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Abstract sign, type inference for object-oriented languages is con-

siderably less developed and has yet to achieve the same

We present a new type system based on the notion oflegree of practical importance. In this paper, we con-
Split types. In this system, every method is assigned twasider anuntyped object-calculusased on the formulation
types, namely, an update type and a select type. We showresented by Abadi and Cardelli, also known as ¢he
that the system of Split types is strictly more powerful than calculus[AC96].
the system of recursive types and that type inference re- Type inference for the-calculus has already been stud-
mains decidable and feasible. We include a number ofied in the past. In [Pal95], Palsberg presents a method for
interesting examples not typable with recursive types thatinferring recursive object types based on a reduction to the
are typable with Split types. In particular, we demonstrate problem of solving recursive constraints. An(n?) algo-
that the subtyping relation needed to encodeXttmlculus rithm is presented and a proof that the underlying prob-
into the Abadi and Cardelli’'s-calculus holds. We also lem is PTIME-complete outlined. In [PJ97], Palsberg and
present a polynomial-time algorithm that infers Split types Jim extend the type system proposed in [Pal95] with the
and show that it is sound and complete with respect to theinclusion of arestrictedform of Self typeJAC96]. The
type system. We conclude our presentation by relating thenew system is more powerful than the system of recursive
typing power of Split types to the typing power of other sys- types because it relies on a more flexible subtyping rela-
tems, such as, the system of recursive types with varianceion on object types, but at the same time imposes severe
annotations and the system of Self types. restrictions on the way methods can be updated: specifi-

cally, methods returningelf cannot be updated. In spite
of these restrictions, type inference in the new system is
1 Introduction shown to bevp-complete.

Subtyping is a key feature in any type system for ob-
ject calculi, but it does not coexist naturally with recursive
types in the presence of method (and field) updates. Sim-
ple and perfectly sound examples fail to type check as a
result of a poor interaction between the subtyping rules for
recursive types and object types.

1.1 Background and Mativation

Type inference, the process of automatically inferring type
information from untyped or partially typed programs,
plays an important role in the static analysis of computer
programs. Originally devised by Hindley [Hin69] and in- EX<Y+-A<DB
dependently by Milner [Mil78], it has found its way into (Suby) = ,i M(;()A = u(_Y)B
the design of several recent programming languages. Type
inference may or may not be possible, depending on the
language and the typing rules. If it can be carried out,
type inference turns untyped programs into strongly typed
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ones. Modern languages such as Haskell [P3813], The problem arises from thiavariant restriction on the
Java [GJS96], and ML [MTHMZ90] were all designed with component types imposed by (Sub Object). As a conse-
strong typing in mind. quence, although it is clear that a 2D point can “subsume”

While functional languages such as ML and Haskell a 1D point in a context where the latter is expected, the
have successfully incorporated type inference in their de-two rules above prevent the expected relation among those



types. Thatis, ifP, = u(X)[x : int, move: X] is the type

of a 1D point andP, = p(X)[z : int,y : int, move: X]

is the type of a 2D point, using (Syb) and (Sub Object)

it is not derivable that?, < P;. Unfortunately, the in-
variance requirement imposed by (Sub Objecthéses-
saryfor soundness: lifting that restriction turns the system
unsoundli.e. a reduction of a typable term may generate a
run-time errott

ExAMPLE 1.1. GivenP; and P, as defined above, sup-

pose we change the typing rules so tRat< P,. Letp), =

[z = ¢(s)s.movey,y = 0,move= ¢(s)s.y := s.y + 1].

It is easy to check that, has typeP,. Thus, ifp; is an

arbitrary term of (proper) typ®; then the following term

is typable and generates a run-time error,
(ph.move:=p;).x (oops 1)

because the term, can be assigned the tygg, by sub-

sumption. The rest follows directly from the definition of

P, and the rule for typing updates. A run-time error is pro-

duced as a result of attempting to selgdtom p,, which

by assumption is a proper term of type. O

Despite their more restricted subtyping rule, recursive
object types still allow useful types to be derived for terms
that seem to require variant subtyping.

EXAMPLE 1.2. Letp; = [z = 0,move= ¢(s)s.x :
s+ 1] andpy = [z = 0,y = 0,move= ¢(s)s.y :
sy+ 1. If P = p(X)[z : int,move: X] and P,

w(X)[z :int,y : int, move: X] thenp; can be assigned the
type P; andp, can assigned the tyge. Now, consider the

termpo.move:= p;. This term is typable with recursive
types, a®- can be assigned the type,

P = [z :int,y : int, move: Py].

This follows by observing thaP < [z : int, move: P]
Py, where the last equality holds by unfoldify. Conse-
guently, the ternps.move:= p; is typable in this system
even though we cannot prove < P;. O

How large is the set of terms for which “useful” recur-

sive types can be inferred ? In many cases, it is possible td’

find a derivation like that for example 1.2. In other exam-
ples, however, a more powerful system is needed.

ExAMPLE 1.3. Letp, = [move= ¢(s)s] andp) = [z =
¢(s)s.movey,y = 0,move= ¢(s)s.y := s.y + 1] and let

o be the tern{¢ = p}].¢ := po. Notice that inp),, method

x refers (indirectly) to methog via move Using recursive
types, the only common type that can be assignegyto
andp/, for the update to type check [$ (the empty object
type). Contrary to example 1.2, the dependency between

1we refer to as a “run-time error”, an error that is traditionally pre-

andy throughmove does not allow us to assign the type,
[ :int,y : int,move: u(X)[move: X]]

to p,, so that it can be subsumed 10X )[move: X]. As a
result, the most informative type forthat can be inferred
using recursive types g : []]. Animmediate consequence
of this observation is that the tera¢.moveis not typable
with recursive types. O

To overcome these difficulties, Abadi and Cardelli pro-
pose two solutions. The first is the usevafianceannota-
tions to surmount the restrictions imposed by invariant sub-
typing. Using variance annotations, the type of 2D points
can be written a2t = p(X)[x : int,y : int, move" : X]
where the superscripton movesignals that this method is
read-only. With this restriction, 2D points can subsume 1D
points, asP,” < P;" = p(X)[y : int, move" : X] is vali-
dated by the subtyping rule. The price to pay, of course, is
that themovemethod cannot be updated. The second and
more refined solution is the system of Self types, which is
based on a combination of recursive and bounded existen-
tial types. In this system, it is possible to prove subtyp-
ing relations likeP, < P; as a result of the inclusion of
a clever (and sound) update rule. This solution also has a
price: the type inference problem for this system appears to
be at least as complex as in the restricted system of [PJ97].

The system of Split types presented in this paper offers
a new and alternative solution for combining subtyping, re-
cursive types and method updates in a sound and flexible
way. The new system istrictly more powerful than the
system of recursive types and allows a fairly elegant en-
coding of variance annotations. On the other hand, as we
discuss in Section 6, Split types do not validate some of the
subtypings available with Self types (the two systems are
shown incomparable). However, type inference for Split
types remains decidable and feasible.

1.2 Split Types

Split types are object types of the form
(X)[l; : (B*, B:)'€"] where B+ < B: for every
i € 1.3 These types are a variant of the recursive object
types presented in [AC96], obtained by splitting the type
of each method; into two components. Intuitively, the
componenB} — orupdatecomponent— is used to type an
update for/;, whereas the componeBf — or selectcom-
ponent — is used to type a selection far The operational
behavior of objects is not affected by this presentation of
object types. In particular, objects are still formed as a

collection of methods of the forrif; = «(s) b;"<’].

2By the word “feasible” we mean, that can be carried out in polyno-
mial time.

vented using a type system. For example, attempting to select or update a  3This restriction is required for the system to be sound. The reader is

non-existing method from an object.

referred to appendix A for a proof of the subject reduction theorem.



The presence of two type components for each label — A precise comparison of the typing power of

allows a more flexible subtyping relation for object types three systems: the Split types system, the Self
thap theln\{arlantsubtyplng presenteq in [AC96]. The sub- types system and the recursive types system
typing relation is defined by the following rule: with and without variance annotations.
(Sub Object) o Atype system that supports the encoding of functions
E,X<YFRC}<BY EX<YEB;<C; (JCI) (A-abstractions) in terms of objects in a way that the
EF u(X)[ti : (BY, B ] < p(V)[E, - (C;,C;)jej] expected subtyping relations are preserved. As a re-
sult, the encoding proposed in [AC96] can be used
This definition of subtyping guarantees that every pair of without the need to support functions as primitives.

object typesA and A’ not only has a least upper bound
ALl A’, but also a greatest lower bourd1 A’. This, in 1.4 FutureWork
turn, has interesting and appealing consequences.

ExampLE 1.3. (Revisited) Lepy andp, be object terms

as defined in the first part of this example. Define the Split  ® A precise. determination .Of the complexity bognd for
typesSy = p(X)[move: (X, X)] andSs = u(X)[x : the type inference algorithm presented. This algo-

(int,int), y : (int, int), move: (X, X)]. The termsp, and rithm is based on standard techniques for manipulat-
vl can be assig’ned7 the typsis a’mdSQ, respectively. The ing constraint sets such a®sure consistency checks

least upper bound betwedh ands; is: and simplification Polynomial-time algorithms are
' known for all these operations.

So Sy = p(X)[move: (Sp M Sz, X)] e The definition of a systematic method for extracting
a type from the set of constraints computed by the
whereS M Sy = p(X)[z : (int,int), y : (int,int), move: type inference algorithm. Although the inference al-
(So U S2), X)]. By definition, So < So LI S> and Sy < gorithm is equipped with sophisticated simplification
So U Sz. Therefore, the termid = p].¢ := po can be methods that help reduce the size of the constraint set,
assigned the typf : p(X)[move: (Sp M Sz, X)]], which the ability to read a type from the constraint set would
implies that the terna./.moveis now typable. 0 be desirable both to display the output and to reduce
This last example shows that with Split types, it is pos- the space complexity of modular type inference.

sible to find more informative supertypes that are needed
to type terms encountered in practice. Terms as those ip  The Split Types SysterrOb”
Example 1.2 are also typable with Split types with similar
(i.e., equally informative) types. Examples involving en-
codings ofA-terms intog-terms are also typable with Split
types without breaking the expected subtyping relations.

Let s, s’, z, 2’... range over a countably infinite ser of
term variables and, ¢/, ... over a finite set of term con-
stants. The set of terms is defined by the following produc-

EFA <A EFB<B tions:
EFrA->B<A P a,boe,d = ql|s| [l =<(s) b | al|al < c(s)b
Because subtyping between Split types isineariant, but

contravariant in the update components and covariant in As in [AC96], we write[---,£ = b, --] to stand for

g ; [ 0 =¢(8)b, - - -] anda.£ := b to stand fora.f < ¢(s)b
the select components, it is possible the preserve the orlgll ’ ’ ; .
nal subtyping relations after the translation. wheneves ¢ FV(b). We writeb{s} to emphasize that the

variables may occur free irb andb{{c}} for the term that
results from substituting farevery free occurrence ofin

b. The set of free variables of a ternis denoted by¥Vv(a).

] o ) To avoid cluttering the notation in the type system, we
The main contributions of this paper are: will allow our types to be infinite (i.e., denote regular trees)
without using an explicit finite representation. This was, of
course, not possible while presenting the examples in the
introduction; but from now on, the variables B, C, D...

will denote a (possible infinite) regular tree as opposed to
some finite representation of it. We often use superscripted
variables such asl® or B* to denote select and update

4Even though it is incomparable with the Self types system, it is yet YP€S, respgctiyely. In the' absence of these superscripts,
unknown whether type inference for this system is decidable or not. the convention is that the first component of a method type

(Sub—)

1.3 Contributionsof this Paper

e The introduction of a powerful type system for ob-
ject types. Among systems for which type inference
is decidable and feasible, ours is (to the best of our
knowledge) the most powerful, i.e. it types strictly
more terms than any other system in the literafure.




always refers to thepdatepart while the second compo-
nent always refers to theelectpart. The complete Split
Types system is presented in figure 1.

A type environmenis a finite mapping from the set of
term variables/ar to the set of types. LeE, £, ... range
over the set of type environments and defiren(E) =
{s|3A.(s : A) € E} andRan(E) = {A|3s.(s: A) €
E}. If Eis a type environment theB — {s'} = {(s :
A)|(s: A) € Eands # s'}.

A judgemenis a relation between type environments,
terms and types writtenaB - M : Aorask- A< B
(in which case only types are related). |<&tY, ... range
over a set of judgements. As for terms, we wiit¢s}
and S{{c}} to denote a judgement where may occur
free and a judgement where every occurrence i re-
placed by a terne, respectively. For conciseness, we of-
tenwriteFA; < Ay < A3 < ... < A, < A, whenever
FA <AyandkF Ay < As ... andF A,_; < A, are
derivable.

Lemma 2.3. For every pair of Split typest and A’ we
haved < AU A’ and A’ < AU A’ and there exist no
other typeB, different fromA U A’, such thatd < B and
A’ < BandalsoB < ALl A’. Similarly, for every Split
typesA and A’ we haveA1 A’ < AandAn A’ < A’ and
there exist no other typ@, different fromAm A’, such that
C<AandC < A andalsoC < AmA'. O

Proof. Follows directly from definition 2.2. O

3 Subject Reduction

Lemma 3.1 (Substitution). If £,z : C,E' + ${z} and

Etc:CthenE  E'+ S{c}}. O
Proof. Easy induction on derivations. O
Lemma 3.2 (Bound Weakening).If E, z C,E'" +
S{z} andC’ < CthenE,z : C', E' - 3{z}. O

The lemma that follows says that every method does notProof. By induction on derivations. An interesting case is
“advertise” (select component) more structure than whatitwhen3{z} is x : C and thenE,z: C,E’' + x : C'is
actually “has” (update component). This is an immediate the conclusion of the (Val Var) rule. By (Val Var) we have

consequence of how (Val Object) and (Sub Object) are de-E, . : C',E' + x :

fined.

Lemma 2.1(Typings).For every terma, if & - a :
[¢; : (B¥, B)''] then it follows, for every € I, that
B} < B;. O

Proof. By induction on derivations. O

In Ob"", every pair of typesd and A’ not only has a
least upper boundub), as in many other systems, but also
has a greatest lower boungllif). A natural question that

arises is whether the universe of types forms a lattice with
respect to the subtyping relation. In other words, whether

there exist definable object typdsand T such that for
every typeAd, one hasL < AandA < T. The answer is

C’, and by (Val Subsume) and the
hypothesi®”’ < C we can concludé’,z : C',E' + z :
C. O

The reduction relatior~ is defined in [AC96]. We ex-
tend this reduction by adding the rule (Red Const) defined
in the obvious way, i.el- ¢ ~ ¢. Hence, aesultis con-
sidered to be either a constant or an object. A theorem
showing the absence efuck stategan be easily derived
from the subject reduction theorem that follows.

Theorem 3.3 (Subject Reduction).Let ¢ be a closed
term andv a result. Supposé- c~wv. If @ F ¢ : C
theng v : C. O

no: although — in the absence of constant types — we card  Encoding of the A\-calculus

takeT = [ ], there is no object type that can play the role
of L. Consequently, systefnblT includes special types
andT as primitive.

Definition 2.2 (Lubs and Glbs). Let the types A
[6;: (By,Bs)"“" and A" = [¢; : (C¥,C5)'<7] be Split

7

types. Lubs and glbs betweegiy A’, T and_L are definedl
as follows:

1. ITUA=ATUA=T,

22 TNA=A1NA=1,

3. AUA =t : (B}J”C;?,BEI_IC;)'“EI“J],

4. AnNA =4, : (BfUCy, B I‘IC,‘j)kemJ,
lm : (BY, BS )meI—J

m )

ly 2 (C2, O3],

In[AC96], the authors show that itis possible to encode the
untyped\-calculus into the untyped-calculus via a very
simple transformation. They also explain the difficulties
that result when types are added to the calculus. Specifi-
cally, they show that the expected subtyping relations be-
tween arrow types armot preserved due to the invariant
subtyping enforced by their (Sub Object) réle.

We consider the\-calculus with constants. Terms in
this calculus are specified by the usual grammar ::=
qlxz|Mx)b|a(b). We letA, B range over the set of types

STechnically, this is not a proper definition, asandm are defined
recursively. A proper definition can be given by representing types as
term automata and proving that the equations above are indeed satisfied
(see [Pot98]).

6A solution to this problem is outlined with the introduction of an
extended system with variance annotations.



Terms

type(q) = Q

(Val Const) Frq. 0

ErFa:A FALZ:(L,D)]
Etral;:D

(Val Select) (A=t

Eta:A FAL[;:(D,T)]

(Val Update)

(Val Var)

E s:AFb: D

E(zx)=A
Erxz: A

S (B, B;)''])

(A=t : (B, B:)")

Eralj<=c(s)b: A

- [¢. - (B*. B3)*€! . B u < Bs ; )
(Val Objecty oMl (BLBN P bii BE FBISBI (Vi€l) g _ . (e pryery, o, distincy
EF[ti=c(s)bi'""]: A
Subtyping

: < A . FCY < B} +B;<C(C§ cI

(Val Subsume) Efa:d }_/}—A (Sub Object) Ci < B; =7 j=¢0 e lJ
Eta:4 Hle s (B, BY) T < [ - (CF, C5)' 5]

FA<B +B<C
(Sub Refl) FA<A (Sub Trans) FA<C
(Sub Top) FA<T (Sub Bot) <4

Figure 1. Typing Rules for Oob'.

defined byA, B ::= Q| A — B. The transformation that
follows is from [AC96], trivially extended to include con-
stant terms.

Definition 4.1 (Encoding of A-terms). By induction on
the structure oh-terms,

L ldl=q
2. [z] ==,
3. [A(@)b{z}] = [arg = <(s)s.arg,
val = ¢(s)[b{z} [{{z := s.argh}],
4. [a®) ] = ([a].arg :==[b]).val.

For simplicity, we use the same notatipn] for both the
encoding of types and the encoding of terms. Moreover,
if £ is a type environment then we I§tE] = {(z :
[A]D|(z: A) € E}.

O

Definition 4.2 (Encoding of types).By induction on the
structure of types,

1L[R]=@,
2. [A— B] =larg:([A], T), val:(L,[ B])]-

O

Next, we show that the encoding preserves the subtyping
relations by proving that any derivation in thecalculus
with subtyping (systen¥<) can be encoded as a deriva-
tionin Ob'". The following lemma follows directly from
definition 4.2.

Lemma 4.3 (Preservation of Subtyping).Let A and B
be arbitrary types. If- A — B < A’ — B’ is deriv-
ableinF<then+[A — B] <[A’ — B’] is derivable
inOb'". O

Theorem 4.4 (Preservation of Typing). Leta be an arbi-
trary A\-term andA an arbitrary type. fE F a : Ais
derivable inF<then[E] F [a] : [A] is derivable in
Ob'". a

5 Type Inference

The type inference algorithm collects a set of subtyping
constraints, that follow directly from the typing rules in
Figure 1, and then checks that it is satisfiable. The types
occurring in a constraint set are more general than those
defined in section 2. In addition to object types, constant
types, T and L, they may also include free type variables.



Definition 5.1 (Inference Types).An inference typeis 5.1 Soundness and Completeness of I nference
defined by the following productions:
A The following generation lemmas are needed to prove the
o ra=a| L T|[: (ri,00) ] O main theorem of this section. This theorem states that the
type inference algorithm from definition 5.3 is sound and

We use Greek letters towards the beginning of the alpha-
bet such asy, 3, ... to range over a set of type variables,

complete with respect to the typing derivationOmb''.

and Greek letters towards the end of the alphabet such as€mma 5.5 (Generation Lemmas).

o, T,... to range over inference types. fbstitutionis a
mapping from the set of type variables to the set of infer-
ence types. We reserve the letteto range over substitu-
tions.

Definition 5.2 (Constraint Satisfaction). Let C be a con-
straint set over a set of inference types anddete a
substitution. We say that is a solution toC, and write
p | C, if for every constraint < 7in C itis the case that

plo) < p(7). O

The type inference rules are, essentially, the rules of the
systemOb”. They are formulated as rewriting rules for
pairs of the form(J, C), whereJ is a set of judgements of
the formI" > a : 7 andC is a set of subtyping constraints.
Type inference is a accomplished by a sequence of rewrit-
ings guided by the rules in Figure 2.

Definition 5.3 (Inference Algorithm). The inference al-
gorithm is defined by an initialization step followed by an
iteration step. The input to the algorithm is an untyped
terma.

Init. Form the initial pair({T' > a : a}, @), wherea is a
fresh type variable and an environment mapping the
free variables of: to fresh type variables.

Iterate. Let (J,C) be the current pair. 10 is empty,
then stop. Otherwise, select a judgement frband
rewrite it using the appropriate rule from figure 21

Lemma 5.4. The inference algorithm from definition 5.3
always terminates with an empty set of judgements[]

Proof. First observe that the algorithm is well defined: the
only possibility for the rewriting process to get stuck is
when the selected judgementis z : « andz ¢ Dom(T").
This may not happen, however, Bsm(I") = FV(a) by
construction, and an inspection of the rewriting rules it is
easily verified that whenevel” > a’ : 7) € J, one has
FV(a') C Dom(I”). Termination is immediate using the
measure or(J, C) pairs defined in Figure 3.  Defining

1. If EF z: Bis derivable, therf(z) = A whereA is
atype suchthat A < B.

2. If E + at : B is derivable, thenE F a
A is also derivable for some typd such thatt+
A<LI[t: (L,B).

3.IfE F al<g(s)b : A is derivable, then there
exist typesd’ and B such that- A’ < [¢: (B, T)]
and - A’ < A, and the judgement® + a : A’ and
E,s: A"+ b: B are both derivable.

4. FE + [0; = <(s)b;"S'] : Ais derivable, then there
exist a typed’ = [(; : (B*, B$)''] such that for ev-
eryi € I, the judgement&,s: A’ + b, : B} are
derivableandso aré- B < Bfand+ A’ < A. O

We say that a substitutignsatisfies a pai¢J, C), sym-
bolically p = (3,C), if for every judgement' > a : «in
Jwe havep = C andp(T') F a : p(«) is derivable. Let
— be the relation defined in Figure 2, and4et-* be its
reflexive and transitive closure.

Lemma 5.6 (Rewriting is Sound). Let (J,C) and (J',C’)
be pairs such that), C) = (J', C’). Every substitution
that satisfiegJ’, C’) also satisfiegJ, C). O

Lemma 5.7 (Rewriting is Complete). Let (J,C) and
(J',C’) be pairs such thatJ,C) = (J’,C’). Every sub-
stitution p that satisfiegJ, C) also satisfie$d’, C’). O

Theorem 5.8 (Inference is Sound and Complete)For
every terma and every type environmert such that
Dom(T") = FV(a). If {T'>a: a}, o) =* (&,C), then
for every substitutiorp such thatp = C, the judgement
p(T) F a : p(a) is derivable inOb"". Conversely, if
E + a: Ais derivable inOb'', andDom(E) = FV(a),
then {T'>a : a},”) =* (©,C) and there exists
a substitutionp such thatp = C and E = p(T") and
A= p(a). O

5.2 Implementation

|(3,C)| = Xq¢glS], the claim follows by observing that In the current implementation, the inference algorithm
this measure, i.d(J, C)|, strictly decreases after each step works in a bottom-up fashion (with respect to the type
of the rewriting process and it is bound from below by the derivation) by reducing the initial judgement to a set of
value0. O subtyping constraints. This set of subtyping constrains is



(I-Val Var) : I'(z) = A
Qu{l'vz:a},C) = J,Cu{A<a})

(I-Val Select): « fresh
Qu{l>a.l:(},C) = @uU{l'pa:a},CU{a<[l:(L,8)]}H

(I-Val Update): « fresh

(JU{Ts al < ()b : 1}, C) — < JUu{lva:a,I,s:a>b: [}, >

Cuf{a<y,a<[l:(8,T)}

(I-Val Object): 3; and~; fresh

i S|4t iy Vi el i+ iy
(QU{Ts [t = <(s)b: €] s a},C) —> (ét{{r[lzi:([éw(i)ﬁ&])g a{?gg)

Figure 2. Inference Rules.

Tpz:68 = 1
T>al:p = |'ba:al+1
F>al<=g(s)b:al = |'va:al+|Iys:avb:pl+1
|F[>[f1 :C(S) s ie[] : Oé| = Eie[|F,SZ [fz : (ﬂi,’yi) ie[]bbilﬂi|+1

Figure 3. Measure on (J,C) pairs.

closed and checked for consistency by an incremental clo- As we mentioned in section 1.4, plans for future work
sure algorithm that is similar to that described in [Pot98], include the definition of a systematic method for extracting
extended to support Split types. The closure algorithm is a “flow type” from the simplified set of constraints com-
invoked each time a new constraint is added to the set. Theputed by the algorithm. The “flow type” would not neces-
constraint set is stored in the form of a constrajraph sarily be a bona fide Split type. However, it seems possible
where each variable has a unique constructed bound, andand desirable) to envisage a method for computing a tex-
a constrainbasethat stores constraints relating type vari- tual representation of the constraint set by decorating the
ables. The use of variant subtyping over Split types makescomponent types of a Split type with labels representing
it possible to use the aforementioned representation: twothe interdependencies between them.

constraints over the same variable, suclra< a < 71

ando; < a < 7, can always be mergedtofomblo; < g Relationships with other Type Systems
a < 7 M1, asc; Loy andr M 7, are legal Split types.

The closure algorithm iteratively decomposes the con- In [AC96], Abadi and Cardelli define a suite of type sys-
straints into their elementary components reporting a fail- tems for thes-calculus. What follows is a comparison be-
ure if an inconsistency is detected during the process. Attween our system and some of the systems defined in that
the end of the inference process, a series of (polynomialbook.
time) simplification steps are applied to the graph to obtain
a more compact representation. Again, variant subtypingrinite and Recursive Types. We have already shown, at
over Split types permits us to include most of the simplifi- |east informally, that our system is more powerful than the
cations described in [Pot98]. system of recursive types (hence, more powerful than the

At the time of writing we do not have a precise estimate System of finite types too). In fact, it is immediate to give a
on the size of the final constraint graph resulting from type formal proof of this claim, noting:) that recursive typea °
inference. Experience shows that the simplification meth- /2 Abadi and Cardelli can be coded as Split types in which
ods of [Pot98] are just as effective for our system. In Fig- the update and the select components of each method are
ure 4, we give a sample run of the algorithm on a term identical, andi7) that invariant subtyping is a special case
from [AC96] that implements a restorable counter. After Of our variant subtyping for Split types.
minimization, we can identiffBs7 andBs8, and conse-
guentlyBu3 andBu4; allowing us to display the result as Types with Variance Annotations. As an enhancement
in Figure 5. to the system of first-order and recursive types, Abadi and



counter = [cont = O,
get = @(s)s.cont,
inc = @(s)(s.backup <= @(z)z.cont := s.cont).cont := s.cont+1,
backup = @(s)s.cont := 0];
counter : T |
[cont:(int,int), get:(int,int), inc:(Bu3,Bs7), backup:(Bu4,Bs8)] <= T,
[cont:(int,int), get:(int,int), inc:(Bu3,Bs7), backup:(Bu4,Bs8)] <= Bs7,
[cont:(int,int), get:(int,int), inc:(Bu3,Bs7), backup:(Bu4,Bs8)] <= Bs8,
Bu4 <= Bs8, Bu3 <= Bs7

Figure 4. Type of a Restorable Counter.

counter : [cont:(int,int), get:(int,int), inc:(Bu,Bs), backup:(Bu,Bs)] |
[cont:(int,int), get:(int,int), inc:(Bu,Bs), backup:(Bu,Bs)] <= Bs,
Bu <= Bs

Figure 5. Simplified Type of a Restorable Counter.

Cardelli propose a system wherarianceannotations are  the new method body has type The typel (viewed as
used to identify read-only and write-only methods. In this a set of terms) is not inhabited by any term and, conse-
system, it is possible to (soundly) allow subtyping in depth quently, updates to read-only method are not allowed.
over these components. Specifically, read-only methods In accordance to the encoding just outlined, it is not dif-
can be subtyped covariantly while write-only methods can ficult to verify that the following types can be derived for
be subtyped contravariantly. Going back to Example 1.3, the termsp, andp:
the termspy andp), can be given the following types with
variance annotations: Po p(X)[move: (L, X)]
ph o p(X)[z : (int,int), y : (int,int), move: (L, X)]
po : P =p(X)move : X]

Py : P =pu(X)xinty : int, move : X]. As expected, these types validate the desired subtyping re-

lationships, but prevent updates to thevemethod. How-

Now, the subtyping rules for types with variant annotations €ver, using Split types, we can find a more flexible typing

validate the relationshif’,” < P;", and therefore allow  that validates the desired subtyping relationships and still

the following typing:[¢ = p)].¢ := po : [( : Py], thusre-  allows updates to thenovemethod (see Example 1.3 in

covering the structural information that was lost with sim- Section 1.2).

ple recursive types. There is a price to pay, however, as

the variance annotations in the typ@$ and P," disallow Self Types. The relationship between our system and the

updates on thenovemethod. system of Self Types from [AC96] is a subtle one. The
Variance annotations can be modeled naturally with our system of Self Types is built around two main idéasrst,

Split types. We illustrate the idea using finite types, al- objecttypes are defined as a combination of recursive types

though the same reasoning applies to recursive types jusand existential types in such a way that the desirable sub-

as well. The object typ&,v; : Bfef] can be represented typing relationships hold. Second, a special typing rule is

as the Split typé/; : (B%Bg)ig], where for every € I, included for method updates in order to preserve sound-
ness. We illustrate these ideas with an example. In the
e B = B;andB; = T whenv; = ~, system of Self types, a 2D object can be assigned theftype,

e B¥ =1 andB; = B, wheny; = *,
° B;‘ = Bf = B; Whenyi =°,

w(X)I(Y < X))z :int,y : int, move: Y]

There are two important aspects to this type. First, it vali-
With this representation, the typing rules for method selec- dates the subtyping(X)3(Y < X)[z : int, y : int, move:
tion and method update validate the expected effects of the - - o _ _
annotations. Selecting a write-only method returns a term Cha\é\(elgrgfrgggg_g the the systemRfimitive Covariant Self Types
of typeT, which cannot be used in any interESting context. 8Abadi and Cardelli introduce a new binder for Self types, and denote
Similarly, updating a read-only method is only allowed if this type as;(X)[x : int,y : int, move: X].




Y] < w(X)3(Y < X)[z : int;move: Y] because subtyp- D < S;M.Ss. Consequently, since So M Sy < .Sy U Sy

ing over bounded existentials is covariant in the bounds andthen, by transitivity,- D < S; L1 S5 and this immediately
covariant in the bodies. Second, it hides the “actual” type shows that with the assumptien: Sy L Ss it is impos-

of self: the existential quantifier is introduced at the time sible to prove that : D, i.e. it is impossible to prove
of object formation — when the real type of self is known s: Sy Sy s: D.

— and then abstracted away from the type. This abstraction It could of course be argued that there might exist
over the type of self, restricts the way by which methods other types foro that would turn(o.£).move < ¢(s)s
returning self can be updated. The typing rule for method into a typable term in our system. Unfortunately, run-

update is the following, ning the inference algorithm on this term — which we
have proven to be complete — shows that this is not the
(A=<¢(X)[....0: B{X},..]) case. To ease the notation we use the following shorthands:
FEra:A EY<As:YFb: B{Y} Sa(7y,08) = [z : (int,int), y : (int,int), move: (v, )] and
Etal<cs)h:A So(7,8) = [move: (v, 8)]. The result of running the al-

gorithm on the terne is shown in figure 6. The constraint

The intuitive reading of this rule is the following. The ~ < [y : (L,int)] in the typing ofp} results from the de-
current typeA of the terma may be the result of several pendency of the methad on the fieldy. This constraint
subsumption steps; so it only conveys partial knowledge forces any update on the methoabveof p), to provide an
about the structure af. Consequently, when updating the object with a fieldy: this is required for soundness, as the
method? of a, we can only assume that the actual type methodr assumes that a call tnovereturns an object with
of the object (hence of the self variabi¢ is sometype a fieldy. The problem is that the inference algorithm car-
Y < A. Furthermore, if the original type dfdepended ries this constraint along in the typing ofas well, even
on the type of self, we must now prove that the type of the though the type 06 does not mentiom, which therefore
new body depends on the type variableIn other words, may no longer be invoked. Continuing our experiment, we
methods returning self can only be updated with methodsthen have:
?P\;a\l/t e||trt]er_return se_lf oran u&d?(tar? s;alfr. Trrléjs\,/f(.)r_ex?mple, 0.l : [move: (7, 8)] | |

@ leto = [move= (s)s], then the tefr.move:= o s {[move: (+. )] < 3, 7 < [y : (L.int)]. 7 < 5}
not typable with Self types sineeis not self or an updated
self (i.e., it is equal to self but not self itself 1), while the It follows that, to type the updatgo./).move <
termo.move< ¢(s)s is perfectly typable. s(s)s, we need to derive the judgement

This last example shows that our system is not less pow-s : [move: (v, 3)] F s : D for some typeD such
erful than the system of Self types, as both updates are tythat = [move: (v, 8)] < [move: (D, T)], i.e., such
pable with Split types. Unfortunately, however, there also that = D <+. From the last constraint, and from

exist terms that are typable with Self types but not typable ¥ < [y : (L,int)], by transitivity, D < [y : (L,int)]. On
in our system. the other hand, the judgement [move: (v,8)] F s : D

is only derivable iffmove: (v, 3)] < D. In other words,
the typing of the update would require a typesuch that
[move: (v, 8)] < D < [y: (L,int)]. Clearly, no such type
exists and therefore the ter(n./).move < ¢(s)s is not
typable in our system. O

ExXAMPLE 6.1. Consider again the terms from Exam-
ple 1.3. Letpy = [move = ¢(s)s] andpy = [z =
¢(s)s.movey,y = 0,move= ¢(s)s.y := s.y + 1], and
defineo as follows,

o= [l=py.l :=pg The question of whether type inference for Self Types
is decidable, is still open. This problem is believed to

In that example, we have shown that the tesroan be  be at least as complex as type inference for the system
assigned the Split typf : Sp L S2] whereSy LI Sy = of [Pal95], due to the underlying interpretation of Self
p(X)[move : (So M Sz, X)]. Consider then the term  types in terms of bounded existentials.
(0.£).move < (s)s, which is typable with Self types.
Sinceo : [¢ : Sy U S, it follows by (Val Select) and by Acknowledgements
unfolding the type thab.¢ : [move: (So 1 Sa, So L S2)].
To type(o.f).move< ¢(s)s we must use the rule (Val Up-
date). To prove the premises of this rule, we need to show,
thats: So Sy F s : D for a some Split typeD such
that - [move: (S 1 S2, Sy U S2)] < [move: (D, T)]. By
definition of subtyping over Split types, this implies that

The idea of Split Types was inspired by Francois Pottier's
work on type inference for ML. We would like to thank
Jens Palsberg for exposing us to that work, and for his
insightful comments and suggestions. Special thanks to
Craig Chambers, Patric Cousot and Alan Mycroft for dis-
9This term can be given the typd.X)[move: X] in the Self types  Ccussions and feedback at the “Workshop on Types and Ab-
system. stract Interpretation” held in Padova, Italy, on May 17-18




Po - SO(’Ya B) |

pa: Sa(v,8) |
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Figure 6. Inferred Type for [¢ = p},].£ := po.

1999. Also, to the members of the Church Group, in partic- [Mil78]
ular to Assaf J. Kfoury for reading earlier drafts and giving

us feedback. The simplification algorithms used in the in-

ference algorithm were implemented by Marina Baldan as [MTHM90]
part of her Laurea thesis at the Department of Mathematics
of the University of Padova.
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A Proofs

Proof for Theorem 3.3. (Subject Reduction)By induc-
tion on the derivation- ¢ ~ v. The cases (Red Const) and (Red
Object) are immediate, as in both cages v. The remaining
cases are discussed below.

(Red Select) Supposet a.f; ~ v. This must follow fromH+
a~v' = [l =<(s)b;' ' andj € I and fromtb; {{v'}} ~ v.
Assume tha® + a.f; : C. Then, forA = [¢; : (BY, Bf)'€'],
this judgement must have been derived as follows:

(Val Select)

@ghra:A FAL[:(L,D)

@l—a.ijD
(D<)
@'}—a.éjic

Since a ~ v and@ + a : A, by induction hypothesis we
havew - v’ : A. This last judgement must have been derived as
follows:

(Val Object)
st A'Fb{s}:C} FCPrLC o (Viel)

v =[l=q(s)b" €] A
(A < A)
GFu =t =q(s)b'"]: A

for someA’ = [¢; : (CF,C$)*€"]. Sincej € I, froms: A’ +
bi{s}: C¥and@ + o' = [l; = (s)b;"“"] : A" by lemma 3.1
it follows that@ + b;{v'}} : C}. By induction hypothesis,
we havea F v : C}. Sincel- C} < Cj and A’ < A and
alsoFA < [¢; : (L, D)],itfollows that-C} < C; <D < C.
Hence, using (Val Subsume) we hawe- v : C.

(Red Update) Suppose-a.l; < ¢(s)b~> [l; =¢(s)b, £; =
s(s)b; 1713}, Thenta ~» [£; = ¢(s) b; '] andj € 1. As-
sume thato + a.f; < ¢(s)b : C. This judgement must have
been derived as follows:

(Val Update)

@ora:A FAL[:(D,T) s:AFb:D

@ral; =c(s)b: A
(A<O)
Pkal; =s(s)b: C

where A = [¢; : (BY, Bf)'€’]. By induction hypothesisg -
[l =c(s)b: *€'] : A. Then, for some Split typed’ =
[t; : (CF,C5)*€"], we must have:

(Val Object)

s: AFb:CY FCHFLC! (Viel)
o+ [& = C(S) b; iEI] A
(A < A)

GF [l =q(s)bi €] A

Becauses: A + b D and - A’ < A, by lemma 3.2

it follows that s: A’ + b D. Furthermore, since-

A" < A<[t;: (D, T)] we havet D < C} and by (Val Sub-
sume) we derives : A" = b : C}. Hence, using (Val Object)
we haved + [¢; = <(s)b, i = <(s)b; 17173 . A/, and the
desired judgement follows from (Val Subsume) and the fact that
FA'<ALC. |

Proof for Theorem 4.4. (Preservation of Typing)By in-
duction on the derivatiol® - a : A in F<. Let (Constant),
(Variable), (Abstraction), (Application) and (Subsumption) be the
names of the typing rules iB<. The proofs for (Constant) and
(Variable) follow immediately from the definitions.

(Abstraction) SupposeF - A(z)b{z} : A — B is derivable
in F<. Then we haveF,z : A + b{z} : B and, by induction
hypothesis| B,z : A]  [b{z}] : [ B] is derivable inOb"".

The judgements ,

(1) [E] s:[arg: (AL [A],val: ([B],[BD)],=:[A]
Flb{z}]: [B]

(2) [E],s:[arg: ([A],TA]),val: ([B],[B])]
Fs.arg:[A]

are derivable irOb"". Judgement (1) follows from the induction
hypothesis and judgement (2) is easily provable. From (1) and
(2), using lemma 3.1, we have,

[E] s:[arg: ([A],[A]),val: ([B],[B])]
Fo{z}]{z := s.arg}} : [ B]

Since [A(z)b{z}] [arg ¢(s)s.arg,val
s(s)[b{x} ]{z := s.arg}}], then by (Val Object) we have
[E]F [A@)b{z}] : [arg : ([A], [A]D),val : ([B],[B])]-
Consequently, it follows by (Val Subsume) that
[E]F [A(s)b{z}] : [arg: ([A], T),val: (L,[B])]

(Application) Suppose? + a(b) : B is derivable inF <. Then,
itmustbeE F a: A— BandFE + b : A. By induction
hypothesis| E] F [a] : [A— B]and[E] + [b] : [A].
By definition, we havgf A — B] = [arg : ([A], T),val :
(L, [BD]and[a(d)] = ([a].arg :=[b]).val. Since[ E] +
[a]:[arg: ([A], T),val: (L, [B])]and[E]F [b] : [A],
then it follows by (Val Update) thaf E] + [a].arg := [b] :
[arg : ([A], T),val : (L,[B])]. From the last judgment, by
(Val select) we conclude thdtE'] + ([a].arg := [b]).val :
[B].

(Subsumption) Immediate from the induction hypothesis and
from lemma 4.3. O

Proof for Theorem 5.6. (Rewriting is Sound)By a case
analysis on the rewriting step in question.

(I-Val Var)  Let p be a substitution such that= (J,CU{A <
a}). Then clearlyp = (J,C) andp(A) < p(«), and the format
of the rewriting in question implie¥'(z) = A. Theng(') +

a : ¢(a) is derivable by (Val Var) and (Val Subsume), and this
proves the claim.



(I-Val Select) Let p be a substitution such that= (JU {I'> p(I'(z)) = E(x) for everyz € Dom(E). ThenE = p(T") and
a:a},CU{a < [0:(L,08)]}). Thenp(l') - a : p(a) is A = p(«) by construction, and clearly = ({I'>a : a}, @), as
derivable, angb(a) < [¢ : (L, p(B))]. Thenp(T') F a.f : p(B) E  a: Ais derivable by hypothesis. Finally,|= (&, C), by
derives from (Val Select): this proves the claim as it implies that Lemma 5.7, and henge}= C. |
pEQU{l'>a.l:p},C).

(I-Val Update) Let p be a substitution such that= (J U {I'>
a:ols:avb: },CU{a < v,a < [£: (L,B)]}).
Thenp(a) < p(v) andp(a) < [ : (L,p(8))], and the two
judgement(T) F a : p(a) andp(T),s : p(a) F b : p(B) are
derivable. Therp(T") - a. < <(s)b : p(v) derives from (Val
Update) and (Val Subsume), which again proves the claim.

(-val Object) Letp = (JU{l,s: [& : (Bi,v) )b b
Bi},CU{lli = (Bi,vi) '] < a, Bi < vi}) Thenl[t; :
(p(B:), p(1)) '] < aandp(Bi) < p(v:), and the judgements
s : [l : (p(Bi), p(y:)) €] F b; : p(B:) are all derivable.
Thenp(T) F [£; = s(s) b; 7] : p(a) derives from (Val Object)
and (Val Subsume). |

Proof for Theorem 5.6. (Rewriting is Complete) By a
case analysis on the rewriting step in question.

(Val Var) Let p be a substitution such thatl= (JU{T' >z :
a}, C). By definitionp(T") F z : p(«) is derivable. By Lemma
5.5.1(p(I"))(z) = A for a type A such thatd < p(a). Thus
p(J,CU{A < a}) as desired.

(Val Select) Letp be a substitution such that= (JU{I'>a.¢ :

B}, C). By definitionp(T') F a.¢ : p(B) is derivable, and, by
Lemma5.5.2p(T") F a : A is also derivable for a typel such
thatA < [¢: (L, p(8))]. Then defing’ = p U {a — A} where

«a is the fresh variable chosen by the rewriting in question: now,
p = (3, C") by construction.

(Val Update) Let p be a substitution such that= (J U {T" >

a.l < ¢(s)b: ~},C). By definitionp(I") F a.l < <(s)b : p(v)

is derivable. By Lemma 5.5.3(T) + a : A" andp(T),s :
A"+ b : B are both derivable, for two types typ# and B
such thatd’ < [¢ : (B, T)]andA’ < A. Then, defingy’ =
pU{a — A’ 8 — B} wherea andg are the fresh variables
chosen by the rewriting in question. It follows by construction
thatp’ = (J',C").

(Val Object) Let p be a substitution such that= (JU {T" >
[t: = <(s)b; '] : a},C). By definition p(I') + [6; =
s(s)b; 7] : p(a). By Lemma 5.5.4, the judgementgl), s :
[¢; : (BY, Bf) '] - b; : By are all derivable and3} < B;.
Then defing’ = pU{B; — BY,~; — B;} whereg; and~; are
the fresh variables chosen by the rewriting in question. It follows
by construction thap’ = (J',C"). O

Proof for Theorem 5.8. (Inference is Sound and Com-
plete) Take a substitutiop = C. By definition,p = (2, C),
and by Lemma 5.6 (and transitivity) = ({I'>a : o}, @):
hencep(T") - a : p(«) is derivable, as desired. Conversely, take
E + a : A as in the hypothesid; anda as specified by the al-
gorithm, and define a substitutignas follows: p(«) = A, and



