE SECOND SCENE</h3>
PERSON3

LINE1

LINE2

...

</body>
</html>

Main assignment

Write a function playToHtml that converts an XML structure representing a play to another XML structure
that, when printed, yields the HTML specified above (but with no whitespace except what’s in the textual
data in the original XML).

The main action that we’ve provided will use your function to generate a file dream.html from the
sample play. The contents of this file after your program runs must be character for character identical to
sample.html. Our main action tests this.

Important: The purpose of this assignment is not just to “get the job done”—i.e., to produce the right
HTML. A more important goal is to think about what is a good way to do this job, and jobs like it. To this
end, your solution should be organized into two parts:

1. a collection of generic functions for transforming XML structures that have nothing to do with plays,
plus

2. a short piece of code (a single definition or a collection of short definitions) that uses the generic
functions to do the particular job of transforming a play into HTML.

Obviously, there are many ways to do the first part. The main challenge of the assignment is to find a clean
design that matches the needs of the second part.

You will be graded not only on correctness (producing the required output), but also on the elegance of
your solution and the clarity and readability of your code and documentation. Style counts.

It is strongly recommended that you rewrite this part of the assignment a couple of times: get something
working, then step back and see if there is anything you can abstract out or generalize, rewrite it, then leave
it alone for a few hours or overnight and rewrite it again. Try to use some of the higher-order programming
techniques we’ve been discussing in class.

Submission instructions

• Include your solutions to the warm-up exercises in Mine.hs.

• Make sure that compiling and running Main prints Success.

• Make sure Mine.hs is accepted by GHC without errors or warnings and follows the other rules in the
Style Guide on the course web page. (You can ignore the “TS” requirement — the Main program is
the testing code in this assignment.)

• Put your name in a comment at the top of the file.

• Email just the file Mine.hs to both jschorr@seas.upenn.edu and bcpierce@cis.upenn.edu.

3

