
F ickle : Dynamic Object Re-classi�cation
?

(Extended Abstract)

Sophia Drossopoulou1, Ferruccio Damiani2,
Mariangiola Dezani-Ciancaglini2, and Paola Giannini3

1 Department of Computing, Imperial College
2 Dipartimento di Informatica, Universit�a di Torino

3 DISTA, Universit�a del Piemonte Orientale

Abstract. Re-classi�cation changes at run-time the class membership of an object

while retaining its identity. We suggest language features for object re-classi�cation,

which could extend an imperative, typed, class-based, object-oriented language.

We present our proposal through the language Fickle.1 The imperative features com-

bined with the requirement for a static and safe type system provided the main

challenges. We develop a type and e�ect system for Fickle and prove its soundness

with respect to the operational semantics. In particular, even though objects may be

re-classi�ed across classes with di�erent members, they will never attempt to access

non-existing members.

1 Introduction

In class-based, object-oriented programming, an object's behaviour is determined by its class.
Case or conditional statements should be avoided when di�erences can be expressed through
di�erent classes. Thus, students paying reduced and employees paying full conference fees
are best described through distinct classes Stdt and Empl with di�erent methods fee(()).

However, this elegant approach does not scale when objects change classi�cation. For
example, how can we represent that mary, who was a Stdt, became an Empl? Usually, class
based programming languages do not provide mechanisms for objects to change their class
membership. Two solutions are possible: Either to replace the original Stdt object by an
Empl object, or to merge the two classes Stdt and Empl into one, e.g. StdtOrEmpl.

Neither solution is satisfactory. The �rst solution needs to trace and inform all references
to mary. The second solution blurs in the same class the di�erences in behaviour that were
elegantly expressed through the class system. In fact, [20] lists the lack of re-classi�cation
primitives as the �rst practical limitation of object oriented programming.

We suggest language features which allow objects to change class membership dynami-
cally, e.g. the object pointed at by variable aWindow belonged to class OpenedWindow but
now belongs to class Iconi�edWindow. We combine these features with a strong type system.

The idea of object re-classi�cation is not new. From a foundational perspective, in [1]
method overriding explains �eld update and delegation in an object-based calculus, while in
[10] method extensions represent class inheritance. From a databases perspective, [2] sug-
gests multiple most speci�c classes, while in [13] objects may accumulate several roles in a

? Partially supported by MURST Co�n '99 TOSCA Project, CNR-GNSAGA, and the EPSRC

(Grant Ref: GR/L 76709.)
1 Fickle is the successor of an earlier proposal, Fickle�99, [8]. Although both Fickle and Fickle�99

address the same requirement for object re-classi�cation, the approaches are very di�erent.

functional setting. From a programming perspective, in [22] classes have \modes" represent-
ing di�erent states, e.g. opened vs. iconi�ed window. Wide classes [21] allow an object to be
temporarily \widened" or \shrunk", i.e. become an object of a subclass or superclass, requir-
ing run-time tests for the presence of �elds. Predicate classes [5, 9] extend multimethods,
suggesting method dispatch depending on predicates on the receiver and argument.

We take a programming perspective, and base our approach on an imperative, class-
based language, where classes are types and subclasses are subtypes2, and where methods
are de�ned inside classes and selected depending on the class of the receiver. We achieve
dynamic re-classi�cation of objects by explicitly changing the class membership of objects.

We describe our approach through the language F ickle. A re-classi�cation operation
changes the class membership of an object while preserving its identity; it maintains all
�elds declared as common to the original and the target class and initializes the extra �elds.
State classes are possible targets of re-classi�cations; in that sense, they represent object's
possible states. Root classes are the superclasses of such state classes and declare all the
members common to them. Only non-state classes may appear as types of parameters or
�elds. F ickle is statically typed, with a type and e�ect system [17, 23], which determines the
re-classi�cation e�ect of an expression on the receiver and on all other objects. The type
system is sound, so that terminating execution of a well-typed expression produces a value
of the expected type, or a null-pointer exception, but does not get stuck.

This paper is organized as follows: In Section 2 we introduce F ickle informally using an
example. In Section 3 we outline F ickle: the syntax, operational semantics, typing rules, and
we state type soundness. In Section 4 we compare our proposal with other approaches. In
Section 5 we describe design alternatives. In Section 6 we draw some conclusions.

A full version of this paper is available at http://www.di.unito.it/~damiani/papers/dor.html.

2 An example

In Figure 1 we de�ne, using a Java-like syntax, a class Stack, with subclasses EmptyStack
and NonEmptyStack. A stack has a capacity (�eld int capacity) that is the maximum number
of integers it can contain and the usual functions characterizing stacks, i.e. isEmpty, pop,
top, and push.

We have introduced two new kinds of classes: state and root classes. The state classes
are the classes that may serve as targets of re-classi�cations. Such classes cannot be used as
types for �elds or parameters; in our example, EmptyStack and NonEmptyStack. The root
classes de�ne the �elds and methods common to their state subclasses; in our example, Stack.
The subclasses of root classes must be state classes. A state class c must have a (possibly
indirect) root superclass c0; objects of class c may be re-classi�ed to any subclass of c0.

Annotations like f g and f Stack g before throws clauses and method bodies are called
e�ects. E�ects list the root classes of all objects that may be re-classi�ed by invocation of
that method.

Methods with the empty e�ect f g, e.g. isEmpty, may not cause any re-classi�cation.
Methods with non-empty e�ects, e.g. pop and push with e�ect f Stack g, may re-classify
objects of a subclass of their e�ect; in our case of Stack.

Such re-classi�cationsmay be caused by re-classi�cation expressions, e.g. this+EmptyStack,
or by further method calls.

2 Even though the object-based paradigm may be more fundamental [1], and though classes should

not be types, and subclasses should not imply subtypes [4], current praxis predominantly uses

languages of the opposite philosophy.

2

class StackException extends Exceptionf
StackException((String str)) f g fsuper((str)); g

g

abstract root class Stack extends Objectf
int capacity; // maximum number of elements

abstract bool isEmpty(()) f g ;

abstract int top(()) f g throws StackException;

abstract void push((int i)) f Stackg throws StackException;

abstract void pop(()) f Stack g throws StackException;

g

state class EmptyStack extends Stackf
EmptyStack((int n)) f g fcapacity:= n;g

bool isEmpty(()) f g freturn true;g
int top(()) f g throws StackException

fthrow new StackException((00StackUnder
ow00));g
void push((int i)) f Stackg

fthis+NonEmptyStack; a:= new int[capacity]; t:= 0; a[0]:= i;g
void pop(()) f g throws StackException

fthrow new StackException((00StackUnder
ow00));g
g

state class NonEmptyStack extends Stackf
int[] a; // array of elements

int t; // index of top element

NonEmptyStack((int n; int i)) f g

fcapacity:=n; a:= new int[capacity]; t:= 0; a[0]:= i;g

bool isEmpty(()) f g freturn false ;g
int top(()) f g freturn a[t];g
void push((int i)) f g throws StackException

ft:= t+ 1;

if ((t == capacity)) throw new StackException((00StackOver
ow00)); else a[t]:= i; g
void pop(()) f Stackg

fif ((t == 0)) this+EmptyStack; else t:= t� 1; g
g

Fig. 1. Program Pst- stacks with re-classi�cations

3

The method body of push in class EmptyStack contains the re-classi�cation expression
this+NonEmptyStack. At the start of the method the receiver is an object of class EmptyStack,
therefore it contains the �eld capacity and does not contain the �elds a and t. After execution
of this+NonEmptyStack the receiver is of class NonEmptyStack, and therefore the �elds a
and t are accessible, while the �eld capacity retains its value. This mechanism allows the
transmission of some information from the object before the re-classi�cation to the object
after the re-classi�cation.

Consider example (1):

Stack s;

1: s:= new EmptyStack(100);
2: s:push(3);
3: s:push(5);

(1)

After line 1. the variable s is bound to an EmptyStack object, after line 2. the object (not
the binding) is re-classi�ed to NonEmptyStack. Therefore, the call of push in line 2. selects
the method from EmptyStack, while the call of push in line 3. selects the method from
NonEmptyStack. With the re-classi�cation we allocate array a and initialize a and t.

Re-classi�cation is transparent to aliasing. For instance, in example (2)

Stack s1; s2;

1: s1:= new NonEmptyStack(100; 3);
2: s2:= s1;
3: s1:pop();
4: s2:isEmpty();

(2)

line 4. returns true. Re-classi�cation removes from the object all �elds that are not de�ned
in its root superclass and adds the remaining �elds of the target class. e.g. after line 3. in
example (2) the object pointed at by s1 does not have the �elds t and a.

Through aliasing, one re-classi�cation might a�ect several variables; in example (2) the
re-classi�cation after line 3. a�ects both s1 and s2. For this reason, we prevent variables
from accessing members declared in a state class, and we do that by forbidding state classes
appearing in �eld or parameter declarations. Therefore, example (3) is illegal:

Stack s;
NonEmptyStack ns; == illegal!

1: ns:= new NonEmptyStack(100; 3);
2: s:= ns;
3: s:pop();
4: ns:t; == error!

(3)

If the declaration of ns were legal, then, after line 3. the object bound to s and ns would be
re-classi�ed to EmptyStack, and the �eld access ns:t in line 4. would raise a �eldNotFound
error. 3

Therefore, members of state classes are only accessible via this either from methods
of the particular state class if there is no previous mutation (e.g. access t in pop of class
NonEmptyStack before the re-classi�cation), or from methods of other state classes after
appropriate re-classi�cations (e.g. access t in push of class NonEmptyStack after the re-
classi�cation).

State classes are used as types when typing the receiver, this. This allows accessing
members declared in a state class, e.g. this:t in the body of push in class NonEmptyStack.
3 An alternative, less satisfactory approach would forbid the assignment on line 2., c.f. Section 5.

4

3 The language F ickle

3.1 Syntax

A F ickle program is a sequence of class de�nitions, consisting of �eld and method de�nitions.
Method bodies are sequences of expressions. We limit methods to have only one parameter
called x. The syntax is similar to that of Java.

Class de�nitions may be preceded by the keyword state, or root. State classes de-
scribe the properties of an object while it satis�es some conditions; when it does not satisfy
these conditions any more, it can be explicitly re-classi�ed to another state class. For ex-
ample, NonEmptyStack describes non-empty stacks; if these become empty, then they are
re-classi�ed to EmptyStack. Root classes abstract over state classes.4 Any subclass of a state
or a root class must be a state class. Objects of a state class c may be re-classi�ed to class
c0, where c0 must be a subclass of the uniquely de�ned root superclass of c. For example,
Stack abstracts over EmptyStack and NonEmptyStack; objects of class EmptyStack may be
re-classi�ed to NonEmptyStack, and vice versa.

Objects of a non-state, non-root class c behave like regular Java objects, i.e. are never
re-classi�ed. However, objects pointed at by a variable x of type c may be re-classi�ed.
Namely, if c had two state subclasses d and d0 and x referred to an object of class d, the
object may be re-classi�ed to d0. Our type system insures that this re-classi�cation will not
cause accesses to �elds or methods that are not de�ned for the object.

Fields, parameters and values returned by methods have declared types which are either
boolean types or non-state classes; we call these types variable types. Thus, such �elds and
parameters may point to objects which do change class, but these changes do not a�ect their
type. Instead, the type of this may be a state class and may change.

Objects are created with the expression new c { c may be any class, also a state class.

Re-classi�cation expressions, this+c, set the class of this to c { c must be a state class.
Method declarations have the shape:

t m ((t1 x)) f c1; :::; cn gf e g

where t is the result type, t1 is the type of the formal parameter x, and e the body. The
e�ect consists of root classes c1,..., cn, with n � 0.

We require root classes to extend only non-root and non-state classes, and state classes
to extend either root classes or state classes. The judgment ` P 3a expresses that program
P satis�es these conditions, as well as the more obvious requirements for acyclic inheritance
and unique de�nitions.

Remark 1. Section 2 allowed more liberal syntax: any number of parameters, abstract classes
and methods, user de�ned constructors, local variables, exceptions, types int and void.

3.2 Operational semantics

We give a structural operational semantics that rewrites pairs of expressions and stores into
pairs of values, exceptions, or errors, and stores - in the context of a given program. Stores
map the unique parameter name x and the receiver this to values and addresses to objects.
Values are booleans or addresses.

We discuss the twomost signi�cant rewrite rules of F ickle : method call and re-classi�cation.

4 Notice that root classes are not necessarily abstract classes and state classes may be superclasses.

Thus, our proposal is orthogonal to the \abstract superclass rule" discussed in [14].

5

For method calls, e0:m(e1), we evaluate the receiver e0, obtaining an address, say �. We
then evaluate the argument, e1. We �nd the appropriate body by looking up m in the class
of the object at address � { we use the function M(P; c;m) that returns the de�nition of
method m in class c (going through the class hierarchy if needed). We then execute the body,
after substituting this with the current object, and assigning to the formal parameter the
value of the actual parameter. After the call, we restore the original receiver and parameter.5

e0; � ;P �; �0

e1; �0 ;P v1; �1
�1(�) = [[:::]]

c

M(P; c;m) = t m((t1 x)) � f e g
�

0 = �1[this7!�][x7!v1]
e; �0 ;

P
v; �00

eo:m(e1); � ;P v; �00[this7!�(this); x7!�(x)]

For re-classi�cation expressions, this+d, we �nd the address of this, which points to
an object of class c. We replace the original object by a new object of class d. We preserve
the �elds belonging to the root superclass of c and initialize the other �elds of d according
to their types. The term R(P; c) denotes the least superclass of c which is not a state
class: If c is a state class, then R(P; c) is its unique root superclass, otherwise R(P; c)= c.
For example, R(Pst;NonEmptyStack) = Stack, and R(Pst; StackException) = StackException.
Moreover Fs(P; c) denotes the set of �elds de�ned in class c, �(�)(f) the value of the �eld f
in the object at address �, and F(P; c; f) the type of �eld f in class c.

�(this) = �

�(�) = [[:::]]
c

Fs(P;R(P; c)) = ff1; :::; frg
8l21; :::; r : vl = �(�)(f l)
Fs(P; d) n ff1; :::; frg = ffr+1; :::; fr+qg

8l2 r + 1; :::; r + q : vl initial for F(P,d, f l)

this+d; � ;
P

�; �[� 7![[f1 : v1; :::; fr+q : vr+q]]
d]

Take for instance program Pst from Figure 1. For a store �1, with �1(s) = �, and �1(�) =
[[capacity : 100; a : f 3g; t : 0]]NonEmptyStack we have s:pop(); �1 ;

Pst
�; �2 where

�2 = �1[� 7![[capacity : 100]]EmptyStack] i.e. we obtain an object of class EmptyStack with
unmodi�ed capacity .

Note that the rule for re-classi�cation uses the types of the �elds to initialize the �elds,
as the object creation does. In a well-typed program we always have R(P; c) = R(P; d)
(and both c and d are state classes). This implies that re-classi�cation depends only on the
target class d, not on the class c of the receiver. Therefore, a compiler could fold the type
information into the code, by generating speci�c re-classi�cation code for each state class.

3.3 Typing

Widening, environments, e�ects It is useful to de�ne some assertions: P ` c 3s means
that c is a state class, P ` c 3r means that c is a root class, P ` c 3nsr means that c is
a non-state, non-root class, P ` c 3c means that c is any class, P ` t 3vt means that t is
a variable type i.e. either bool, or a non-state, non-root-class, P ` t 3t means that t is a

5 We restore the references, but not the contents: thus, after a method call the receiver is the same,

but any side e�ects caused by execution of the method body survive after the call.

6

type, i.e. any class or bool. Finally, P ` t � t0 means that type t0 widens type t, i.e. t is a
subclass of, or identical with, t0. In our example, Pst ` Stack 3r and Pst ` Stack 3vt, and
Pst ` EmptyStack 3s, but Pst 6` EmptyStack 3vt.

Environments, �, map the parameter x to variable types, and the receiver thisto classes.
Lookup, �(id), update, �[id7!t], and well-formedness, P ` � 3, have the usual meaning.

An e�ect, �, is a set f c1; :::; cn g of root classes; it means that any object of a state subclass
of ci may be re-classi�ed to any state subclass of ci. The empty e�ect, f g, guarantees that no
object is re-classi�ed. E�ects are well formed, i.e. P ` f c1; :::; cn g 3, i� c1,...,cn are distinct
root classes. Thus, P ` f c1; :::; cn g 3 implies that ci are not subclasses of each other.

Typing specialities Before discussing the typing rules, we look at some examples.

The type of this may change within a method body. In Example (4) this in method m

root class A f g
state class B extends A f bool j; g
state class C extends A f
bool i;

bool m(())fA gf
this:i := false; == type correct, this is currently a C

this:j := false; == type incorrect, this is currently a C

this+B;

this:i := false; == type incorrect, this is currently a B

this:j := false = � type correct, this is currently a B � = g
g

(4)

has type C before the re-classi�cation, and it has type B afterwards. Changes to the type

of this are caused either by explicit re-classi�cation, as in Example (4), or by potential,
indirect re-classi�cation, as in methods h and k of Example (5).

If in method h, in (5), before aD.f(()) the �eld aD:anA happened to be an alias of the
receiver, this, then this would be re-classi�ed to B. In order to capture such potential
re-classi�cations, each method declares as its e�ect the set of root classes of objects that
may be re-classi�ed through its execution. In our case, f has e�ect fA g. Therefore, after
the call aD.f(()) the type of this is A, i.e. the application of the e�ect fA g to class C.

Thus, typing an expression e, in the context of program P, and environment � involves

three components, namely

P; � ` e : t [] c [] �

where t is the type of the value returned by evaluation of e, the class c is the class of
this after evaluation of e, and � conservatively estimates the re-classi�cation e�ect of the
evaluation of e on objects.

For example, let P4 and P5 be the programs from examples (4), and (5), and environ-
ments, �0, �1, �2, with �0(this)=C, �1(this)=B, and �2(this)=A. At the beginning of the
body of m in (4), we have: P4, �0 ` this:i : bool [] C [] f g; then, the re-classi�cation
is typed as P4, �0 ` this+B : B [] B [] f g; therefore, after the re-classi�cation, we use
environment �1, with P4, �1 ` this:j : bool [] B [] f g. The �rst expression of h in (5) is
typed P5, �0 ` aD:f(()) : bool [] A [] fA g, and therefore the next term, this:m((true)), is
checked in environment �2, where it is type incorrect.

7

root class A f bool g(())fA gf true g g
state class B extends A f g
state class C extends A f

bool g(())fA g f this+B; true g
bool m((bool x))f gf x g
bool h((D aD))fA gf

this:m((true)); == type correct

aD:f(()); == might re-classify this

this:m((true)) = � type error � = g
bool k((D aD))fA gf

this:m((true)); == type correct

this:m((aD:f(()))) = � type error � = g
g

class D f
A anA;

bool f(())fA gf anA:g(()) g
g

(5)

The point from which e�ects modify the type of this is important. In method calls, the
argument may a�ect the receiver. In example (5), in method k the �rst call of the method
m is type correct, but the second is not. Namely, evaluation of the argument, aD:f(()), may
re-classify objects of subclasses of A, and therefore might re-classify this. Thus, the e�ect
of the argument must be taken into account when looking-up the method. Because P5, �0
` this : C [] C [] f g, and P5, �0 ` aD:f(()) : bool [] A [] fA g, we look-up the method m
in class A; none is found, and so this:m((aD:f(()))) is type incorrect in environment �0.

Typing Rules The typing rules are given in Figure 3, where we use look-up functions. In
particular the functions FD(P; c; f),MD(P; c;m) search for �elds and methods only in class
c itself, the functions F(P; c; f), M(P; c;m) go through the class hierarchy.

We only discuss the rules for re-classi�cation and for method call.

The re-classi�cation this+c is type correct if c, the target of the re-classi�cation, is
a state class, and if c and the class of this before the mutation (the class �(this)) are
subclasses of the same root class.

P ` c 3s

R(P; c) = R(P; �(this))

P; � ` this+c : c [] c [] fR(P; c) g

Consider method calls, e0:m((e1)). The evaluation of the argument e1 may modify the class
of the object e0, as shown in example (5). This could happen if a superclass of the original
class of e0 is among the e�ects of e1. (Existence of such a class implies uniqueness, since
e�ects are sets of root classes.) The de�nition of m has to be found in the new class of the
object e0. For this purpose, we de�ne the application of e�ects to classes:

f c1; :::; cn g@Pc =

�
ci if R(P; c) = ci for some i21; :::; n
c otherwise.

For example, f Stack g@Pst
NonEmptyStack = Stack, and f Stack g@Pst

Object = Object.

8

For method call we lookup the de�nition of method m in the class obtained by applying
the e�ect of the argument to the class of the receiver (which in general is not this):

P; � ` e0 : c [] c0 [] �0
P; �[this7!c0] ` e1 : t01 [] c1 [] �1
M(P; �1@Pc;m) = t m((t1 x)) � f ::: g
P ` t01 � t1
P; � ` e0:m((e1)) : t [] �@Pc1 [] � [�0 [�1

Well-formed Programs A program is well formed (i.e. ` P 3) if all its classes are well-
formed (i.e. P ` c 3): Methods may override superclass methods only if they have the same
name, argument, and result type, and their e�ect is a subset of that of the overridden
method. Method bodies must be well formed, return a value appropriate for the method
signature, and their e�ect must be a subset of that in the signature. See Figure 3, where
C(P,c) returns the de�nition of class c in program P.

Soundness Figure 2 introduces agreement notions between programs, stores, and values:

{ P,� ` v � t means that value v agrees with type t in context of program P and store �;
{ P,� `�3 means that store � agrees with environment � and program P.

P; � ` true � bool P; � ` false � bool

P ` t 3c

P; � ` null � t

�(�) = [[:::]]
c P ` c � t

8f 2 Fs(P; c) : P; � ` �(�)(f)� F(P; c; f)

P; � ` �� t

�(�) = [[:::]]
c =) P; � ` �� c; for all addresses �;

P; � ` �(this)� �(this); P; � ` �(x)� �(x)

P; � ` �3

Fig. 2. Agreement between programs, stores, and values

The type system is sound in the sense that a converging well-typed expression returns
nullPntrExc, or a value which agrees with the expression's type; but is never stuck. The
resulting state agrees with the program and the environment (taking the e�ect into account):

Theorem 1 (Type Soundness) For well-formed program P, environment �, expression
e, and type t, such that

P; � ` e : t [] c [] �

if P; � ` �3, and e; � converges then

{ e; � ;
P

v; �0
, P; �0 ` v � t, and P; �[this7!c] ` �

03,

or

{ e; � ;
P

nullPntrExc; �
0
, and P; �[this7!(�@P�(this))] ` �

03.

Proof outline We introduce a notion of agreement between states and e�ects, requiring
receivers to remain the same, and re-classi�cations to be between subclasses of the e�ect:

P; � ` � � �
0 i� � �(this) = �

0(this), and,

� �(�) = [[:::]]
c =) �

0(�) = [[:::]]
c0 , �@Pc = �@Pc

0.

9

With this notion of agreement we prove the following, stronger, theorem:
If P; � ` e : t [] c [] �, and P; � ` �3, and e; � converges, then
� e; � ;

P
v; �0, P; �0 ` v � t, P; � ` � � �

0, P; �[this7!c] ` �
0
3,

or
� e; � ;

P
nullPntrExc; �

0, P; � ` � � �
0, P; �[this7!(�@P�(this))] ` �

03.
The proof is by induction on the derivations of the operational semantics. The full proof can
be found at http://www.di.unito.it/~damiani/papers/dor.html. 2

Remark 2. As far as divergent expressions go, the theorem does not say anything. However,
the operational semantics forces convergence for standard typing errors or access to mem-
bers unde�ned for an object. Therefore, Theorem 1 suÆces to ensure that for a well-typed
expression such errors will not occur.

Remark 3. The weaker guarantee of well-formedness for the resulting store �
0 in the second

case of Theorem 1, is due to the fact that the interruption of execution of e might prevent
setting the type of this to c. For instance, for program P0, state classes d

0, d00, which are not

subclasses of each other, and d their root superclass, �0, �0 and e0 with �0(this) = [[� � �]]d
0

and �0(this) = d0, and e0 = null:f; this+d00, typing produces:
P0; � ` e0 : d00 [] d00 [] f d g;

whereas execution produces:
e0; �0 ;P0 nullPntrExc; �0:

In �0 the receiver this is bound to an object of class d0. So, P0; �[this7!d00] 6̀ �03 . However,
f d g@P0�0(this)= d, and P0 ` d0 v d. Thus, P0; �0[this7!f d g@P�0(this)] ` �03 holds.

4 Related work

Most foundational work is based on functional object-based languages. In [1] method over-
riding models �eld update and delegation. In [10] method extensions represent class inheri-
tance, while [3, 7, 18, 11, 19] enhance the above representation by introducing a limited form
of method subtyping. These calculi deal with questions of width-subtyping over breadth-
subtyping, the use of MyType, method extension and overriding; they were primarily devel-
oped as a means of understanding inheritance and delegation.

Object extension in these calculi can be seen as the promotion of an object of class c to
an object of a subclass of c. In [11, 18, 7, 13, 3], unrestricted subtyping followed by object
expansion might cause messageNotUnderstood errors, and so type soundness is recovered by
imposing certain restrictions on the use of subtyping, with the consequence that an object
cannot be promoted to a superclass and then to the original subclass.

For databases, [2] suggests multiple most speci�c classes, thus in a way allowing multiple
inheritance, while [13] allows objects to accumulate di�erent roles in a functional setting.
They model non-exclusive roles (e.g. female and professor), whereas we model objects chang-
ing mutually exclusive classes (e.g. opened window versus iconi�ed window).

Re�nement types in functional languages distinguish cases through subtypes, see [12].
The main questions in [12] are type inference, and establishing that functions are well de�ned,
that is they cover all possible cases. Side-e�ects are not considered, therefore questions like
aliasing that are central to our development do not arise.

Predicate classes [5, 9], on an imperative setting, suggest multi-method dispatch depend-
ing on predicates on the receiver and arguments. Code is broken down on a per-function
basis, while F ickle follows the mainstream, whereby code is broken down on a per-class ba-
sis. Also, in [5] the term \re-classifcation" denotes changes in attribute values which imply

10

changes in predicates when calculated next. Thus, re-classi�cation in [5, 9] is implicit and
lazy, whereas in F ickle it is explicit and eager. In [5, 9] di�erent methods may dispatch de-
pending on di�erent predicates, e.g. insert depends on priority vs. precedence lists, whereas
print depends on empty vs. non-empty lists. This is not possible in F ickle, unless perhaps,
extended with multiple inheritance. Finally, [5, 9] raise the question of disjointness and
completeness of predicates (unambiguous and complete).

Similarly, for single method dispatch, in [22] classes have \modes" representing di�erent
states, e.g. opened vs. iconi�ed window. Wide classes [21] are the nearest to our approach,
and allow an object to be temporarily \widened" or \shrunk". However they di�er from
F ickle, by dropping the requirement for a strong type system, and requiring run-time tests
for the presence of �elds. (Anyway the aim of wide classes was to have a better memory use
in presence of changes of object structures.)

F ickle is the successor of an earlier proposal, F ickle�99 [8], which addresses the same
requirement. F ickle improves F ickle�99 in at least two respects. Firstly, in F ickle�99 we
needed to prevent objects from mutating while executing a method, and achieved this either
through run-time locks or through an e�ect system. Secondly, in F ickle�99 we had to
distinguish three kinds of methods, two kinds of objects and two kinds of types.

5 Design Alternatives

Our aim was to develop language features supporting re-classi�cation of objects in an im-
perative setting, allowing aliasing. Thus, we �xed the operational semantics very early, but
the design of a safe type system was not straightforward. The main challenges were:

1. The type of this inside method bodies containing re-classi�cations; { c.f. Example (4),
Section 3.3.

2. Re-classi�cation of an aliased object may remove members, which the object needs in
another context{ c.f. Example (3), Section 2.

3. Re-classi�cation of an object while it executes a method which uses members removed
by a re-classi�cation further down the call stack { c.f. Example (5), Section 3.3.

We have considered, and experimented with several ideas:

1. The type of this changes after re-classi�cations; we express that through the second
component of our typing scheme.

2. We considered several solutions, and have chosen (e):

(a) Check the existence of members at run-time, as in [21]; but this is type-unsafe.
(b) An object should have all members for all possible state subclasses of its root super-

class, as in [9]. Although type safe, this does not allow compact representations as
required in [21], and does not express our intention of exclusive cases.

(c) Require all state subclasses of a root class to have exactly the same members, and
di�er in the method bodies only. However, this requirement is too strong, e.g. does
not hold for empty and non-empty stacks.

(d) In F ickle�99, we avoid the aliasing introduced through line 2. in Example (3). Types
are either non-state, non-root classes, or sets of state classes. Subtyping for such sets
of state classes is only the identity. Accessing a member of an expression with type
a set of state classes is only legal if all state classes de�ne this member.

(e) In F ickle, we forbid the use of state classes as types, except for the type of this.
Thus state classes may have di�erent members, but all state subclasses of the same
root class o�er the same interface to all their clients.

11

3.
(a)-(c) With any of the approaches described in 2(a), 2(b) or 2(c), the problem would not

arise; but we have rejected these solutions in 2.
(d) In F ickle�99 we \lock" an object of a state class when it starts executing a method,

and \unlock" when it �nishes. Attempting to re-classify a locked object throws an
exception; e.g. Example (5) could throw such an exception. This is too restrictive,
and has the draw-back that it allows run-time errors.

(e) In F ickle the type system ensures against the problem; the e�ects from any called
methods are applied to the type of this; therefore, after a call which may modify
the receiver, the type of this will be the root superclass, and so, access to state
class members will be type incorrect.

6 Conclusions

F ickle is the outcome of several designs and successive improvements. We are now satis�ed
that the suggested approach is useful and usable. In the process, we also developed an
interesting typing scheme, where typing an expression a�ects the environment in which the
following or enclosing expressions are typed.

We are working on an implementation of F ickle through a Java preprocessor [15]. Type
correct F ickle programs are mapped into equivalent Java programs, where root classes are
represented by wrapper classes, containing a �eld value, which points to an object of one
of its state subclasses. Method calls are forwarded from the wrapper object to its value
�eld, and re-classi�cations are implemented by overwriting the value �eld. Also, we have
several paper examples, e.g. accounts, linked lists, adventure games, and cases delineating
the typing rules [16].

In a production compiler one can avoid the wrapper object and the indirection in the
method dispatch, provided that the maximal size of state subclasses of any given root is
known6: Notably, the constraint that the target and source of re-classi�cation have a common
root superclass allows the standard, eÆcient implementation of method call, where we lookup
through an o�set into the method dispatch table of the receiver. The fact that sources and
targets of re-classi�cations have the same maximal size allows to implement re-classi�cation
through simple in-place overwriting of the source object.

Further work includes �nishing the implementation, the incorporation of F ickle into a full
language, the re�nement of the e�ect system e.g. through data-
ow analysis techniques, the
incorporation of myType, multiple inheritance, the distinction of subclassing from subtyping,
and the modelling of irreversible re-classi�cations (e.g. pupa to butter
y).

Acknowledgements

F ickle has bene�ted from constructive criticism on F ickle�99 from Walt Hill, Viviana Bono,
Luca Cardelli, Andrew Kennedy, Giorgio Ghelli, and anonymous POPL'00 reviewers. Ross
Jarman, and the anonymous FOOL'01 referees gave useful feedback on our current work.

6 Restrictions on possible subclasses can be found in several systems, e.g. in [6].

12

P ` c 3s

R(P; c) = R(P; �(this))

P; � ` this+c : c [] c [] fR(P; c) g

P; � ` e0 : c [] c0 [] �0

P; �[this 7!c0] ` e1 : t0
1
[] c1 [] �1

M(P; �1@Pc;m) = t m((t1 x)) � f ::: g
P ` t0

1
� t1

P; � ` e0:m((e1)) : t [] �@Pc1 [] � [�0 [�1

P ` � 3

P; � ` true : bool [] �(this) [] f g

P; � ` false : bool [] �(this) [] f g

P; � ` x : �(x) [] �(this) [] f g

P; � ` this : �(this) [] �(this) [] f g

P ` � 3

P ` c 3c

P; � ` null : c [] �(this) [] f g

P; � ` new c : c [] �(this) [] f g

P; � ` e : c [] c0 [] �

F(P; c; f) = t

P; � ` e:f : t [] c0 [] �

P; � ` e : t [] c [] �

P; �[this 7!c] ` e0 : t0 [] c0 [] �0

P; � ` e; e0 : t0 [] c0 [] � [�
0

P; � ` x : t [] c [] f g

P; �[this 7!c] ` e : t0 [] c0 [] �0

P ` t0 � t

P; � ` x:=e : t0 [] c0 [] �0

P; � ` e : c0 [] c00 [] �

P; �[this 7!c00] ` e0 : t [] c [] �0

F(P; �0@Pc
0
; f) = t0

P ` t � t0

P; � ` e:f:=e0 : t [] c [] � [�
0

P; � ` e : bool [] c [] �

P; �[this 7!c] ` e1 : t1 [] c1 [] �1

P; �[this 7!c] ` e2 : t2 [] c2 [] �2

P ` ti � t for i 2 1; 2

P; � ` if e then e1 else e2 : t [] c1 tPc2 [] � [�1 [�2

` P 3a

C(P; c) =[root j state]class c extends c0 f:::g
8f : FD(P; c; f) = t0 =) P ` t0 3vt and F(P; c0

; f) = Udf

8m : MD(P; c;m) = t m((t1 x)) � f e g =)

P ` t 3vt

P ` t1 3vt

P ` � 3

P; t1 x; c this ` e : t0 [] c00 [] �0

P ` t0 � t

�
0 � �

R(P; c) = R(P; c00)

M(P; c0
;m) = Udf or (M(P; c0

;m) = t m((t1 x)) �
00 f e0 g and � � �

00)

P ` c 3

8c : C(P; c) 6= Udf =) P ` c 3

` P 3

Fig. 3. Typing rules for expressions and well-formed classes and programs

13

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
2. E. Bertino and G. Guerrini. Objects with Multiple Most Speci�c Classes. In ECOOP'95,

volume 952 of LNCS, pages 102{126. Springer, 1995.
3. V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping Constraints

for Incomplete Objects. In CAAP'97, volume 1214 of LNCS, pages 465{477. Springer,
1997.

4. P. Canning, W. Cook, W. Hill, and W. Oltho�. Interfaces for Strongly Typed Object
Oriented Languages. In OOPSLA'89, pages 457{467. ACM press, 1989.

5. C. Chambers. Predicate Classes. In ECOOP'93, volume 707 of LNCS, pages 268{296.
Springer, 1993.

6. C. Chambers and G. Leavens. Type Checking Modules for Multimethods. ACM Trans-

actions on Programming Languages and Systems, 17(6):805{843, 1995.
7. P. Di Gianantonio, F. Honsell, and L. Liquori. A Lambda Calculus of Objects with

Self-in
icted Extension. In OOPSLA'98, pages 166{178. ACM press, 1998.
8. S. Drossopoulou, M. Dezani-Ciancaglini, F. Damiani, and P. Giannini. Objects Dynam-

ically Changing Class. Technical report, Imperial College, August 1999. Available from
http://www.di.unito.it/�dezani/odcc.html.

9. M. D. Ernst, C. Kaplan, and C. Chambers. Predicate Dispatching: A Uni�ed Theory
of Dispatch. In ECOOP'98, volume 1445 of LNCS, pages 186{211. Springer, 1998.

10. K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and Method
Specialization. In Nordic Journal of Computing 1(1), pages 3{37, 1994.

11. K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with Subtyping. In
FCT'95, volume 965 of LNCS, pages 42{61. Springer, 1995.

12. T. Freeman and F. Pfenning. Re�nement types for ML. In SIGPLAN '91, pages 268{277.
ACM Press, 1991.

13. G. Ghelli and D. Palmerini. Foundations of Extended Objets with
Roles (extended abstract). In FOOL'06, 1999. Available from
http://www.cs.williams.edu/�kim/FOOL/FOOL6.html.

14. W.L. H�ursch. Should Superclasses be Abstract? In ECOOP'94, volume 821 of LNCS,
pages 12{31. Springer, 1994.

15. R. Jarman. Fickle: a Study in Objects, Imperial College, �nal year thesis, August 2000.
16. R. Jarman and S. Drossopoulou. Examples in Fickle. Available from

http://www.di.unito.it/�damiani/papers/dor.html.
17. M. Lucassen and D. K. Gi�ord. Polymorphic e�ect systems. In POPL'88, pages 47{57.

ACM press, 1988.
18. D. R�emy. From Classes to Objects via Subtyping. In ESOP'98, volume 1381 of LNCS,

pages 200{220. Springer, 1995.
19. J. C. Riecke and C. A. Stone. Privacy via Subsumption. In FOOL'98, 1998. Available

from http://www.cs.williams.edu/�kim/FOOL/FOOL5.html.
20. T. Scheer and S. Pringle. Ten Practical Limitations of Object Ori-

entation, November 1998. OOPSLA Poster Session, Available from
http://www.acm.org/sigplan/oopsla/oopsla98/fp/posters/10.htm.

21. M. Serrano. Wide Classes. In ECOOP'99, volume 1628 of LNCS, pages 391{415.
Springer, 1999.

22. A. Tailvasaari. Object Oriented Programming with Modes. Journal of Object Oriented
Programming, pages 27{32, 1992.

23. J.-P. Talpin and P. Jouvelot. Polymorphic Type, Region and E�ect Inference. Journal
of Functional Programming, 2(3):245{271, 1992.

14

