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ABSTRACT

HIGH-LEVEL ABSTRACTIONS FOR PROGRAMMING NETWORK POLICIES

Yifei Yuan

Rajeev Alur

Boon Thau Loo

The emergence of network programmability enabled by innovations such as active network-

ing, SDN and NFV offers tremendous flexibility to program network policies. However,

it also poses a new demand to network operators on programming network policies. The

motivation of this dissertation is to study the feasibility of using high-level abstractions to

simplify the programming of network policies.

First, we propose scenario-based programming, a framework that allows network opera-

tors to program stateful network policies by describing example behaviors in representative

scenarios. Given these scenarios, our scenario-based programming tool NetEgg automati-

cally infers the controller state that needs to be maintained along with the rules to process

network events and update state. The NetEgg interpreter can execute the generated policy

implementation on top of a centralized controller, but also automatically infers flow-table

rules that can be pushed to switches to improve throughput. We study a range of policies

considered in the literature and report our experience regarding specifying these policies us-

ing scenarios. We evaluate NetEgg based on the computational requirements of our synthesis

algorithm as well as the overhead introduced by the generated policy implementation. Our

results show that our synthesis algorithm can generate policy implementations in seconds,

and the automatically generated policy implementations have performance comparable to

their hand-crafted implementations. Our preliminary user study results show that NetEgg

was able to reduce the programming time the policies we studied.

Second, we propose NetQRE, a high-level declarative language for programming quan-

titative network policies that require monitoring a stream of network packets. Based on

a novel theoretical foundation of parameterized quantitative regular expressions, NetQRE

integrates regular-expression-like pattern matching at flow-level as well as application-level
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payloads with aggregation operations such as sum and average counts. We describe a

compiler for NetQRE that automatically generates an efficient implementation from the

specification in NetQRE. Our evaluation results demonstrate that NetQRE is expressive to

specify a wide range of quantitative network policies that cannot be naturally specified in

other systems. The performance of the generated implementations is comparable with that

of the manually-optimized low-level code. NetQRE can be deployed in different settings.

Our proof-of-concept deployment shows that NetQRE can provide timely enforcement of

quantitative network policies.
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Chapter 1

Introduction

Recent years have seen the emergence of programmability in computer networks enabled

by a wave of revolutionary innovations, including active networking [85], SDN [65], and

NFV [30]. For example, software-defined networking (SDN) [65] promises rapid service

provisioning and agile network management by decoupling the control plane and the data

plane in networks. A logically centralized controller in SDN offers a global view of the

network and application programming interfaces (API) to enforce a variaty of network

policies. Furthermore, network functionality virtualization (NFV) [30] aims at shifting

network functions from a range of dedicated hardware to software deployed on general-

purpous computers. By programing network functions in software, NFV promises low

cost and high flexibily in deploying and managing network services. Not even mentioning

previous proposed active networking

This new wave of innovation offers network operators tremendous flexibility to pro-

gram custom network policies, ranging from traffic steering [14, 46, 90] to dynamic access

control [55, 71], from dynamic service chaining [39, 74] to network function migration [42].

While network programmability promises the aforementioned benefits, it poses a higher

(if not totally new) demand to network operators on programming. In order to thoroughly

understand the innovation trend and the challenges that come with it, in the fall of 2015 we

conducted informal interviews with 101 network operators, architects and engineers from

universities, telcos, service providers and router vendors, in the NSF I-Corps program [7].

We made two observations from the interviews. First, more than 80% interviewees agreed
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that network operators will need to program networks in the future. Second, they might lack

the required programming skills to program reliable networks. Our observations are consis-

tent with the online discussions we studied [10, 24, 25], which suggest that programming is

becoming an essential skill set for network operators, and it requires network operators to

have a deeper understanding on network programming.

To ease the job of programming network policies, in this disseratation, we study the

feasibility of using high-level abstractions for programming a range of network policies.

First, we consider stateful network policies which make decisions on each packet based

on the state it maintains and also update the state accordingly. As an example, consider

the following policy.

Example 1 (Learning switch). Consider the example where a network operator wants to

program a learning switch policy supporting migration of hosts on top of the controller for a

single switch. The learning switch learns incoming ports for hosts. For an incoming packet,

if the destination MAC address is learned, it sends this packet out to the port associated

with the destination MAC address; otherwise it floods the packet. To support migration of

hosts, the learning switch needs to remember the latest incoming port of a host.

To implement this policy, a network operator first has to manually maintain the state

indicating whether a port has been learned for a MAC address and also the mapping between

the hosts and incoming ports. Second, the network operator has to implement the logic to

update the state as each packet arrives. Third, in order to improve the throughput, the

network operator may need to manually update the flow table rules on the switch as the

state changes, which is nontrivial and error-prone [88]. As a result, it may be difficult and

time-consuming to implement this policy (see Section 2.6 and 2.7).

On the other hand, illustrating how the policy behaves seems much simpler and more

intuitive. For example, one can describe the behavior of this policy in a scenario using an ex-

ample trace of packets together with the actions that should be applied to each packet in the

trace. An interesting question is that can we synthesize the desired policy implementation

automatically from the example behaviors.

Second, we consider the network policies which may involve quantitative metrics addi-

tionally. As an example, consider the following policy.

Example 2 (Voice-over-IP monitoring). Consider the policy where an enterprise mon-
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itors the usage of Voice-over-IP (VoIP) for each user, and alert the user whose usage is

significantly higher than the average usage over all users. We use the Session Initiation

Protocol (SIP) used in VoIP applications as our example. Typically, a call based on SIP

consists of three phases, init, call, and end. In the init phase, the caller and the callee

exchange messages (e.g. call ID, user name, the connection channel) in order to set up the

call session. Once established, the call phase allows VoIP data to be transmitted between

the caller and callee using the channel defined in the first phase. Finally, either side can

end the call as shown in the end phase.

To analyze the SIP call in the midst of network traffic from all types of protocols,

the protocol analyzer is required to (1) identify all SIP traffic traversing the network, (2)

separate the SIP traffic into different sessions for different caller/callee pairs, (3) group

packets within each session into phases (init, call, and end), and then perform a count

of bytes within the second (call) phase. Again, the network operator may face a set of

difficulties in manually maintaining the state (e.g. the state of SIP, the VoIP traffic count

of each call) and implementing the logic to update the state.

Unlike the previous example, it is not clear how to describe this policy using its example

behaviors. Instead, we explore the feasibility of specifying the policy in a high-level declar-

ative fashion. The challenge is to design a reasonably expressive specification language to

capture a wide range of such quantitative policies, together with the compilation techniques

in order to compile the specifications into efficient implementations.

Figure 1.1 illustrates the overview of our framework. To program a network policy,

the network operator simply describes the network policy in a declarative way using high-

level abstractions. The network operator does not need to implement low-level details of

the policy, such as what state to maintain and how to update it. Given the high-level

description of the network policy, a tool (e.g. a compiler, a synthesizer) automatically

generates the correponding low-level policy implementions that can run efficiently on the

network. As part of this generation, the tool automatically infers the state that needs to

be maintained from the high-level description, and generates the code that is necessary to

update the state.

In particular, this dissertation proposes the following two high-level programming ab-

stractions.

3



Figure 1.1: High-level programming framework.

• First, we propose scenario-based programming, a framework that allows network oper-

ators to program stateful SDN network policies, such as the one described in Example

1, by describing its example behaviors in representative scenarios.

We have developed the NetEgg tool, including a synthesis algorithm and an interpreter

for executing policies. Given the scenarios as input, our synthesizer automatically

generates a controller program that is consistent with example behaviors, including

inferring the state that needs to implement the network policy, and rules for processing

packets and updating the state. The interpreter executes the generated policy program

for incoming network events on the controller, as well as infers rules that can be pushed

onto switches.

We validate the NetEgg tool by synthesizing SDN programs that use the POX con-

troller directly from examples. Our tool is agnostic to the choice of SDN controllers,

and can also be used in non-SDN settings. We demonstrate that using our approach,

we are able to synthesize a range of network policies using a small number of exam-

ples in seconds. The synthesized controller program has low performance overhead

and achieves comparable performance to equivalent imperative programs implemented

manually in POX. Moreover, the example scenarios are concise compared to equiv-

alent imperative programs. Our preliminary user study results show that NetEgg is

intuitive to learn and use, and can reduce the programming time of network policies.

4



• Second, we propose NetQRE, a specification language and toolkit for quantitative

network policies, such as the example policy in Example 2.

NetQRE is declarative language for monitoring network packet streams based on a

novel theoretical foundation of parameterized quantitative regular expressions (PQRE).

PQRE extends prior work on QRE [18], which provides a formal foundation of combin-

ing traditional regular expressions with numerical computations. NetQRE integrates

regular-expression-like pattern matching at flow-level and application-level payloads

with aggregation operations such as sum and average counts.

We developed a compiler that can automatically generate efficient NetQRE imple-

mentations. As part of the compilation process, the compiler automatically infers the

state that needs to be maintained for NetQRE programs, and optimizes the compiled

imperative code. A NetQRE runtime then executes the generated code efficiently.

We have developed a NetQRE prototype which we evaluate over a range of quanti-

tative network policies. As a proof-of-concept deployment, we consider an evaluation

scenario where the NetQRE runtime taps into mirrored traffic within SDN switches,

and is integrated with an SDN controller. Our evaluation results demonstrate that

NetQRE can express a wide range of quantitative network policies that cannot be

naturally specified in other systems, results in performance that is comparable with

optimized manually-written low-level code and is significantly more efficient compared

to monitoring solutions based on Bro [73] and OpenSketch [91].

In the rest of the dissertation, we first elaborate NetEgg in Chapter 2, followed by the

description of NetQRE in Chapter 3. We discuss related work in Chapter 4. Finally, we

conclude the dissertation and discuss potential research directions related to this topic in

Chapter 5.
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Chapter 2

NetEgg: Scenario-based

Programming for SDN Policies

In this chapter, we decribe the tool NetEgg. NetEgg is a scenario-based programming frame-

work that allows network operators to program network policies by describing representative

example behaviors. Given these scenarios, the synthesis algorithm automatically infers the

controller state that needs to be maintained along with the rules to process network events

and update state. The NetEgg policy interpreter can execute the generated policy imple-

mentation on top of a centralized controller, but also automatically infers flow-table rules

that can be pushed to switches to improve throughput.

The rest of this chapter is organized as follows. First, we provide an overview of NetEgg

in Section 2.1. We use the learning switch policy as an example to illustrate the use of

NetEgg. Second, in Section 2.2 we describe the scenario-based programming framework,

which allows network operators to specify network policies using example behaviors in sce-

narios. Third, in Section 2.3 we describe the synthesizing algorithm that takes the scenarios

as input, and automatically generates a controller program that is consistent with example

behaviors, including inferring the state that is needed to implement the network policy and

rules for processing packets and updating states. Section 2.4 discusses how the interpreter

executes the generated policy program for incoming network events on the controller, as well

as infers rules that can be pushed onto switches. We show how to use NetEgg to program

a wide range of policies in Section 2.5. In Section 2.6, we present our evaluation results,

6



which show that the synthesized policy implementation has low performance overhead and

achieves comparable performance to equivalent imperative programs implemented manually

in POX. We present our preliminary user study result in Section 2.7. Finally, we end this

chapter with a discussion in Section 2.8.

This chapter is based on the work orginially published in [93, 94].

2.1 Overview of NetEgg

Figure 2.1 provides a high-level overview of NetEgg. The network operator describes ex-

ample behaviors about the desired network policy in representative scenarios to NetEgg.

These scenarios can be expressed either in network timing diagrams using the graphic user

interface (see Figure 2.17), or in a configuration language, which we will describe in Sec-

tion 2.2. Given these scenarios, NetEgg first checks whether there exist conflicts among

the scenarios. If two scenarios conflict with one another, NetEgg displays the conflict to

the network operator. After the operator resolves all conflicts, NetEgg tries to generate a

policy described in the scenarios.

The generated policy uses a set of state tables and a policy table. State tables maintain

the state used to remember the history of a policy execution. The policy table dictates

the actions for processing incoming network events and updates to state tables for various

cases.

When executing the policy, the interpreter, sitting on top of the controller, looks up the

policy table for incoming network events (e.g. packetin, connectionup and other events),

which will determine state table updates and actions to be applied to the network events.

Moreover, NetEgg automatically infers rule updates to the data plane from current state of

the policy execution, thus reducing controller overhead and network delay.

While NetEgg is general to handle any network events, we focus on packetin events in

this paper in order to simplify our presentation.

2.1.1 Illustrative Example

To illustrate the use of NetEgg, let us revisit the learning switch example introduced in

Chapter 1. Recall that a network operator wants to program a learning switch policy

7



Network 

  Example 
behaviors 

Synthesizer  
Policy table 

 
Controller 
Interpreter 

Policy 

Conflicts 

Network events 
Packet instruction/ 
Rule installation 

State tables 

Bad network behaviors 

Figure 2.1: NetEgg architecture.

supporting migration of hosts on top of the controller for a single switch. The learning

switch learns incoming ports for hosts. For an incoming packet, if the destination MAC

address is learned, it sends this packet out to the port associated with the destination MAC

address; otherwise it floods the packet. To support migration of hosts, the learning switch

needs to remember the latest incoming port of a host.

To program the policy, the network operator simply describes example behaviors of the

policy in representative scenarios, in the form of network timing diagrams. Figure 2.2 shows

a scenario described by network operators.

Scenario 1

flood
<P1,h1,h2>

<P2,h3,h1>

send(P1)

<P3,h2,h3>

send(P2)

Figure 2.2: A scenario describing the learning switch. In the scenario, a packet is denoted
by a 3-tuple: 〈incoming port, source MAC, destination MAC〉.

The scenario. In this scenario, the network operator describes example behaviors of
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the policy using three packets. The first packet arriving on port P1 with source MAC

address h1 and destination MAC address h2 is flooded by the switch, since no port has been

learned for h2. The second packet from h3 to h1 should be sent directly to the port P1,

according to the port learned from the first packet. The third packet from h2 to h3 should

be sent to the port P2, since the second packet indicts that h3 is associated with port P2.

Note that instead of using real port numbers and MAC addresses in the packet, the network

operator uses variables for each field. The variables stand for a variety of concrete values.

Given this scenario, NetEgg automatically synthesizes the desired program. The syn-

thesized program can be executed on the SDN controller, as well as install flow table rules

onto switches. As part of the program generation, NetEgg automatically generates the data

structures and code necessary to implement the policy.

Network operators may further test the synthesized program using existing verification

and testing techniques, and refine the program if needed. As part of refinement, network

operators simply illustrate new scenarios (e.g. obtained from counter examples) to NetEgg,

and NetEgg automates the refinement by synthesizing a new program from the new set of

scenarios. We will demonstrate more use cases in Section 2.5.

Using the learning switch example, in the following subsections, we first describe the

state tables that are generated by our tool, before describing the policy.

2.1.2 State Tables

In our example, the learning switch needs to remember whether a port is learned for a

MAC address, and if learned, which port is associated with the MAC address. Hence, the

generated policy maintains a state table ST , which stores a state and a value (in this case

a port number) for each MAC address. An example of the snapshot of ST is shown below.

MAC state value

A 1 2

OP... ... ...

Our tool automatically derives the facts that for a given MAC address macaddr, the

state of macaddr in ST is either 0 or 1, indicating that the port associated with macaddr is

unknown yet, or learned, respectively. ST also stores a port for MAC addresses with state
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1. Initially, the program assigns all states in the table to be 0. The program accounts for

two cases: 1) When the destination port is unknown, it floods the packet through all ports;

2) When the incoming packet’s destination port is known, it sends the packet out through

the port associated with the destination MAC address. In both cases, the state associated

with the source MAC address is set to be 1, and the incoming port for the source MAC

address is remembered.

2.1.3 Policy Tables

The state table is manipulated by rules implementing the desired policy. These rules are

captured in a policy table, as shown in Table 2.1 for the learning switch example. We delay

the discussion of its generation to Section 2.3.

match test actions update

* ST (dstmac).state=0 flood ST (srcmac):=(1, port)

* ST (dstmac).state=1 send(ST (dstmac).value) ST (srcmac):=(1, port)

Table 2.1: The policy table for the learning switch.

The policy table contains two rules, represented as the two rows in the table, corre-

sponding to the two cases in the program described above. Every rule has four components:

match, test, actions and update. The match specifies the packet fields and corresponding

values that a packet should match. In this example, no matches need to be specified and

we use ∗ to denote the wildcard. The test is a conjunction of checks, each of which checks

whether the state associated with some fields in a state table equals a certain value. For ex-

ample, the test in the second rule has one check ST (dstmac).state=1, which checks whether

the state associated with the dstmac address of the packet is 1 in ST . The actions define

the actions that are applied to matched packets. In this example, the action in the first rule

floods the matched packet to all ports and the action send(ST (dstmac).value) in the second

rule first reads the value (in this case, the port) stored in ST for the dstmac address of the

matched packet, and sends the packet to that port. The update is a sequence of writes, each

of which changes the state and value associated with some fields in a state table to certain

values. For example, the write ST (srcmac):=(1,port) changes the state associated with the

srcmac address of the packet to 1 in ST , and stores the value associated with the srcmac
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address of the packet to the port of it.

2.1.4 Interpreter

The interpreter processes incoming packets at the controller using the policy table. The

pseudocode of the interpreter is shown in Figure 2.3. The interpreter matches each incoming

packet against each rule in the policy table in order. A rule is matched, if the packet fields

match the match and all checks in the test of the rule are satisfied. The first matched

rule applies actions to the packet, and state tables are updated according to the update

of the rule. Moreover, NetEgg automatically infers the rules that can be installed on the

data plane from the latest configuration of state tables. The corresponding function is

update flowtable in the pseudocode. We will describe policy execution in more detail in

Section 2.4.

Input: a packet p
for i = 1 to n do

if rule ri matches p then
execute the actions and update of rule ri on p
update flowtable(p)
return

end if
end for
apply default actions to p

Figure 2.3: The interpreter pseudocode.

Example. Figure 2.4 shows an illustrative execution for the incoming packet trace in

subfigure (a). Since the purpose of this example is to illustrate how a policy table is

executed, we assume that every packet is processed on the controller. Initially, all states

in the state table ST are 0, and all values are ⊥, meaning unknown, as shown in subfigure

(b). The first packet p1 is matched against each rule in Table 2.1 in order at the controller.

The first matched rule is the first rule, since p1 matches the match (∗) and the state of the

field dstmac of p1 in ST is 0, satisfying the check (ST (dstmac).state=0) in test of the rule.

Therefore, the rule applies the action which instructs the switch to flood p1, and updates

the state table as in subfigure (c). The second packet p2 in the trace matches the second

rule in the policy table, since the state of its dstmac is 1. The program sends p2 out to port
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2, which is stored in the state table associated with MAC address A. Applying the update

of the rule, we get the state table as in subfigure (d). The third packet p3 matches the

second rule in the policy table, and the updated state table remains the same and thus not

shown here. The last packet p4 suggests that the host with MAC address A has migrated

to port 3. This packet matches the second rule in the policy table and gets sent to port 1.

Subfigure (e) shows the state table after applying the update.

p2:<port=1, srcmac=B, dstmac=A>
p3:<port=2, srcmac=A, dstmac=B>
p4:<port=3, srcmac=A, dstmac=B>

p1:<port=2, srcmac=A, dstmac=B> MAC state value

A 0 ⊥

B 0 ⊥

(a) An example packet trace (b) The initial state table (c) The state table after p1

MAC state value

A 1 2

B 0 ⊥

(d) The state table after p2

MAC state value

A 1 2

B 1 1

(e) The state table after p4

MAC state value

A 1 3

B 1 1

Figure 2.4: An illustrative execution.

2.2 NetEgg Model

In this section, we first describe the scenario-based programming model of NetEgg, and

explain how this model allows the operator to describe example network behaviors in repre-

sentative scenarios. Second, we define the policy model, which includes the model of state

tables and policy tables. We will show how to generate a policy from scenarios in the next

section.

2.2.1 Scenario-based Programming Framework

NetEgg provides a configuration language for expressing network timing diagrams. In this

language, variables and fields of packets are typed. Examples of base types we use are

bool, PORT, IP ADDR(set of IP addresses), MAC ADDR (set of MAC addresses). A packet-type

consists of a list of names along with their types for each field in the packet. In our example,
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Packet-type P ::= 〈f1 : T1, .., fk : Tk〉
Symbolic packet sp ::= 〈sv1, .., svk〉

Action a ::= drop|flood|send(port)
|modify(f,v)|..

Event e ::= sp⇒ [a1, .., ai]
Scenario sc ::= [e1, .., ej ]
Program prog ::= {sc1, .., scn}

Figure 2.5: Scenario-based programming model.

the packet-type consists of three fields and is given by 〈port : PORT, srcmac : MAC ADDR,

dstmac : MAC ADDR 〉.

A (concrete) packet specifies a value for each field of type corresponding to that field.

A symbolic value of a type T is either a concrete value of type T, or a variable x of type T.

A symbolic packet specifies a symbolic value for each field.

We use Act to denote the set of action primitives for processing packets. For the action

primitives with parameters, the user can use either concrete values or variables of the

corresponding type.

In NetEgg, we provide a library that supports standard packet fields and actions such

as drop, flood, send(port) (send to a port), modify(f,v) (modify the value of field f to v).

Our tool also supports user-defined packet-type using customized field names and types, as

well as user-defined actions. One can generalize it by providing handlers for user-defined

fields and action primitives.

An event is a pair of a symbolic packet sp and a list of actions [a1, ..al], denoted as

sp ⇒ [a1, .., al]. A scenario is a finite sequence of events. A scenario-based program is a

finite set of scenarios.

With the notation, the scenario of Figure 2.2 can be written as in Figure 2.6.

P1, h1, h2⇒flood
P2, h3, h1⇒send(P1)
P3, h2, h3⇒send(P2)

Figure 2.6: The scenario corresponding to Figure 2.2 for the learning switch example.

A scenario is concrete if all the symbolic packets and actions appearing in the scenario

have only concrete values. A scenario-based program with symbolic scenarios can be viewed

as a short-hand for a set of concrete scenarios. This set is obtained by replacing each variable
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by every possible value of the corresponding type with the following requirements. First, a

variable can only take values that have not appeared in the scenario-based program. Second,

if the same variable appears in multiple symbolic packets and actions in the program, then

it gets replaced by the same value. Third, different variables in a program get replaced by

different values. Thus, the symbolic scenario of Figure 2.2 corresponds to Πi=0,1,2(n−i)(l−i)

concrete scenarios if the type MAC ADDR and PORT contain n and l distinct values, respectively.

The language itself is simple and can be viewed more as a configuration language rather

than a general-purpose programming language. We also build a visual tool that takes as

input scenarios drawn as actual network timing diagrams, and generate the configuration

(see Figure 2.17).

2.2.2 Policy Model

A policy consists of a policy table along with state tables that store the history of policy

execution.

State Tables. A state table is a key-value map that maintains states and values for

relevant fields. Let Tij be some base type appearing in the packet-type, S be a state set

with finitely many states, and the packet-type be 〈f1 : T1,..,fk : Tk〉. A d-dimensional state

table ST stores a state in S and a value of type Tid+1
, for all keys of type Ti1 × ..× Tid

The operations we allow on a state table are reads, checks and writes.

Let ST be a state table of type T1 × .. × Td → S × Td+1, let f1,..fd be field names

of type T1,..,Td, respectively. A read of ST indexes some entry in ST , and is of the form

ST (f1,..,fd). A check of ST checks whether the state associated with some key is a particular

state. Syntactically, it is a pair of a read and a state, written as ST (f1,..,fd).state=s, where

s ∈ S is a state. In our example, ST (dstmac).state=0 is a check with the field dstmac. In

contrast to a check, a write of a state table changes the state along with the value associated

with some key. A write of ST is of the form ST (f1,..,fd):=(sv,fv). Here, sv is either a state,

or - representing no change. fv is either a concrete value of type Td+1, - representing no

change, or a field name of type Td+1. In our example, ST (srcmac):=(1,port) is a write of

ST with the field srcmac.

We use the term configurations for the snapshots of state tables. For example, the
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initial configuration of the state table in our example maps every MAC address to (0,⊥)

as shown in figure 2.4(b). Here, we use ⊥ to represent the fact that no value is stored. A

read ST (f1,..,fd) for a packet p at a configuration c returns the state-value pair stored in

ST for the key (p.f1, .., p.fd) at c. We use ST (f1,..,fd).state and ST (f1,..,fd).value to denote

the state and value in the returned pair. A check ST (f1,..,fd).state=s is true for a packet p

at a configuration c if the state read from ST at the configuration c is s. In the example

in Figure 2.4, ST (dstmac).state=0 is true for p1 at the initial configuration (subfigure

(b)) of ST . A write ST (f1,..,fd):=(sv,fv) for a packet p writes the state-value pair to the

corresponding entry indexed by the read. Note that if sv(fv, resp.) is -, the write does not

write any state(value, resp.) to ST , and if fv specifies a field name, the value of p.fv should

be written.

Policy Tables. Given a set of state tables T , a rule r based on T has four components,

namely, match, test, actions and update. match is of the form 〈f1=v1,..,fk=vk〉, where fi is

a name of a packet field, and vi is a concrete value or a wildcard. A packet p matches

〈f1=v1,..,fk=vk〉 iff vi is a wildcard, or p.fi = vi for all i = 1 to k. The actions is a list

of actions using action primitives in Act. In the case where an action primitive accepts

parameters, the parameters can be concrete values or values read from state tables in T

using reads. test is a conjunction of checks and update is a sequence of writes, where each

check/write is of some state table in T . As an example, last two rows in Table 2.1 are two

rules. A policy table based on T is an ordered list of rules, and every rule is based on T .

A configuration C of a policy consists of all the configurations of each state table in T ,

on which the policy table is based. A packet p matches a rule at a configuration C iff p

matches match and every check in test is true for p at the corresponding configuration in

C. Suppose the first matched rule for a packet p at a configuration C is r. Then actions

of r will be executed on p and every write in update of r will be executed. We denote the

execution for packet p as C p/as−−−→PT C′, with C′ the new configuration, and as the actions

applied to p.
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2.3 Policy Generation

Given a set of scenarios describing a policy, our synthesizer first checks if there are conflicts

among the scenarios. If there are no conflicts existing in the scenario, NetEgg tries to

generate a policy consistent with all scenarios.

In this section, we first describe the objective policies NetEgg aims to generate. Then we

describe how to detect conflicts in the scenarios. Finally, we present the synthesis algorithm

for scenarios without conflicts in steps.

2.3.1 The Policy Learning Problem

First, we note that, since the input scenarios describe the behaviors of the desired policy

in representative scenarios, the generated policy should be consistent with all the behaviors

described in all scenarios.

Definition 1 (Consistency). Given a concrete scenario SC = [sp1 ⇒ as1, .., spk ⇒ ask], a

policy table PT is consistent with SC iff Ci−1
spi/asi−−−−→PT Ci for i = 1, .., k, where C0 is the

initial configuration in which every state table maps every key to the initial state 0 and a

value of ⊥. A policy table is consistent with a scenario-based program, iff it is consistent

with all the concrete scenarios represented by the scenario-based program.

As an example, the policy given in Table 2.1 is consistent with the scenario in Figure 2.2.

However, the following policy is not consistent with the scenario, since it floods the third

packet in the scenario instead of sending it to P2.

match test actions update

* ST (dstmac).state=0 flood ST (srcmac):=(1, port)

* ST (dstmac).state=1 send(ST (dstmac).value) ST (srcmac):=(-, -)

Table 2.2: An inconsistent policy table.

In addition to consistency, NetEgg also aims to generate a generalized policy from input

scenarios. For this, we aim at generating a consistent policy with minimal number of rules.

To see how this heuristic can help to generate a general policy, let us consider the 3-rule

policy table in Table 2.3. It can be verified that the policy is consistent with the scenario

in Figure 2.2. However, this policy overfits the input scenario and will not generalize to a
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fourth packet such as 〈P1, h4, h2〉, because this packet would be flooded by the policy. On

the other hand, the desired policy in Table 2.1 only uses two rules, and can handle the

fourth packet mentioned above correctly.

match test actions update

* ST (dstmac).state=0 flood ST (srcmac):=(1, port)

* ST (dstmac).state=1 send(ST (dstmac).value) ST (srcmac):=(2, port)

* ST (dstmac).state=2 send(ST (dstmac).value) ST (srcmac):=(-, -)

Table 2.3: A consistent yet restrictive policy table.

We summarize the major computational problem as the following policy learning prob-

lem.

Policy learning problem. Given scenarios SC1, ..., SCn, the policy learning problem

seeks a set of state tables T and a policy table PT based on T , such that (1) PT is consistent

with all scenarios SCi. (2) PT has the smallest number of rules among all consistent policy

tables.

2.3.2 Conflict Detection

Two concrete scenarios conflict with one another if they describe different behaviors for a

same sequence of packets. Thus, there is no policy consistent with a scenario-based program

if there exist two conflicting concrete scenarios represented by the scenario-based program.

In this subsection, we describe how NetEgg detects conflicts in the input scenario-

based program. In particular, our conflict detection algorithm checks whether there exist

two concrete scenarios represented by the scenario-based program which conflict with one

another. The conflict detection accounts for two cases. First, the two concrete scenarios are

represented by a single symbolic scenario in the scenario-based program. Second, the two

concrete scenarios are represented by two symbolic scenarios in the scenario-based program.

For the first case, let us consider two concrete conflicting scenarios S1 and S2, and

suppose they are obtained from the symbolic scenario SC. Let us further suppose that S1

and S2 first differ at the i-th event. That is, 1) all events before the i-th one are the same

in both S1 and S2; 2) the i-th event p1 ⇒ as1 in S1 and the i-th event p2 ⇒ as2 in S2

describe the same packet (i.e. p1 = p2), but different actions (i.e. as1 6= as2). In particular,
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there must exist a position k, such that the k-th action ak1 in as1 is different from the k-th

action ak2 in as2. Since both S1 and S2 are obtained from SC by instantiating the variables

in SC, both ak1 and ak2 must have the same action primitive, but different parameters that

are instantiated from a variable x in SC. Therefore, it must be the case that x have not

appeared in any symbolic packets spj in SC, for all j ≤ i. Here, spj is the symbolic packet

in the j-th event in SC. Otherwise, S1 and S2 describe different packets at event j for some

j ≤ i.

To summarize the above idea, Algorithm 1 shows the algorithm to detect conflicts for

this case.

Algorithm 1 detect conflicts case1

1: for each scenario SC do
2: for i = 1 to |SC| do
3: let spi ⇒ asi be the i-th event of SC
4: if asi contains a variable that does not appear in any of spj for j ≤ i then
5: return conflict found in scenario SC at event i
6: end if
7: end for
8: end for
9: return no conflict

Similarly, for the second case, the algorithm checks whether two symbolic scenarios

describe conflicting behaviors for a same sequence of packets.

Algorithm 2 describes the algorithm for detecting conflicts for the second case. For

every pair of scenarios SC1 and SC2 in the scenario-based program (line 1), the algorithm

checks whether there exist conflicts for the sequence of packets p1...pi in the two scenarios

(line 4-21). The algorithm first pre-processes the variables in the two scenarios (line 2)

by replacing each variable x in SC1 using a new variable x1. This pre-process accounts

for the fact that the variable x in SC1 can be replaced by a value that is different from

the value used in SC2. The algorithm further maintains a constraint C which is used for

checking whether the sequence of packets p1...pi exists. Initially, C contains the constraints

indicating that all variables are different from one another in a scenario, and also different

from all concrete values appeared in the scenario (line 3). The checking process is conducted

incrementally. In each iteration in the for loop at line 4, the algorithm checks whether the

i-th symbolic packet in SC1 can represent a packet that can also be represented by the i-th
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Algorithm 2 detect conflicts case2

1: for each pair of scenarios (SC1,SC2) do
2: replace each variable x by x1 in SC1 and x2 in SC2

3: initialize the constraint C
4: for i = 1 to min(|SC1|,|SC2|) do
5: let spji ⇒ asji be the i-th event of SCj , j = 1, 2
6: for all field f in the packet do
7: C = C ∧ {sv1 = sv2}, svj is the symbolic value of field f in spji
8: end for
9: if C is satisfiable then

10: if 1) |as1i | 6= |as2i | or 2) from some k, as1i [k] and as2i [k] have different primitives
or different number of parameters then

11: return conflict found in SC1 and SC2 at event i
12: end if
13: for each symbolic value sv1 appeared in as1i and the symbolic value sv2 appeared

in as2i at the same position do
14: if C ∧ {sv1 6= sv2} is satisfiable then
15: return conflict found in SC1 and SC2 at event i
16: end if
17: end for
18: else
19: no conflict in SC1 and SC2; continue for the next pair of scenarios
20: end if
21: end for
22: end for
23: return no conflict

symbolic packet in SC2. Therefore, the algorithm needs to check for each field whether the

symbolic values of that field can be the same in the two symbolic packets by adding the

corresponding constraint to C (line 7). If C becomes unsatisfiable, we conclude that the

packet sequence p1...pi cannot exist, therefore the algorithm reports no conflicts in SC1 and

SC2, and continues the checking for the next pair of scenarios (line 19). However, if C is

satisfiable, such a packet sequence exists, thus the algorithm further checks whether SC1

and SC2 may contain different actions for it (line 9-18). SC1 and SC2 may conflict with

each other in two cases. First, the action lists have different length in two scenarios, or they

contains different action primitives at some position, or some actions at a position accepts

different number of parameters (line 10-11). Second, the variables used as parameters at

some position in the action lists can represent different values (line 13-17). For the second

case, it suffices for the algorithm to check whether C together with the corresponding
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constraint is satisfiable (line 14).

In the following sections, we describe the synthesis algorithm for scenarios without

conflicts. We break our synthesis algorithm into steps, and discuss each step separately.

2.3.3 Policies without tests

First, let us consider the simplest case where the desired policy table does not have tests. In

this case, each rule in the policy table only consists of a match and actions. Thus, it suffices

to generate an ordered list of matches, together with the corresponding list of actions.

Generate ordered match list. We first describe the algorithm which generates a list

of matches from the input scenarios, shown in Algorithm 3. As defined in our scenario-

based programming model, a symbolic packet represents a set of concrete packets, which

is obtained by replacing symbolic values by concrete field values. Therefore, Algorithm 3

generates a match for each symbolic packet in the scenarios, by replacing symbolic values by

∗ (line 3). Moreover, to ensure that the generated match does not mismatch unrepresented

packets, the algorithm inserts the generated match to the list, such that no match under it

is completely covered (line 4). Note that for two generated matches which are overlapping

with each other, we can order either one above the other. We will explain this through an

example later in this subsection.

Algorithm 3 generate ordered match list([SCi])

1: L = ∅
2: for all packet sp = 〈fi=vi〉 in every scenario SCi do
3: let m = 〈fi=mi〉, where mi = vi if vi is a concrete value else ∗
4: insert m to L
5: end for
6: return L

Search for actions. With the ordered list of matches, it is straightforward to search for

the actions for every match in the list: we can simply search the first matched match in the

list for each symbolic packet and check consistency between the actions with the packet and

actions with the match. If actions for the match are not set, we can set them to the actions

associate with the symbolic packet. A consistent policy table is returned when all actions

in every symbolic events are consistent.

Examples. Consider a scenario describing a firewall, shown in Figure 2.7(a). Here a
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A, ip1⇒ send(1)
ip2, B ⇒ send(2)
A,C ⇒ drop

(a) A scenario for the
policy.

match actions

srcip=A, dstip=C drop

srcip=A, dstip=∗ send(1)

srcip=∗, dstip=B send(2)
(b) The policy table.

Figure 2.7: A firewall example.

symbolic packet is expressed by 〈srcip, dstip〉. The generated policy table is shown in

Figure 2.7(b). The match column of the policy table is generated by Algorithm 3. We note

that if the second rule is swapped with the third rule in the policy table, the resulted policy

table is still consistent with the scenario. The reason is that by definition the variables ip1

and ip2 only represent values other than A,B,C. Thus, the packet 〈A,B〉 is not represented

by any symbolic packets in the scenario.

2.3.4 Policies with tests

Now we consider synthesizing policies that use tests. As an example, consider the scenario

for the learning switch in Figure 2.2. One can verify that a consistent policy table for the

scenario requires tests. In fact, the only match in the match list generated by Algorithm 3

is 〈∗〉, and every packet in the scenario matches it. However, their actions differ from each

other. Therefore, in addition to the only match 〈∗〉, a consistent policy table must have

tests. In this subsection, we will assume that all tests in the policy table are given, and show

the algorithm to synthesize the policy. We will relax this assumption in the next subsection.

Sketch. Suppose the tests used in the policy for learning switch are ST (dstmac).state=0

and ST (dstmac).state=1. Composing the match and test, we know that the policy table

has the form as shown in Table 2.4.

match test actions update

* ST (dstmac).state=0 ax1
ST (srcmac):=(sx1, ux1)
ST (dstmac):=(sx2, ux2)

* ST (dstmac).state=1 ax2
ST (srcmac):=(sx3, ux3)
ST (dstmac):=(sx4, ux4)

Table 2.4: A policy table sketch for the learning switch.

Table 2.4 is a symbolic representation of policy tables. It represents actions and update
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in rules using variables. We call such symbolic representations policy table sketches (or

sketches in short). In this sketch, we derive all possible writes in update from the state

tables that are used in each rule’s tests. In this example, since the only state table accepts

keys of type MAC ADDR, the state table can be updated using either srcmac or the dstmac of

a packet. Therefore, we have two writes per rule in its update, and sx’s range over all states

(in this example, {0,1}) plus a special symbol - meaning no update, and ux’s range over all

field names plus -. For ease of presentation, we intentionally ignore potential overwrittings

due to the two writes in each rule’s update. In practice, we need to consider other orders

of writes as well. We use variables ax’s to represent possible actions for each rule. In

this example, ax’s can range from {flood, send(ST (srcmac)), send(ST (dstmac))}, which

are obtained from actions appearing in the scenario. To distinguish variables appearing in

sketches from variables appearing in the scenarios, we will call these variables appearing in

a sketch as sketch variables.

Algorithm 4 shows the algorithm of generating sketches given the match list L and

tests. The set C contains all possible reads to the state tables appearing in TESTS (line 1-

line 4), and this set is used to derive writes in each rule (line 7). The sketch is generated

by composing each match and test in TESTS (line 5-line 6), and every rule has all possible

writes derived from reads in C (line 7).

Algorithm 4 generate sketch(L, TESTS)

1: let C = ∅
2: for all state table ST appearing in TESTS do
3: add all reads ST (f1,..,fk) to C, where fi is a field name of the corresponding type.
4: end for
5: for all match match in L in order do
6: for all test test in TESTS do
7: construct a rule r = (match, test, ax, update), where ax is a new variable for actions,

and update = [readi:=(sxi,uxi)],∀readi ∈ C, sxi, uxi fresh variables.
8: add rule r to sketch
9: end for

10: end for

Search for sketch variables. Using the sketch, we can search concrete values for sketch

variables, with the goal that the obtained policy table is consistent with all scenarios. To

search for a consistent policy table, we perform a simple backtracking search algorithm over
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all sketch variables. The algorithm is shown in Algorithm 5.

Algorithm 5 search sketch([SCi], sketch)

1: stack = []
2: for all scenarios SCi do
3: for all events ej in SCi do
4: let r be the first matching rule
5: initialize actions of r and push the sketch variable to stack, if r’s actions are not

set
6: if actions of ri are consistent then
7: initialize any sketch variables in r’s update and push them to stack, if they are

not assigned values yet
8: apply update of r
9: else

10: backtrack(stack)
11: return FAILED if stack is empty else restart from line 2
12: end if
13: end for
14: end for
15: return sketch

The algorithm maintains a stack of sketch variables together with the values assigned

to them. Whenever a sketch variable is assigned a value, it ensures that the sketch variable

is pushed to the stack (line 5, 7). For each symbolic event in every scenario, the algorithm

checks consistency of the first matching rule’s actions (line 6). Whenever inconsistency

encountered (line 9), it performs standard backtracking procedure on the stack (line 10-11);

and when it is consistent, the algorithm executes the update of the rule (line 8) and carry

on to the next symbolic event.

2.3.5 Putting It Together

Now we describe the overall synthesis algorithm (Algorithm 6), using the procedures de-

scribed in previous subsections. At a high level, the synthesis algorithm enumerates sketches

by increasing the number of rules, in order to generate a consistent policy table using as few

rules as possible. For each sketch, it invokes Algorithm 5 to search for a consistent policy

using the sketch.

Example. We use the learning switch example in Figure 2.2 to illustrate how Algorithm 6

works. For the scenario in Figure 2.2, the set A contains 2|fields| = 23 = 8 possible reads,
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Algorithm 6 synthesize({SCi})
1: L = generate ordered match list([SCi])
2: let A contain all possible reads
3: for all (c, m) with ascending order of mc do
4: for all subset B ⊂ A with size c do
5: TESTS = {

∧
i readi.state=vi|∀readi ∈ B, ∀vi ∈ [0, .., m-1]}

6: generate sketch(L, TESTS)
7: if search sketch(sketch) returns a consistent policy table then
8: return the policy table
9: end if

10: end for
11: end for

each of which corresponds to a combination of field names, and a state table with the

corresponding type. Because two state tables with the same type can be merged into a

single state table with larger states, we only construct one state table per type. Then the

algorithm constructs a sketch, where each rule has c checks, and its state ranges from 0

to m-1. Thus the generated sketch has mc|L| rules. Note that, when m is 1 or c is 0, the

generated sketch does not use tests essentially, hence enumeration of the pair (c, m) can start

from (1, 2). When picking reads from A (line 4), we pick reads with high dimension first.

As an example for the learning switch, the first generated set B with size 1 in line 4 is

{ST (port,srcmac,dstmac)}, followed by other reads with dimension two.

2.3.6 Additional Heuristics

In addition to the basic synthesis algorithm described above, the synthesizer has imple-

mented other heuristics.

Lazy initialization. Algorithm 5 initializes sketch variables and pushes them to the stack

as soon as applying update of the matching rule. This eager initialization could push irrele-

vant sketch variables to the stack and increase the search depth. For example, the variables

sx2, ux2 in Table 2.4 are not used when checking consistency for any symbolic packet in

Figure 2.2, and hence irrelevant to the consistency checking. Thus, the synthesizer takes a

lazy initialization heuristic. That is, only when an uninitialized sketch variable is read from

state tables, the synthesis algorithm initializes it and pushes it to the stack.

Post processing. After synthesizing a consistent policy, the synthesizer applies additional
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post processing to the policy table in order to simplify the policy table. These includes: (1)

If a rule in the policy table is not matched by any symbolic packet in the input scenarios,

this rule can be removed; (2) The synthesizer removes writes in each rule’s update, if they

do not change the state table; (3) When multiple rules can be merged into one without

causing inconsistency, the synthesizer will merge these rules.

2.4 Policy Execution

Given the synthesized policy, our tool uses the interpreter to process packets on the con-

troller. As described in Section 3.3, the interpreter simply iterates through all rules in the

policy table and picks the first matched rule for the incoming packet. Then it updates all

state tables based on the update of the matched rule, and instructs the switch to apply the

action of the rule to the packet.

While processing packets on the controller is sufficient for executing the policy, it is not

practically efficient and degrades the performance of the network. In this section, we show

how the tool infers flow table rules which can be installed onto switches, thus reducing the

overhead of controller and delay of packet delivery.

Our key observation is the following theorem.

Theorem 1. A packet can be handled on switches if and only if handling this packet on the

controller does not change any state tables.

Indeed, if a packet p is handled on switches, the controller will not be aware of the

packet and thus the state tables remain unchanged. On the other hand, if p is sent to the

controller for execution and the updated state tables remain the same as before, we know

handling p on switches would not affect future packets execution. Therefore, it is sufficient

and necessary to install rules on switches for the packets whose execution will not change

current configuration of state tables.

Based on this observation, we have implemented a reactive installation approach which

installs flow table rules that only match necessary fields. Moreover, to keep the installed

rules up to date, we update installed rules when the policy configuration changes, and

remove invalid rules on switches. Note that, one can also infer flow table rules in a proactive
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way based on this observation. We leave the implementation of proactive approaches to

future work.

Algorithm 7 update flowtable(p)

1: let rule r be the matched rule for p in the policy table
2: if r does not update state tables, or the updated state tables remain unchanged then
3: match← 〈fi1=p.fi1 ,..,fik=p.fik〉, for all field fij appearing in the policy table
4: addmatch→ r.actions to the flow table, if the actions aj applied to p by r is supported

by the switch
5: end if
6: for all installed rule match′ → [a′1, .., a

′
l] in the flow table do

7: let p′ be a packet matches match′

8: let rule r be the matched rule in the policy table for p′

9: if r does not update state tables or the updated state tables remain unchanged then
10: update the installed rule to match′ → r.actions, if the actions aj applied to p by r

is supported by the switch
11: else
12: remove the installed rule from the flow table
13: end if
14: end for

Algorithm 7 shows the installation strategy. First the algorithm checks whether the

matched rule r for p will change the configuration of state tables. The rule r will not

change the configuration, if r does not have writes, or the updated states and values remain

the same as the old ones (line 2). If executing p would not change the configuration, the

algorithm installs a flow table rule match→ [a1, .., al] onto the switch, where match specifies

the values for fields related to the policy, and aj ’s are the actions that should be applied to

p (line 3-4). The algorithm also needs to check whether previously installed rules are still

correct. For this, the algorithm repeats a similar process for each installed rule (line 6-14).

Example. Revisit the example run in Figure 2.4. By the interpreter’s algorithm shown in

Figure 2.3, the first packet is processed on the controller, and the state table is updated

to the one shown in subfigure (c). Applying Algorithm 7, the matching rule r for p1

would be the first rule in the policy table shown in Table 2.1. Since port 2 is already

remembered for the srcmac A, r would not change the state table. Therefore, a flow table

rule fr1 = 〈port=2,srcmac=A,dstmac=B〉 →flood, which matches the port, srcmac and

dstmac of p1 is pushed down to the switch. After processing the second packet p2, the

state table is updated as in subfigure (d) and a flow table rule matching p2 can be pushed
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down. Moreover, the algorithm checks the installed flow table rule fr1. Since now p1 would

match the second rule in the policy table, and the applied action to p1 is different from the

installed flow table rule, the action of fr1 is updated to send(1).

2.5 Use Cases

In this section, we demonstrate scenario-based programming for four policies. For each

policy, we will show the packet-type we use, the scenarios that can be used to synthesize

the desired policy, and the policy table generated from the scenarios. To this end, we

manually validate that the synthesized policy is the correct policy. One can also formally

verify the correctness of the generated policy against logical specifications using control

plane verification tools such as Vericon [20] and Nice [27]. We plan to explore light-weight

verification tools for the custom policy abstraction in the future.

2.5.1 Learning Switch

First, we revisit our motivating example. Recall that we can program the learning switch

application for a single switch using a scenario in Figure 2.2. Now we show how to adapt the

scenario to program the learning switch for a network. That is, the policy needs to maintain

the port of each switch for hosts. To program this policy, we need a field specifying which

switch the packet is located. Therefore, we use the packet-type 〈switch : SWITCH, port

: PORT, srcmac : MAC ADDR, dstmac : MAC ADDR 〉. For the scenario, we simply add the

switch field to each symbolic packet in the scenario in Figure 2.2. This modified scenario

suffices for NetEgg to synthesize the network-wide learning switch policy. The scenario and

synthesized policy table is shown in Figure 2.8 and Table 2.5.

scenario 1:
s1,P1,h1,h2⇒ flood
s1,P2,h3,h1⇒ send(P1)
s1,P3,h2,h3⇒ send(P2)

Figure 2.8: Scenario-based program for the learning switch.
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match test actions update

* ST (switch,dstmac).state=0 flood ST (switch,srcmac):=(1, port)

* ST (switch,dstmac).state=1
send(ST (switch,
dstmac).value)

ST (switch,srcmac):=(1, port)

Table 2.5: The policy table for the learning switch.

2.5.2 Stateful Firewall

Now, we show how to use scenarios to program stateful firewall policies inductively.

First firewall. First, we consider a stateful firewall which protects hosts connecting to port

1 by blocking untrusted traffic from port 2. The firewall should allow all outbound packets

from port 1, and only allow inbound packets from port 2 if the sender of the packet has

received packets from the receiver before. For this policy, we use the packet-type 〈port:PORT,

srcip:IP ADDR, dstip:IP ADDR〉. We start by giving two of the most intuitive scenarios shown

in Figure 2.9. In the first scenario, the switch blocks the traffic from port 2, and the second

scenario demonstrates the case where the firewall allows the traffic from port 2. It turns out

that these two scenarios are sufficient to generate the desired policy, shown in Table 2.6.

scenario 1:
2,h2,h1⇒ drop

scenario 2:
1,h1,h2⇒ send(2)
2,h2,h1⇒ send(1)

Figure 2.9: Scenario-based program for the first stateful firewall.

match test actions update

port=1 True send(2) ST (dstip,srcip):=(1, -)

port=2 ST (srcip,dstip).state=0 drop -

port=2 ST (srcip,dstip).state=1 send(1) -

Table 2.6: The policy table for the first stateful firewall.

Second firewall. Now suppose we want to specify a policy such that it allows inbound

traffic if the sender has received packets from any protected hosts before. One may notice

that the policy should maintain a state for each host, instead of a pair of hosts. Using the

scenario-based programming, we can simply adapt scenarios from Figure 2.9 and change

the dstip of the second packet in scenario 2, as following:
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modified scenario 2:
1,h1,h2⇒ send(2)
2,h2,h3⇒ send(1)

Figure 2.10: The modified scenario for the second stateful firewall.

The synthesized policy maintains a 1-dimension state table, and is shown in Table 2.7.

match test actions update

port=1 True send(2) ST (dstip):=(1, -)

port=2 ST (srcip).state=0 drop -

port=2 ST (srcip).state=1 send(1) -

Table 2.7: The policy table for the second stateful firewall.

Third firewall. While we mostly focus on packetin events, NetEgg can be generalized to

handle arbitrary events. In this use case, we will demonstrate how to use fields in symbolic

packets to handle user-defined network events. Suppose we want to further implement

a policy such that inbound traffic is allowed until a timeout event indicates the sender

expires. For the policy, we need to handle a timeout event, and the expired host ip specified

in the event. We can use a packet-type 〈event:EVENT, eventip:IP ADDR, srcip:IP ADDR, dstip:

IP ADDR〉. Here, the field named event specifies the type of the network event, and the field

named eventip specifies the expired host. These two fields are set by the corresponding field

handlers. For this policy, we can add one more scenario exhibiting the behavior of timeout,

as in Figure 2.11. The first symbolic packet is similar to above, but since this is a packetin

event, its eventip field is not applicable (we use - to denote its value). The second symbolic

packet is the timeout event, which specifies that host h2 is expired. Since the controller

does not need to apply any actions to this event, we use nop for its action. The third packet

from host h2 now gets dropped. Scenario 1 and Scenario 2 can be adapted similarly from

Figure 2.9 and Figure 2.10 respectively.

scenario 3:
packetin,-,1,h1,h2⇒ send(2)
timeout,h2,-,-⇒ nop
packetin,-,2,h2,h3⇒ drop

Figure 2.11: The added scenario for the third stateful firewall.
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Given the three scenarios, the desired policy can be synthesized, as in Table 2.8.

match test actions update

event=packetin,
port=1

True send(2) ST (dstip):=(1, -)

event=packetin,
port=2

ST (srcip).state=0 drop -

event=packetin,
port=2

ST (srcip).state=1 send(1) -

event=timeout True nop ST (eventip):=(0,-)

Table 2.8: The policy table for the third stateful firewall.

2.5.3 TCP Firewall

In this use case, we use scenarios to program the TCP firewall that tracks the state transition

of TCP handshake protocol, and only allows packets that follow the protocol. We use the

packet-type that contains 5 fields: 〈flag:TCP FLAG, srcip:IP ADDR, dstip: IP ADDR, srcport:

TCP PORT, dstport: TCP PORT〉.

We first specify two scenarios describing two allowed packet traces by the TCP firewall

in Figure 2.12. A trivial policy which allows all packets would be generated. Next, we

add two scenarios describing packets which should be denied by the firewall. Checking the

policy, we find an undesired behavior of the generated policy, which allows the second packet

in scenario 5. We add the correct behavior as in scenario 5, and the synthesizer generates

the desired policy. The generated policy table is shown in Table 2.9, and the state table

maintains states for each tuple of srcip,dstip,srcport and dstport.

2.5.4 ARP Proxy

In this use case, we use user-defined action primitives to program the ARP proxy in

scenarios. An ARP proxy caches MAC addresses associated with IP addresses, and re-

sponds to ARP requests when the requested MAC is known. We use the packet-type 〈

srcmac:MAC ADDR, arpop:ARP OP, srcip:IP ADDR, dstip:IP ADDR〉 to specify this use case. The

first scenario we provide is similar to the scenario for the learning switch example. In

addition, we provide another scenario which describes learning srcmac from ARP reply
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scenario 1:
SYN,ip1,ip2,port1,port2⇒ allow
ACK,ip2,ip1,port2,port1⇒ allow

scenario 2:
SYN,ip1,ip2,port1,port2⇒ allow
SYNACK,ip2,ip1,port2,port1⇒ allow
ACK,ip1,ip2,port1,port2⇒ allow

scenario 3:
ACK,ip1,ip2,port1,port2⇒ deny

scenario 4:
SYNACK,ip2,ip1,port2,port1⇒ deny

scenario 5:
SYN,ip1,ip2,port1,port2⇒ allow
ACK,ip1,ip2,port1,port2⇒ deny

Figure 2.12: Scenario-based program for the TCP firewall.

match test actions update

flag=SYN True allow
ST (dstip,dstport,srcip,

srcport):=(1,-)

flag=SYNACK
ST (srcip,srcport, dstip,

dstport).state=0
deny -

flag=SYNACK
ST (srcip,srcport, dstip,

dstport).state=1
allow

ST (dstip,dstport,srcip,
srcport):=(1,-)

flag=ACK
ST (srcip,srcport, dstip,

dstport).state=0
deny -

flag=ACK
ST (srcip,srcport,dstip,

dstport).state=1
allow -

Table 2.9: The policy table for the TCP firewall.

messages. Note that in the scenarios, we use the user-defined action primitive reply, which

should construct an ARP reply message with the requested MAC address.
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scenario 1:
h1,request,ip1,ip2⇒ flood
h3,request,ip3,ip1⇒ reply(h1)
h4,request,ip4,ip3⇒ reply(h3)

scenario 2:
h2,reply,ip2,ip1⇒ flood
h3,request,ip3,ip2⇒ reply(h2)

Figure 2.13: Scenario-based program for the ARP proxy.

match test actions update

arpop=
request

ST (dstip).state=0 flood ST (srcip):=(1,srcmac)

arpop=request ST (dstip).state=1 reply(ST (dstip).value) ST (srcip):=(1,srcmac)

arpop=reply True flood ST (srcip):=(1,srcmac)

Table 2.10: The policy table for the ARP proxy.

2.6 Evaluation

We have developed a prototype of NetEgg written in Python. We evaluate NetEgg along

two dimensions: (1) the feasibility of NetEgg in its ability to implement a range of SDN

policies [20, 55, 68], (2) the performance and overhead of the synthesized policies, and

finally, (3) correctness of the flow table rule installation strategy.

2.6.1 Feasibility

We explore two aspects of feasibility of NetEgg. First, is the policy generation process

efficient in terms of execution time? Second, is NetEgg easy to use, in terms of the number

of input scenarios required and lines of configuration code?

Table 2.11 summarizes our findings in terms of execution time and scenario size. We

report the total number of events in the scenarios used to program each policy, and the

number of scenarios. We also report the computation time of the synthesizer to generate

the policy from scenarios.

We make the observation that most of the scenarios are expressed in less than 5 events,

with some outliers requiring up to 10 events. NetEgg is also efficient, and in all examples,

requires no more than 402 ms.

We further perform a “code size” comparison, by counting the number of lines in each

of our NetEgg example configurations, and compare with corresponding policies that we

implemented in Pyretic and POX. Table 2.12 summarizes our results. We observe that

32



#EV #SC Time Description

maclearner1 3 1 11 ms The illustrative example.

maclearner2 3 1 15 ms Section 2.5.1.

auth 3 2 13 ms
Deny traffic from hosts unless the hosts are
authenticated (adapted from [3]).

gardenwall 5 3 52 ms
Deny, allow or redirect traffic from a host
based on its state (adapted from [3]).

ids 3 2 15 ms
Deny traffic from infected hosts detected by
IDS (adapted from [3]).

monitor 3 2 13 ms
Monitor a host’s traffic based on external
input events (adapted from [3]).

ratelimiter 10 5 147 ms
Forward flows using different links based ex-
ternal rate limiting event (adapted from [3]).

serverlb 7 3 143 ms

Forward traffic from hosts to a single port or
forward traffic of each host to a pre-chosen
port (input as an external event) for load
balancing (adapted from [3]).

stateful firewall1 3 2 12 ms The first use case in Section 2.5.2.

stateful firewall2 3 2 16 ms The second use case in Section 2.5.2.

stateful firewall3 6 3 107 ms The third use case in Section 2.5.2.

trafficlb 7 3 402 ms
Similar to serverlb, but considers traf-
fic from source-destination pairs (adapted
from [3]).

ucap 3 2 13 ms
Block traffic from hosts based on the user’s
input (adapted from [3]).

vmprov 3 2 24 ms
Forward a host’s flow to a primary or a
backup server (adapted from [3]).

TCP firewall 9 5 64 ms Section 2.5.3.

ARP proxy 5 2 49 ms Section 2.5.4.

Table 2.11: Network policies generated from scenarios. #SC is the number of scenarios
used to synthesize the policy, #EV is the total number of events in scenarios, Time is the
running time of the synthesizer.

NetEgg is more concise, achieving a 4× and 10× reduction in code size compared with

Pyretic and POX.

2.6.2 Performance Overhead

NetEgg uses the policy table as the policy abstraction, and a generic interpreter to execute

the policy table. Unlike hand-crafted implementations which can be customized to policies,

generic execution of our abstraction of policies may incur additional overhead. We evaluate
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NetEgg Pyretic POX

maclearner2 3 17 29

stateful firewall1 3 21 58

TCP firewall 9 24 68

Table 2.12: Lines of code to implement policies in different programming abstractions. We
report the total number of events in scenarios for NetEgg, lines of code for Pyretic and
POX implementations.

the generic execution engine of NetEgg using a combination of targeted benchmarks and

end-to-end evaluation.

Cbench Evaluation

We first use the Cbench [86] tool to evaluate the response time of three policy implementa-

tions.

Experiments. We emulate one switch in Cbench, which sends one packet-in request

to the controller as soon as it receives a reply for last sent request. The response time

corresponds to the time between sending out a request and receiving its reply, which hence

includes the execution time of policy implementations. For comparison, we also evaluate

the policies’ implementations in POX.

Results. Figure 2.14 shows the response time for the policy implementations in POX

and NetEgg. We note that in all cases, the differences in response times between the

POX and NetEgg versions are within 12%. In the case of MAC learning and stateful

firewall, the differences are negligible (<1%). We observe that the response time between

implementations in POX and NetEgg is comparable, which suggests our policy abstraction

incurs reasonably small overhead on execution.

End-to-end Performance

Our next set of experiments aim to validate that the synthesized implementation closely

matches the hand-crafted implementation on end-to-end performance for network applica-

tions such as HTTP.

Experiments. We emulate a fattree topology [15] in Mininet, which consists of 20

switches and 16 hosts. We setup a HTTP server on one host, and run httperf on all other
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Figure 2.14: Response time for POX and NetEgg implementations.

hosts as clients. Httperf sends HTTP requests from the clients to the server, and measures

the HTTP connection time for each request, which is the time between a TCP connection

is initiated and it is closed. We run httperf with different rates of sending requests, and the

same number of connections (e.g. at rate 5 request/second, httperf issues 5 requests per

client). Each run starts from the initial network state. On the controller side, we run the

MAC learner policy using two implementations: POX and NetEgg.

Results. Figure 2.15 reports the average connection time over all 15 clients. The

x-axis is the rate of HTTP requests issued by the clients. As expected, the connection

time under the NetEgg implementation matches closely to that under hand-crafted POX

implementation. These results suggest our synthesized implementation is able to achieve

comparable end-to-end performance as hand-crafted implementations. This also further

verifies that execution of our policy abstraction incurs small overhead, and our flow table

rule installation is efficient.

2.6.3 Rule Installation

To achieve realistic performance, our interpreter infers and installs flow table rules. We

validate the correctness of our rule installation strategy using emulation-based experiments.

Experiments. We run the synthesized MAC learner policy on the controller, and
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Figure 2.15: HTTP connection time.

emulate a simple topology with a single switch connected with 300 hosts in Mininet [59].

We partition these hosts into two groups, with 150 hosts per group. Every host in a group

sends 100 ping messages to another host in the other group with 1 message per second.

For comparison, we run the set of experiments under two settings, one with flow table

installation and one without.

Results. We plot the average RTT for all ping messages over time in Figure 2.16.

The red line corresponds to the policy implementation without installing flow table rules.

This implementation has a high RTT consistently over time, due to the fact that every

packet is sent to the controller. The blue line corresponds to the case with installation. We

observe that only the first message experiences high latency, and subsequent messages has

significantly smaller RTT below 0.1 ms. This fact suggests that our installation strategy is

able to infer flow table rules from the first incoming packet-in event, and correctly install

the rules onto the switch. Hence, subsequent packets are all processed by the switch.

2.7 User Study

To understand the feasibility of the proposed approach in practice, we conducted a user

study involving 12 master and PhD students, all majored in Computer and Information

Science, in the fall semester of 2015. In this section, we describe the main results we found

36



0.01 

0.1 

1 

10 

100 

1000 

0 10 20 30 40 50 60 70 80 90 

R
TT

 (
m

s)
 

Time line (second) 

no-install 

install 

Figure 2.16: Effects of flow table rule installation.

in the user study.

2.7.1 Setup

In this user study, we asked the students to program three SDN policies: the stateful firewall,

the learning switch, and the TCP firewall. All students were required to program these

policies in both POX and NetEgg. For students who may not know how to program SDN

using POX, we refer them to the online resources on programming in POX [5, 6, 8, 11, 59],

and they needed to learn the use of POX. We developed a web-based GUI for NetEgg.

Figure 2.17 shows a snapshot of the GUI. This GUI allowed the students to draw the

scenarios, and then presented the generated policy table in a visual way. We prepared a

webpage of basic instructions on NetEgg for the students’ reference.

To quantify the feasibility of NetEgg, we considered two major objectives. First, we

measured how much time the students spent on each programming assignment using both

POX and NetEgg. For this measurement, we asked all students to time the programming

time of each programming assignment by themselves, and submit it along with the assign-

ments. Second, we measured how intuitive of NetEgg the students found compared to POX.

For this metric, we asked the students to report how much time they spent in learning the

programming of POX and NetEgg. Moreover, we asked the students to rate the “intuitive-
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Figure 2.17: Web-based GUI of NetEgg.

ness” of POX and NetEgg after all programming assignments, from score 0 (least intuitive)

to 10 (most intuitive).

2.7.2 Results

Programming time

Figure 2.18 shows the average programming time of the three policies in POX and NetEgg.

We make the following two observations.

First, NetEgg may reduce the programming time for some policies. Specifically, we

observed that NetEgg was able to reduce the programming time of the first two network

policies by 50% and 72%, respectively. To understand why NetEgg was able to achieve

this reasonably good reduction in programming time, we further analyzed the programs the

students wrote. We found that the scenario-based programming approach offered by NetEgg

was able to reduce the manual efforts of writing low-level code. For example, the students

wrote from 29 lines to 150 lines of code for the stateful firewall policy, while they used no

more than 3 scenarios to generate the policy. One of the reasons why the students needed

to write considerably more code in POX is that they needed to handle low-level semantics

offered by POX as well as to come up with imperative code in order to implement the policy,
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Figure 2.18: Programming time comparison.

which could be simplified by NetEgg by allowing them to simply provide the behaviors of

the policy.

Second, NetEgg may result in more programming time on complicated policies. In

particular, the students spent 6% more time in programming the TCP firewall on average

compared to the programming time in POX. This is perhaps not surprising, given that

our heuristics aim at generating the smallest policy that is consistent with the scenarios.

Therefore, as commented by the students on the TCP firewall policy, they spent more time

in coming up with the right scenarios to tweak the generated policy table, even when they

knew what the correct policy table should be. This observation may suggest a plausible

improvement to NetEgg, which is to allow the users to provide additional information (e.g.

the state tables used in the policy) to the synthesizer in order to accelerate the programming

process.

Intuitiveness

We first report the time the students spent on learning how to program in POX and NetEgg.

Most students indicated that they spent several hours in learning POX, while they spent

less than one hour in learning NetEgg. In particular, 4 out of the 12 students reported

the estimated number of hours they spent in learning. On average, the learning time of
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POX is about 2.6 hours, and that of NetEgg is about 0.9 hours. Note that all students

were majored in Computer Science, and had good programming background. We believe

that the reduction of learning time would be greater for the users who may not be trained

in programming. This result suggests that NetEgg comes with a much smoother learning

curve compared to traditional programming approaches such as POX.

Second, we present the “score of intuitiveness” reported by the students. 11 students

reported their scores for POX and NetEgg, with 0 being the least intuitive, and 10 being

the most intuitive. Figure 2.19 shows the scores by the 11 students.

Figure 2.19: The “Score of intuitiveness” rate.

The average score of POX is 4.7, while the average score of NetEgg is 6.9. Furthermore,

every student rated NetEgg higher than POX. This result suggests NetEgg may be more

intuitive than traditional programming approaches.

The results of the preliminary user study seem promising. The user study suggests that

NetEgg was able to reduce the programming time for 2 out of 3 policies in our user study.

Furthermore, NetEgg was shown to be a more intuitive programming approach.
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2.8 Discussion

Policy Correctness. NetEgg generates network policies directly from example behaviors,

which may not cover all possible behaviors of the desired policies. Therefore, while NetEgg

aims at generating a policy which is consistent with all scenarios, NetEgg does not guarantee

the correctness of the generated policy.

To debug/verify the generated policy, there are other orthogonal debugging and veri-

fication tools. For example, one may use ATPG [95] and BUZZ [38] (which is based on

KLEE [26]) to generate test cases for the policy; Vericon [20] and Nice [27] can be used to

verify the correctness of the generated policy.

As one possible future work, it is interesting to explore the possibility of programming

network policies in a hybrid programming framework similar to the Sketch [80] framework,

in order to ensure the correctness of the generated policy. For example, the user may also

provide the synthesizer the information such as the state tables and the number of states

that should be used, in addition to the example behaviors.

Comparison with CEGIS. In NetEgg, we use customized heuristics for the policy learn-

ing problem, which can also be solved using other program synthesis techniques. As a

comparison, we also implemented a counter-example guided inductive synthesis (CEGIS)

approach [80] using the solver Z3 [35]. We observe that our customized algorithm works

more efficiently. In particular, the CEGIS approach used 371 ms, 536 ms and 281 ms for

the learning switch, stateful firewall and ARP proxy policy, while our customized heuristics

used 11 ms, 12 ms and 49 ms respectively.

Limitations. NetEgg aims at generating stateful policies which can be expressed by our

policy tables. Therefore, NetEgg is not good for policies that is hard to be expressed

by a policy table. For example, policies such as traffic engineering often require solving

optimization problems, which cannot be synthesized by NetEgg.
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Chapter 3

NetQRE: Specification and

Implementation for Quantitative

Network Policies

Network management today often requires dynamic updates in response to traffic engineer-

ing and security events. For example, in data centers, heavy hitters [16, 91] need to be

detected in real-time and bandwidth limits may be imposed on them. Within an enterprise

network, users can be rate-limited if they exceed quotas on their application usage. Net-

work traffic anomalies that are detected require immediate mitigation strategies to block

potential security attacks [41].

Decisions for such updates are based on quantitative network policies that capture logic

based on a variety of network and application-level performance metrics. Quantitative

network policies involve two aspects: (1) monitoring a variety of network and application-

level performance metrics, and (2) real-time network configuration updates in response to

monitoring results in order to meet performance and security goals.

Today, there are several point-solutions to support certain aspects of quantitative net-

work policies. However, they suffer from one or more of the following limitations. First, a

large majority of network measurement tools focus on flow-level measurements [32, 36, 37,

89, 91, 92] that do not capture application-level or session-level semantics. This precludes

a range of policies that are application-dependent, for example, rate-limiting users based
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on their VoIP call usage. Second, these tools tend to provide ad-hoc solutions that are dif-

ficult to generalize or customize. Recently, programming frameworks for software-defined

networks (SDN) have been proposed, such as Frenetic [40], Pyretic [67], FlowLog [72].

However, they do not support integration with queries beyond basic flow-level counters,

and there is no language support to capture quantitative policies at the application or

session level.

To address the above limitations, in the chapter we present NetQRE, a practical tool

aimed at simplifying the specification and implementation of quantitative network policies.

Our proposal is based on the observation that traffic patterns such as a TCP connection and

a application-level session can be specified using regular expressions, which are an abstrac-

tion that programmers find natural to use, as shown by its usage in network management, for

example, application-level packet classification [2], signature-based attack detection [4, 76].

While preserving the simplicity of regular expressions, our language extends regular expres-

sions in support for quantitative network policies and thus allows programmers to reason

about interactions across packets, and express a variety of quantitative network policies

that span multiple packets grouped into flows and application-level sessions.

Specifically, we present the following contributions in this chapter.

• NetQRE language (Section 3.2). We present the design of the NetQRE declarative

language for monitoring network packet streams based on a novel theoretical foundation

of parameterized quantitative regular expressions (PQRE). PQRE extends prior work on

QRE [18], which provides a formal foundation of combining traditional regular expressions

with numerical computations. NetQRE integrates regular-expression-like pattern matching

at flow-level and application-level payloads with aggregation operations such as sum and

average counts.

• Compilation and efficient runtime system (Section 3.4). We developed a compiler

that can automatically generate efficient NetQRE implementations with low memory foot-

print. As part of the compilation process, the compiler automatically infers the state that

needs to be maintained for NetQRE programs, and optimizes the compiled imperative code.

A NetQRE runtime then executes the generated code efficiently. In fact, this process also

eases the burden on programmers having to handwrite optimized versions in low-level code.

• NetQRE implementation and evaluation (Section 3.5 and Section 3.6). We have
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developed a NetQRE prototype which we extensively evaluate over a range of quantitative

network policies. As a proof-of-concept deployment, we consider an evaluation scenario

where the NetQRE runtime taps into mirrored traffic within SDN switches, and is inte-

grated with an SDN controller. Our implementation allows complex traffic monitoring to

happen close to the switches, but permit global updates to be enforced based on quantitative

policies, without the controller having to process all network traffic. Our evaluation results

demonstrate that NetQRE can express a wide range of quantitative network policies that

cannot be naturally specified in other systems, results in performance that is comparable

with optimized manually-written low-level code and is significantly more efficient compared

to monitoring solutions based on Bro [73] and OpenSketch [91].

3.1 Overview

Figure 3.1: NetQRE architecture.

Figure 3.1 shows the architecture of NetQRE. To program a quantitative network policy,

a programmer views the input as the entire stream of packets, instead of single incoming

packets. The programmer then simply specifies this policy on the input stream in a declar-

ative fashion. The NetQRE compiler automatically generates efficient low-level imperative

code that implements the specification. At runtime, each incoming packet is parsed, and

headers are extracted into a format that can be referenced within each NetQRE program.

The execution on the packet involves updating any state in the NetQRE runtime, followed
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by executing the actual program itself to generate output. The NetQRE tool can be de-

ployed in different settings, for example, a tap on a SPAN port analyzing mirrored traffic,

an inline solution, or running in the cloud as a virtualized middlebox. Our language design

and compiler is agnostic to the deployment setting.

3.1.1 Examples

We present three example NetQRE programs to highlight some of its key features. We start

with a simple example of packet counting, before progressing to more complex ones. The

actual language definition and more complex use cases will be presented in Section 3.2 and

3.3 respectively.

Example 1. In our first example, we consider a simple example of counting the number

of packets seen so far. In an imperative language, one needs to maintain a counter that

remembers the number of all packets, and increment the counter as every packet comes

in. To program in NetQRE, one can simply iterate the stream of packets, and count the

number in a declarative way as shown below:

sfun int count = iter (/./?1 , sum);

This program defines a stream function, as specified by the keyword sfun. This implicitly

defines an input stream which is the stream of packets. This function outputs a value of

type int, and count is the name of the stream function. There is no explicit argument

specified in the declaration of count . Its body is an expression followed by ‘=’.

To understand the definition of the function, we first explain the expression /./. This

expression defines an enhanced regular expression which we detail in Section 3.2. In this

regular expression, . is a predicate that matches every single packet. A successful match

will return a value of 1.

The outer function iter has two arguments, with the first being the function described

above, and the second an aggregation operator sum. The iter function splits each input

stream into multiple sessions, such that applying its first argument to every session results

in a valid return value, and then sums up all the return values. In this case, since the inner

function returns a valid value 1 when reading a single packet, the iter function iterates all
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packets in the stream and applies the inner function. In other words, the whole function

counts the number of packets in the stream.

Example 2. Our second example computes the average number of packets in a TCP

connection between the source IP-port pair (1.2.3.4, 80) and an arbitrary destination

IP-port pair (y, p). For ease of exposition, we assume that all connections start with a

SYN packet and end with a FIN packet in this example. We defer more complex examples

involving sequence numbers to later in Sec. 3.3.

sfun int avg _conn_len(IP y, PORT p) =

filter_tcp(srcip=’1.2.3.4 ’, srcport =80, dstip=y, dstport=p

) >>

iter(tcp_conn_len , avg);

This function uses two expressions separated by the stream composition operator >>. At

a high level, this function first filters all TCP packets with corresponding IPs and ports from

the stream using the function filter_tcp, and applies the second expression to the TCP

packet stream. The second iter expression iterates through all connections in the stream

and counts the number of packets in every connection using the function tcp_conn_len,

and returns the averaged value.

The function tcp_conn_len calculates the number of packets transmitted in each TCP

connection. The regular expression [syn==1][fin==0]*[fin==1] specifies a TCP connec-

tion pattern, by our assumption for this example. This pattern matches a stream if it starts

with a SYN packet, followed by a sequence of non-FIN packets and ends with a FIN packet.

For a stream that matches this pattern, the function returns the number of packets in the

stream, by using the previously defined function count.

sfun int tcp_conn_len =

/[syn ==1][ fin ==0]*[ fin ==1]/? count;

Example 3. In our third example, we show how to use previously defined functions and

aggregation expressions in NetQRE to compute the largest possible average connection

length among all destination IP-port pairs (y, p). The program has just a single expression,

which calls avg_conn_len on all IP-port pairs, and returns the maximal among all return

values from the calls, as shown below.
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sfun int max _conn_len =

max{avg _conn_len(y, p) | IP y, PORT p};

This example is significantly more complex to write in an imperative language. A typical

implementation needs to maintain a state and a counter for each destination IP-port pair,

in order to remember the state of the connection as well as the running count of the number

of packet in the connection. In order to compute the average length, the program needs

to additionally maintain the number of connections. Every time a connection ends, the

imperative program needs to update maximum length over all destination IP-port pairs.

However, with NetQRE, all functionalities can be implemented in an intuitive and concise

way as illustrated above. The complexities of maintaining states and optimization of the

implementation is abstracted away and handled automatically by our compiler.

3.2 The NetQRE Language

In NetQRE, a packet is modeled as a sequence of bytes, and we use parsing functions

to extract information from the packet. Common parsing functions include srcip which

returns the source IP of the packet, srcport (source port), syn (SYN bit), data (bytes in

payload), and time (the time stamp on receipt of the packet). The parsing functions can

be customizable by the user, for example, to extract application-level headers.

Values, variables and functions in NetQRE are typed. NetQRE offers basic types, such

as int, bool, string, as well as a set of domain-specific types, such as IP (IP addresses),

Port (TCP and UDP ports), packet (all packets), and action. The action type consists of

pre-defined functions that either generate alerts or send updates to switches. NetQRE also

provides high-level types such as Conn (tuple of source IP-port and destination IP-port),

which is used for TCP and UDP connections.

NetQRE offers a convenient way to write stream functions to process packet streams.

A stream function takes as input a stream of packets, and produces as output values (e.g.

monitoring results to an application)/ actions (e.g. alerts to the controller) and packets

(e.g. packets filtered from an application). A stream function can be specified as below.

sfun type func_name(type var) = exp;

47



Predicate P ::= . | [field = value]
| [field = variable]
| P&P | (P ‘||’ P ) | !P

Regular Exp. re ::= P | re re | re * | re ‘||’ re
Conditional cond ::= exp ? exp | exp ? exp : exp
Aggregation agg ::= aggop { exp | type variable }

aggop ::= sum | avg | max | min
Split split ::= split(exp , exp, aggop)
Iteration iter ::= iter(exp, aggop)
Composition comp ::= exp >> exp
Expression exp ::= value | action

| exp op exp | op exp
| re | cond | agg | split | iter

Figure 3.2: Syntax of NetQRE expressions.

The stream function declaration includes the keyword sfun, returned type of the stream

function, followed by the name of the function. Any other arguments are specified following

the function name. The body of each stream function (right-hand-side to ’=’) consists of

expressions which are used to specify the functionalities of the stream functions.

Figure 3.2 shows a summary of the syntax of NetQRE expressions. Expressions in

stream functions are based on the theoretical foundations of quantitative regular expressions

(QRE) [18], a novel proposal that integrates regular expressions with numerical computa-

tions. In the rest of this section, we describe the features of NetQRE expressions in stages.

We first introduce how to use an extension to regular expressions to detect patterns of the

input stream. Second, we discuss how to associate values and actions for the stream. Fi-

nally, we describe a set of high-level operations that allow modular programming of stream

functions.

3.2.1 Pattern Matching over Streams

The basic feature of NetQRE is to detect the patterns of the input packet stream. As

the basic building block, NetQRE uses an extension of regular expressions, to which we

refer as parameterized symbolic regular expressions (PSRE), for pattern matching over the

input stream. Regular expressions (RE) are widely used for pattern matching over strings

(sequences of bytes). Typically, a RE uses a fixed finite alphabet, and the atoms in a RE

are symbols in the alphabet. In NetQRE, a PSRE generalizes a RE in the two ways.
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First, the atoms in a PSRE are predicates over packets instead of single symbols, which

allows a PSRE to handle very large and potentially infinite alphabet. This property makes

PSRE an appealing fit for network policies, since the space of packets is often very large

and typically one is only interested in the values of some fields in a packet (e.g. the source

and destination) instead of the whole packet itself.

Second, PSRE allows the use of parameters to represent unknown values in the pred-

icate. With this generalization, a PSRE can detect a variety of patterns using different

instantiation of the parameters. As a result, it allows the programmer to specify applica-

tions such as counting the number of distinct IP addresses appeared in the stream, which is

hard, if not impossible, to be specified without parameters, because no concrete predicates

can be defined without knowing those IP addresses at runtime.

Predicate. A basic packet predicate [f = v] checks whether the value in the field f of a

packet is v. As an example, the predicate [srcip=‘1.0.0.1’] matches all packets whose

source IP address is 1.0.0.1. As an example of the use of parameters, [srcip=x] defines

a function from the domain of x (i.e. IP addresses in this case) to a concrete predicate over

packets. We also use . to denote the predicate that matches all packets. Predicates can

be composed using standard boolean combinations. NetQRE also provides handy macros

for widely used predicates. For example, is_tcp(c) is a short-hand for the predicate that

matches a TCP packet in the connection c.

PSRE. Like REs, the basic operations for a PSRE are concatenation, union and Kleene

star. For example, /[syn=1][syn=0]*/ matches a stream of packets where the first packet

is a SYN packet followed by a sequence of non-SYN packets (including 0 non-SYN packets).

Note that, syntactically, predicates are enclosed in square brackets and a PSRE is enclosed

in a pair of slashes in NetQRE, and * is the Kleene star operator. To illustrate the use

of parameters, consider the example to count distinct source IP addresses in the stream.

The core PSRE to implement this example is the function exist(x) which checks whether

a source IP x appeared in the stream. The function can be specified using the PSRE as

below.

sfun bool exist(IP x) = /.*[ srcip=x].*/;

We defer the discussion of the full expression for this example in Section 3.4.4.
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Semantically, a PSRE defines a function that maps the values of its parameters and the

input stream to a boolean value. Given an instantiation of all parameters in a PSRE using

concrete values, the PSRE accepts a regular set of streams, which defines the domain of the

PSRE under the instantiation.

3.2.2 Conditional Expressions

Given the pattern matching capability for the input stream, it is natural to use condi-

tional expressions to incorporate PSRE with other values and actions in order to assign

cost/generate actions to the stream.

In NetQRE, a conditional expression has the form exp? exp1, where, exp is an expres-

sion that returns boolean values such as a PSRE defined above, and exp1 are expressions

in NetQRE. A stream evaluated to true by exp will be applied to exp1, otherwise this

expression is not defined and returns undef.

For example, the expression /./?1 returns 1 if the stream matches the PSRE /./ (i.e.

the stream consists of a single packet), otherwise it returns undef; the expression /.*/?

size(last) returns the size of the last packet in the stream. The keyword last denotes the

last received packet in the input stream. As another example, (count>k)?alert returns

an action alert when the total number of packets in the stream is larger than k. Here,

count is a stream function that counts the number of packets in the stream, and alert is

a pre-defined action to generate an alert event, for example, to a controller node.

A conditional expression can also be specified as exp? exp1: exp2, which applies exp2

to the stream if exp is not satisfied. To ensure the consistency, exp1 and exp2 should return

the same type for the stream. As an example, the expression /[srcip=‘1.0.0.1’]/?1:0

returns 1 if the stream contains a single packet with source IP 1.0.0.1, and it returns 0

if the stream contains multiple packets, or the only packet in the stream does not have the

source IP.

Given concrete values of the parameters of a conditional expression exp? exp1, the

domain of it is defined as domain(exp)
⋂
domain(exp1). For the ternary conditional ex-

pressions exp? exp1: exp2, its domain is defined as (domain(exp)
⋂
domain(exp1))

⋃
(domaim(exp)

⋂
domain(exp2)).
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3.2.3 Stream Split

In many network applications, the input stream consists of multiple phases. For example,

a VoIP call splits into three phases as shown in the motivating example. It is convenient to

handle different phases of the stream separately, and combine the results of each phase in

a modular way. Following the operators defined in Quantitative Regular Expressions [18],

NetQRE uses the split operator to split the stream and compose two stream functions.

A stream split expression has the form split(f,g,aggop), where f and g are two

NetQRE expressions, and aggop is an aggregation operator such as sum, avg (average),

max, and min.

Given concrete values of all parameters, and an input stream ρ, a split function splits

ρ into two substreams ρ1 and ρ2, such that f is defined on the first substream ρ1 and g is

defined on ρ2. f and g are applied respectively to the two substreams, and the returned

value is aggregated using aggop, as the return value of split(f,g,aggop). The split

operation is natural quantitative generalization of the concatenation operation in regular

expression, and Figure 3.3 illustrates how a split expression works.

Figure 3.3: Illustration of split.

Note that, in order to return a unique value for a split expression, it is required that

the splitting is unambiguous. That is, for all input streams and all values of parameters

in the expression, there is at most one way to split stream, such that ρ1 and ρ2 are in the

domain of f and g, respectively. The property of unambiguity can be checked efficiently at

compile time [18]. When no unambiguous splitting is possible, the split expression returns

undef for the input stream.

As an example of split, consider the example of counting the number of packets since
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the last SYN packet in the stream. Naturally, one can split the stream into two substreams

separated by the last SYN packet, and count the number of packets in the second substream,

as shown in the following expression.

split(any?0, last_syn?count , sum)

Here, any is the PSRE /.*/ that matches any packet streams, and last_syn is the PSRE

/[syn=1][syn=0]*/ that matches a stream starts with a SYN packet and followed by non-

SYN packets. Putting together, the split expression splits the input stream before the

last appearance of a SYN packet. Note that the first substream is assigned the value 0,

while the second substream is applied to the count function which is first introduced in

Section 3.1.1.

3.2.4 Stream Iteration

A network application often requires to iterate over the input stream. For example, counting

the number of packets in the stream requires to iterate over all single packets.

Similar to the split expression, NetQRE offers the iter operator to iterate over the

stream. An iter expression is of the form iter(f,aggop), where f is an expression in

NetQRE and aggop is an aggregation operator. The iter expression splits the input stream

into multiple substreams, such that f is defined on each substream. It then iterates through

all substreams and evaluates f on each substream, and finally aggregates the return value

on each substream using the aggregation operator. The iter operator is a quantitative

generalization of the Kleene star operation, and Figure 3.4 illustrates this process. Again,

the splitting is required to be unambiguous for all input streams to f.

Figure 3.4: Illustration of iter.
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As an example, the function count that counts the number of packets in the stream

sfun int count = iter (/./?1 , sum)

splits the stream into single packets, and the inner expression returns 1 for each single

packet. As a result, the whole iter expression counts how many packets in the stream.

3.2.5 Aggregation over Parameters

Aggregation is a common feature that many policies share. For example, computing the

average flow size needs to aggregate the average size across multiple flows. NetQRE offers

high-level aggregation expressions to aggregate functions over parameters.

Aggregation expressions are of the form aggop{f | T x}, where x is a parameter, with

its type T, and f is an expression where the parameter x appears in it. Intuitively, the aggre-

gation expression goes through all possible values of x, and evaluate f using the substituted

value for x, and finally aggregates all valid returned values using the aggregation operator

aggop. Given concrete values for parameters in the aggregation expression ( note that x

is not considered as a parameter in the aggregation expression), it is required that f has

the same domain across all values for x, which is defined as the domain of the aggregation

expression. Revisiting the example of counting distinct source IP addresses in a stream, we

can use the expression sum{exist(x)?1:0 | IP x}. Note that the domain of the expression

exist(x)?1:0 is all the streams, and thus the aggregation expression above is defined on

all input streams.

3.2.6 Stream Composition

Typically the input stream consists of packets from multiple sources and destinations. Of-

tentimes, the programmer only wants to handle a stream from a particular source, for

example. NetQRE offers the stream composition operator >> that allows to preprocess the

stream before applying another stream function.

Stream composition expressions are of the form f >> g where f and g are two stream

functions. The stream composition allows the processing of a stream using the first stream

function f repeatedly on every prefix of the stream, and the returned outputs yield a new

stream that is then piped as the input stream to a second stream function g. For example,
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if the stream contains two packets (P1, P2), f is first applied to P1 as a single-packet stream,

and then (P1, P2). The output of f on the two substreams is then piped to g.

We define the domain of a stream composition expression to be all streams.

Stream composition is useful when the stream of packets need to be preprocessed in

order to filter related packets for further processing. For example, counting the number of

all packets in a TCP connection c can be specified using filter_tcp(c)>> count, which

first filters all TCP packets in the connection c using the function filter_tcp, and then

counts the filtered stream using count. The function filter_tcp is defined as follows:

sfun packet filter_tcp(Conn c) =

/.*[ is_tcp(c)]/? last;

Filter functions are convenient and used extensively in our use cases. As a short-hand,

NetQRE uses filter(p) for the filter function that filters packets satisfying the predicate

p. For example, the above filter function can be abbreviated as filter(is_tcp(c)).

Stream composition can also be used to filter packets according to timestamps. NetQRE

builds in two filter functions based on timestamps. The recent(t) function filters the

stream in the recent t seconds, and the every(t) function periodically filters the stream

in every t seconds. For example, recent(5)>>count counts the number of packets in the

recent 5 seconds.

3.3 Use Cases

We provide use cases, ranging from flow-level traffic measurements, to complex examples

involving application-level content analysis and dynamic updates.

3.3.1 Flow-level Traffic Measurements

We highlight three measurement tasks that have been proposed recently as a means to do

flow scheduling and attack detection.

Heavy hitter. Heavy hitters [37] are flows that consume bandwidth larger than a threshold

T. A key step to identify a heavy hitter is to count the size of a flow. In this example, we

consider a flow as a source-destination pair. A natural way to specify this functionality is
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to first filter all packets from a source x to a destination y, and then count the size of the

filtered stream.

sfun int hh(IP x, IP y) =

filter(srcip=x, dstip=y) >> count_size;

hh first filters packets based on the source and destinations IP, and second, the filtered

stream is piped into count_size which counts the size of all packets in the stream. Due to

space limits, we do not show the definition of count_size which is similar to that of count.

Second, to alert a heavy hitter in real time to the controller, we can use the following

program.

sfun action alert_hh =

(hh(last.srcip , last.dstip)>T) ?

alert(last.srcip , last.dstip);

The function alert_hh checks for every newly received packet (i.e. last in the stream)

that whether its flow reaches the threshold T, and issues an alert correspondingly. By

further applying the time-based filtering every(5)>>alert_hh, one can detect heavy hitters

in every 5 seconds.

Super spreader. A super spreader [91] is the host that contacts more than k distinct

destinations during a time interval. Like the use case of heavy hitter detection, a key step

is to count how many distinct destinations a source x contacted. The following NetQRE

program does this counting.

sfun int ss(IP x) =

sum{ exist(x, y)?1 | IP y};

The function exist(x,y) checks whether the source-destination pair (x,y) appeared

in the stream. The ss function uses an aggregation function sum to aggregate all possible

destinations, and thus gives the total number of distinct destination addresses x contacted.

Similar to heavy hitter detection, we can use stream composition to filter the input

stream based on time as well as traffic types.

Entropy Estimation. This case measures the entropy of the traffic [58], defined as

−
∑

i fi log fi, where fi is the frequency of the appearance of an IP address. We first
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need to count the number of packets from a source x, and then compute the frequency as

follows.

sfun int num_pkts_from(IP x) =

filter(srcip=x) >> count;

sfun int freq(IP x) =

num_pkts_from(x) / count;

Note that the function count in num_pkts_from only counts the number of packets from

source x, while it counts the number of packets in the entire stream in the function freq.

Now the entropy is computed following its definition, as in the following program.

sfun int entropy =

-sum{freq(x)*log(freq(x)) | IP x};

3.3.2 TCP State Monitoring

We next showcase applications that rely on monitoring the states within a TCP flow.

SYN flood attacks. In this example, NetQRE is used to detect SYN flood attacks by

counting the number of incomplete TCP handshakes in a time interval. We consider an

incomplete TCP handshake as a packet trace consisting of a SYN packet and a SYNACK

packet, with corresponding sequence number and acknowledge number, but does not have

a further ACK packet to complete the handshake. As the key step, the following program

counts the number of incomplete handshakes, assuming that the input stream consists of

TCP packets between the same source and destination.

sfun int bad_tcp_pat(int x, int y) =

concat(syn(x), synack(y,x+1), no_ack(y+1));

sfun int incomplete_handshake_num =

sum{bad_tcp_pat(x,y)?1 | int x, int y};

The function bad_tcp_pat specifies the pattern of an incomplete handshake: there is

a SYN packet with a sequence number x in the stream, followed by a SYNACK packet

with acknowledge number x+1 and sequence number y, and then followed by packets that

do not include an ACK with acknowledge number y+1 to complete the handshake. The
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sum aggregation in incomplete_handshake sums up the number of appearances of such

patterns for all x and y. Using the stream composition of filtering functions based on time

and packet type, the complete function can be specified as follows:

sfun int syn_flood(Conn c) =

recent (5) >>

filter_tcp(c) >>

incomplete_handshake_num >T?block(c.srcip);

Completed flows. Our next example counts the number of legitimate flows that are

completed, delineated by a SYN at the beginning, and ending with a FIN. Note that the

last iter uses the regular expression which matches a stream ending with a SYN and a

FIN packets, and no SYN-FIN pairs appear before. Therefore, the iter expression splits

the entire (filtered) stream into sessions where each session contains exactly one complete

flow.

sfun int count_flow(Conn c) =

filter_tcp(c) >>

filter(flag=SYN || flag=FIN) >>

iter (/[ fin =1]*[ syn =1]*[ syn =1][ fin =1]/?1 , sum);

3.3.3 Application-level Monitoring

Our final example revisits the Voice-over-IP (VoIP) usage usecase in Section 3.1.

Let us first focus on the function to monitor the usage of a VoIP call based on a SIP

connection sip_conn and media connection m_conn. As introduced in Section 3.1, a VoIP

call consists of three phases; and a moludar programming way is to handle the three phases

using three stream functions, and then compose them using the split operator. The funtion

is shown below.

sfun int usage_per_call(Conn sip_conn , Conn m_conn , string

user , string id) =

split(init(id ,user ,m_conn)?0,

call(m_conn)?count_size ,

57



end(id)?0, sum);

Here, init, call and end are simply the PSREs that capture the patterns of each phase.

Note that the init and the end phase return a value 0, and only the usage of the call phase

is counted, as required.

Next, a programmer can view the traffic using the SIP connection sip_conn and the

media connection m_conn as a sequence of calls. Using the iter oerator, the programmer

can easily aggregate the usage of all calls in the traffic, as shown below.

sfun int usage_per_conn(Conn sip_conn , Conn m_conn , string

user , string id) =

filter_sip(sip_conn , m_conn , user , id) >>

iter(split(any?0, usage_per_call(sip_conn , m_conn , user ,

id), sum),sum);

Note that we first filter all traffic that belongs to sip_conn or m_conn, in order to get the

stream of interest. This filtering may result in non-VoIP traffic between two VoIP calls, and

thus we simply compose the PSRE any with usage_per_call inside the iter expression,

to handle any traffic between two calls.

Now we can aggregate the usage for each user across multiple connections and calls

using the aggregation operation, and further compute the average usage over all users, as

shown below.

sfun int usage_per_user(string user) =

sum{usage_per_conn(sip_conn , m_conn , user , id) | Conn

sip_conn , Conn m_conn , string id};

sfun int average_usage =

avg{usage_per_user(u) | string u};

Suppose we need to send an alert to the controller if a user’s usage is larger than five

times of average usage, we can simply specify the policy as below.

sfun action alert_high_usage(string user) =

(usage_per_user(user) > 5* average_usage) ? alert(user);

58



3.4 Compilation Algorithm

We next describe how to compile a NetQRE program into an efficient executable that can

run with low memory footprint. Typically the stream of packets is very large, thus it is

not feasible to store the entire stream of packets. Therefore, the compiled program should

evaluate incrementally on each single incoming packet without storing the history of the

stream. To achieve this goal, we have to address the following challenges. First, the compiled

program needs to maintain parameters in NetQRE in a succinct way. Second, in order to

implement the semantics of split and iter, these operations have to be performed in a

single online pass over streaming packets. Lastly, the compiled program needs to handle

aggregation expressions over parameters.

3.4.1 Compilation of PSRE

First, we describe the algorithm for compiling a PSRE, as the basic building block for

stream functions. Similar to traditional RE, a PSRE can be translated to an equivalent

finite state machine, which we refer to as parameterized symbolic automaton (PSA). For

example, consider the following PSRE /.*[srcip=x].*/. Intuitively this PSRE checks

whether there exists a packet with source IP x in the stream. Its corresponding PSA is

shown in Figure 3.5.

Figure 3.5: An example PSA.

However, PSA cannot be directly updated due to its unsubstantiated parameters. To

illustrate this challenge, consider a naive solution which is to instantiate the parameters

using all possible values, and maintain all the instantiated state machine, namely symbolic

automata (SA), for each instantiation of the parameters. When reading an input packet,

we update all the instantiated SA in the standard way. However, it is not hard to note that
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this approach is not feasible due to the large space of parameters. As an example, the PSA

in Figure 3.5 with a single IP parameter has up to 232 instantiated symbolic automata.

Whereas at runtime, the function only needs to store the source addresses that appeared in

the stream, which can be significantly less than 232.

To address this challenge, we propose a new algorithm that updates PSA on-demand.

As the high-level idea, suppose we instantiated a PSA to a set of SA using all possible

instantiations. Notice that even though there is a large space of instantiated SA, however,

many of them will keep the same states at runtime given a stream of packets. As an example,

consider feeding a first packet with the source IP 1.0.0.1 to all SA instantiated from the

PSA in Figure 3.5. It is easy to see that the only SA that will transition to state q1 is the

one where x is instantiated by 10.0.0.1; and all other SA will stay at q0.

Therefore, the compiled program at runtime maintains guarded states for the PSA, where

a guarded state is pair (s, φ). Here, φ is a predicate of the parameters in the PSA (which

we will refer as a guard), and s is a state in PSA. The pair (s, φ) means that when reading

the input stream, all instantiated SA will be at state s, if they are instantiated by the values

satisfying φ. For example, initially there is only one guarded state maintained for the PSA

in Figure 3.5, which is (q0, true), meaning that all instantiated SA is at the initial state q0

of the PSA.

To update the PSA, the key step is to update each guarded state dynamically when

reading packets from the stream. The updating algorithm for a guarded state is shown in

Algorithm 8. This algorithm iterates through all transitions from the state s, and for the

Algorithm 8 update psa((s, φ), packet)

1: for all transitions originated from s do
2: let t be the destinate state, and P be the parameterized predicate
3: let T be the guard instantiated from P using the packet
4: let φ′ = φ ∧ T
5: emit (t, φ′) if φ 6=false

6: end for

predicate (with parameters) P on the transition, it instantiates P using the current packet

it receives in the stream. This step simply replaces the function name in P by the return

value of it on the packet. The obtained predicate T is a predicate over the parameters in

the PSA. Finally, the algorithm emits a new pair (t, φ′) if φ′ is not false. Intuitively, this
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step accounts the fact that the instantiated SA under φ′ will transition to the next state t.

Using Algorithm 8, the overall updating algorithm is straightforward. Initially, the

compiled program only contains a guarded state (q0, true), where q0 is the initial state of

the PSA. Every time reading a new packet from the stream, we call Algorithm 8 on every

guarded state, and the new guarded states consists of all the ones emitted from Algorithm 8.

To check the state given concrete values for parameters, we simply go through all maintained

guarded states, and return the state if the guard is satisfied.

Example. Using the example in Figure 3.5, we illustrate the execution of Algorithm 8

given the pair (q0, true) and the packet with source IP 10.0.0.1. Consider the transition

from q0 to q1. By substituting srcip in the predicate with the source IP of the packet, we

get the guard T which is x=10.0.0.1. Since φ is true now, φ′ is simply x=10.0.0.1. At the

end, the algorithm will emit the pair (q1, x=10.0.0.1). Similarly, for the other transition

the algorithm emit the pair (q0, x!=10.0.0.1). Therefore, there are two new guarded

states, namely, (q1, x=10.0.0.1) and (q0, x!=10.0.0.1). The updated guarded states

account for the fact that 10.0.0.1 has appeared and thus the corresponding instantiated

SA transitioned to state q1.

3.4.2 Compilation of split

We next discuss how to compile a split expression which is of the form split(f, g,

aggop). First, we highlight the key insight from [18] to compile split without parameters,

and then describe how to generalize this idea to compile split with parameters.

Without parameters. The challenge of compiling split is to split the stream dynamically

at runtime without revisiting the entire history of the stream. For example, in the split

example in Section 4.3, we need to split the stream at the last appearance of the SYN

packet. A natural way to implement the semantics of split is to maintain all cases to

split the stream. For example, Figure 3.6 shows two cases to split the stream consisting

of a non-SYN and a SYN packet at runtime for the example in Section 4.3. Moreover,

the following two observations ensure that the compiled code only uses a constant space.

First, each case can be represented using a triple (sf , sg, F ), where F is a flag indicating

whether the stream is split, and sf (sg, resp.) is the state of f(g, resp.) on evaluating the
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prefix(suffix, resp.) of the stream. Second, the number of maintained cases is bounded by

a constant only related to g at any time point.

Figure 3.6: Example run of split.

With parameters. Similar to PSRE compilation, in the general case, we need to maintain

guarded cases. That is, we maintain a set of (T , φ) pairs, where T is a triple (sf , sg, F )

corresponding to a case as defined above, and φ is a guard. It means that if the parameters

are instantiated by values satisfying φ, there is a case of splitting the stream, which can be

represented as T .

Algorithm 9 shows the algorithm to update a pair (T , φ). The algorithm feeds the input

Algorithm 9 update split((T , φ), packet)

1: suppose T = (sf , sg, F )
2: if F is false then
3: for all emitted (s′f , φ′) from update f((sf , φ), packet) do
4: if f is defined on s′f then

5: emit ((s′f , s0g, true), φ′)
6: end if
7: emit ((s′f , sg, false), φ′)
8: end for
9: else

10: for all emitted (s′g, φ′) from update g((sg, φ), packet) do
11: emit ((sf , s′g, true), φ′)
12: end for
13: end if

packet to f or g corresponding to whether the stream has been split as indicated by F . For

example, consider the else branch from line 10 to 12 in the algorithm. In the branch, we

need to update (sg,φ) using g’s updating procedure, which may emit a set of guarded states

of g. Correspondingly, the guard needs to be refined.

Given concrete values of parameters, evaluating a split expression is as follows. First,

we check if there exist a guarded case ((sf , sg, F ),φ) such that φ is satisfied and both f
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and g are defined on the states in the case, then we evaluate the expression on the case.

Otherwise, the expression is not defined.

3.4.3 Compilation of iter

Recall that an iter(f, aggop) expression needs to split the stream into multiple sub-

streams, such that on each substream, f is defined. We first discuss the compilation in

the case without parameters, and then discuss the compilation algorithm for the case with

parameter.

Without parameters. Similar to the compilation of split, the state of the expression

to maintain is a set of threads, each of which consists of (val, sf ), where val is the running

aggregated value, and sf is a state of f. Initially, the state is (v0,s
0
f ), where v0 is an initial

value based on the aggregation operator aggop. For example, v0 is 0 when the aggregation

operator is sum; and v0 is a pair (0,0) if aggop is avg, where the first 0 indicates the running

sum, and the second 0 indicates the running count of the number of elements. At a high

level, to update a thread (val, sf ), every time receiving a packet, we need to update sf by

f’s updating function. When sf reaches a defined state (i.e. f evaluates to a defined value

on sf ), f is evaluated and we add a new thread (val′, s0f ), where val′ is new aggregated

value using val and the evaluated value from f using aggop, and s0f is the initial state of f.

To evaluate the iter function, we go through all threads and pick the one (val,sf ) where

sf is defined, and output the aggregated value.

With parameters. Similarly, for an iter expression with parameters, the guarded thread

is a pair (T , φ), where T is a thread (v, sf ), and φ is a predicate of its parameters. Initially

the guarded thread is ((v0, s
0
f ),true). Algorithm 10 shows the algorithm for updating a

guarded thread.

Example. We illustrate how to update the following expression iter(/[srcip!=x]*[

srcip==x]/?1,sum) on a 3-packet stream, where each packet has source IP address A,

B, A, respectively. The state machine for the inner PSRE is shown in 3.7(a), Initially,

there is one guarded thread ((0,q0),true), standing for the fact that for all values of x, the

aggregated sum is 0, and the state for the inner expression is q0. Reading the first packet, we

need to update (q0,true) using Alg. 8, which emits (q0,x!=A) and (q1,x==A). Furthermore,
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Algorithm 10 update iter((T , φ), packet)

1: suppose T = (v, sf )
2: for all emitted (s′f , φ′) from update f((sf , φ),packet) do
3: if s′f is defined then
4: let v′ be the evaluated value of f on s′f
5: emit ((v′′, s0f ), φ′), where v′′ is the aggregated value of v and v′ using aggop

6: end if
7: emit ((v, s′f ), φ′)
8: end for

since q1 is final state, we can split the stream, and aggregate the sum. Thus, we add a

new guarded thread ((1,q0),x==A). Fig. 3.7(b) shows the maintained guarded threads after

reading each packet. The arrows between two guarded threads stand for the fact that the

latter guarded thread is emitted from the former one.

Figure 3.7: Example run of iter.

3.4.4 Compilation of Aggregation

Now we describe the aggregation function aggop{f | T x}. Followed by the definition

of the aggregation function, an aggregation function maintains guarded states (sf ,φ). To

update the aggregation expression, we just need to update each guarded state using f

’s updating procedure. To illustrate the evaluation procedure, suppose the aggregation

operator is sum. Given values for the parameters, we need to iterate through all guarded

states (sf ,φ). If φ is satisfied, we evaluate f on sf , say the return value is v; and count the

number of values of x which satisfies φ, say it is k; we sum up v ∗ k into the aggregated

sum. For other aggregation operators, the evaluation process works similarly.
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3.4.5 Compilation of Stream Composition

Lastly, we discuss stream composition. Recall that stream composition allows to process

the input stream using a function f, and then apply the second function g on the processed

stream. Following its definition, each time a new packet arrives, we need to first process it

with f, and the returned value (e.g. a filtered packet) is then fed into g. A guarded state

it maintains is ((sf , sg), φ), where sf and sg is a state of f and g respectively. The initial

guarded state is (s0f , s0g, true), which stands for the fact that for all initiations, f and g

are in their initial state. Algorithm 11 shows the algorithm to update a guarded state. To

Algorithm 11 update comp((S, φ), packet)

1: suppose S = (sf , sg)
2: for all emitted (s′f , φ′) from update f((sf , φ),packet) do
3: if f is defined on s′f then
4: let ret be the returned value of f on s′f
5: emit ((s′f , s′g), φ′′), for all emitted (s′g,φ′′) from update g((sg,φ′), ret)
6: end if
7: end for

evaluate the expression, we return the value of evaluating g on sg, where sg is from the

guarded state (sf ,sg,φ), and the guard φ is satisfied.

3.5 Implementation

We have implemented a prototype of the NetQRE system in C++, which consists of two

main components, namely the compiler for NetQRE, and the NetQRE runtime.

NetQRE Compiler. The NetQRE compiler implements the compilation algorithm

described in Section 3.4. The compiler first generates a C++ program from an input

NetQRE program, which is then compiled by the gcc compiler into executable. Our compiled

program uses trees to represent predicates over parameters. The choice of tree is driven by

its simplicity, ease of encoding, and lookup performance.

In addition to the basic compilation algorithm, we include additional optimizations to

the compiler. First, we use the standard minimization algorithm to minimize the state

machine for a regular expression. Second, for aggregation expressions with sum and avg, we

use an incremental updating algorithm to update the expression: we maintain the running
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sum as the state of the aggregation expression, and we update the sum incrementally when

the state of inner expression is updated.

NetQRE Runtime. The NetQRE runtime includes a packet capture agent implemented

using the pcap library [63]. Each packet that arrives at the runtime is parsed, and then

processed by the compiled NetQRE program as shown in Figure 3.1. Currently, our runtime

supports actions that include sending alert events to a controller, and directly installing a

rule on a switch. The NetQRE runtime is not specifically optimized for fast packet capture

and processing, and as future work, we plan to explore the use of DPDK [50].

3.6 Evaluation

We evaluate our NetQRE prototype centered around answering three key questions. First,

can the NetQRE language express a wide range of quantitative network policies in a concise

and intuitive manner? Second, is the generated code efficient in terms of throughput? Third,

can NetQRE be used in a real-time monitoring setting that provides rapid mitigation based

on quantitative network policies? Unless otherwise specified, all our experiments are carried

out on a cluster of commodity servers, each of which has 16-core 2.1GHz Xeon E5-2450.

Each core has a 2MB L2 cache, and each processor includes a 20 MB L3 cache. The total

memory size is 24 GB. The OS is Ubuntu 12.04, and the kernel version is 3.13.0.

3.6.1 Expressiveness

We have implemented a set of quantitative network policies using NetQRE. The examples

are drawn from a literature survey on quantitative network policies [28, 36, 77, 91, 92].

Table 3.1 summarizes the example policies and the lines of code of each NetQRE program.

We make the following observations. First, NetQRE is able to express a large variety of

policies, ranging from flow-level traffic measurement to application-level quantitative poli-

cies. We validate the correctness of our applications by running them and comparing their

output with hand-crafted implementations. Second, programming in NetQRE is concise.

All example policies can be specified within 23 lines of code in NetQRE. This count in-

cludes commonly used filter functions as well as regular expressions, which can be built

into a library for reference. As an interesting comparison, we encoded the VoIP call use
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LoC

Heavy Hitter (Section 4.3.1) 6
Super Spreader (Section 4.3.1) 2
Entropy Estimation (Section 4.3.1) 6
Flow size dist. [36] 8
Traffic change detection [77] 10
Count traffic [91] 2
Completed flows (Section 4.3.2) 6
SYN flood detection (Section 4.3.2) 9
Lifetime of connection 8
Newly opened connection recently 11
# duplicated ACKs 5
# VoIP call 7
VoIP usage (Section 4.3.3) 18
Key word counting per email 23

Table 3.1: Example policies NetQRE supports.

case in Bro [73], a well-known intrusion detection system. Bro required 51 lines of code, as

compared to only 7 in NetQRE. However, Bro is unable to easily support the VoIP usage

case written in NetQRE. In particular, Bro cannot use patterns to separate packets into

different VoIP sessions for the purposes of counting bandwidth consumption per session.

This is not surprising as Bro’s primary use is that of an intrusion detection system. We

validated the correctness of our implementation on actual SIP traffic by comparing Bro’s

output against NetQRE’s.

3.6.2 Throughput Performance

Our next set of experiments evaluate the performance of NetQRE’s compiled implementa-

tions. NetQRE runs on a single machine based on the setup described earlier. We use a

single core to measure NetQRE’s throughput. Throughput can be increased via orthogonal

parallelization techniques (e.g. [43]), which is not the main focus of the paper. Hence, all

reported numbers are based on single-threaded execution. As a point of comparison, we

compare each NetQRE program against an equivalent carefully hand-crafted C++ imple-

mentation. We note that all our hand-crafted implementations require at least 100 lines

of code, and often times, require users to explicit manage internal state across packets – a

programming task that NetQRE abstracts away.
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Figure 3.8: Normalized throughput comparison.

Figure 3.8 shows the performance of NetQRE implementations compared with manu-

ally optimized implementations, where NetQRE throughput performance is presented as a

percentage of manually optimized implementations. We use as example policies, the heavy

hitter, super spreader, entropy, SYN flood detection, and completed flows count use cases

presented in Section 3.3. As workload, we use a CAIDA traffic trace [1] which contains

37 million packets, and replay the traffic as input to our implementations. The compiled

NetQRE implementation incurs negligible overhead compared with the manually optimized

low-level implementation. The difference between the throughput of the compiled NetQRE

implementation and that of the manual implementation is within 4% across all use cases

we studied.

To understand the performance compared with alternative tools, we further compare

with OpenSketch and Bro.

Comparison with OpenSketch. We use the heavy hitter example (with a single field, as

in the OpenSketch’s reference code) to compare the performance of NetQRE compiled code

with that of OpenSketch (in software). We follow the default setting of the reference code

of OpenSketch [9]. The throughput of NetQRE compiled code is 72% higher than that of

OpenSketch.

Comparison with Bro. We further compare with Bro. Given the limitations of Bro

in handling the complete VoIP use cases, we simplify the use case to simply counting the
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number of VoIP calls (as opposed to bandwidth consumption) per user. NetQRE compiled

implementation can finish counting within 1 second, while Bro takes about 23 seconds. Both

programs output the same results for this use case. We believe there are at least two reasons

for Bro’s slower performance. First, Bro is designed for intrusion detection, and not aimed

at and optimized for monitoring tasks. Second, unlike NetQRE which compiles high-level

code to efficient low-level code, Bro uses an interpreter to execute the script written in Bro’s

language, which could result in considerable overhead.

3.6.3 Real-time Response

In the final set of experiments, we validate the use of NetQRE for enforcing quantitative

network policies, through a combination of switch-level monitoring, followed by updates

from the controller. We set up a network of two clients C1 and C2, one server, and one SDN

switch that mirrors traffic to a NetQRE runtime running the SYN flood detector presented

in Section 3.3.2. In addition, a NetQRE controller based on POX [64] controls the switch.

The network is emulated using Mininet [59] with link bandwidth set to 100Mbps.

In the experiment, C1 sends normal traffic to S using iperf at rate 1Mbps, and at the

7th second, C2 starts SYN flood attack generated using our generator to the same server.

The attack is detected by NetQRE, which generates an alert event to the controller, which

subsequently installs a forwarding rule on the switch to block traffic from C2. To illustrate

the attack detection and blocking, Figure 3.9 (left figure) shows the bandwidth utilization

(Mbps) on the server. We observe that NetQRE successfully blocks C2’s attacking traffic

in real-time.

As a second experiment, using a similar setup, our NetQRE heavy hitter program (Sec-

tion 3.3.1) running at a switch-side NetQRE runtime monitors the traffic over a sliding

window of 5 seconds, and issues an alert to the controller when detecting a heavy hitter,

which further blocks the traffic. As a point of comparison, we compare our approach against

two alternatives: (1) sending all packets to the controller which runs an equivalent heavy

hitter detection program, (2) monitoring the flow counters on the switch to detect heavy

hitters, as considered in other languages [67] and systems [69]. In the second alternative,

the controller reads the counter every 1 second, and compute the bandwidth usage for each
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Figure 3.9: SYN flood: Bandwidth utilization (Mbps) at the server.

flow over a similar 5 seconds window.

Figure 3.10 (middle figure) plots the bandwidth utilization of the server. The above

alternative solutions are labeled as forward and stats respectively. Compared with these

two approaches, our proposed approach can detect the heavy hitter and further respond

to it in a more timely fashion. Moreover, compared with the forward approach, we send

significantly fewer traffic to the controller, and is a more scalable solution.
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Figure 3.10: Heavy hitter detection: Bandwidth utilization (Mbps) at the server.

In our final experiment, we validate the VoIP use case first presented in our introduction.

We use a synthetic VoIP traffic trace generated using SIPp [12] replay a VoIP call (with

accompanying H.264 MPEG video) made from a single user via client C2. We replay the

traffic at 5Mbps, and run iperf on C1 as the background traffic. Our NetQRE program
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enforces a policy that blocks a call after the user making the call exceeds a SIP bandwidth

usage of 18.75MB (around 30 seconds). We configure the NetQRE program to send an

alert to the NetQRE controller which then blocks the traffic. Figure 3.11 (right figure)

plots the bandwidth utilization of the server. Again, this verifies that NetQRE can be used

to intercept a SIP session, monitor usage on a per-user basis, and react to high usage in a

timely fashion.
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Figure 3.11: VoIP: Bandwidth utilization (Mbps) at the server.

3.6.4 Summary of Evaluation

Revisiting the three questions at the beginning of our evaluation, we observe that (1)

NetQRE can express a wide range of quantitative network policies with a few lines of

code, (2) achieves performance that is similar to that of carefully hand-crafted optimized

low-level code while significantly outperforms other measurement and IDS tools, and (3)

can be used in an SDN setting to monitor network traffic and update switches in real-time

in response to specified NetQRE policies.
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Chapter 4

Related Work

We highlight several work in a variety of topics that are related to the dissertation.

4.1 Domain Specific Languages in Networking

Network Datalog (NDlog) [61] is a declarative language to program network protocols, which

is based on the well-known recursive query language Datalog. In NDlog, network state, such

as network links and paths between a source and a destination, is modeled as relations. A

user uses a set of rules to specify the derivation of tuples in the relations. NDlog extends

Datalog by allowing a user to specify storage locations of tuples explicitly. By specifying

the storage locations, a NDlog program models the distributed computation over network

state without specifying imperative details such as sending and receiving a message.

With the emergence of SDN, there are several recent proposals on domain specific

languages in SDN, which include Frenetic [40], Pyretic [67], NetCore [66] NetKAT [19],

FlowLog [72], Merlin [84], FatTire [75], and Maple [88].

Frenetic [40], NetCore [66], and Pyretic [67] propose high-level abstractions to specify

packet forwarding and network queries based on OpenFlow. These languages use high-

level predicates to capture the semantics of flow-table rules in OpenFlow, and allow logical

combinations such as conjunction, disjunction, and negation on the predicates to simplify

the specification of flow tables. The semantics of these languages are compositional, which

allows users to compose two modules in a parallel and sequential fashion. In addition to

the high-level abstractions for static flow-table policies, these languages support dynamic
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policies using general-purpose programs in order to respond to network events and change

the flow tables.

NetKAT [19] is proposed with a solid theoretical foundation based on Kleene algebra

with tests [57] to specify static packet forwarding policies. As a result, checking whether

two forwarding policies specified in NetKAT are equivalent can be decided in PSPACE

complexity, which allows network verification of properties such as reachability and traffic

isolation.

The SDN languages described above focus on raising the level of abstractions for data

plane policies. Below we highlight some work involving abstractions for control plane.

Flowlog [72] proposes a unified programming framework to capture data plane, control

plane and controller state. Flowlog uses relations to store network state, and also offers a

SQL-like language to specify the reaction to network events. Programs in Flowlog can be

proactively compiled and installed onto flow tables. Furthermore, Flowlog offers sound and

complete verification on the programs using the verifier Alloy [51].

Kinetic [55] proposes to use the state machine abstraction to program dynamic policies,

where a state corresponds to a static policy which can be specified in Pyretic, and a tran-

sition corresponds to network events, user-defined events, or unexpected failures. Kinetic

utilizes the NuSMV model checker [31] to automatically verify the correctness properties

specified in computation tree logic (CTL) [33].

Similar state machine abstractions have also been studied in OpenState [22] and FAST [68].

These works aim at designing state machine models that can be embedded into switches,

and thus executing stateful policies on the data plane efficiently.

There are also language proposals aimed at providing abstractions for packet-routing

paths in the network [70, 75] using regular expressions.

FatTire [75] is a language for fault-tolerant network routing policies. FatTire uses regular

expressions to specify the set of paths for packets in a specified flow space, and allows a

user to specify the degree of faults to tolerate. A program in FatTire can be compiled into

OpenFlow-based flow tables using the group tables [13], which is able to tolerate the given

degree of faults.

The path query language proposed in [70] is a declarative language aimed at traffic

monitoring. A query in this language uses regular expressions over packet locations and
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header values to specify the packets (together with its routing paths) to be monitored. The

packets satisfying the regular expression are counted. In addition, the language further

leverages SQL-like “groupby” operation for aggregating the monitoring results.

The work in this dissertation shares similar goals with the work described above. How-

ever, there are several technical differences between our work and the work described above.

For example, while the abstraction of policy tables in NetEgg is similar in spirit to these

state machine abstractions, but however, NetEgg focuses on providing an intuitive pro-

gramming framework which can generate policies directly from examples. Although some

languages above have features to support traffic monitoring that NetQRE supports, how-

ever, to the best of our knowledge, none of these systems support monitoring queries beyond

basic flow-level counters provided by OpenFlow.

4.2 Network Verification and Testing

In recent years there have been a number of proposals in network verification and testing.

We highlight several work in this section, including techniques for the data plane ([38, 52–

54, 62, 95]) as well as the techniques for the control plane ([20, 27]).

First, we highlight some work aimed at stateless data plane verification.

Header Space Analysis (HSA) [53] models each device in the network as a network

transfer function, which maps a located packet (i.e. a packet together with its location) to

a set of located packets. Using a customized symbolic execution technique, HSA is able to

verify properties such as reachability, forwarding loops and traffic isolation.

Veriflow [54] and NetPlumber [52] introduce real-time data plane verification. Unlike

HSA which needs to re-check data plane properties every time a rule is changed, these tech-

niques only consider the incremental change of the data plane introduced by each forwarding

rule’s update, and check properties only on the delta part.

On the other hand, Anteater [62] uses a different approach. Anteater encodes the

data plane configuration and the property as a boolean satisfiability formula (SAT). Using

SAT solvers for the SAT problem, Anteater is able to verify the properties or generate a

counterexample for violations.

There are works aimed at runtime testing for data plane. ATPG [95] generates test
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packets that are injected to the network to test functional properties as well as performance

properties. More recently, Buzz [38] proposes a technique based on symbolic execution to

generate test packets in order to test stateful data plane.

Second, we highlight some work for control plane verification and testing. Nice [27]

employs both model checking and symbolic execution to test SDN controller programs.

Vericon [20] proposes a verification techniques that can verify the correctness of a controller

application for all admissible network topologies and all network events.

4.3 Program Synthesis

This dissertation work is also related to the topic on program synthesis.

The Sketch system [81–83] has been developed for synthesizing bit-stream programs [83],

stencil computations [81] and concurrent data structures [82]. The Sketch system allows

users to specify a partial implementation (which is called a sketch), and then synthesizes a

complete implementation that is equivalent to a given program from the sketch.

The NetEgg work is motivated by related work on programming by examples. In partic-

ular, the proposals in [47–49] implement reactive controllers from specification of behaviors

in live sequence charts. Recently, programming by examples has been applied for a variety

of domains [17, 21, 44, 45, 56, 60, 79]. FlashFill [44] generates string transformation macros

in Excel from input/output string examples. Transit [87] uses both symbolic and concrete

example to synthesize distributed protocols. Examples are also used for synthesizing recur-

sive programs [17]. The NetEgg work is similar in spirit to above works, but technically

different. Our input examples and target program are designed specific to the SDN domain,

and have different characteristics, which require different synthesis algorithms.

4.4 Other Topics

In addition to the topics addressed above, there are several other topics that are related to

the work presented in this dissertation. In this section, we describe the related work in the

following topics.
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4.4.1 Streaming Database Languages

Database-style query languages [29, 34] provide SQL-like language support for running

continuous queries over data streams. While there are constructs to do aggregation over

sliding windows, they are designed with simple relational queries over packet headers or

packet counts, and cannot handle the complex queries based on traffic patterns that NetQRE

supports.

4.4.2 Intrusion Detection Systems and Protocol Analyzers

There are a number of intrusion detection systems (IDS) and protocol analyzers, which

can support some part of policies that NetQRE supports. However, there are several key

differences between NetQRE and these systems. First of all, systems such as Snort [76] al-

low regular expression matches over packet payloads, but is not perform regular expression

matches that span multiple packets, let alone track sessions across packets. While Bro [73]

supports aspects of NetQRE, the scripting language requires operators to think impera-

tively in terms of states and events, as opposed to NetQRE’s approach of using high-level

declarative constructs. Moreover, IDS such as Bro is ill-suited to handle some of the use

cases involving quantitative monitoring, e.g. the VoIP usage example.

4.4.3 Deep Packet Inspection

In NetQRE, we studied its support for deep packet inspection. There are a variety of

commercial products that perform Deep Packet Inspection (DPI). In recent literature, Sc-

analytics [43] provides a parallel Datalog-based DPI engine, but the focus is on parallelism

and high performance, and hence the language does not lend itself naturally to customiza-

tion of regular expressions and aggregation. DPI poses a challenge on encrypted data, an

orthogonal issue that is addressed by other work (e.g. BlindBox [78]).
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Chapter 5

Conclusion

In this chapter, we conclude our contributions in this dissertation and propose future work

related to this topic.

5.1 Contributions

This dissertation studied the feasibility of using high-level abstractions for programming

network policies. In particular, we studied two approaches aimed at stateful SDN policies

and quantitative network policies, respectively.

First, we proposed NetEgg, a scenario-based programming framework for SDN policies.

To program a network policy using NetEgg, network operators simply describe example be-

haviors of the desire network policy in representative scenarios. NetEgg then automatically

synthesizes a policy implementation that is consistent with all given scenarios, including

inferring the state that needs to be maintained and also the rules to update the state.

NetEgg can run the policy on top of a centralized controller as well as automatically infer

the flow-table rules to install onto switches. Our experiments showed that NetEgg was able

to synthesize a wide range of network policies from scenarios in seconds. Moreover, the

synthesized policy implementations achieved close performance with manually crafted im-

plementations. We conducted a user study including 12 students. The results showed that

NetEgg was reasonably intuitive to learn and use, and was able to reduce the programming

time for 2 out of 3 network policies we studied.

Second, we proposed NetQRE, a specification language and toolkit for quantitative net-
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work policies. NetQRE offers a declarative specification language that integrates regular-

expression-like patter matching and aggregation operations. Given a NetQRE specification

program, the NetQRE compiler automatically infers the state that needs to be maintained,

and generates an efficient policy implementation. We showed that NetQRE is expressive to

specify a wide range of quantitative network policies using a small number of lines of code.

Our experiments demonstrated that the performance of the policy implementations gener-

ated by NetQRE was comparable to the implementations manually crafted and optimized

in low-level code, and was significantly more efficient than alternative solutions.

5.2 Future Work

We discuss some potential research directions to extend the work described in the disserta-

tion.

5.2.1 Interaction between Network Programmer and Programming

Framework

The emergence of programmable networks triggers a new wave of innovations in network

programming frameworks. Oftentimes, these programming frameworks are driven by spe-

cific types of applications, and seldom address their interaction with network programmers.

Therefore, it remains a key challenge to understand how network programmers interact

with these programming frameworks. In particular, it is interesting to address the following

problems: how to make a programming framework accessible to network programmers; how

to improve the productivity of network programmers; and how to enhance the reliability of

networks with the aid of network programming frameworks.

5.2.2 Network Verification and Synthesis

The programmability of networks stimulates increasing interest in formal verification of

network programs and configurations, in order to ensure the correctness of network services.

However, given the fact that verification techniques are often expensive, network verification

faces the following challenges: 1) how to enable verification for interesting properties such

as those involving quantitative objectives; 2) how to scale the verification techniques up
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to large-size networks. Additionally, it is appealing to automatically synthesize network

topologies, configurations, and control programs directly from network operators’ high-

level requirements, with the correctness guaranteed by the process of synthesis. Recent

progress on data plane programing frameworks such as P4 [23] also offers new opportunities

in verifying and synthesizing data plane implementations.

In response to these challenges and opportunities, a potential extend to this dissertation

work is to develop verification technique for the proposed domain-specific languages. More-

over, it is appealing to develop domain-specific specification languages that are expressive to

specify a variety of interesting properties, and their corresponding verification and synthesis

techniques that are scalable up to real-world networks.
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[84] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert Klein-

berg, Emin Gun Sirer, and Nate Foster. Merlin: A language for provisioning network

resources. In Proceedings of the 10th ACM International on Conference on emerging

Networking Experiments and Technologies, pages 213–226. ACM, 2014.

[85] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden.

A survey of active network research. IEEE Communications Magazine, 35(1):80–86,

Jan 1997.

[86] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob Sher-

wood. On controller performance in software-defined networks. In Presented as part

of the 2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud, and

Enterprise Networks and Services, Berkeley, CA, 2012. USENIX.

[87] Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim,

Milo MK Martin, and Rajeev Alur. Transit: specifying protocols with concolic snip-

pets. In ACM SIGPLAN Notices, volume 48, pages 287–296. ACM, 2013.

[88] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hudak.

Maple: Simplifying sdn programming using algorithmic policies. In Proceedings of the

ACM SIGCOMM 2013 conference on SIGCOMM, pages 87–98. ACM, 2013.

[89] Mea Wang, Baochun Li, and Zongpeng Li. sflow: Towards resource-efficient and agile

service federation in service overlay networks. In Distributed Computing Systems, 2004.

Proceedings. 24th International Conference on, pages 628–635. IEEE, 2004.

[90] Richard Wang, Dana Butnariu, Jennifer Rexford, et al. Openflow-based server load

balancing gone wild, 2011.

[91] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with

opensketch. In NSDI, volume 13, pages 29–42, 2013.

[92] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. Progme: towards pro-

grammable network measurement. IEEE/ACM Transactions on Networking (TON),

19(1):115–128, 2011.

89



[93] Yifei Yuan, Rajeev Alur, and Boon Thau Loo. Netegg: Programming network policies

by examples. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks,

page 20. ACM, 2014.

[94] Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau Loo. Scenario-based programming

for sdn policies. In Proceedings of the 11th ACM Conference on Emerging Networking

Experiments and Technologies, CoNEXT ’15. ACM, 2015.

[95] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic

test packet generation. In Proceedings of the 8th international conference on Emerging

networking experiments and technologies, pages 241–252. ACM, 2012.

90


