
Generation of verification conditions for Abadi and Leino’s
Logic of Objects

[Extended Abstract]

Francis Tang
∗

LFCS, Division of Informatics,
University of Edinburgh,

Edinburgh EH9 3JZ,
Scotland, UK

francis.tang@dcs.ed.ac.uk

Martin Hofmann
†

Institut für Informatik der
Ludwig-Maximilians-Universität München,

Oettingenstraße 67,
D-80538 München, Germany

mhofmann@informatik.uni-
muenchen.de

ABSTRACT
We consider the problem of verification condition generation for
Abadi and Leino’s program logic (AL) for objects. We provide an
algorithm which to a given judgementJ in AL computes a for-
mulaφ in first-order fixpoint logic such thatφ is equivalent to the
existence of a proof ofJ in AL. Moreover, we show that ifJ is suf-
ficiently annotated, e.g., with loop invariants, thenφ will be purely
first-order. Theverification conditionφ summarises the mathemat-
ical content of a correctness proof in AL while hiding all syntactic
detail. We hope that in the presence of appropriate lemmas it will
in many cases be possible to delegate the task of provingφ to a
semi-automatic theorem prover so that program verification in AL
would essentially amount to formulating appropriate invariants and
lemmas. An object-oriented version of Euclid’s algorithm looks
promising in this direction.

The steps of the algorithm are as follows: (1) infer a typing deriva-
tion D of J . (2) Turn D into a skeleton proof ofJ which con-
tains predicate variables in place of actual assertions. (3) Conjoin
all logical side-conditions appearing in this skeleton and existen-
tially quantify all predicate variables. The resulting second-order
formula is equivalent to the existence of a proof. (4) Apply sim-
plification rules to obtain the desired formula in fixpoint logic or
perhaps in pure first-order logic.

1. INTRODUCTION AND OVERVIEW
Formal verification of OO programs still lags way behind the cur-
rent technology in languages and type systems. Existing OO pro-
gram logics are either non-modular [5] or incomplete [1] and in

∗Supported by EPSRC Studentship 98318205 and DAAD grant
A/01/45666.
†Partially supported by the EU TYPES and APPSEM projects.

any case cumbersome to use. The present paper makes a contribu-
tion towards the latter problem: we present a method allowing one
to distil the essential mathematical content of a proof by automat-
ing a large part of the syntactic overhead that comes with a for-
mal proof in the logic AL of [1]. Though the underlying language
of AL appears to be simple, it nevertheless exhibits phenomena
such as aliasing, static-bound (mutual) method recursion, as well
as dynamic-bound method recursion resulting from a higher-order
store.

More precisely, we describe an algorithm which can automatically
construct proofs in AL using an oracle for ordinary mathematical
statements. For suitably annotated programs, e.g. by loop invari-
ants, the queries to the oracle will be rather simple and as we hope
provable by a semi-automatic theorem prover provided with appro-
priate lemmas as hints. In this way formal verification reduces to
annotation and supply of lemmas. Of course, complete verification
of realistic programs will remain an unassailable goal, but we be-
lieve that after further elaboration the results presented here will
permit relatively painless assertion of certain properties of crucial
program fragments. We remark that the modularity of the program
logic AL naturally enables the independent verification of program
fragments.

Supposing we are presented with a programa, a specificationA
(of the result of evaluatinga) and a transition relationT (express-
ing the state change induced by evaluatinga), to find a proof of
` a : A :: T is to build a proof tree concluding iǹ a : A :: T .

Building the proof tree requires firstly choosing the correct proof
rule at each position, and secondly, instantiating these rules with
suitable choices of transition relations and specifications. Here
“suitability” not only requires that thehypotheses and conclusions
of the instantiated rules “fit” in the proof tree, but also the instan-
tiated side-conditions are verifiable. We propose an approach to
generate a so-calledverification condition(VC), a logical formula
expressing a sufficient condition for the existence of a proof. (Our
generated VC is a necessary condition also.)

The first of these two tasks, that of choosing the correct proof rule,
is made trivial by an equivalent, syntax-directed reformulation of
the logic rules. Thus proofs now have a canonical shape which
we consider as askeleton proof. We flesh outthe skeleton by in-
troducing variables for the unknown specifications and transition

1

relations. The side conditions (and structure of the skeleton proof
itself) give us constraints on these unknowns, including subspeci-
fication constraints on the unknown specifications. However, from
type-inference, we can introduce further variables and replace the
constraints on specifications with constraints on their component
transition relations.

We thus have a partial proof: we know its shape, but it has unknown
transition relations that must satisfy constraints, some induced by
the structure, others by the side conditions. From the constraintsΦ
and unknowns~X , we obtain a second-order formula∃ ~X.Φ, also
referred to as thesecond-order verification condition, which is log-
ically equivalent to the existence of a proof.

We present an algorithm that finds a solution of such a constraint
system, i.e. a formulaφ equivalent to∃ ~X.Φ(~X) which does not
contain second-order quantifiers. We refer to this formulaφ as
thefirst-order, fixpoint verification condition. It is obtained by ap-
propriately instantiating the quantified variables in such a way that
equivalence is preserved. In general, the “solution”φ contains least
fixpoint operators.

While this is of course better than a second-order existential for-
mula (e.g. in the case of a finite model, polynomial-time model
checking algorithms would apply), the ideal would be afirst-order
(fixpoint-free) verification condition, which one hopes can be ver-
ified with an automatic theorem prover and some cleverly formu-
lated lemmas. To that end we allow the programmer to provide an-
notations withina which induce further constraints on the unknown
transition relations. We show that it is then possible to eliminate all
fixpoint operators from the verification condition, provided enough
(and correct!) annotations are provided.

At this point, one may question, why not approach the VCG prob-
lem as in previous work [8, 13, 12], and define a function by recur-
sion over the program syntax, which gives a more local solution, as
opposed to our global approach of collecting constraints and solv-
ing the resulting constraints system. However in AL,each method
body is verifiedoncewith respect toonespecification, which is
used for all its invocations. So, for example inlet x=a in b, pro-
gram b may invoke methodm, whose body is defined ina, and
vice-versa. Perhaps reassuringly, we know from [2] that only well-
typed programs can be verified. That is, the VCG problem is at least
as hard as the type inference problem. A glance at the state-of-the-
art [20, 9] in type inference for object-calculi, suggests constraint
systems.

Two remarks are in order: We are deliberately sloppy about the dis-
tinction between syntax and semantics of formulas and also about
the precise language these could be defined in. So, notions like
“first-order” are to be understood informally to mean that neither
second-order quantifiers nor fixpoint operators are explicitly used.
All this could be readily formalised at the expense of clarity. Sec-
ond, to prevent possible misunderstanding, we emphasise that in
general it is of course not possible to transform a second-order ex-
istential formula into an equivalent fixpoint, let alone first-order
formula. This is possible only for the particular formulas that arise
when gleaning constraints from a proof skeleton in AL.

The rest of this article proceeds as follows. After an overview of
related work in Section 2, we describe AL (Section 4) and its under-
lying programming language (Section 3). We then describe how we
can generate a second-order VC in Section 5 which we show can

be simplified to a first-order fixpoint VC in Section 6. In Section 7
we introduce annotations which we show when used correctly, can
eliminate all fixpoints from the first-order fixpoint VC. In Section 8,
we illustrate our approach using an example.

2. RELATED WORK
Our verification condition generation approach dependsupon the
existence of a least shape typing. The authors have previously,
in [25], developed an algorithm that infers a typing that in particular
is of least shape based on [21, 20].

In [13], Homeier and Martin formally verify a VCG, for a sim-
ple while-language, notably without procedures. Subsequently, in
Homeier’s PhD dissertation [12], procedures are a feature of the un-
derlying language. However, the VCG considers onlywell-formed
programs, which, in particular, ban the possibility of aliased vari-
ables (Sec. 10.4.1). In contrast, correctness of our algorithm is not
machine checked and our OO-language embraces both aliasing and
a higher-order store.

Compaq Research’s ESC project [6] also uses VCG technology.
However, they compile the source language (ESC/Java and, ear-
lier, ESC/Modula-3) into the language of guarded commands be-
fore generating the VCs. These VCs are passed to an automatic
theorem prover that attempts to prove them without further inter-
action from the user. The motivational lineage of ESC is prag-
matic. Consequently, the tool aims to catchmoreerrors (than type-
checking alone), but notall errors. Thus the tool can afford to be
unsound; i.e. a program passed by the tool need not necessarily sat-
isfy its specification. Our design goals are different in the follow-
ing respects: soundness is not considered “harmful”, but indeed,
its availability considered crucial; secondly, the user is expected to
work with the resulting VCs, and therefore it is important that they
correspond in a direct way to the original program, in the same way
that a C++ programmer is not expected to debug assembly code
generated by the compiler.

The LOOP project [26, 14] of Nijmegen, is superficially similar to
the work described here: the LOOP tool takes as input, annotated
Java code (JML), compiling it to theorem prover theories (currently
PVS and Isabelle), which contain theorems to be proved by the
programmer. Like our approach, soundness is maintained, and fur-
thermore, the resulting proof obligations are derived from a pro-
gram logic [14] defined directly on the source language itself. In
some ways, LOOP is more ambitious since it considers almost the
whole of Java, including exceptions. However, we suggest that our
VCG automatically discharges more proof obligations, or equiva-
lently, our VCs are “easier” to prove than the theorems from LOOP.
Specifically, in our case, invariants can be specified in the input
through annotations, and no longer need to be provided when prov-
ing the VCs. In contrast, at present, though loop invariants can be
specified in the JML input, the LOOP tool does not propagate this
information, and thus they must be provided again whilst interact-
ing with the theorem prover.

In response to a frequently asked question we should also point out
that all the existing approaches deal with Java-style, class-based
object-oriented programming (OOP) in which types and the sub-
typing relation are explicitly given. Abadi and Leino’s logic, on
the other hand, deals with delegation-based OOP where anonymous
objects can be created on-the-fly, and types are inferred from the
shape of objects, i.e. methods and fields present. This poses a num-
ber of additional difficulties for VC generation and type inference.

2

We do not attempt to advocate in this paper the delegation-based
approach but simply consider it a worthwhile endeavour and ac-
tually the duty of the academic programming language research
community to study both settings until such time when the superi-
ority of one or the other approach is irrefutably and convincingly
decided.

3. PROGRAMMING LANGUAGE
Abadi and Leino in [2] define a simple OO-programming language
with minimal features. Objects are created directly since we do not
have classes, and therefore there is no inheritance, only delegation.
Nevertheless, it is an imperative language (versus functional) and
together with methods in objects, we observe phenomena associ-
ated with higher-order stores, such as dynamic-bound method re-
cursion over and above the static-bound method recursion admitted
by the type system. Furthermore, the language exhibits aliasing,
and unlike in other approaches, we embrace this feature rather than
banning it through syntactic means or otherwise.

The syntax of programs is defined by

a, b ::= x | true | false| if x thena0 elsea1 | let x=a in b |
[fi=xi

i=1..k , mj=ς(yj)bj j=1..`] | x.f | x.m() | x.f :=y

where variablesa, b are understood to range over programs,x, y, z
over (program) variables,f over field names andm over method
names. The program

[fi=xi, mj=ς(yj)bj]

creates an object with fieldsfi initially assigned with the values
of xi and methodsmj . The ς symbol binds variableyj to self
in each method bodybj . Methods with several parameters can be
encoded by initially assigning to fields and then using the fields
within the method body. We writex.f to look up the value of a
field,x.m() to invoke a method andx.f :=y to overwrite the value
of field f in x with the value ofy. Other than by theς-binder,
program variables are introduced by the let construction: program
let x=a in b executesa, identifying x with its return value before
executingb.

There are some base types with appropriate constants such asBool
and object types of the form[fi:Ai

i=1..k , mj:Bj
j=1..`] which con-

tain objects providing fieldsfi and methodsmi.

There are norecursive types, but we believe that the type inference
mechanism described in [25] as well as the verification condition
generation presented here an in [24] can be readily extended to en-
compass them. In support of this belief we note that Palsberg’s
algorithms on which [25] is based work for recursive types and that
the apparatus for verification condition generation we present here
is to a considerable extent generic.

If variablex has type[fi:Ai, mj:Bj] thenx.fi has typeAi andBj

is the return type of methodmj . There is a structural subtyping
judgmentA <: B defined in the usual way with the notable feature
that object types are covariant in the methods and invariant in the
fields. As an auxiliary notion we say that a typeA has smaller
shape thanA′ if hereditarily all fields (and methods) ofA are fields
(and methods) ofA′.

4. A LOGIC OF OBJECTS
In AL, types are generalised to specifications of the form

[fi:Ai
i=1..k , mj:ς(yj)Bj ::Ujj=1..`]

whereA,B and their variants now range over specifications and
T, U and their variants range over transition relations. Note that
B, U can also depend onyj .

Semantically, we have values which are either elements of base
types or store locations. A store is a partial function mapping
location-field name pairs to values. A transition relation of arityn
semantically is a relation over initial and final stores, areturn value
andn values. Semantic entailment of transition relations is pre-
cisely set inclusion of their graphs. Note that variables are mapped
to values by stacks, as elaborated on in [2].

Syntactically, transition relations are, up toα-equivalence, pairs
(~x, T) where~x is a sequence of (program) variables, andT is logi-
cal formula over the variables~x, initial and final stores̀σ andσ́, and
the return valuer. In this paper we use a logic with predicate sym-
bols includingRes , Tfsel, Tfupd andTobj, whose standard interpreta-
tions are as one would expect from their context, but their precise
meanings (and the precise grammar of formulas) are not important
for our considerations here. Thearity of (~x, T) is defined to be
the length of~x. We take a natural ordering of “strength” between
transition relations, by saying that(~x, T) is stronger than(~x, T ′)
written (~x, T) ⊆ (~x, T ′) precisely whenT entailsT ′. Note that
the strength relation is only defined between transition relations of
the same arity, but transition relations of different arities can be re-
lated by a (sometimes implicit) weakening. Similarly, when there
is no ambiguity, we often write simply the logical formula with free
variable occurrences, leaving the first component implicit.

Subtyping extends to specifications in the obvious way using en-
tailment of transition relations.

In AL, we derive judgments of the form

x1 : A1, . . . , xn : An ` a : A :: T ,

where what appears to the left of` is referred to as the context. One
should think ofT , a dynamic specification, as describing the exe-
cution (or dynamic) behaviour ofa, andA, a static specification,
as describing the properties of the resulting value (assuminga ter-
minates). Here eachxi is a free variable that can occur ina, A and
T , as well as inAi′ (i < i′). Furthermore, we can assume that the
value ofxi has specificationAi. Thus we have enough information
to deduce the specification and execution behaviour ofx.m() sim-
ply by looking upx in the context and opening up its specification.
This higher-order compositional property of the logic allows us to
reason about method invocation without the need to look up the
text of the method body. In contrast, program logics of de Boer [4,
5] and von Oheimb [18, 19] use the fact that the texts of method
bodies are available.

Table 1 gives the rules of AL. It differs from the version in [1] in
that subsumption is built into the rules thus simplifying constraint
generation. One can show that this formulation is equivalent to the
one from loc. cit.

5. SECOND-ORDERVERIFICATIONCON-
DITIONS

Let us introduce some notation to allow us to define the constraint
system induced by a program. For a subterm occurrencea and
typesA, A1, . . . , An, suppose the judgement

x1:A1, . . . , xn:An ` a : A

3

E ` xj : A :: T

�
E(xj) <: A
Res(xj) ⊆ T

�

E ` true : Bool :: T

�
Res(true) ⊆ T

	

E ` false: Bool :: T

�
Res(false) ⊆ T

	

E ` n : Nat :: T

�
Res(n) ⊆ T

	

E ` x : Bool :: Res(x) E ` a0 : A0 :: T0 E ` a1 : A1 :: T1

E ` if x thena0 elsea1 : A′ :: T ′

8>><
>>:

T0[true/x] ⊆ T [true/x]
T1[false/x] ⊆ T [false/x]
A0[true/x] <: A[true/x]
A1[false/x] <: A[false/x]

9>>=
>>;

E ` a : A :: T E, x : A ` b : B :: U

E ` let x=a in b : A′ :: T ′

�
T ;x U ⊆ T ′

B <: A′

�

for A = [fi:Ai
i=1..k , mj:ς(yj)Bj::Uj j=1..`]

E ` xi : Ai :: Res(xi)1≤i≤k E, yj:A ` bj : Bj :: Uj
1≤j≤`

E ` [fi=xii=1..k , mj=ς(yj)bj j=1..`] : A′ :: T ′

�
A <: A′

Tobj(x1, . . . , xk) ⊆ T ′

�

E ` x : [f :A] :: Res(x)
E ` x.f : A′ :: T ′

�
A <: A′

Tfsel(x, f) ⊆ T ′

�

E ` x : [m:ς(y)B::U] :: Res(x)
E ` x.m() : A :: T

�
B[x/y] <: A
U [x/y] ⊆ T

�

E ` xj : A :: Res(xj) E ` xk : A′′ :: Res(xk)
E ` xj.f :=xk : A′ :: T ′

8<
:

A <: [f :A′′]
A <: A′

Tfupd(xj, f, xk) ⊆ T ′

9=
;

Table 1: Rules for Abadi-Leino program logic. In this presentation, the subsumption rule has been incorporated into each rule, thus
the rules are syntax-directed.

occurs in the inferred least shape type derivation. We writeJaK for
A, and for any variablexi, we write[xi] for Ai. Note that although
the variablexi can appear in the contexts of many judgements,[xi]
is still well-defined sincexi it must have the same type in the con-
texts of all judgements in the same proof. Forγ a sequence of field
names and method names, andA a type, we overload notation and
write γ ∈ A to mean thatγ is a path in the typeA. We implicitly
assume that the symbolγ (and its decorated variants) ranges over
sequences ending in a method name. Similarly,α ranges over non-
empty sequences of method names, andβ ranges over sequences
ending in a method name but containing at least one field name.
We write#γ for the number of method names inγ.

A variable renaming is an injective, order-preserving functionσ :
{1..m} → {1..n} between initial segments ofN. Let dom(σ)
(domain) denote{1..m} andcod(σ) (codomain) denote{1..n}.
Its application to a transition relationT = T(x1, . . . , xm) of arity
m is writtenσT and is defined pointwise by

(σT)(x1, . . . , xn) def= T(xσ(1), . . . , xσ(m)) .

Recall from the discussion in the overview, we take the inferred
types as skeleton specifications, and flesh them out by introducing
variables for all unknown transition relations. Note for any subterm
occurrencea, there is one transition relation foreachγ ∈ JaK. Thus
for each judgementE ` a : A :: T with unknownA andT , we
introduce a variableLaM for T and for eachγ ∈ JaK, a variableLaMγ
for the component transition relations ofA.

The arity ofLaM, written ar(LaM) is n, where

x1:[x1], . . . , xn:[xn] ` a : JaK

is the derived typing judgement ofa. Now considerL[m=ς(y)b]Mm,
which we recall is the transition relation for methodm, whose body
is b. Sincey occurs free inb, its arity is one more than that of
L[m=ς(y)b]M. Thus the arity ofLaMγ is ar(LaM) + #γ.

For each variablex andγ ∈ [x], we introduce a second-order vari-
able〈x〉γ to denote the component transition relation of the speci-
fication ofx that occurs in the verification contexts. Ifxj occurs in
the context of verification judgement

x1:A1, . . . , xj:Aj, . . . , xn:An ` a : A :: T

then the arity of〈xj〉γ is j − 1 + #γ. This is well-defined since
a program variable must occur in the same position and have the
same specification in all contexts; we cannot permute variables in
contexts.

wq,γ
p : {1..(p + #γ)} → {1..(q + #γ)}

wq,γ
p (i) def=

�
i i ≤ p
i + (q − p) i > p

σq,γp : {1..(p + 1 + #γ)} → {1..(q + #γ)}

σq,γp (i) def=
�

i i ≤ p + 1
i + (q − p− 1) i > p + 1

Table 2: Some basic renamings

4

Table 2 defines some useful renaming functions. The renaming
wq,γ
p is a weakening/renaming used for variable instances. The idea

is to map the firstp variables into the firstq slots, and then map the
remaining#γ variables (which are introduced by theς-binders) to
the#γ slots after the firstq slots. Similarly, the renamingσq,γp is
also a weakening,and differs fromwq,γ

p only in the use of its formal
parameters. It is used to shuffle the variables into the correct slots
for method invocation.

Table 4 contains the definition of function Cons which maps a vec-
tor of variables~x and a terma involving ~x to a set of logical for-
mulas involving the previously introduced predicate variables for
a. The idea is that Cons(~x, a) summarises the constraints arising
when trying to construct a proof in AL with subjecta.

A detailed discussion of the defining clauses is contained in [24]
but must be elided here for space reasons.

We have the following formulation of completeness of Cons. In
[24] we show why the restriction on shape does not in fact consti-
tute a loss of generality.

THEOREM1 (COMPLETENESS). Given a programa, specifi-
cationA and transition relationT . If ` a : A :: T has a proof
whose component specifications have the same shape as their cor-
responding types in the inferred least shape typing, then

Cons(ε, a) ∪ {LaMγ = A(γ) | γ ∈ A} ∪ {LaM = T} (1)

has a solution.

Similarly, we have the converse, soundness: givena, A, T , if con-
straints (1) has a solution, then there is a proof of` a : A :: T .

6. FIRST-ORDER, FIXPOINT VERIFICAT-
ION CONDITIONS

We know from the previous theorem, that Cons(ε, a) is a VC, al-
beit expressed as a second-order formula. However, this VC offers
us no benefit over finding a proof directly, since to prove this for-
mula, one must find instantiations for the existentially quantified
transition relations. Fortunately, we can simplify this VC by au-
tomatically finding instantiations that preserve logical equivalence.
Indeed, by applying them in the right order, the rules in Tables 10,
7, 8 and 9 allow one to reduce any formula of the form

∃ ~X.
^

e,e′

e = e′ ∧
^

i

Li ⊆ Xi ,

(such is the form of the formulas produced by Cons) to an equiva-
lent formula containing no second-order existential quantifiers, but
least fixpoint operators (which we may view as a particular case
of second-order quantification by the theorem of Knaster-Tarski) in
their stead.

Again, for lack of space we are not able to discuss these rules in
any great detail but only mention that they substantially and non-
trivially extend the work of Bledsoe [3]. In particular, he only
considers the instantiation of a single second-order variable and
does not achieve completeness, i.e., the instantiated formula may
be false in spite of the original one being provable. Of course, the
present improvements are partly enabled by the particular syntactic
form of our constraints.

7. FIRST-ORDER VERIFICATION CONDI-
TIONS

While the possibility of eliminating all second-order quantifica-
tion in favour of fixpoints came as a surprise to us, the presence
of fixpoints in a verification condition seems quite natural. After
all, when verifying a program with looping behaviour, be it from
a while construct, or recursive method invocation, if one wants a
purely first-order verification condition, then one would expect to
be required to provide an invariant of some sort. This last analogy,
suggests that if we allow the programmer to provide further hints
to the verification condition generator, in the form of annotations
in the program, then we might be able to eliminate some of the
fixpoint operators.

Closer examination of the simplification rules reveals that fixpoint
operators are only introduced by Rule (freeinst), that is, whenever
we find a constraint of the formL ⊆ X andX occurs free inL,
and we instantiate forX . Supposing the programmer can provide
an explicit instantiation ofX to the simplification process as a hint,
then at least this fixpoint operator would be eliminated.

Taking this as our motivation, we extend the syntax of the program-
ming language by allowing the user to provide annotations. For our
purposes, an annotationψ is a partial function mapping sequences
γ (includingε in this case) to transition relations. The precise syn-
tax used to write such partial functions is not important. Annotated
programs, which for the sake of brevity will also be denoted by the
symbolsa andb, are defined as before except we now allow anno-
tationsa::ψ. Furthermore, annotations of variables can still be used
as variables, so for example, we can writex.f :=(y::ψ).

Cons(~x, a::ψ) def= Cons(~x, a)
∪ {LaMγ = ψ(γ) | γ ∈ JaK ∩ dom(ψ)}
∪ {LaM = ψ(ε) | ε ∈ dom(ψ)}
∪ {ψ(α) ⊆ La::ψMα | α ∈ JaK ∩ dom(ψ)}
∪ {ψ(β) = La::ψMβ | β ∈ JaK ∩ dom(ψ)}
∪ {ψ(ε) ⊆ La::ψM | ε ∈ dom(ψ)}
∪ {LaMγ = La::ψMγ | γ /∈ dom(ψ)}
∪ {LaM = La::ψM | ε /∈ dom(ψ)}

Table 3: Constraints generation for a program a annotated
with ψ. Annotations are partial functions mapping paths to
transition relations.

We now add the extra clause as displayed in Table 3 to the definition
of Cons. Here we have extendedJ−K to annotated programs. Note
that we use the information inψ whenever it is defined, and simply
identify LaMγ andLa::ψMγ whenever it is not. We ignoreψ(γ) for
γ /∈ JaK.

7.1 How Many Annotations?
Of course, if we annotate every single subterm then the verifica-
tion condition will not contain any fixpoints. On the other hand,
it is natural that recursive methods will require an annotation—the
invariant. Perhaps unexpectedly, higher-order assignment, i.e., an
update of a field of non-trivial object type also may produce fix-
points in verification conditions. Fortunately, this is not entirely an
artifact of our approach as such assignment allows one to encode
recursion implicitly. Consider the following example

let u=[f=[m=ς(y)true]] in
u.f :=[m=ς(y)u.f.m()]; u.f.m() .

5

Here we initially create an object, which we callu, with one fieldf
initialised to an object with one methodm that computes something
trivial. Thereafter, within the main body of the let construct, we
update fieldu.f with another object with methodm which invokes
methodu.f.m. When run, the program exhibits non-termination.
and in a similar vein it is possible to write programs computing
factorial, Fibonacci numbers, etc, recursively.

One can show that if allrecursivemethods andhigher-orderas-
signments are annotated, no fixpoints will appear in the verification
condition. Note that this does not require us to annotatex.f :=y
in the case wherey is not higher-order, i.e. contains no methods.
On the other hand, insisting on all higher-order assignments to be
annotated would be unnecessarily verbose as there are many exam-
ples of harmless such update.

Lacking at present an acceptable yet simple syntactic criterion, we
exhibit in the technical report [24] a notion of dependency graph
which is associated with each program and has the property that
fixpoints will not arise if the dependency graph contains no cy-
cles. We only point out here that due to the presence of equality
constraints via conditionals these dependency graphs are nontrivial
and, in particular, must be parametrised by truth assignments of the
boolean subexpressions. The rationale of these graphs is two fold.
On the one hand, they should enable the future development and
validation of complete yet not unnecessarily restrictive annotation
policies. On the other hand, they may be used in an interactive
program verification system which displays all the cycles in a de-
pendency graph asking the programmer for a breaking annotation
in each case.

8. AN EXAMPLE
In this section we develop a simple example: an object-oriented
version of Euclid’s algorithm. We are aware of the simplicity and
perhaps naivity of this example and intend to develop more mean-
ingful examples in due course. However, though our prototype im-
plementation can already generate VCs for a larger example, fur-
ther implementation efforts are required to make the result suitable
for human consumption. Another point is that many possibly in-
teresting examples require recursive types which as discussed in
Section 3 can presumably be quite easily added, but have not yet
been checked in detail.

On the other hand, we felt that delaying publication of our work un-
til such time when more substantial examples would become avail-
able would be detrimental to the dissemination and possible impact
of this work.

Recall the greatest common divisor (gcd) example as found in [2]
and mechanically checked in [11]. The example is resurrected in
the following form.

gcd def= [f=1, g=1,
m=ς(y) if y.f < y.g then

y.g:=y.g − y.f ; y.m()
else ify.g < y.f then

y.f :=y.f − y.g; y.m()
elsey.f
::I]

The programgcd is the same program as seen previously except
we now annotate the method body with an invariantI . Note that
since the type of the body of methodm is integer, its annotation,

which in general is a partial function mapping pathsγ to transition
relations, degenerates to simply a transition relation.

Programgcd computes a higher-order result: a gcd calculator. To
illustrate its intended use, we wrap programgcd into programa,
with its specification provided by an annotation:

a
def= let x= gcd in ((x.f :=n1).g:=n2).m()

::pos(n1), pos(n2)→ r = gcd(n1, n2) .

The annotated programa insists that if we update the fieldsf and
g with positive constantsn1 andn2, then invoking methodm com-
putes the gcd ofn1 andn2. Here the predicate symbolpos is inter-
preted as “is positive”.

Now applying type inference toa, we infer the following type for
gcd.

` gcd : [f :Nat, g:Nat, m():Nat] .

Using our implementation, computing Cons(ε, a) gives a second-
order VCΨ1, with 60 (existentially quantified) higher-order vari-
ables, 6 equality constraints and 50 inequality constraints. We can
eliminate all higher-order variables by applying our simplification
rules to obtain a VCΨ2.

Using specific facts about AL transition relations, for example

(Res(n);xU(x)) = U(n) ,

we can simplifyΨ2 further, to obtain the following more read-
able formulas. Here we write the VC as an (implicit) conjunction
of first-order formulas with̀σ andσ́ denoting the initial and final
stores andr for the result value.

�
σ̀(y, f) 6< σ̀(y, g) ∧ σ̀(y, g) 6< σ̀(y, f) ∧
Tfsel(y, f)

�
⊆ I

�
σ̀(y, f) 6< σ̀(y, g) ∧ σ̀(y, g) < σ̀(y, f) ∧
Tfupd(y, f, σ̀(y, f)− σ̀(y, g)); I

�
⊆ I

�
σ̀(y, f) < σ̀(y, g) ∧
Tfupd(y, g, σ̀(y, g) − σ̀(y, f)); I

�
⊆ I

Tobj(1, 1);x Tfupd(x, f,n1); Tfupd(x, g, n1); I[x/y] ⊆ LaM

where

LaM ≡ pos(n1), pos(n2)→ r = gcd(n1, n2) .

Recall thatT ⊆ T ′ is an abbreviation for

∀~x, σ̀, σ́, r.T(~x, σ̀, σ́, r)→ T ′(~x, σ̀, σ́, r) .

In this case,Ψ2 is fixpoint-free and so our implementation can
pretty-print to a first-order syntax. When we defineI by

I
def= pos(σ̀(y, f)) ∧

pos(σ̀(y, g)) → r = σ́(y, f) ∧ r = σ́(y, g) ∧
r = gcd(σ̀(y, f), σ̀(y, g)) ,

SPASS[27], an automated theorem prover for first-order logic with
equality, can successfully proveΨ2, if we add the following axioms

6

aboutgcd and subtraction,

∀Zx, y. x < y→ pos(y − x) (2)

∀Zx, y. x 6< y, y 6< x→ x = y (3)

∀Zx, y. x < y, pos(x), pos(y)→ gcd(x, y) = gcd(x, y − x)
(4)

∀Zx, y. y < x, pos(x), pos(y)→ gcd(x, y) = gcd(x− y, y)
(5)

∀Zx. gcd(x, x) = x (6)

f 6= g . (7)

Axiom 7 can be generated by our implementation. SPASSrequired
about 15 seconds to find a proof ofΨ2, on a 500MHz PentiumIII.

As a demonstration of the robustness of this VCG approach, con-
sider a modification of the algorithm where the second branch of
the nested if-then-else statement performs an (inline) swap, before
performing a recursive method call:

let z=y.f in (y.f :=y.g; y.g:=z; y.m()) .

The generated VC can be automatically discharged by SPASSif we
also add the axiom

∀Zx, y. gcd(x, y) = gcd(y, x) . (8)

Alternatively, if we modify the second branch so that the swap is
performed by invoking a sibling method, viz.

y.swap(); y.m() ,

(and we add a new sibling methodswap) the resulting VC can also
be automatically discharged by SPASS. For reference, the version
with the inline swap (resp. swap method) produced a 2nd-order VC
with 64 (resp. 70) higher-order variables, 6 (resp. 9) equality con-
straints and 54 (resp. 55) inequality constraints.

Clearly, the two versions with swapping are implementations of the
same algorithm. The fact that the generated VC can be automati-
cally proved using same the axioms is particularly reassuring since
this is a demonstration of how our VCG is indifferent to their syn-
tactic distinctions.

9. CONCLUSION AND FURTHER WORK
We have presented a method enabling to separate the syntactic over-
head of the AL logic from the actual mathematical content of verifi-
cation. A first example involving the recursive gcd object from [11]
was very promising. While a formalisation [11] in LEGO [23] of
the complete proof in AL took three weeks with a resulting proof
script of several pages, the generated verification condition was just
one line and amounted to the intuitive proof obligation that would
arise from a simple imperative program. All the overhead due to
objects, methods, etc. has been taken care of.

So far we have a prototype implementation which can generate
first-order, fixpoint-free VCs for the example in Section 8 and also
for an example based on the dining philosophers scenario [11]. Un-
fortunately using the latest version of SPASS, the VC from the lat-
ter example trips up on a bug, which the authors have been assured
will be fixed in a future release. In the meantime, modifications to
the implementation are being considered to allow pretty printing to
different automated theorem provers, including OTTER [16].

For the future we intend to develop an implementation which could
display loops in dependencygraphs and so ask the user for more an-

notations when needed. Alternatively, one could strive for a static
type system capable of guaranteeing cycle freeness of dependency
graphs. Our experience so far, in particular the presence of implicit
recursion described in Section 7.1 leads us to a pessimistic view as
to the existence of such a system which would at the same time be
reasonably strong and comprehensible. However, recent work on
alias analysis and linearity [28, 17, 10] might be useful.

One of the goals of our VCG was to provide increased automation
for finding verification proofs. The main bulk of the presentation
in [24] is to show that our VCG algorithm is correct. An alternative
approach towards the same goal is to embed the program logic into
a theorem prover, for example in [11], so that the theorem prover
can be used as an assistant for building proofs. Then one can use the
automation provided by the theorem prover, for example by imple-
menting tactics [8], to reduce some of the resulting proof burden.
In particular, unsound tactics cannot allow incorrect “proofs” to
be derived, since the proof checking facility of the theorem prover
guards us against such an eventuality. Thussoundnessof the VCG
is then of reduced importance. Nevertheless, we believe that com-
pleteness of the VCG algorithm is still important: in its absence,
should one obtain an unprovable subgoal from a tactic, one cannot
conclude that the goal itself is unprovable. If one chooses care-
fully how AL is embedded into a suitable theorem prover such as
Isabelle/HOL, we believe that the VCG algorithm presented here
can be implemented as a tactic.

Our method is currently restricted to closed programs. However,
due to the compositional nature of AL, and the constraints-solving
approach to VCG, we foresee no difficulty to extend it to open pro-
grams which would allow us to apply verification to certain crucial
parts of a program and simply assume correctness of others.

Extensions of the AL logic either by recursive types or with a view
to address its incompleteness will lead to new challenges. As al-
ready mentioned, an extension with recursive types appears reach-
able.

As already mentioned, in a finite model fixpoints can be computed
quickly (polynomial in the size of the model) by iteration. Thus, if
we were able to detect statically, whether the required model was
indeed finite then we could use model-checking, i.e., iterative com-
putation of fixpoints to discharge verification conditions automati-
cally. We believe that the model, i.e., the state space is indeed finite
in examples like the dining philosophers scenario described in [11].

From a point of view of programming methodology, we may use
unsound but complete approximations to proving the VC, and thus
detect possible mistakes in the code and/or specification. If these
complete methods are “push-button” (automatic) then, for exam-
ple, they may be applied off-line, e.g. overnight, during the devel-
opment of a project. For example, we could use model-checking
on an arbitrarily sized, finite model and in this way possibly detect
unsatisfiability of the verification conditions. Also, we can elimi-
nate fixpoint expressions by replacing a constraintL ⊆ Y , where
L contains a fixpoint, with finitely many approximations: for ex-
ample, supposingL ≡ L′[µX.F (X)/Z] for someL′, the approx-
imations can be

L′[F i(⊥)/Z] ⊆ Y

for i = 0..n. To see why this is complete, we recall that fixpoints
only arise from applications of Rule (notfreeinst) and soZ 7→ L′

7

is monotone. CertainlyF i(⊥) ⊆ µX.F (X), and so

L′[F i(⊥)/Z] ⊆ L′[µX.F (X)/X] .

ThereforeL′[F i(⊥)/Z] ⊆ Y is a consequence ofL ⊆ Y . Since
these approximations are fixpoint-free, they are more likely to be
automatically discharged, or disproved, again giving a push-button
check. It is noted that ESC uses approximations of VCs for while
loops.

Flanagan and Saxe address the problem of exponential blow up of
VCs in [7]. It is clear that our VCG can experience the same com-
plexity issues and it would be interesting to see if modifications of
their solutions can be applied to ours.

Our global approach to verification condition generation appears to
be to quite some degree independent of the program logic at hand
though, of course, for simpler logics such as plain Hoare logic the
well-known straightforward computation of the verification condi-
tion by structural recursion works just as well. It would be interest-
ing to apply our approach to other logics, for example Poetzsch-
Heffter and Müller’s programming logic [22] for a fragment of
Java, and also Leino’s later variant [15] of AL, which admits re-
cursively typed objects.

In the later logic of Leino, preliminary investigations suggest that
since subtyping is defined byname matching(like in Java, as op-
posed tostructural type matchingas present in AL), the VCG prob-
lem is easier. Firstly, type inference is much simpler, and also,
since each method has exactly one specification for all implemen-
tations (thus specifications are no longer covariant along methods),
far fewer constraints (and thus second-order variables) are gener-
ated. Of course, these advantages are at the expense of a more
restrictive type system, though it appears to be sufficient for mod-
elling Java.

A thorough comparison between AL and the work of Poetzsch-
Heffter and Müller remains to be carried out; preliminary inspec-
tion suggests that their subtyping relation derives from Java, and so,
like Leino’s later logic, may give a simpler VCG. However, initial
impressions suggest that their logic has a syntax significant larger
than what we have considered so far. Thus, it maybe be beneficial
to implement the logic in a theorem prover, and its VCG as a tactic,
to ensure soundness.

Acknowledgments
The authors would like to thank Lennart Beringer and various anony-
mous referees for comments on, earlier versions of this paper.

10. REFERENCES
[1] Martı́n Abadi and K. Rustan M. Leino. A logic of

object-oriented programs. In Michel Bidoit and Max
Dauchet, editors,TAPSOFT ’97: Theory and Practice of
Software Development, 7th International Joint Conference
CAAP/FASE, volume 1214 ofLNCS, pages 682–696.
Springer-Verlag, April 1997.

[2] Martı́n Abadi and K. Rustan M. Leino. A logic of
object-oriented programs. SRC Research Reports SRC-161,
Compaq SRC, September 1998. Revised version of [1].

[3] Woodrow W. Bledsoe. A maximal method for set variables.
Machine Intelligence, 9:53–100, 1979.

[4] Frank S. de Boer.Reasoning about dynamically evolving
process structures; a proof theory for the parallel
object-oriented language POOL.PhD thesis, The Free
University of Amsterdam, 1991.

[5] Frank S. de Boer. A WP-calculus for OO. In Wolfgang
Thomas, editor,Proceedings of the Second International
Conference on Foundations of Software Science and
Computation Structures, FoSSaCS ’99, volume 1578 of
LNCS, pages 135–149. Springer-Verlag, 1999.

[6] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking. SRC Research
Reports SRC-159, Compaq SRC, December 1998.

[7] Cormac Flanagan and James B. Saxe. Avoiding exponential
explosion: Generating compact verification conditions. In
28th Annual ACM Symposium on Principles of Programming
Languages. ACM Press, 2001.

[8] Michael J. C. Gordon. Mechanizing programming logics in
higher-order logic. In G.M. Birtwistle and P.A.
Subrahmanyam, editors,Current Trends in Hardware
Verification and Automatic Theorem Proving (Proceedings of
the Workshop on Hardware Verification), pages 387–439,
Banff, Canada, 1988. Springer-Verlag, Berlin.

[9] Fritz Henglein. Breaking through then3 barrier: Faster
object type inference. InFOOL4: 4th. Int. Workshop on
Foundations of Object-oriented programming Languages,
January 1997.

[10] Martin Hofmann. A type system for bounded space and
functional in-place update.Nordic Journal of Computing,
7(4):258–289, 2000. An extended abstract has appeared in
Programming Languages and Systems, G. Smolka, ed.,
Springer LNCS, 2000.

[11] Martin Hofmann and Francis Tang. Implementing a program
logic of objects in a higher-order logic theorem prover. In
J. Harrison and M. Aagaard, editors,Theorem Proving in
Higher Order Logics: 13th International Conference,
TPHOLs 2000, volume 1869 ofLNCS, pages 267–282.
Springer-Verlag, 2000.

[12] Peter V. Homeier.Trustworthy Tools for Trustworthy
Programs: A Mechanically Verified Verification Condition
Generator for the Total Correctness of Procedures. PhD
thesis, University of California, Los Angeles, 1995.

[13] Peter V. Homeier and David F. Martin. Trustworthy tools for
trustworthy programs: A verified verification condition
generator. In T. F. Melham and J. Camilleri, editors,
International Workshop on Higher Order Logic Theorem
Proving and its Applications, volume 859 ofLNCS, pages
269–284. Springer-Verlag, 1994.

[14] Bart Jacobs and Erik Poll. A logic for the Java Modeling
Language JML. In H. Hussman, editor,Fundamental
Approaches to Software Engineering (FASE), volume 2029
of LNCS, pages 284–299. Springer-Verlag, 2001.

[15] K. Rustan M. Leino. Recursive object types in a logic of
object-oriented programs.Nordic Journal of Computing,
5(4):330–360, Winter 1998.

8

[16] William W. McCune. OTTER 3.0 reference manual and
guide. Technical Report ANL-94/6, Argonne National
Laboratory, January 1994.

[17] Peter W. O’Hearn and David J. Pym. The logic of bunched
implications.Bulletin of Symbolic Logic, 5(2):215–244, June
2000.

[18] David von Oheimb. Hoare logic for mutual recursion and
local variables. In V. Raman C. Pandu Rangan and
R. Ramanujam, editors,Foundations of Software Technology
and Theoretical Computer Science, volume 1738 ofLNCS,
pages 168–180. Springer-Verlag, 1999.

[19] David von Oheimb.Analyzing Java in Isabelle/HOL:
Formalization, Type Safety and Hoare Logic. PhD thesis,
Technische Universit¨at München, 2001.

[20] Jens Palsberg. Efficient inference of object types.
Information and Computation, 123(2):198–209, 1995.

[21] Jens Palsberg, Mitchell Wand, and Patrick M. O’Keefe. Type
inference with non-structural subtyping.Formal Aspects of
Computing, 9:49–67, 1997.

[22] Arnd Poetzsch-Heffter and Peter M¨uller. A programming
logic for sequential Java. In S. D. Swierstra, editor,
Programming Languages and Systems (ESOP ’99), volume
1576 ofLNCS, pages 162–176. Springer-Verlag, 1999.

[23] Robert Pollack.The Theory of LEGO: A Proof Checker for
the Extended Calculus of Constructions. PhD thesis,
University of Edinburgh, 1994.

[24] Francis Tang and Martin Hofmann. Reducing proof burden
in object-oriented verification. Technical report, University
of Edinburgh, 2001. To appear, see
www.dcs.ed.ac.uk/home/fhlt for an online version.

[25] Francis Tang and Martin Hofmann. Type inference for
objects with base types. Technical report, University of
Edinburgh, 2001. To appear, see
www.dcs.ed.ac.uk/home/fhlt for an online version.

[26] Joachim van den Berg and Bart Jacobs. The loop compiler
for Java and JML. In T. Margaria and W. Yi, editors,Tools
and Algorithms for the Construction and Analysis of
Software (TACAS), volume 2031 ofLNCS, pages 299–312.
Springer-Verlag, 2001.

[27] Christoph Weidenbach et al. System description: SPASS

version 1.0.0. In Harald Ganzinger, editor,Automated
Deduction – CADE-16, 16th International Conference on
Automated Deduction, LNAI 1632, pages 378–382, Trento,
Italy, July 7–10, 1999. Springer-Verlag.

[28] R. Wilhelm, M. Sagiv, and T. Reps. Shape analysis. In9th
International Conference on Compiler Construction, number
1781 in LNCS, pages 1–16. Springer-Verlag, 2000.

APPENDIX

∃ ~X.
^

e,e′

e = e′ ∧
^

i

Li ⊆ Xi

∃ ~X.
^

i

vi ⇒ e0,i = e1,i ∧
^

i

v′i, Li ⊆ e′i ∧ Ψ0

embedding

?

∃ ~X.
^

i

v′i, Li ⊆ e′i ∧ Ψ0

eliminate equality constraints

?

∃ ~X.
^

i

Ti ⊆ e′i ∧ Ψ0

simplification of− /− .−
?

∃ ~X.
^

i

Ti ⊆ Xi ∧ Ψ0

adjoints

?

First-order formulaΨ0

minimal set instantiations

?

Table 5: Schematic representation of reduction algorithm. In
the first step, we chooseε for each vi, v

′
i to transform the gen-

erated VC in to the form suitable our simplification rules. We
first apply the equality elimination rules in Table 10, until they
have all been eliminated. Then we eliminate all− / − . − ex-
pressions using the rules in Table 7. Then we apply the rules in
Table 8 to transform the VC into a form suitable for the rules
in Table 9.

σ(σ′e) ; (σ ◦ σ′)e
(rw-renren)

σ(e0 / x . e1) ; (σe0) / x . (σe1)
(rw-renif)

Table 6: Expression rewriting. These rules allow us to pull re-
namings inside of− /− .− expressions.

9

Writing n for |~x|,

Cons(~x, xj.m()) def= {σn,αj−1〈xj〉mα ⊆ Lxj.m()Mα | α ∈ Jxj.m()K}
∪ {σn,βj−1〈xj〉mβ = Lxj.m()Mβ | β ∈ Jxj.m()K}
∪ {σnj−1〈xj〉m ⊆ Lxj.m()M}

Cons(~x, xj)
def= {wn,α

j−1〈xj〉α ⊆ LxjMα | α ∈ JxjK}
∪ {wn,β

j−1〈xj〉β = LxjMβ | β ∈ JxjK}
∪ {Res(xj) ⊆ LxjM}

Foraobj ≡ [fi = zi
i=1..k , mj = ς(yj)bj j=1..`],

Cons(~x, aobj)
def=

Sk
i=1 Cons(~x, zi)

∪
S`
j=1 Cons(~xyj, bj)

∪ {LziMγ = 〈yj〉fiγ | i = 1..k, j = 1..`, fiγ ∈ [yj]}
∪ {LbjMγ = 〈yj′ 〉mjγ | j, j′ = 1..`, mjγ ∈ [yj]}
∪ {LbjM = 〈yj′ 〉mj | j, j′ = 1..`, mj ∈ [yj]}
∪ {LziMγ = LaobjMfiγ | i = 1..k, fiγ ∈ JaobjK}
∪ {LbjMα ⊆ LaobjMmjα | j = 1..`, mjα ∈ JaobjK}
∪ {LbjMβ = LaobjMmjβ | j = 1..`, mjβ ∈ JaobjK}
∪ {LbjM ⊆ LaobjMmj | j = 1..`, mj ∈ JaobjK}
∪ {Tobj(z1 · · · zk) ⊆ LaobjM}

Foralet ≡ let x=a in b,

Cons(~x, alet)
def= Cons(~x, a)
∪ Cons(~xx, b)
∪ {LaMγ = 〈x〉γ | γ ∈ JaK}
∪ {LbMα ⊆ wn+1,α

n LaletMα | α ∈ JaletK}
∪ {LbMβ = wn+1,β

n LaletMβ | β ∈ JaletK}
∪ {LaM; LbM ⊆ LaletM}}

Foraif ≡ if xj thena0 elsea1,

Cons(~x, aif)
def= {LxjM = Res(xj)}
∪ Cons(~x, a0)
∪ Cons(~x, a1)
∪ {La0Mα / x . La1Mα ⊆ Laif Mα | α ∈ Jaif K}
∪ {La0Mβ / x . La1Mβ = Laif Mβ | β ∈ Jaif K}
∪ {La0M / x . La1M ⊆ Laif M}

Cons(~x, xj.f) def= {wn,fγ
j−1 〈xj〉fγ = LxjMfγ | fγ ∈ JxjK}

∪ {LxjMfα ⊆ Lxj.fMα | α ∈ Jxj.fK}
∪ {LxjMfβ = Lxj.fMβ | β ∈ Jxj.fK}
∪ {Tfsel(xj, f) ⊆ Lxj.fM}

Cons(~x, xj.f :=xk) def= Cons(~x, xj)
∪ {LxjM = Res(xj)}
∪ Cons(~x, xk)
∪ {LxkM = Res(xk)}
∪ {LxjMfγ = LxkMγ | γ ∈ JxkK}
∪ {LxjMα ⊆ Lxj.f :=xkMα | α ∈ Jxj .f :=xkK}
∪ {LxjMβ = Lxj.f :=xkMβ | β ∈ Jxj.f :=xkK
∪ {Tfupd(xj, f, xk) ⊆ Lxj.f :=xkM}}

Table 4: Constraints generating function. Hereγ is implicitly assumed to range over non-empty sequences of field and method names
and ending in a method name,α over non-empty sequences of method names andβ over thoseγ containing at least one field name.

10

Forvt
def= v, x=tt andvf

def= v, x=ff ,

∃ ~X. v, L ⊆ e0 / x . e1 ∧ Φ
∃ ~X. vt, L ⊆ e0 ∧ vf , L ⊆ e1 ∧ Φ

x not in v

(if-elimr)

∃ ~X. v, x=tt , v′, L ⊆ e0 / x . e1 ∧ Φ
∃ ~X. v, x=tt , v′, L ⊆ e0 ∧ Φ

(if-betar1)

∃ ~X. v, x=ff , v′, L ⊆ e0 / x . e1 ∧ Φ
∃ ~X. v, x=ff , v′, L ⊆ e1 ∧ Φ

(if-betar2)

Writing L(L′) to denoteL′′[L′/X] where there is exactly one oc-
currence ofX in L′′,

∃ ~X. v, L(L0 / x . L1) ⊆ e ∧ Φ
∃ ~X. vt, L(L0) ⊆ e ∧ vf , L(L1) ⊆ e ∧ Φ

x not inv

(if-eliml)

∃ ~X. v, x=tt , v′, L(L0 / x . L1) ⊆ e ∧ Φ
∃ ~X. v, x=tt , v′, L(L0) ⊆ e ∧ Φ

(if-betal1)

∃ ~X. v, x=ff , v′, L(L0 / x . L1) ⊆ e ∧ Φ
∃ ~X. v, x=ff , v′, L(L1) ⊆ e ∧ Φ

(if-betal2)

Table 7: Simplification of − / − . − expressions. Here
we, may assume that our verification conditions have form
∃ ~X.

�V
i v
′
i, L ⊆ e′i

�
∧Ψ0 whereΨ0 is first-order formula.

∃ ~X. T ⊆ σX1 ∧ Φ
∃ ~X. (∃σT) ⊆ X1 ∧ Φ

(adj-ren)

∃ ~X. T0 ⊆ X1 ∧ T1 ⊆ X1 ∧ Φ
∃ ~X. (T0 ∨ T1) ⊆ X1 ∧ Φ

(collate)

Table 8: Miscellaneous simplification rules. Here we assume
that our VCs have form ∃ ~X.

�V
i Ti ⊆ ei

�
∧ Ψ0 where Ψ0 is a

first-order formula, and there are no occurrences of− /− .−
subexpressions (except for maybe inΨ0).

∃ ~XX. T ⊆ X ∧ Φ
∃ ~X. Φ[µX.T/X]

X free inT (freeinst)

∃ ~XX. T ⊆ X ∧ Φ
∃ ~X. Φ[T/X]

X not free inT (notfreeinst)

∃ ~XX. Φ
∃ ~X. Φ

X not free inΦ (falseinst)

Table 9: Minimal set instantiations. Here we assume that our
VCs have form∃ ~X.

�V
i Ti ⊆ Xi

�
∧Ψ0 whereΨ0 is a first-order

formula, each X ∈ ~X occurs at most once to the right of a
constraint T ⊆ X , and there are no occurrences of− /− . −
subexpressions (except maybe inΨ0).

∃ ~X. v⇒ e = e′ ∧ Φ
∃ ~X. v⇒ e′ = e ∧ Φ

(eq-sym)

∃ ~X. v⇒ e0 = e1 ∧ Φ
∃ ~X. v⇒ e′0 = e1 ∧ Φ

�
e0 ; e′0

	
(eq-resp)

∃ ~XX. ε⇒ X = e ∧ Φ
∃ ~X. Φ[e/X]

X not free ine (eq-inst)

∃ ~X. ε⇒ X = e ∧ Φ
∃ ~XX ′. ε⇒ X = e[X ′/X] ∧ Φ

X free ine

(eq-idem)

Forπ1, π2 the pullback ofσ, τ ,

∃ ~X. v ⇒ σX1 = τX2 ∧ Φ
∃ ~XZ. v ⇒ X1 = π1Z ∧ v⇒ X2 = π2Z ∧ Φ

(eq-pullback)

Forρ the equaliser ofσ, τ ,

∃ ~X. v ⇒ σX1 = τX1 ∧ Φ
∃ ~XZ. v ⇒ X1 = ρZ ∧ Φ

(eq-equaliser)

∃ ~X. v ⇒ σX1 = τφ ∧ Φ
∃ ~X. v ⇒ X1 = (σ−1 ◦ τ)φ ∧ Φ

σ−1 ◦ τ a renaming

(eq-const)

Forvt
def= v, x=tt andvf

def= v, x=ff ,

∃ ~X. v ⇒ e0 / x . e1 = e ∧ Φ
∃ ~X. vt ⇒ e0 = e ∧ vf ⇒ e1 = e ∧ Φ

x not inv,

(eq-if-elim)

∃ ~X. v, x=tt , v′ ⇒ e0 / x . e1 = e ∧ Φ
∃ ~X. v, x=tt , v′ ⇒ e0 = e ∧ Φ

(eq-beta1)

∃ ~X. v, x=ff , v′ ⇒ e0 / x . e1 = e ∧ Φ
∃ ~X. v, x=ff , v′ ⇒ e1 = e ∧ Φ

(eq-beta2)

∃ ~X. v, x=tt ⇒ X1 = e ∧ Φ
∃ ~X. v⇒ X1 = e / x . X1 ∧ Φ

(eq-if-intro1)

∃ ~X. v, x=ff ⇒ X1 = e ∧ Φ
∃ ~X. v⇒ X1 = X1 / x . e ∧ Φ

(eq-if-intro2)

Table 10: Equality elimination rules.

11

