
Depth Subtyping and Type Inference
for Object Calculi

Michele Bugliesi
Dipartimento di Informatica

Università Ca’ Foscari di Venezia
michele@dsi.unive.it

http://www.dsi.unive.it/∼michele

Santiago M. Peric´as-Geertsen
Department of Computer Science

Boston University
santiago@cs.bu.edu

http://www.cs.bu.edu/∼santiago

Abstract

We present a new type system based on the notion of
Split types. In this system, every method is assigned two
types, namely, an update type and a select type. We show
that the system of Split types is strictly more powerful than
the system of recursive types and that type inference re-
mains decidable and feasible. We include a number of
interesting examples not typable with recursive types that
are typable with Split types. In particular, we demonstrate
that the subtyping relation needed to encode theλ-calculus
into the Abadi and Cardelli’sς-calculus holds. We also
present a polynomial-time algorithm that infers Split types
and show that it is sound and complete with respect to the
type system. We conclude our presentation by relating the
typing power of Split types to the typing power of other sys-
tems, such as, the system of recursive types with variance
annotations and the system of Self types.

1 Introduction

1.1 Background and Motivation

Type inference, the process of automatically inferring type
information from untyped or partially typed programs,
plays an important role in the static analysis of computer
programs. Originally devised by Hindley [Hin69] and in-
dependently by Milner [Mil78], it has found its way into
the design of several recent programming languages. Type
inference may or may not be possible, depending on the
language and the typing rules. If it can be carried out,
type inference turns untyped programs into strongly typed
ones. Modern languages such as Haskell [PJHH+93],
Java [GJS96], and ML [MTHM90] were all designed with
strong typing in mind.

While functional languages such as ML and Haskell
have successfully incorporated type inference in their de-

sign, type inference for object-oriented languages is con-
siderably less developed and has yet to achieve the same
degree of practical importance. In this paper, we con-
sider anuntyped object-calculusbased on the formulation
presented by Abadi and Cardelli, also known as theς-
calculus[AC96].

Type inference for theς-calculus has already been stud-
ied in the past. In [Pal95], Palsberg presents a method for
inferring recursive object types based on a reduction to the
problem of solving recursive constraints. AnO(n3) algo-
rithm is presented and a proof that the underlying prob-
lem is PTIME-complete outlined. In [PJ97], Palsberg and
Jim extend the type system proposed in [Pal95] with the
inclusion of arestrictedform of Self types[AC96]. The
new system is more powerful than the system of recursive
types because it relies on a more flexible subtyping rela-
tion on object types, but at the same time imposes severe
restrictions on the way methods can be updated: specifi-
cally, methods returningself cannot be updated. In spite
of these restrictions, type inference in the new system is
shown to beNP-complete.

Subtyping is a key feature in any type system for ob-
ject calculi, but it does not coexist naturally with recursive
types in the presence of method (and field) updates. Sim-
ple and perfectly sound examples fail to type check as a
result of a poor interaction between the subtyping rules for
recursive types and object types.

(Subµ)
E,X ≤ Y ` A ≤ B
E ` µ(X)A ≤ µ(Y)B

(Sub Object)
(J ⊆ I)

E ` [`i : Bii∈I] ≤ [`j : Bjj∈J]

The problem arises from theinvariant restriction on the
component types imposed by (Sub Object). As a conse-
quence, although it is clear that a 2D point can “subsume”
a 1D point in a context where the latter is expected, the
two rules above prevent the expected relation among those

types. That is, ifP1 ≡ µ(X)[x : int,move: X] is the type
of a 1D point andP2 ≡ µ(X)[x : int, y : int,move: X]
is the type of a 2D point, using (Subµ) and (Sub Object)
it is not derivable thatP2 ≤ P1. Unfortunately, the in-
variance requirement imposed by (Sub Object) isneces-
sary for soundness: lifting that restriction turns the system
unsound, i.e. a reduction of a typable term may generate a
run-time error.1

EXAMPLE 1.1. GivenP1 andP2 as defined above, sup-
pose we change the typing rules so thatP2 ≤ P1. Letp′2 =
[x = ς(s)s.move.y, y = 0,move= ς(s)s.y := s.y + 1].
It is easy to check thatp′2 has typeP2. Thus, if p1 is an
arbitrary term of (proper) typeP1 then the following term
is typable and generates a run-time error,

(p′2.move:= p1).x (oops !!)

because the termp′2 can be assigned the typeP1, by sub-
sumption. The rest follows directly from the definition of
P1 and the rule for typing updates. A run-time error is pro-
duced as a result of attempting to selecty from p1, which
by assumption is a proper term of typeP1.

Despite their more restricted subtyping rule, recursive
object types still allow useful types to be derived for terms
that seem to require variant subtyping.

EXAMPLE 1.2. Let p1 = [x = 0,move = ς(s)s.x :=
s.x + 1] andp2 = [x = 0, y = 0,move= ς(s)s.y :=
s.y + 1]. If P1 ≡ µ(X)[x : int,move : X] andP2 ≡
µ(X)[x : int, y : int,move: X] thenp1 can be assigned the
typeP1 andp2 can assigned the typeP2. Now, consider the
termp2.move:= p1. This term is typable with recursive
types, asp2 can be assigned the type,

P ≡ [x : int, y : int,move: P1].

This follows by observing thatP ≤ [x : int,move: P1] =
P1, where the last equality holds by unfoldingP1. Conse-
quently, the termp2.move:= p1 is typable in this system
even though we cannot proveP2 ≤ P1.

How large is the set of terms for which “useful” recur-
sive types can be inferred ? In many cases, it is possible to
find a derivation like that for example 1.2. In other exam-
ples, however, a more powerful system is needed.

EXAMPLE 1.3. Letp0 = [move= ς(s)s] andp′2 = [x =
ς(s)s.move.y, y = 0,move= ς(s)s.y := s.y + 1] and let
o be the term[` = p′2].` := p0. Notice that inp′2, method
x refers (indirectly) to methody via move. Using recursive
types, the only common type that can be assigned top0

andp′2 for the update to type check is[] (the empty object
type). Contrary to example 1.2, the dependency betweenx

1We refer to as a “run-time error”, an error that is traditionally pre-
vented using a type system. For example, attempting to select or update a
non-existing method from an object.

andy throughmove, does not allow us to assign the type,

[x : int, y : int,move: µ(X)[move: X]]

to p′2 so that it can be subsumed toµ(X)[move: X]. As a
result, the most informative type foro that can be inferred
using recursive types is[` : []]. An immediate consequence
of this observation is that the termo.`.moveis not typable
with recursive types.

To overcome these difficulties, Abadi and Cardelli pro-
pose two solutions. The first is the use ofvarianceannota-
tions to surmount the restrictions imposed by invariant sub-
typing. Using variance annotations, the type of 2D points
can be written asP+

2 ≡ µ(X)[x : int, y : int,move+ : X]
where the superscript+ onmovesignals that this method is
read-only. With this restriction, 2D points can subsume 1D
points, asP+

2 ≤ P+
1 ≡ µ(X)[y : int,move+ : X] is vali-

dated by the subtyping rule. The price to pay, of course, is
that themovemethod cannot be updated. The second and
more refined solution is the system of Self types, which is
based on a combination of recursive and bounded existen-
tial types. In this system, it is possible to prove subtyp-
ing relations likeP2 ≤ P1 as a result of the inclusion of
a clever (and sound) update rule. This solution also has a
price: the type inference problem for this system appears to
be at least as complex as in the restricted system of [PJ97].

The system of Split types presented in this paper offers
a new and alternative solution for combining subtyping, re-
cursive types and method updates in a sound and flexible
way. The new system isstrictly more powerful than the
system of recursive types and allows a fairly elegant en-
coding of variance annotations. On the other hand, as we
discuss in Section 6, Split types do not validate some of the
subtypings available with Self types (the two systems are
shown incomparable). However, type inference for Split
types remains decidable and feasible.2

1.2 Split Types

Split types are object types of the form
µ(X)[`i : (Bui , B

s
i)
i∈I] where Bui ≤ Bsi for every

i ∈ I.3 These types are a variant of the recursive object
types presented in [AC96], obtained by splitting the type
of each method̀ i into two components. Intuitively, the
componentBui – orupdatecomponent – is used to type an
update for̀ i, whereas the componentBsi – or selectcom-
ponent – is used to type a selection for`i. The operational
behavior of objects is not affected by this presentation of
object types. In particular, objects are still formed as a
collection of methods of the form[`i = ς(s) bi

i∈I].

2By the word “feasible” we mean, that can be carried out in polyno-
mial time.

3This restriction is required for the system to be sound. The reader is
referred to appendix A for a proof of the subject reduction theorem.

The presence of two type components for each label
allows a more flexible subtyping relation for object types
than the invariant subtyping presented in [AC96]. The sub-
typing relation is defined by the following rule:

(Sub Object)

E,X ≤ Y ` Cuj ≤ Buj E,X ≤ Y ` Bsj ≤ Csj (J ⊆ I)

E ` µ(X)[`i : (Bui , B
s
i)i∈I] ≤ µ(Y)[`j : (Cuj , C

s
j)j∈J]

This definition of subtyping guarantees that every pair of
object typesA andA′ not only has a least upper bound
A t A′, but also a greatest lower boundA u A′. This, in
turn, has interesting and appealing consequences.

EXAMPLE 1.3. (Revisited) Letp0 andp′2 be object terms
as defined in the first part of this example. Define the Split
typesS0 ≡ µ(X)[move : (X,X)] andS2 ≡ µ(X)[x :
(int, int), y : (int, int),move : (X,X)]. The termsp0 and
p′2 can be assigned the typesS0 andS2, respectively. The
least upper bound betweenS0 andS2 is:

S0 t S2 ≡ µ(X)[move: (S0 u S2, X)]

whereS0 u S2 ≡ µ(X)[x : (int, int), y : (int, int),move:
(S0 t S2), X)]. By definition,S0 ≤ S0 t S2 andS2 ≤
S0 t S2. Therefore, the term[` = p′2].` := p0 can be
assigned the type[` : µ(X)[move: (S0 u S2, X)]], which
implies that the termo.`.moveis now typable.

This last example shows that with Split types, it is pos-
sible to find more informative supertypes that are needed
to type terms encountered in practice. Terms as those in
Example 1.2 are also typable with Split types with similar
(i.e., equally informative) types. Examples involving en-
codings ofλ-terms intoς-terms are also typable with Split
types without breaking the expected subtyping relations.

(Sub→)
E ` A′ ≤ A E ` B ≤ B′
E ` A→ B ≤ A′ → B′

Because subtyping between Split types is notinvariant, but
contravariant in the update components and covariant in
the select components, it is possible the preserve the origi-
nal subtyping relations after the translation.

1.3 Contributions of this Paper

The main contributions of this paper are:

• The introduction of a powerful type system for ob-
ject types. Among systems for which type inference
is decidable and feasible, ours is (to the best of our
knowledge) the most powerful, i.e. it types strictly
more terms than any other system in the literature.4

4Even though it is incomparable with the Self types system, it is yet
unknown whether type inference for this system is decidable or not.

– A precise comparison of the typing power of
three systems: the Split types system, the Self
types system and the recursive types system
with and without variance annotations.

• A type system that supports the encoding of functions
(λ-abstractions) in terms of objects in a way that the
expected subtyping relations are preserved. As a re-
sult, the encoding proposed in [AC96] can be used
without the need to support functions as primitives.

1.4 Future Work

• A precise determination of the complexity bound for
the type inference algorithm presented. This algo-
rithm is based on standard techniques for manipulat-
ing constraint sets such asclosure, consistency checks
and simplification. Polynomial-time algorithms are
known for all these operations.

• The definition of a systematic method for extracting
a type from the set of constraints computed by the
type inference algorithm. Although the inference al-
gorithm is equipped with sophisticated simplification
methods that help reduce the size of the constraint set,
the ability to read a type from the constraint set would
be desirable both to display the output and to reduce
the space complexity of modular type inference.

2 The Split Types SystemOb
↓↑

Let s, s′, x, x′... range over a countably infinite setVar of
term variables andq, q′, ... over a finite set of term con-
stants. The set of terms is defined by the following produc-
tions:

a, b, c, d ::= q | s | [`i = ς(s) bi
i∈I] | a.` | a.`⇐ ς(s)b

As in [AC96], we write [· · · , ` = b, · · ·] to stand for
[· · · , ` = ς(s)b, · · ·] anda.` := b to stand fora.`⇐ ς(s)b
whenevers 6∈ FV(b). We writeb{s} to emphasize that the
variables may occur free inb andb{{c}} for the term that
results from substituting forc every free occurrence ofs in
b. The set of free variables of a terma is denoted byFV(a).

To avoid cluttering the notation in the type system, we
will allow our types to be infinite (i.e., denote regular trees)
without using an explicit finite representation. This was, of
course, not possible while presenting the examples in the
introduction; but from now on, the variablesA,B,C,D...
will denote a (possible infinite) regular tree as opposed to
some finite representation of it. We often use superscripted
variables such asAs or Bu to denote select and update
types, respectively. In the absence of these superscripts,
the convention is that the first component of a method type

always refers to theupdatepart while the second compo-
nent always refers to theselectpart. The complete Split
Types system is presented in figure 1.

A type environmentis a finite mapping from the set of
term variablesVar to the set of types. LetE,E′, ... range
over the set of type environments and defineDom(E) =
{s | ∃A.(s : A) ∈ E} andRan(E) = {A | ∃s.(s : A) ∈
E}. If E is a type environment thenE − {s′} = {(s :
A) | (s : A) ∈ E ands 6= s′}.

A judgementis a relation between type environments,
terms and types written asE ` M : A or as ` A ≤ B
(in which case only types are related). Let=,=′, ... range
over a set of judgements. As for terms, we write={s}
and ={{c}} to denote a judgement wheres may occur
free and a judgement where every occurrence ofs is re-
placed by a termc, respectively. For conciseness, we of-
ten write`A1 ≤ A2 ≤ A3 ≤ ... ≤ An−1 ≤ An whenever
` A1 ≤ A2 and ` A2 ≤ A3 ... and ` An−1 ≤ An are
derivable.

The lemma that follows says that every method does not
“advertise” (select component) more structure than what it
actually “has” (update component). This is an immediate
consequence of how (Val Object) and (Sub Object) are de-
fined.

Lemma 2.1 (Typings). For every terma, if ∅ ` a :
[`i : (Bui , B

s
i)i∈I] then it follows, for everyi ∈ I, that

`Bui ≤ Bsi .

Proof. By induction on derivations.

In Ob
↓↑

, every pair of typesA andA′ not only has a
least upper bound (lub), as in many other systems, but also
has a greatest lower bound (glb). A natural question that
arises is whether the universe of types forms a lattice with
respect to the subtyping relation. In other words, whether
there exist definable object types⊥ and> such that for
every typeA, one has⊥ ≤ A andA ≤ >. The answer is
no: although – in the absence of constant types – we can
take> ≡ [], there is no object type that can play the role
of⊥. Consequently, systemOb

↓↑
includes special types⊥

and> as primitive.

Definition 2.2 (Lubs and Glbs). Let the types A ≡
[`i : (Bui , B

s
i)i∈I] andA′ ≡ [`j : (Cuj , C

s
j)j∈J] be Split

types. Lubs and glbs betweenA,A′,> and⊥ are defined5

as follows:

1. ⊥ tA = A,> tA = >,

2. > uA = A,⊥ uA = ⊥,

3. A tA′ = [`k : (Buk u Cuk , Bsk t Csk)k∈I∩J],

4. A uA′ = [`k : (Buk t Cuk , Bsk u Csk)k∈I∩J,
`m : (Bum, B

s
m)m∈I−J,

`n : (Cun , C
s
n)n∈J−I].

Lemma 2.3. For every pair of Split typesA andA′ we
haveA ≤ A t A′ andA′ ≤ A t A′ and there exist no
other typeB, different fromA t A′, such thatA ≤ B and
A′ ≤ B and alsoB ≤ A t A′. Similarly, for every Split
typesA andA′ we haveAuA′ ≤ A andAuA′ ≤ A′ and
there exist no other typeC, different fromAuA′, such that
C ≤ A andC ≤ A′ and alsoC ≤ A uA′.

Proof. Follows directly from definition 2.2.

3 Subject Reduction

Lemma 3.1 (Substitution). If E, x : C,E′ ` ={x} and
E ` c : C thenE,E′ ` ={{c}}.

Proof. Easy induction on derivations.

Lemma 3.2 (Bound Weakening).If E, x : C,E′ `
={x} andC′ ≤ C thenE, x : C′, E′ ` ={x}.

Proof. By induction on derivations. An interesting case is
when={x} is x : C and thenE, x : C,E′ ` x : C is
the conclusion of the (Val Var) rule. By (Val Var) we have
E, x : C′, E′ ` x : C′, and by (Val Subsume) and the
hypothesisC′ ≤ C we can concludeE, x : C′, E′ ` x :
C.

The reduction relation is defined in [AC96]. We ex-
tend this reduction by adding the rule (Red Const) defined
in the obvious way, i.e.̀ q q. Hence, aresult is con-
sidered to be either a constant or an object. A theorem
showing the absence ofstuck statescan be easily derived
from the subject reduction theorem that follows.

Theorem 3.3 (Subject Reduction).Let c be a closed
term andv a result. Supposè c v. If ∅ ` c : C
then∅ ` v : C.

4 Encoding of theλ-calculus

In [AC96], the authors show that it is possible to encode the
untypedλ-calculus into the untypedς-calculus via a very
simple transformation. They also explain the difficulties
that result when types are added to the calculus. Specifi-
cally, they show that the expected subtyping relations be-
tween arrow types arenot preserved due to the invariant
subtyping enforced by their (Sub Object) rule.6

We consider theλ-calculus with constants. Terms in
this calculus are specified by the usual grammara, b ::=
q |x |λ(x)b | a(b). We letA,B range over the set of types

5Technically, this is not a proper definition, ast andu are defined
recursively. A proper definition can be given by representing types as
term automata and proving that the equations above are indeed satisfied
(see [Pot98]).

6A solution to this problem is outlined with the introduction of an
extended system with variance annotations.

Terms

(Val Const)
type(q) = Q

E ` q : Q
(Val Var)

E(x) = A

E ` x : A

(Val Select)
E ` a : A `A ≤ [`j : (⊥,D)]

E ` a.`j : D
(A ≡ [`i : (Bui , B

s
i)i∈I])

(Val Update)
E ` a : A `A ≤ [`j : (D,>)] E, s : A ` b : D

E ` a.`j ⇐ ς(s) b : A
(A ≡ [`i : (Bui , B

s
i)i∈I])

(Val Object)
E, s : [`i : (Bui , B

s
i)i∈I] ` bi : Bui `Bui ≤ Bsi (∀i ∈ I)

E ` [`i = ς(s) bi
i∈I] : A

(A ≡ [`i : (Bui , B
s
i)i∈I], `i distinct)

Subtyping

(Val Subsume)
E ` a : A `A ≤ A′

E ` a : A′
(Sub Object)

`Cuj ≤ Buj `Bsj ≤ Csj (J ⊆ I)

` [`i : (Bui , B
s
i)i∈I] ≤ [`j : (Cuj , C

s
j)j∈J]

(Sub Refl) `A ≤ A (Sub Trans)
`A ≤ B `B ≤ C

`A ≤ C

(Sub Top) `A ≤ > (Sub Bot) `⊥ ≤ A

Figure 1. Typing Rules for Ob
↓↑

.

defined byA,B ::= Q |A → B. The transformation that
follows is from [AC96], trivially extended to include con-
stant terms.

Definition 4.1 (Encoding ofλ-terms). By induction on
the structure ofλ-terms,

1. [[q]] = q,

2. [[x]] = x,

3. [[λ(x)b{x}]] = [arg = ς(s)s.arg,
val = ς(s)[[b{x}]]{{x := s.arg}}],

4. [[a(b)]] = ([[a]].arg := [[b]]).val.

For simplicity, we use the same notation[[]] for both the
encoding of types and the encoding of terms. Moreover,
if E is a type environment then we let[[E]] = {(x :
[[A]]) | (x : A) ∈ E}.

Definition 4.2 (Encoding of types).By induction on the
structure of types,

1. [[Q]] = Q,

2. [[A→ B]] = [arg:([[A]],>), val:(⊥, [[B]])].

Next, we show that the encoding preserves the subtyping
relations by proving that any derivation in theλ-calculus
with subtyping (systemF≤) can be encoded as a deriva-
tion in Ob

↓↑
. The following lemma follows directly from

definition 4.2.

Lemma 4.3 (Preservation of Subtyping).Let A and B
be arbitrary types. If ` A→ B ≤ A′ → B′ is deriv-
able in F≤ then ` [[A→ B]] ≤ [[A′ → B′]] is derivable

in Ob
↓↑

.

Theorem 4.4 (Preservation of Typing).Leta be an arbi-
trary λ-term andA an arbitrary type. IfE ` a : A is
derivable inF≤ then [[E]] ` [[a]] : [[A]] is derivable in

Ob
↓↑

.

5 Type Inference

The type inference algorithm collects a set of subtyping
constraints, that follow directly from the typing rules in
Figure 1, and then checks that it is satisfiable. The types
occurring in a constraint set are more general than those
defined in section 2. In addition to object types, constant
types,> and⊥, they may also include free type variables.

Definition 5.1 (Inference Types).An inference typeis
defined by the following productions:

σ, τ ::= α | ⊥ | > | [`i : (τi, σi) i∈I]

We use Greek letters towards the beginning of the alpha-
bet such asα, β, ... to range over a set of type variables,
and Greek letters towards the end of the alphabet such as
σ, τ, ... to range over inference types. Asubstitutionis a
mapping from the set of type variables to the set of infer-
ence types. We reserve the letterρ to range over substitu-
tions.

Definition 5.2 (Constraint Satisfaction). Let C be a con-
straint set over a set of inference types and letρ be a
substitution. We say thatρ is a solution toC, and write
ρ |= C, if for every constraintσ ≤ τ in C it is the case that
ρ(σ) ≤ ρ(τ).

The type inference rules are, essentially, the rules of the
systemOb

↓↑
. They are formulated as rewriting rules for

pairs of the form(J,C), whereJ is a set of judgements of
the formΓ . a : τ andC is a set of subtyping constraints.
Type inference is a accomplished by a sequence of rewrit-
ings guided by the rules in Figure 2.

Definition 5.3 (Inference Algorithm). The inference al-
gorithm is defined by an initialization step followed by an
iteration step. The input to the algorithm is an untyped
terma.

Init. Form the initial pair({Γ . a : α},∅), whereα is a
fresh type variable andΓ an environment mapping the
free variables ofa to fresh type variables.

Iterate. Let (J,C) be the current pair. IfJ is empty,
then stop. Otherwise, select a judgement fromJ and
rewrite it using the appropriate rule from figure 2.

Lemma 5.4. The inference algorithm from definition 5.3
always terminates with an empty set of judgements.

Proof. First observe that the algorithm is well defined: the
only possibility for the rewriting process to get stuck is
when the selected judgement isΓ.x : α andx 6∈ Dom(Γ).
This may not happen, however, asDom(Γ) = FV(a) by
construction, and an inspection of the rewriting rules it is
easily verified that whenever(Γ′ . a′ : τ) ∈ J, one has
FV(a′) ⊆ Dom(Γ′). Termination is immediate using the
measure on(J,C) pairs defined in Figure 3. Defining
|(J,C)| = Σ=∈J|=|, the claim follows by observing that
this measure, i.e.|(J,C)|, strictly decreases after each step
of the rewriting process and it is bound from below by the
value0.

5.1 Soundness and Completeness of Inference

The following generation lemmas are needed to prove the
main theorem of this section. This theorem states that the
type inference algorithm from definition 5.3 is sound and
complete with respect to the typing derivations inOb

↓↑
.

Lemma 5.5 (Generation Lemmas).

1. IfE ` x : B is derivable, thenE(x) = A whereA is
a type such that̀ A ≤ B.

2. If E ` a.` : B is derivable, thenE ` a :
A is also derivable for some typeA such that `
A ≤ [` : (⊥, B)].

3. If E ` a.`⇐ ς(s) b : A is derivable, then there
exist typesA′ andB such that` A′ ≤ [` : (B,>)]
and `A′ ≤ A, and the judgementsE ` a : A′ and
E, s : A′ ` b : B are both derivable.

4. If E ` [`i = ς(s) bi
i∈I] : A is derivable, then there

exist a typeA′ ≡ [`i : (Bui , B
s
i)i∈I] such that for ev-

ery i ∈ I, the judgementsE, s : A′ ` bi : Bui are
derivable and so arè Bui ≤ Bsi and `A′ ≤ A.

We say that a substitutionρ satisfies a pair(J,C), sym-
bolically ρ |= (J,C), if for every judgementΓ . a : α in
J we haveρ |= C andρ(Γ) ` a : ρ(α) is derivable. Let
=⇒ be the relation defined in Figure 2, and let=⇒∗ be its
reflexive and transitive closure.

Lemma 5.6 (Rewriting is Sound). Let (J,C) and(J′,C′)
be pairs such that(J,C) =⇒ (J′,C′). Every substitutionρ
that satisfies(J′,C′) also satisfies(J,C).

Lemma 5.7 (Rewriting is Complete). Let (J,C) and
(J′,C′) be pairs such that(J,C) =⇒ (J′,C′). Every sub-
stitutionρ that satisfies(J,C) also satisfies(J′,C′).

Theorem 5.8 (Inference is Sound and Complete).For
every terma and every type environmentΓ such that
Dom(Γ) = FV(a). If ({Γ . a : α},∅) =⇒∗ (∅,C), then
for every substitutionρ such thatρ |= C, the judgement
ρ(Γ) ` a : ρ(α) is derivable inOb

↓↑
. Conversely, if

E ` a : A is derivable inOb
↓↑

, andDom(E) = FV(a),
then ({Γ . a : α},∅) =⇒∗ (∅,C) and there exists
a substitutionρ such thatρ |= C and E = ρ(Γ) and
A = ρ(α).

5.2 Implementation

In the current implementation, the inference algorithm
works in a bottom-up fashion (with respect to the type
derivation) by reducing the initial judgement to a set of
subtyping constraints. This set of subtyping constrains is

(I-Val Var) : Γ(x) = A
(J ∪ {Γ . x : α},C) =⇒ (J,C ∪ {A ≤ α})

(I-Val Select): α fresh
(J ∪ {Γ . a.` : β},C) =⇒ (J ∪ {Γ . a : α},C ∪ {α ≤ [` : (⊥, β)]})

(I-Val Update): α fresh

(J ∪ {Γ . a.`⇐ ς(s)b : γ},C) =⇒
�

J ∪ {Γ . a : α,Γ, s : α . b : β},
C ∪ {α ≤ γ, α ≤ [` : (β,>)]}

�

(I-Val Object) : βi andγi fresh

(J ∪ {Γ . [`i = ς(s) bi
i∈I] : α},C) =⇒

�
J ∪ {Γ, s : [`i : (βi, γi)

i∈I] . bi : βi},
C ∪ {[`i : (βi, γi)

i∈I] ≤ α, βi ≤ γi}

�

Figure 2. Inference Rules.

|Γ . x : β| = 1
|Γ . a.` : β| = |Γ . a : α|+ 1

|Γ . a.`⇐ ς(s)b : α| = |Γ . a : α|+ |Γ, s : α . b : β|+ 1
|Γ . [`i = ς(s) bi

i∈I] : α| = Σi∈I |Γ, s : [`i : (βi, γi)
i∈I] . bi : βi|+ 1

Figure 3. Measure on (J,C) pairs.

closed and checked for consistency by an incremental clo-
sure algorithm that is similar to that described in [Pot98],
extended to support Split types. The closure algorithm is
invoked each time a new constraint is added to the set. The
constraint set is stored in the form of a constraintgraph
where each variable has a unique constructed bound, and
a constraintbasethat stores constraints relating type vari-
ables. The use of variant subtyping over Split types makes
it possible to use the aforementioned representation: two
constraints over the same variable, such asσ1 ≤ α ≤ τ1
andσ2 ≤ α ≤ τ2, can always be merged to formσ1tσ2 ≤
α ≤ τ1 u τ2, asσ1 t σ2 andτ1 u τ2 are legal Split types.

The closure algorithm iteratively decomposes the con-
straints into their elementary components reporting a fail-
ure if an inconsistency is detected during the process. At
the end of the inference process, a series of (polynomial
time) simplification steps are applied to the graph to obtain
a more compact representation. Again, variant subtyping
over Split types permits us to include most of the simplifi-
cations described in [Pot98].

At the time of writing we do not have a precise estimate
on the size of the final constraint graph resulting from type
inference. Experience shows that the simplification meth-
ods of [Pot98] are just as effective for our system. In Fig-
ure 4, we give a sample run of the algorithm on a term
from [AC96] that implements a restorable counter. After
minimization, we can identifyBs7 andBs8, and conse-
quentlyBu3 andBu4; allowing us to display the result as
in Figure 5.

As we mentioned in section 1.4, plans for future work
include the definition of a systematic method for extracting
a “flow type” from the simplified set of constraints com-
puted by the algorithm. The “flow type” would not neces-
sarily be a bona fide Split type. However, it seems possible
(and desirable) to envisage a method for computing a tex-
tual representation of the constraint set by decorating the
component types of a Split type with labels representing
the interdependencies between them.

6 Relationships with other Type Systems

In [AC96], Abadi and Cardelli define a suite of type sys-
tems for theς-calculus. What follows is a comparison be-
tween our system and some of the systems defined in that
book.

Finite and Recursive Types. We have already shown, at
least informally, that our system is more powerful than the
system of recursive types (hence, more powerful than the
system of finite types too). In fact, it is immediate to give a
formal proof of this claim, noting(i) that recursive types `a
la Abadi and Cardelli can be coded as Split types in which
the update and the select components of each method are
identical, and(ii) that invariant subtyping is a special case
of our variant subtyping for Split types.

Types with Variance Annotations. As an enhancement
to the system of first-order and recursive types, Abadi and

counter = [cont = 0,
get = @(s)s.cont,
inc = @(s)(s.backup <= @(z)z.cont := s.cont).cont := s.cont+1,
backup = @(s)s.cont := 0];

counter : T |
[cont:(int,int), get:(int,int), inc:(Bu3,Bs7), backup:(Bu4,Bs8)] <= T,
[cont:(int,int), get:(int,int), inc:(Bu3,Bs7), backup:(Bu4,Bs8)] <= Bs7,
[cont:(int,int), get:(int,int), inc:(Bu3,Bs7), backup:(Bu4,Bs8)] <= Bs8,
Bu4 <= Bs8, Bu3 <= Bs7

Figure 4. Type of a Restorable Counter.

counter : [cont:(int,int), get:(int,int), inc:(Bu,Bs), backup:(Bu,Bs)] |
[cont:(int,int), get:(int,int), inc:(Bu,Bs), backup:(Bu,Bs)] <= Bs,
Bu <= Bs

Figure 5. Simplified Type of a Restorable Counter.

Cardelli propose a system wherevarianceannotations are
used to identify read-only and write-only methods. In this
system, it is possible to (soundly) allow subtyping in depth
over these components. Specifically, read-only methods
can be subtyped covariantly while write-only methods can
be subtyped contravariantly. Going back to Example 1.3,
the termsp0 andp′2 can be given the following types with
variance annotations:

p0 : P+
0 ≡ µ(X)[move+ : X]

p′2 : P+
2 ≡ µ(X)[x :, int, y : int,move+ : X].

Now, the subtyping rules for types with variant annotations
validate the relationshipP+

2 ≤ P+
0 , and therefore allow

the following typing:[` = p′2].` := p0 : [` : P0], thus re-
covering the structural information that was lost with sim-
ple recursive types. There is a price to pay, however, as
the variance annotations in the typesP+

0 andP+
2 disallow

updates on themovemethod.
Variance annotations can be modeled naturally with our

Split types. We illustrate the idea using finite types, al-
though the same reasoning applies to recursive types just
as well. The object type[`iνi : Bi∈Ii] can be represented
as the Split type[`i : (Bui , B

s
i)
i∈I], where for everyi ∈ I,

• Bui = Bi andBsi = > whenνi = −,

• Bui = ⊥ andBsi = Bi whenνi = +,

• Bui = Bsi = Bi whenνi = ◦.

With this representation, the typing rules for method selec-
tion and method update validate the expected effects of the
annotations. Selecting a write-only method returns a term
of type>, which cannot be used in any interesting context.
Similarly, updating a read-only method is only allowed if

the new method body has type⊥. The type⊥ (viewed as
a set of terms) is not inhabited by any term and, conse-
quently, updates to read-only method are not allowed.

In accordance to the encoding just outlined, it is not dif-
ficult to verify that the following types can be derived for
the termsp0 andp′2:

p0 : µ(X)[move: (⊥, X)]
p′2 : µ(X)[x : (int, int), y : (int, int),move: (⊥, X)]

As expected, these types validate the desired subtyping re-
lationships, but prevent updates to themovemethod. How-
ever, using Split types, we can find a more flexible typing
that validates the desired subtyping relationships and still
allows updates to themovemethod (see Example 1.3 in
Section 1.2).

Self Types. The relationship between our system and the
system of Self Types from [AC96] is a subtle one. The
system of Self Types is built around two main ideas.7 First,
object types are defined as a combination of recursive types
and existential types in such a way that the desirable sub-
typing relationships hold. Second, a special typing rule is
included for method updates in order to preserve sound-
ness. We illustrate these ideas with an example. In the
system of Self types, a 2D object can be assigned the type,8

µ(X)∃(Y ≤ X)[x : int, y : int,move: Y]

There are two important aspects to this type. First, it vali-
dates the subtypingµ(X)∃(Y ≤ X)[x : int, y : int,move:

7We are referring the the system ofPrimitive Covariant Self Typesin
Chap. 16 of [AC96].

8Abadi and Cardelli introduce a new binder for Self types, and denote
this type asς(X)[x : int, y : int,move: X].

Y] ≤ µ(X)∃(Y ≤ X)[x : int,move: Y] because subtyp-
ing over bounded existentials is covariant in the bounds and
covariant in the bodies. Second, it hides the “actual” type
of self: the existential quantifier is introduced at the time
of object formation – when the real type of self is known
– and then abstracted away from the type. This abstraction
over the type of self, restricts the way by which methods
returning self can be updated. The typing rule for method
update is the following,

(A ≡ ς(X)[..., ` : B{X}, ...])
E ` a : A E, Y ≤ A, s : Y ` b : B{{Y}}

E ` a.`⇐ ς(s)b : A

The intuitive reading of this rule is the following. The
current typeA of the terma may be the result of several
subsumption steps; so it only conveys partial knowledge
about the structure ofa. Consequently, when updating the
method` of a, we can only assume that the actual type
of the object (hence of the self variables) is sometype
Y ≤ A. Furthermore, if the original type of̀ depended
on the type of self, we must now prove that the type of the
new body depends on the type variableY . In other words,
methods returning self can only be updated with methods
that either return self or an updated self. Thus, for example,
if we let o = [move= ς(s)s], then the termo.move:= o is
not typable with Self types sinceo is not self or an updated
self (i.e., it is equal to self but not self itself !), while the
termo.move⇐ ς(s)s is perfectly typable.

This last example shows that our system is not less pow-
erful than the system of Self types, as both updates are ty-
pable with Split types. Unfortunately, however, there also
exist terms that are typable with Self types but not typable
in our system.

EXAMPLE 6.1. Consider again the terms from Exam-
ple 1.3. Letp0 = [move = ς(s)s] and p′2 = [x =
ς(s)s.move.y, y = 0,move= ς(s)s.y := s.y + 1], and
defineo as follows,

o = [` = p′2].` := p0

In that example, we have shown that the termo can be
assigned the Split type[` : S0 t S2] whereS0 t S2 ≡
µ(X)[move : (S0 u S2, X)]. Consider then the term
(o.`).move⇐ ς(s)s, which is typable with Self types.9

Sinceo : [` : S0 t S2], it follows by (Val Select) and by
unfolding the type thato.` : [move: (S0 u S2, S0 t S2)].
To type(o.`).move⇐ ς(s)s we must use the rule (Val Up-
date). To prove the premises of this rule, we need to show
that s : S0 t S2 ` s : D for a some Split typeD such
that ` [move: (S0 u S2, S0 t S2)] ≤ [move: (D,>)]. By
definition of subtyping over Split types, this implies that`

9This term can be given the typeς(X)[move : X] in the Self types
system.

D ≤ S0 u S2. Consequently, sincè S0 u S2 ≤ S0 t S2

then, by transitivity,`D ≤ S0 t S2 and this immediately
shows that with the assumptions : S0 t S2 it is impos-
sible to prove thats : D, i.e. it is impossible to prove
s : S0 t S2 ` s : D.

It could of course be argued that there might exist
other types foro that would turn(o.`).move ⇐ ς(s)s
into a typable term in our system. Unfortunately, run-
ning the inference algorithm on this term – which we
have proven to be complete – shows that this is not the
case. To ease the notation we use the following shorthands:
S2(γ, β) = [x : (int, int), y : (int, int), move: (γ, β)] and
S0(γ, β) = [move: (γ, β)]. The result of running the al-
gorithm on the termo is shown in figure 6. The constraint
γ ≤ [y : (⊥, int)] in the typing ofp′2 results from the de-
pendency of the methodx on the fieldy. This constraint
forces any update on the methodmoveof p′2 to provide an
object with a fieldy: this is required for soundness, as the
methodx assumes that a call tomovereturns an object with
a fieldy. The problem is that the inference algorithm car-
ries this constraint along in the typing ofo as well, even
though the type ofo does not mentionx, which therefore
may no longer be invoked. Continuing our experiment, we
then have:

o.` : [move: (γ, β)] |
{[move: (γ, β)] ≤ β, γ ≤ [y : (⊥, int)], γ ≤ β}

It follows that, to type the update(o.`).move ⇐
ς(s)s, we need to derive the judgement
s : [move: (γ, β)] ` s : D for some typeD such
that ` [move: (γ, β)] ≤ [move: (D,>)], i.e., such
that ` D ≤ γ. From the last constraint, and from
γ ≤ [y : (⊥, int)], by transitivity,D ≤ [y : (⊥, int)]. On
the other hand, the judgements : [move: (γ, β)] ` s : D
is only derivable if[move: (γ, β)] ≤ D. In other words,
the typing of the update would require a typeD such that
[move: (γ, β)] ≤ D ≤ [y : (⊥, int)]. Clearly, no such type
exists and therefore the term(o.`).move⇐ ς(s)s is not
typable in our system.

The question of whether type inference for Self Types
is decidable, is still open. This problem is believed to
be at least as complex as type inference for the system
of [Pal95], due to the underlying interpretation of Self
types in terms of bounded existentials.

Acknowledgements

The idea of Split Types was inspired by Francois Pottier’s
work on type inference for ML. We would like to thank
Jens Palsberg for exposing us to that work, and for his
insightful comments and suggestions. Special thanks to
Craig Chambers, Patric Cousot and Alan Mycroft for dis-
cussions and feedback at the “Workshop on Types and Ab-
stract Interpretation” held in Padova, Italy, on May 17-18

p0 : S0(γ, β) | {S0(γ, β) ≤ β, γ ≤ β}
p′2 : S2(γ, β) | {S2(γ, β) ≤ β, γ ≤ [y : (⊥, int)], γ ≤ β}

[` = p2] : [` : (S2(γ, β), S2(γ, β))] | {S2(γ, β) ≤ β, γ ≤ [y : (⊥, int)], γ ≤ β}
o : [` : (S0(γ, β), S0(γ, β))] | {S0(γ, β) ≤ β, γ ≤ [y : (⊥, int)], γ ≤ β}

Figure 6. Inferred Type for [` = p′2].` := p0.

1999. Also, to the members of the Church Group, in partic-
ular to Assaf J. Kfoury for reading earlier drafts and giving
us feedback. The simplification algorithms used in the in-
ference algorithm were implemented by Marina Baldan as
part of her Laurea thesis at the Department of Mathematics
of the University of Padova.

References

[AC93] R. Amadio and L. Cardelli. Subtyping recursive
types. ACM Transactions on Programming Lan-
guages and Systems, 15(4):575–631, 1993.

[AC96] M. Abadi and L. Cardelli. A Theory of Objects.
Springer-Verlag, 1996.

[AW93] A. S. Aiken and E. L. Wimmers. Type inclusion
constraints and type inference. InFPCA ’93, Conf.
Funct. Program. Lang. Comput. Arch., pp. 31–41.
ACM, 1993.

[BCM+93] K. B. Bruce, J. Crabtree, T. P. Murtagh, R. van
Gent, A. Dimock, and R. Muller. Safe and decid-
able type checking in an object-oriented language.
In Proceedings OOPSLA ’93, ACM SIGPLAN No-
tices, pp. 29–46, oct 1993. Published as Proceedings
OOPSLA ’93, ACM SIGPLAN Notices, volume 28,
number 10.

[CC91] F. Cardone and M. Coppo. Type inference with re-
cursive types: Syntax and semantics.Inf. & Com-
put., 92:48–80, 1991.

[DC99] D. Duggan and A. Compagnoni. Subtyping for ob-
ject type constructors. InFOOL 6. Foundations of
Object-Oriented Languages, 1999.

[EST95a] J. Eifrig, S. Smith, and V. Trifonov. Sound poly-
morphic type inference for objects. InProceedings
OOPSLA ’95, ACM SIGPLAN Notices, pp. 169–
184, 1995.

[EST95b] J. Eifrig, S. Smith, and V. Trifonov. Type inference
for recursively constrained types and its application
to OOP. InProc. 1995 Mathematical Foundations
of Programming Semantics Conf.Elsevier, 1995.

[GJS96] J. Gosling, B. Joy, and G. Steele.The Java Lan-
guage Specification. Addison Wesley, 1996.

[Hin69] J. R. Hindley. The principal type-scheme of an ob-
ject in combinatory logic.Transactions American
Math. Society, 146:29–60, 1969.

[McA96] D. McAllester. Inferring recursive data types. Un-
published, 1996.

[Mil78] R. Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sci-
ences, 17:348–375, 1978.

[MTHM90] R. Milner, M. Tofte, R. Harper, and D. B. Mac-
Queen. The Definition of Standard ML (Revised).
MIT Press, 1990.

[Pal95] J. Palsberg. Efficient inference of object types.Inf.
& Comput., 123:198–209, 1995.

[PJ97] J. Palsberg and T. Jim. Type inference with simple
selftypes is np-complete.Nordic Journal of Com-
puting, 1997.

[PJHH+93] S. L. Peyton Jones, C. Hall, K. Hammond, W. Par-
tain, and P. Wadler. The Glasgow Haskell compiler:
A technical overview. InProc. UK Joint Framework
for Information Technology (JFIT) Technical Conf.,
1993.

[Pot98] F. Pottier.Type Inference in the Presence of Subtyp-
ing: from Theory to Practice. PhD thesis, Universit´e
Paris VII, 1998.

[RV98] D. Rémy and J. Vouillon. Objective ml: An effective
object-oriented extension to ml.Theory and Prac-
tice of Object Systems, 1998.

[TS96] V. Trifonov and S. Smith. Subtyping constrained
types. InProc. 3rd Int’l Static Analysis Symp., pp.
349–365, 1996.

[TW93] J. Tiuryn and M. Wand. Type reconstruction with
recursive types and atomic subtyping. In M.-C.
Gaudel and J.-P. Jouannaud, eds.,TAPSOFT’93:
Theory and Practice of Software Development,
Proc. 4th Intern. Joint Conf. CAAP/FASE, vol. 668
of LNCS, pp. 686–701. Springer-Verlag, 1993.

A Proofs

Proof for Theorem 3.3. (Subject Reduction)By induc-
tion on the derivatioǹ c v. The cases (Red Const) and (Red
Object) are immediate, as in both casesc ≡ v. The remaining
cases are discussed below.

(Red Select) Suppose` a.`j v. This must follow from`
a v′ ≡ [`i = ς(s) bi

i∈I] andj ∈ I and from`bj{{v′}} v.
Assume that? ` a.`j : C. Then, forA ≡ [`i : (Bui , B

s
i)i∈I],

this judgement must have been derived as follows:

(Val Select)
? ` a : A `A ≤ [`j : (⊥,D)]

? ` a.`j : D
····

(D ≤ C)

? ` a.`j : C

Since ` a v′ and? ` a : A, by induction hypothesis we
have? ` v′ : A. This last judgement must have been derived as
follows:

(Val Object)
s : A′ ` bi{s} : Cui `Cui ≤ Csi (∀i ∈ I)

? ` v′ ≡ [`i = ς(s) bi
i∈I] : A′

····
(A′ ≤ A)

? ` v′ ≡ [`i = ς(s) bi
i∈I] : A

for someA′ ≡ [`i : (Cui , C
s
i)i∈I]. Sincej ∈ I , from s : A′ `

bj{s} : Cuj and? ` v′ ≡ [`i = ς(s) bi
i∈I] : A′ by lemma 3.1

it follows that? ` bj{{v′}} : Cuj . By induction hypothesis,
we have? ` v : Cuj . Since ` Cuj ≤ Csj and ` A′ ≤ A and
also `A ≤ [`j : (⊥,D)], it follows that `Cuj ≤ Csj ≤ D ≤ C.
Hence, using (Val Subsume) we have? ` v : C.

(Red Update) Supposè a.`j ⇐ ς(s) b [`j = ς(s) b, `i =
ς(s) bi

i∈I−{j}]. Then `a [`i = ς(s) bi
i∈I] andj ∈ I . As-

sume that? ` a.`j ⇐ ς(s) b : C. This judgement must have
been derived as follows:

(Val Update)
? ` a : A `A ≤ [`j : (D,>)] s : A ` b : D

? ` a.`j ⇐ ς(s) b : A
····

(A ≤ C)

? ` a.`j ⇐ ς(s) b : C

whereA ≡ [`i : (Bui , B
s
i)i∈I]. By induction hypothesis,? `

[`i = ς(s) bi
i∈I] : A. Then, for some Split typeA′ ≡

[`i : (Cui , C
s
i)i∈I], we must have:

(Val Object)
s : A′ ` bi : Cui `Cui ≤ Csi (∀i ∈ I)

? ` [`i = ς(s) bi
i∈I] : A′

····
(A′ ≤ A)

? ` [li = ς(s) bi
i∈I] : A

Becauses : A ` b : D and ` A′ ≤ A, by lemma 3.2
it follows that s : A′ ` b : D. Furthermore, sincè
A′ ≤ A ≤ [`j : (D,>)] we have` D ≤ Cuj and by (Val Sub-
sume) we derives : A′ ` b : Cuj . Hence, using (Val Object)
we have? ` [`j = ς(s) b, `i = ς(s) bi

i∈I−{j}] : A′, and the
desired judgement follows from (Val Subsume) and the fact that
`A′ ≤ A ≤ C.

Proof for Theorem 4.4. (Preservation of Typing)By in-
duction on the derivationE ` a : A in F≤. Let (Constant),
(Variable), (Abstraction), (Application) and (Subsumption) be the
names of the typing rules inF≤. The proofs for (Constant) and
(Variable) follow immediately from the definitions.

(Abstraction) SupposeE ` λ(x)b{x} : A→ B is derivable
in F≤. Then we haveE, x : A ` b{x} : B and, by induction

hypothesis,[[E,x : A]] ` [[b{x}]] : [[B]] is derivable inOb
↓↑

.
The judgements ,

(1) [[E]], s : [arg : ([[A]], [[A]]), val : ([[B]], [[B]])], x : [[A]]
` [[b{x}]] : [[B]]

(2) [[E]], s : [arg : ([[A]], [[A]]), val : ([[B]], [[B]])]
` s.arg : [[A]]

are derivable inOb
↓↑

. Judgement (1) follows from the induction
hypothesis and judgement (2) is easily provable. From (1) and
(2), using lemma 3.1, we have,

[[E]], s : [arg : ([[A]], [[A]]), val : ([[B]], [[B]])]
` [[b{x}]]{{x := s.arg}} : [[B]]

Since [[λ(x)b{x}]] = [arg = ς(s)s.arg, val =
ς(s)[[b{x}]]{{x := s.arg}}], then by (Val Object) we have
[[E]] ` [[λ(x)b{x}]] : [arg : ([[A]], [[A]]), val : ([[B]], [[B]])].
Consequently, it follows by (Val Subsume) that
[[E]] ` [[λ(s)b{x}]] : [arg : ([[A]],>), val : (⊥, [[B]])].

(Application) SupposeE ` a(b) : B is derivable inF≤. Then,
it must beE ` a : A→ B andE ` b : A. By induction
hypothesis,[[E]] ` [[a]] : [[A→ B]] and [[E]] ` [[b]] : [[A]].
By definition, we have[[A → B]] = [arg : ([[A]],>), val :
(⊥, [[B]])] and[[a(b)]] = ([[a]].arg := [[b]]).val. Since[[E]] `
[[a]] : [arg : ([[A]],>), val : (⊥, [[B]])] and[[E]] ` [[b]] : [[A]],
then it follows by (Val Update) that[[E]] ` [[a]].arg := [[b]] :
[arg : ([[A]],>), val : (⊥, [[B]])]. From the last judgment, by
(Val select) we conclude that[[E]] ` ([[a]].arg := [[b]]).val :
[[B]].

(Subsumption) Immediate from the induction hypothesis and
from lemma 4.3.

Proof for Theorem 5.6. (Rewriting is Sound)By a case
analysis on the rewriting step in question.

(I-Val Var) Let ρ be a substitution such thatρ |= (J,C∪{A ≤
α}). Then clearlyρ |= (J,C) andρ(A) ≤ ρ(α), and the format
of the rewriting in question impliesΓ(x) = A. Thenφ(Γ) `
a : φ(α) is derivable by (Val Var) and (Val Subsume), and this
proves the claim.

(I-Val Select) Let ρ be a substitution such thatρ |= (J ∪ {Γ .
a : α},C ∪ {α ≤ [` : (⊥, β)]}). Thenρ(Γ) ` a : ρ(α) is
derivable, andρ(α) ≤ [` : (⊥, ρ(β))]. Thenρ(Γ) ` a.` : ρ(β)
derives from (Val Select): this proves the claim as it implies that
ρ |= (J ∪ {Γ . a.` : β},C).

(I-Val Update) Let ρ be a substitution such thatρ |= (J∪ {Γ .
a : α,Γ, s : α . b : β},C ∪ {α ≤ γ, α ≤ [` : (⊥, β)]}).
Thenρ(α) ≤ ρ(γ) andρ(α) ≤ [` : (⊥, ρ(β))], and the two
judgementsρ(Γ) ` a : ρ(α) andρ(Γ), s : ρ(α) ` b : ρ(β) are
derivable. Thenρ(Γ) ` a.` ⇐ ς(s)b : ρ(γ) derives from (Val
Update) and (Val Subsume), which again proves the claim.

(I-Val Object) Let ρ |= (J ∪ {Γ, s : [`i : (βi, γi)
i∈I] . bi :

βi},C ∪ {[`i : (βi, γi)
i∈I] ≤ α, βi ≤ γi}) Then [`i :

(ρ(βi), ρ(γi))
i∈I] ≤ α andρ(βi) ≤ ρ(γi), and the judgements

Γ, s : [`i : (ρ(βi), ρ(γi))
i∈I] ` bi : ρ(βi) are all derivable.

Thenρ(Γ) ` [`i = ς(s) bi
i∈I] : ρ(α) derives from (Val Object)

and (Val Subsume).

Proof for Theorem 5.6. (Rewriting is Complete) By a
case analysis on the rewriting step in question.

(Val Var) Let ρ be a substitution such thatρ |= (J ∪ {Γ . x :
α},C). By definitionρ(Γ) ` x : ρ(α) is derivable. By Lemma
5.5.1(ρ(Γ))(x) = A for a typeA such thatA ≤ ρ(α). Thus
ρ(J,C ∪ {A ≤ α}) as desired.

(Val Select) Letρ be a substitution such thatρ |= (J∪{Γ.a.` :
β},C). By definitionρ(Γ) ` a.` : ρ(β) is derivable, and, by
Lemma5.5.2,ρ(Γ) ` a : A is also derivable for a typeA such
thatA ≤ [` : (⊥, ρ(β))]. Then defineρ′ = ρ ∪ {α 7→ A} where
α is the fresh variable chosen by the rewriting in question: now,
ρ′ |= (J′,C′) by construction.

(Val Update) Let ρ be a substitution such thatρ |= (J ∪ {Γ .
a.` ⇐ ς(s)b : γ},C). By definitionρ(Γ) ` a.` ⇐ ς(s)b : ρ(γ)
is derivable. By Lemma 5.5.3,ρ(Γ) ` a : A′ andρ(Γ), s :
A′ ` b : B are both derivable, for two types typeA′ andB
such thatA′ ≤ [` : (B,>)] andA′ ≤ A. Then, defineρ′ =
ρ ∪ {α 7→ A′, β 7→ B} whereα andβ are the fresh variables
chosen by the rewriting in question. It follows by construction
thatρ′ |= (J′,C′).

(Val Object) Let ρ be a substitution such thatρ |= (J ∪ {Γ .
[`i = ς(s) bi

i∈I] : α},C). By definition ρ(Γ) ` [`i =
ς(s) bi

i∈I] : ρ(α). By Lemma 5.5.4, the judgementsρ(Γ), s :
[`i : (Bui , B

s
i) i∈I] ` bi : Bui are all derivable andBui ≤ Bsi .

Then defineρ′ = ρ∪{βi 7→ Bui , γi 7→ Bsi } whereβi andγi are
the fresh variables chosen by the rewriting in question. It follows
by construction thatρ′ |= (J′,C′).

Proof for Theorem 5.8. (Inference is Sound and Com-
plete) Take a substitutionρ |= C. By definition,ρ |= (?,C),
and by Lemma 5.6 (and transitivity)ρ |= ({Γ . a : α},?):
henceρ(Γ) ` a : ρ(α) is derivable, as desired. Conversely, take
E ` a : A as in the hypothesis,Γ andα as specified by the al-
gorithm, and define a substitutionρ as follows:ρ(α) = A, and

ρ(Γ(x)) = E(x) for everyx ∈ Dom(E). ThenE = ρ(Γ) and
A = ρ(α) by construction, and clearlyρ |= ({Γ . a : α},?), as
E ` a : A is derivable by hypothesis. Finally,ρ |= (?,C), by
Lemma 5.7, and henceρ |= C.

