PLANNING AND PARALLEL TRANSITION NETWORKS:
ANIMATION’S NEW FRONTIERS

NORMAN I. BADLER
Center for Human Modeling and Stmulation
Computer and Information Science Department
Unwversity of Pennsylvania

Philadelphia, PA 19104-6389 U.S.A.

E-mail: badler@central.cis.upenn.edu
and

BONNIE L. WEBBER*
Center for Human Modeling and Stmulation
Computer and Information Science Department
Unwversity of Pennsylvania

Philadelphia, PA 19104-6389 U.S.A.

E-mail: bonnie@central.cis.upenn.edu

ABSTRACT

Animating realistic human agents involves more than just creating movements
that look “real.” A principal characteristic of humans is their ability to plan
and make decisions based on intentions and the local environmental context.
“Animated agents” must therefore react to and deliberate about their environ-
ment and other agents. Our agent animation uses various low level behaviors,
sense-control-action loops, high level planning, and parallel task networks. Sev-
eral systems we developed will illustrate how these components contribute to
the realism and efficacy of human agent animation.

1. Introduction

Conventional animations often seek to re-create “life” through the artistic skills
of an animator who transforms his or her observations, experience, and intuition into
believable characters.?® Even now, most of the tools designed to aid this craft provide
manual control over images, shapes, and movements. Recently, more automated
techniques for animation have been developed, often to ease some burden or other on
the animator. For example, dynamics can be used to animate particles or objects,!?26
or “flocking” considerations can be used to constrain interactions between a number
of figures.'®2?* Partial success can be judged from the various physics-based techniques
that use “real-world” mathematics to get the motions “right.”?%2710
Unfortunately, getting animated people (or human-like characters) seems to re-

quire more than the existing physical or manual toolset. One reaction to this difficulty

*Additional co-authors are Welton Becket, Chris Geib, Mike Moore, Catherine Pelachaud, Barry
Reich, and Matthew Stone.



is the move toward “performance animation” where live actors go through the neces-
sary motions while various sensing systems monitor various body landmarks labeled
by markers or electromagnetic sensors.1*® While this provides motion data of un-
questioned realism, it is only a specific instance of a performance and might still need
massaging by an expert. For example, such motion cannot be directly used on a
creature of markedly different body size than the original actor.

Something is still missing when one moves toward this performance-based anima-
tion. In fact, one can view performance animation as simply a way of guaranteeing
that the physics is correct — without building and evaluating the formulas. Consider
the following scenario:

A pedestrian stands on a street corner, waiting for the light to change
so that he can safely cross the street. Meanwhile a car is approaching the
same intersection. What happens when the light changes?

First of all, the performance-based data might be useful for animating the charac-
ter’s walk, though it could also be simulated through a locomotion generator.'® In
a scripted animation, the animator would be responsible for initiating the walk at
the time of the light change, and would also be controlling the car motions. So now
suppose that we remove the animator: what would the pedestrian do? Well, if he
were completely driven by physics, he would start to cross the street (he would have
a forward force that propels him that way). The car would also be moved by physics.
If they happen to arrive at the same place at the same time, the animation might be
exciting but it would not be fun for either the car or the pedestrian. So what hap-
pened when we removed the animator? We removed the decisions that were made to
have the pedestrian only cross the street when it was safe to do so, even if the car
ran the red light. So there is an important clue to realistic animation here: human
movement realism includes decision-making in context.

It is perhaps not so surprising that real humans engage in decision-making as
one of their uniquely human qualities. What we note here is that synthetic humans
must also engage in decision-making if we want them to share human qualities. Sensed
human motions are not enough for realism because no choices can be made with them.
Physics alone is not good enough for realism because there are no decisions outside
the outcome of the mathematical laws. Humans operate differently from both of these
strict models: we are neither puppets nor mannequins. We make choices, watch our
surroundings, and plan for the future. We sense the world in order to accomplish
intentions, validate expectations, avoid obstacles, and minimize surprises.?®

It is the existence of choice that motivates much of our research. We see ani-
mation as an integration of a rich collection of interacting techniques, organized in
a principled, structured representation. These techniques include planners and Par-
allel Transition Networks (PaT-Nets) (Sec. 2.2) to aid in overall task control, and
goal-based sensing, response, and (as necessary) physics-based, kinematic or inverse
kinematic behaviors to achieve environmentally-appropriate movements.?



In the remainder of this paper we will briefly review the two-level architecture
to intelligent agents that we are investigating” We will then discuss three sample
domains that utilize this architecture to great advantage: “Stepper” (Sec. 3), “Hide
and Seek” (Sec. 4), and “Gesture Jack” (Sec. 5). We close with a view of the future.

2. The Agent Architecture

An agent is an object that is able to take action by virtue of having a sense-
control-action (SCA) loop to produce locally-adaptive behavior (Sec. 2.1). In general,
behaviors are considered “low level” capabilities of an agent, such as locomoting [to],
reaching [for], looking [at], speaking [to], listening [to], etc. An agent with only SCA
loops determining its behavior is considered a purely “reactive” agent. Deliberative
agents (such as human agents) also have higher-level control structures that affect
more global, planned, or cognitive aspects of behavior, which in turn can affect the
immediate formulation and parameters of an SCA loop. We use planners and PaT-
Nets for this level of control (Sec. 2.2). Because our interest is in behavioral realism,
we focus on human agents, whose behaviors we have the greatest familiarity with and
expectations about, thus providing a grounding for judging realistic behavior.

An intelligent agent must interleave sensing, planning, decision-making, and act-
ing. Accordingly, it is desirable to create an architecture that permits specification
and exploration of each of these processes. Planning and decision-making can be
accommodated through incremental, symbolic-level reasoning. When the agent de-
cides to act, the symbolic actions must be instantiated in executable behaviors. Most
behavioral systems use either state controllers or numerical feedback streams, but
not both. By using both it is possible to obtain maximum flexibility and maintain
appropriate levels of specification.®*

We can characterize these two control levels as PaT-Nets and SCA loops.

o PaT-Nets are parallel state-machines that are easy for humans and automatic
planning systems to manipulate. They are also good at sequencing actions
based on the current state of the environment or of the system itself. They
characterize the tasks in progress, conditions to be monitored, resources used,
and any temporal synchronization.

o The SCA loop performs low-level, highly reactive control involving sensor feed-
back and motor control.

In this paradigm, the agent can instantiate explicit PaT-Nets to accomplish certain
goals (e.g., go to the supply depot and pick up a new motor), while low-level control
can be mediated through direct sensing and action couplings in the SCA loop (e.g.,
controlling where the agent’s feet step and making sure that s/he doesn’t run into or

“Much of the material that follows is condensed from a forthcoming book chapter.?



trip over any obstacles). Since the sensors can establish what the agent can perceive,
the agent is able to react through the SCA loop, and if desired, use this information to
confirm, adopt, or select higher-level (cognitive) actions: for example, if an obstacle
cannot be surmounted, the current PaT-Net might need to be reconsidered. Since
PaT-Net state transitions are explicitly represented, alternative behaviors may be
easily embedded.

The rest of this discussion describes features of SCA loops and PaT-Nets. We
will then have enough tools in place to illustrate the interactions between planning,
PaT-Nets, and SCA behaviors in three domains: “Stepper,” “Hide and Seek,” and
“Gesture Jack.”

2.1. Low-Level Control: Sense-Control-Action Loops

The SCA or behavioral loop is a continuous stream of floating point numbers from
the simulated environment, through simulated sensors providing the abstract results
of perception, through control decisions independently attempting to solve a mini-
mization problem, out to simulated effectors or motor actions (walking, e.g.), which
enact changes on the agent or the world. This loop continuously operates, connecting
sensors to effectors through a network of nodes which for descriptive convenience are
divided into sense (S), control (C), and action (A) phases.

The behavioral loop is modeled as a network of interacting SCA processes con-
nected by arcs across which only floating point messages travel. An individual, con-
ceptual path from sensors to effectors is referred to as a behavioral net. It is analogous
to a complete behavior in an “emergent behavior” architecture such as Brooks” sub-
sumption architecture,® except that nodes may be shared between behaviors, and
arbitration (competition for effector resources) may occur throughout the behavioral
path and not just at the end-effector level. The behavioral loop is modeled as a
network with floating point connections in order to allow the application of low-level,
unsupervised, reinforcement learning in the behavioral design process. (This is be-
ing developed by Becket.?) Since our main use of SCA loops to date has been in
locomotion reasoning, the remaining discussion will be in these terms.

2.1.1. Sensory Nodes

Sensory nodes model or approximate the abstract, geometric results of object per-
ception. They continuously generate signals describing the polar coordinate position
(relative to the agent) of a particular object or of all objects of a certain type within
a specified distance and field of view. A few of the sensors used are:

object sensors: These provide the current distance from the agent and angle relative
to the forward axis of the agent of a particular object in the environment.
(Currently our sensors abstract over object recognition. A more sophisticated



approach would simulate an agent’s vision using Z-buffering hardware to create
17,19)

a depth map of what the agent can see.

range sensors: A range sensor collects all objects of a certain type within a given
range and field of view, and performs a weighted average into signals giving the
distance and angle of a single abstract object representing all detected objects.
Signals into the sensor define the range, field of view, and weighting parameters
(defining relative weights of distance and angle) and may be altered continuously
in order to focus the sensor.

terrain mapper: This sensor perceives an internal map of the terrain as if it were
an external entity.

human sensor: If an object is a human, that information is detected by this sensor.

Other sensors can be developed and embedded in the architecture as needs arise.

2.1.2. Control Nodes

For locomotion reasoning we use two simple control nodes loosely based on Brait-
enberg’s love and hate behaviors,” but formulated as explicit minimizations using

outputs to drive inputs to a desired value (similar to Wilhelms*

use of Braitenberg’s
behaviors). Control nodes typically receive input signals directly from sensory nodes,
and send outputs directly to action nodes, though they could be used in more abstract

control situations. Qur two control behaviors are:

attract: Create an output signal in the direction of the input signal, but magnified
according to distance and angle scalar multipliers and exponents. This node
works only when input signals exceed a threshold distance or angle.

avoid: Create an output signal in the opposite direction of the input, magnified
according to scalar multipliers and exponents, whenever inputs fall below a
threshold distance or angle.

These nodes incorporate both scalar multipliers and exponents, to allow modeling the
non-linearities typically observed in animal responses to perceived inputs.'®

2.1.3. Action Nodes

Action nodes connect to the underlying human body model and directly execute
routines defined on the model (such as walking, balance, hand position, and torso
orientation) and arbitrate among inputs, either by selecting one set of incoming sig-
nals or averaging all incoming signals. An example is the walk controller, which



Figure 1: A sample PaT-Net shown graphically

Figure 2: Attraction, avoidance, and terrain awareness

decides where to place the agent’s next footstep and then connects to the locomotion
generator® to achieve the step.

2.2. High-Level Control: PaT-Net Schemas

Low-level control is designed to connect to a general symbolic reasoning process,
including a model of parallel automata (PaT-Nets)® and various planners. A sample
PaT-Net is shown conceptually in Fig. 1. Each net description is a class in the object-
oriented sense and contains a number of nodes connected by arcs. Nodes contain
arbitrary Lisp expressions to execute as an action whenever the node is entered. A
transition is made to a new node by selecting the first arc with a true condition
(defined as a Lisp expression). Nodes may also support probabilistic transitions
where the probability of a transition along an arc is defined rather than a condition.
Monitors are supported that, regardless of which state the net is in, will execute an
action if a general condition evaluates to true.

A running network is created by making an instance of the PaT-Net class. Be-
cause a running net is actually an encapsulated, persistent object, it may have local
state variables available to all actions and conditions, and may also take parameters
on instantiation. The running PaT-Net instances are embedded in a Lisp operat-
ing system that time-slices them into the overall simulation. This operating system
allows PaT-Nets to spawn new nets, kill other running nets, communicate through
semaphores and priority queues and wait (sleep) until a condition is met (such as
waiting for another net to exit, for specific time in the simulation, or for a resource
to be free). Running nets can, for example, spawn new nets and then wait for them
to exit (effectively a subroutine call), or run in parallel with the new net, commu-
nicating if necessary through semaphores. Because PaT-Nets are embedded in an
object-oriented structure, new nets can be defined that override, blend, or extend the
functionality of existing nets.

3. Stepper

Stepper is an instance of the two-level (PaT-Net and SCA loop) architecture pro-
viding locomotion reasoning and control for simulated human agents in simulated
environments.'® Locomotion reasoning determines the manner in which the agent
moves through the world: i.e. what types of attractions, avoidances, and posture
changes will achieve the goal (Fig. 2).



Figure 3: An Influence

At the low level, Stepper uses an SCA loop to generate human locomotion. A set of
influences (combinations of simulated sensors and attraction or avoidance) determine
an agent’s behavior. At the high level, a set of PaT-Nets schedule and control these
influences.

3.1. The Sense-Control-Action Loop for Human Locomotion

Stepper makes use of a framework for general object locomotion (embedded in
the Jack® software system?), which in turn makes use of an SCA loop that performs
“anticipatory sensing”. That is, in the sense phase, sensors “anticipate” the environ-
ment at each potential next foot position, in order to determine in the control phase
where the agent should step. The agent takes the chosen step in the action phase.
A human steps at discrete positions in a continuous space, and cannot change the
targeted step location while a step is in progress.

Individual influences bound to the agent effect anticipatory sensing. An influence
captures both what aspects of the environment are relevant to monitor and the degree
to which they should attract or repel the agent from a particular position. An agent
can be influenced by natural features of the terrain (e.g., muddy ground, bodies of
water), man-made features of the environment (e.g., sidewalks), locations for which
it is headed, etc.

An influence determines how an agent acts. In our system, the combination of
a sensor and a control behavior (attraction or avoidance) is an influence (Fig. 3).
An influence maps a foot position to the stress of stepping there. From among the
possible choices, the control phase of the SCA loop leads the agent to take the least
stressful step.

An influence activates when “bound” to an agent. While active, its output con-
tributes to the stress calculations. Influences may be bound or unbound at any time
during a simulation, and hence activated or deactivated. Locomotion is performed by
binding influences to humans. The SCA loop, constantly monitoring the environment,
immediately initiates the appropriate locomotion.

3.2. PaT-Nets for Human Locomotion

PaT-Nets introduce decision-making into the agent architecture. They monitor
the SCA loop (which may be thought of as modeling instinctive or reflexive behavior)
and make decisions in special circumstances. For example, the observed behavior
resulting from the combined use of different influences can sometimes break down.
The agent may get caught in a dead-end or other local minimum. Actions sometimes
fail and unexpected events sometimes occur. PaT-Nets can recognize these situations,



Figure 4: ChaseNet State Diagram

Figure 5: Hiders hiding — seeker counting

modify the agent’s behavior by binding and unbinding influences, and then return to
a monitoring state. During a simulation, PaT-Nets bind and unbind influences in
Stepper, thereby altering agent behavior.

Consider an example with Tom chasing Jerry. The ChaseNet shown in Fig. 4
begins in state 1. An attraction to Jerry binds to Tom. As Tom begins to run toward
Jerry the net passes to state 2; the ChaseNet enters the monitoring state. When
Jerry ceases to be visible to Tom (Jerry may have run around a corner or behind
an object), the net enters state 3. An attraction to the location where Jerry is most
likely to be found, generally Jerry’s last known location, binds to Tom. Tom begins
to run toward this location as the ChaseNet transitions to state /. If Tom arrives
at this location and does not see Jerry, the ChaseNet transitions to state 5 and Tom
searches in the direction Jerry was last known to be heading.

Clearly, chasing requires reasoning and decision-making beyond the scope of the
SCA loop alone. PaT-Nets provide this reasoning, and schedule and control the
low-level influences to direct the agent to act in the desired manner.

4. Hide and Seek

Moore, Geib and Reich!® are building a planning system for synthetic players in
a game of “Hide and Seek.” It is vertically integrated into a system called ZAROFF
that selects reactive behaviors to execute in an animated simulation. By interleaving
planning and acting, the players dynamically react to changes in the environment and
changes in information about where the other players may be hiding. Adaptivity is
also supported through least-commitment planning, as the planner only looks ahead
one action at each level of its abstraction hierarchy. The implementation follows the
two-level agent architecture: the Intentional Planning System (ItPlanS)!! interacts
with a Search Planner'? to perform the “high-level” reasoning for the system, and
these two components in turn interact with a set of “low-level” SCA nodes based on

Stepper (Fig. 5).

4.1. System Architecture

Our division of the control of a player between a planning component and a re-
active behavior component reflects a distinction between deliberative actions (ones
requiring non-local reasoning about the past, the present, and possible futures) and
non-deliberative actions. In this sense, keeping track of where you are located in a



complex environment and what hiding places have been checked requires deliberate
effort, while walking from one place to another generally does not. Together, these
two components create realistic animations of human decision-making and locomotion
while playing hide and seek.

Fig. 6 depicts information flow in ZAROFF. To control the player in the role of
seeker, the system starts by initializing the plan with the input goal (finding a hiding
human), populating the database with the initial locations of all the objects and
human figures in the simulation, and creating a partial map from what the player
can see around him. [tPlanS and the SCA loop start processing simultaneously. The
planner queries the state of the database through the Filtered Perception module to
decide how to elaborate the plan and select an action. If necessary, the Search Planner
is consulted to assist in planning how to find things. When ItPlanS decides on an
action, it instructs Action Execution to carry it out. Further planning is suspended
until the action has terminated (successfully or unsuccessfully).

In making decisions about what to do next, each component makes use of its own
internal simulation, which differs from the graphical animation of the environment.
[tPlanS uses abstract descriptions of the effects of each action to choose one which
will move closer to the specified goal. The Search Planner simulates the movements
of an agent on its internal map of the environment. Stepper simulates taking the
next step in several alternate locations. At each level of decision making, an internal
simulation is used at an appropriate granularity.

4.2. Action in ZAROFF

Actions chosen by ItPlanS are carried out by an Action Execution module (see
Fig. 6). Both components are well matched to the dynamic environment in which
ZAROFF acts: the planner quickly selects the next action to perform based on compar-
ison between the perceived world state and a partial hierarchical plan that is regularly
revised. The action execution module controls locomotion via the Stepper system,
enabling it to react to unexpected events such as moving obstacles, changing terrain,
or a moving goal.'®

4.3. Planning in ZAROFF

[tPlans is a hierarchical planner, in which hierarchical expansion only takes place
to the degree necessary to determine the next action to be carried out. It consists of
an incremental expansion of the frontier of the plan structure to successively lower
levels of abstraction. The incremental nature of the plan allows the system to make
commitments at the appropriate level of detail for action while not committing the

Figure 6: Information flow in ZAROFF



system to future actions that might be obviated by changes in the world.

4.4. Search planning

A consequence of limited perception is the occasional need to find objects. Our
approach is to isolate this reasoning in a specialized module, a Search Planner that
translates information acquisition goals to high-level physical goals to explore parts
of the environment.

Searches are planned by first identifying known regions where an object may be
located and systematically exploring this space. A plan is developed for exploring
each region in turn. After such an exploration plan is executed, the environment is
observed to determine whether the agent can see an object with the desired properties.
During this observation phase, new potential regions may be seen by the agent. These
new regions are considered for future exploration as needed.

4.5. Distinctions between the Upper and Lower Level

ZAROFTF’s stratification into higher-level and lower-level components is a reflection
of differences in informational needs. For example, the low-level locomotion behavior
requires very detailed information — e.g., foot positions, distances and angles — and
a rather fast cycle time (the stepping rate).

In contrast, [tPlan$ is responsible for sequencing locomotion actions with actions
to open doors in order to explore various hiding places within the game field. The
information needed to build plans at this level is at a different level of abstraction as
well as a coarser temporal scale. [tPlanS needs to know “Is the door open?”, “Am I at
the door?”, ete. While such information can be derived from lower-level information,
neither of the modules has need of the information that the other uses.

Separating low-level motor control from high level planning decisions is valid: a
symbolic planner is inappropriate for making decisions about foot placement, and like-
wise local potential field calculations are inappropriate for making long-range plans.
While the benefits of adding a reactive controller to a planner are well known, the
relationship between these two components is symbiotic. While the reactive controller
adds flexibility and an ability to handle local disturbances to the plan, if properly
constructed the high level planning can result in the reduction of the complexity of
the problem that the controller must solve.

5. Gesture Jack

“Gesture Jack” is a demonstration system that consists of two embodied agents
holding a conversation where one agent has a specific goal and the other tries to help
achieve it.? All parts of the conversation have been automatically synthesized and ani-
mated: intonation, gesture, head and lip movements, and their inter-synchronization.



Figure 7: Architecture of each conversational agent

Gesture Jack combines a dialogue planner (which moderates the communicative acts
between the agents) with PaT-Nets (which control the speaker/listener roles and var-
ious non-verbal aspects of the intercourse). Motor actions drive the face, head, lips,
and eyes. PaT-Net schemas control head and eye movements, as these relate directly
to the agent’s role in the conversation. The face and lips are controlled directly from
behavior inputs to the SCA loop, but the absence of direct sensory inputs means that
the SCA loop is much simplified in comparison to ZAROFF.

5.1. Gesture Jack Structure

In the Gesture Jack system, we have attempted to adhere to a model of face-
to-face interaction suggested by the results of empirical research.?! In particular,
each conversational agent is implemented as an autonomous construct that maintains
its own representations of the state of the world and the conversation, and whose
behavior is determined by these representations. (For now, the two agents run copies
of the same program, initialized with different goals and world knowledge.) The
agents communicate with one another only by the symbolic messages whose content
is displayed in the resulting animation. (If their SCA loops were fully modeled, they
would actually be able to interpret the speech and gestures of the other agent!) The
architecture of a conversational agent is shown in Fig. 7.

The selection of content for the dialogue by an agent is performed by two cascaded
planners. The first is the domain planner, which manages the plans governing the
concrete actions which an agent will execute; the second is the discourse planner,
which manages the communicative actions an agent must take in order to agree on a
domain plan and in order to remain synchronized while executing a domain plan.

5.2. Using PaT-Nets in Gesture Jack

Interaction between agents and synchronization of gaze and hand movements to
the dialogue for each agent are accomplished using PaT-Nets, which allow coordina-
tion rules to be encoded as simultaneously executing schemas. Fach agent has its
own PaT-Net: probabilities and other parameters appropriate for an agent are set for
the PaT-Net, given its current role as listener or speaker. Then as agents’ PaT-Nets
synchronize the agents with the dialogue and interact with the unfolding simulation,
they schedule activity that achieves a complex observed interaction behavior.

The Gaze and Gesture PaT-Net schedule motions as necessary, given the current
context, in semi-real time. They send information about timing and type of action
to the animation system. The animation itself is carried out by Jack.

Each of the four dialogic functions (planning, comment, control and feedback)?



appears as a sub-network in the PaT-Net, represented by a set of nodes, a list of
conditions and their associated actions. FEach node has an associated probability,
based on an analysis of two-person conversations, noting where and when a person is
gazing, smiling and/or nodding. Each of these signals is binary-valued — e.g., gaze
is equal to 1 when a person is looking at the other person, 0 when looking away. The
conversation is annotated every tenth of a second. Six turn-states are considered,
three per agent. When an agent hold the floor she can be speaking while the other
agent is pausing (normal turn) or speaking (overlapping talk or a backchannel signal),
or they can be pausing simultaneously. For each of these turn-states, we compute the
co-occurrence of signals (nod, smile and gaze) and their probability. Separate PaT-
Net nodes correspond to each different turn-state and signal occurrence; for example,
the occurrence of a “within-turn signal” corresponds to the action: agentl looks at
the agent2 while having the floor and pausing.

6. Conclusion

We have demonstrated through these three systems that the combination of high
level control through planners and PaT-Nets with low level SCA loops yields interest-
ing, human-like, “intelligent” behaviors. Removing any one of these three components
would incapacitate performance in notable and indeed crippling ways.

For example, if the planners were removed from Hide and Seek, then all decision-
making and actions would need to be encoded in PaT-Nets, including the opportunis-
tic generation of new goals (go to a found hider rather than the location the seeker
was heading toward) and a hider’s choice of where to hide and a seeker’s choice of
where to seek next. In the case of the dialogue planner in Gesture Jack, its symbolic
reasoning (such as backward chaining or question generation) to determine a series
of intermediate steps toward an overall goal would have to be encoded in PaT-Nets.
Overloading PaT-Nets with these sorts of reasoning and planning would require a
full programming language capability to specify arc transitions and a loss of locality
that would be an end to any perspicuity. Indeed, the burden would once again be
returned to the animator who would need to virtually “program” the entire agent
to select actions and anticipate any contingencies based on whatever features the
immediate environment presented.

If the PaT-Net schemas were omitted, the planners would be forced to do too much
work to see that sequential or coordinated tasks were carried out. Rather than mak-
ing the planner disambiguate overlapping or interleaved activities, the schemas can
manage resource allocation and coordinated activities. Thus the PaT-Nets in Gesture
Jack can manipulate the head nods and eye movements needed for speaker/listener
turn-taking without imposing a load on the actual dialog content planner.

If the SCA loop were omitted, the burden of managing all the environmental
complexity must be foisted off onto some higher-level (symbolic reasoning) controller.



It appears unrealistic to expect that a symbolic planner worry about where to place
a foot during locomotion (Stepper). Likewise, a PaT-Net should not be used to
explicitly manage the sensory feedback and decision-making that can check for and
avoid hazardous terrain features or other obstacles. The low level SCA loop provides
a kind of quick-turnaround “reflex” action which can adapt to situations without
requiring cognitive overhead.

We believe that ongoing research into embodied human-like simulated agents will
find, as we have, that this architecture of high level schemas and planners combined
with low level SCA loops will achieve increasing success in producing intelligent and
realistic behavior.

7. Acknowledgements

This research is partially supported by DMSO DAAH04-94-G-0402; U.S. Air Force
DEPTH through Hughes Missile Systems F33615-91-C-0001; ARPA DAMD17-94-J-
4486; National Library of Medicine NO1LM-43551; ARO DURIP DA AHO04-95-1-0023;
Army AASERT DAAHO04-94-G-0220; ARPA AASERT DAAH04-94-G-0362; and NSF
CISE CDA88-22719.

8. References

1. N. I. Badler, M. J. Hollick and J. Granieri, “Real-Time Control of a Virtual
Human using Minimal Sensors,” Presence 2(1) (1993) 82-86.

2. N. I. Badler, B. L.. Webber, W. Becket, C. Geib, M. Moore, C. Pelachaud,
B. Reich and M. Stone, “Planning for Animation,” to appear in Computer
Animation, ed. N. Magnenat-Thalmann and D. Thalmann (Prentice-Hall,
1995).

3. N.I. Badler, C. W. Phillips and B. L. Webber, Simulating Humans: Computer
Graphics Animation and Control (Oxford University Press, New York, 1993).

4. W. M. Becket and N. I. Badler, “Integrated Behavioral Agent Architecture,”
in The Third Conference on Computer Generated Forces and Behavior Repre-
sentation (Orlando, FL, 1993).

5. W. M. Becket, Reinforcement Learning for Reactive Navigation of Simulated
Autonomous Bipeds (PhD thesis, University of Pennsylvania, 1995).

6. W. M. Becket, The Jack Lisp API (Technical Report MS-CIS-94-01, University
of Pennsylvania, 1994).

7. V. Braitenberg, Vehicles: Fxperiments in Synthetic Psychology (MIT Press,
Cambridge, MA, 1984).

8. R. A. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEFE
Journal of Robotics and Automation (1986) 14-23.

9. J. Cassell, C. Pelachaud, N. Badler, M. Steedman, B. Achorn, W. Becket,



B. Douville, S. Prevost and M. Stone, “Animated Conversation: Rule-Based
Generation of Facial Expression, Gesture and Spoken Intonation for Multiple
Conversational Agents,” Computer Graphics (Annual Conference Series, ACM,
1994) 413-420.

10. M. F. Cohen, “Interactive Spacetime Control for Animation,” Computer
Graphics 26(2) (1992) 293-302.

11. C. W. Geib, The Intentional Planning System: [tPlanS (PhD thesis, Univer-
sity of Pennsylvania, 1995).

12. J. K. Hahn, “Realistic Animation of Rigid Bodies,” Computer Graphics22(4)
(1988) 299-308.

13. H. Ko, Kinematic and Dynamic Techniques for Analyzing, Predicting, and
Animating Human Locomotion (PhD thesis, University of Pennsylvania, 1994).

14. M. B. Moore, Search Plans (Technical Report MS-CIS-93-56, University of
Pennsylvania, 1993).

15. M. B. Moore, C. W. Geib and B. D. Reich, “Planning and Terrain Reason-
ing,” in AAAI Spring Symposium on Integrated Planning Applications (also,
Technical Report MS-CIS-94-63, University of Pennsylvania, 1995).

16. B. D. Reich, H. Ko, W. Becket and N. I. Badler, “Terrain Reasoning for
Human Locomotion,” in Proceedings of Computer Animation 94 (Geneva,
IEEE Computer Society Press, 1994) 996-1005.

17. O. Renault, N. Magnenat-Thalmann and D. Thalmann, “A Vision-Based Ap-
proach to Behavioral Animation,” The Journal of Visualization and Computer
Animation 1(1) (1990) 18-21.

18. C. W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral
Model,” Computer Graphics 21(4) (1987) 25-34.

19. C. W. Reynolds, “Not Bumping into Things,” SIGGRAPH Course 27 Notes:
Developments in Physically-Based Modeling (ACM SIGGRAPH, 1988) G1-
G13.

20. B. Robertson, “Caught in the Act,” Computer Graphics World 17(9) (1994)
23-28.

21. K. R. Scherer, “The Functions of Nonverbal Signs in Conversation,” in The
Social and Physiological Contexts of Language, ed. H. Giles and R. St. Clair
(Lawrence Erlbaum, New York, 1980) 225-243.

22. K. Sims, “Evolving Virtual Creatures,” Computer Graphics (Annual Confer-
ence Series, ACM, 1994) 15-22.

23. F. Thomas and O. Johnson, Disney Animation: The I[llusion of Life
(Abbeville Press, New York, 1981).

24. X. Tu and D. Terzopoulos, “Artificial Fishes: Physics, Locomotion, Percep-
tion, and Behavior,” Computer Graphics (Annual Conference Series, ACM,
1994) 43-50.

25. B. Webber, N. Badler, B. Di Fugenio, C. Geib, L. Levison and M. Moore,



“Instructions, Intentions and Expectations,” Artificial Intelligence Journal 73
(1995) 253-269.

26. J. Wilhelms and R. Skinner, “A ‘Notion’ for Interactive Behavioral Animation
Control,” IEEE Computer Graphics and Applications 10(3) (1990) 14-22.
27. A. Witkin and M. Kass, “Spacetime Constraints,” Computer Graphics 22(4)

(1988) 159-168.



