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Abstract
Real-time data processing applications with low latency re-
quirements have led to the increasing popularity of stream
processing systems. While such systems offer convenient
APIs that can be used to achieve data parallelism automat-
ically, they offer limited support for computations that re-
quire synchronization between parallel nodes. In this paper,
we propose dependency-guided synchronization (DGS), an
alternative programming model for stateful streaming com-
putations with complex synchronization requirements. In
the proposed model, the input is viewed as partially ordered,
and the program consists of a set of parallelization constructs
which are applied to decompose the partial order and pro-
cess events independently. Our programming model maps
to an execution model called synchronization plans which
supports synchronization between parallel nodes. Our evalu-
ation shows that APIs offered by two widely used systems—
Flink and Timely Dataflow—cannot suitably expose paral-
lelism in some representative applications. In contrast, DGS
enables implementations with scalable performance, the
resulting synchronization plans offer throughput improve-
ments when implemented manually in existing systems, and
the programming overhead is small compared to writing
sequential code.

CCS Concepts: • Software and its engineering → Paral-
lel programming languages; Domain specific languages; •
Information systems→ Stream management.
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1 Introduction
A wide range of applications in domains such as healthcare,
transportation, and smart homes are increasingly relying on
real-time data analytics with low latency and high through-
put requirements. This has motivated a significant amount
of research on stream processing, spanning different layers of
abstraction in the software stack. At the lowest level, stream
processing systems (e.g. Flink [16], Samza [51], Storm [6],
Spark Streaming [63], Trill [17], Heron [37], Beam [7]) han-
dle scheduling, optimizations, and operational concerns. At
the intermediate level, stream processing APIs and pro-
grammingmodels (e.g. MapReduce online [19], SPADE [26],
SP Calculus [59], Timely Dataflow [47, 50], StreamIt [60],
Flink’s DataStream API [5]), usually based on a form of
dataflow [27, 41], abstract the computation in a way that
hides implementation details, while exposing paralleliza-
tion information to the underlying system. At the top level,
high-level query languages (e.g. Streaming SQL [11, 32],
SamzaSQL [53], Structured Streaming [9], StreamQRE [45],
CQL [8], AFAs [18]) provide convenient abstractions that are
built on top of the streaming APIs. Of these layers, streaming
APIs play a central role in the successful scaling of applica-
tions since their expressiveness restricts the available par-
allelism. In this paper we focus on rethinking the dataflow
model at this intermediate layer to enable parallel implemen-
tations for a broader range of programs.

The success of stream processing APIs based on the data-
flow model can be attributed to their ability to simplify the
task of parallel programming. To accomplish this, most APIs
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expose a simple but effective model of data-parallelism called
sharding: nodes in the dataflow graph are replicated into
many parallel instances, each of which will process a differ-
ent partition of the input events. However, while sharding is
intuitive for programmers, it also implicitly limits the scope
of parallel patterns that can be expressed. Specifically, it pre-
vents arbitrary synchronization across parallel instances since
it disallows communication between them. This is limiting
in modern applications such as video processing [31] and
distributed machine learning [52], since they require both
synchronization between nodes and high throughput and
could therefore benefit from parallelization. Further evidence
that sharding is limiting in practice can be found in a collec-
tion of feature requests in state-of-the-art stream processing
systems [23, 34, 54], asking either for state management that
goes beyond replication or for some form of communication
between shards. To address these needs, system developers
have introduced extensions to the dataflow model to enable
specific use cases such as message broadcasting and iterative
dataflows. However, existing solutions do not generalize, as
we demonstrate experimentally in Section 4.2. For the re-
mainder of applications, users are left with two unsatisfying
solutions: either ignore parallelization potential, implement-
ing their application with limited parallelism; or circumvent
the stream processing APIs using low-level external mecha-
nisms to achieve synchronization between parallel instances.

For example, consider a fraud detection application where
the input is a distributed set of streams of bank transaction
events. Suppose we want to build an unsupervised online
machine learning model over these events which classifies
events as fraudulent based on a combination of local (stream-
specific) and global (across-streams) statistical summaries.
The problem with the traditional approach is that when clas-
sifying a new event, we need access to both the local and
the global summaries; but this cannot be achieved using
sharding since by default shards do not have access to a
global summary. One extension to the dataflow model, im-
plemented in some systems [5, 47] is the broadcast pattern,
which allows the operator computing the global summary
to broadcast to all other nodes. However, broadcasting is re-
stricted since it does not allow bidirectional communication;
the global summary needs to be both broadcast to all shards,
but also updated by all shards. Cyclic dataflows are another
partial solution, but do not always solve the problem, as we
show in Section 4.2. In practice, applications like this one
with complex synchronization requirements opt to manu-
ally implement the required synchronization using external
mechanisms (e.g. querying a separate a key-value store with
strong consistency guarantees). This is error prone and, more
importantly, violates the requirements of many streaming
APIs that operators need to be effect-free so that the under-
lying system can provide exactly-once execution guarantees
in the presence of faults.

To address the need to combine parallelism with synchro-
nization, we make two contributions. First, we propose syn-
chronization plans, a tree-based execution model which is a
restricted form of communicating sequential processes [30].
Synchronization plans are hierarchical structures that rep-
resent concurrent computation in which parallel nodes are
not completely independent, but communicate with their
ancestors on special synchronizing events. While this solves
the problem of being able to express synchronizing parallel
computations, we still need a streaming API which exposes
such parallelism implicitly rather than explicitly. For this pur-
pose, we propose dependency-guided synchronization (DGS),
a parallel programming model which can be mapped auto-
matically to synchronization plans.
A DGS program consists of three components. First, the

user provides a sequential implementation of the computa-
tion; this serves to define the semantics of what they want
to compute assuming the input is processed as a sequence of
events. Second, the user indicates which input events can be
processed in parallel and which require synchronization by
providing a dependence relation on input events. This relation
induces a partial order on the input stream. For example, if
events can be processed completely in parallel without any
synchronization, then all input events can be specified to
be independent. Third, the user provides a mechanism for
parallelizing state when the input stream contains indepen-
dent events: parallelization primitives called fork and join.
This model is inspired by classical parallel programming,
but has streaming-specific semantics which describes how
a partially ordered input stream is decomposed for parallel
processing.
Given a DGS program, the main technical challenge is

to generate a synchronization plan, which corresponds to a
concrete implementation, that is both correct and efficient.
More precisely, the challenge lies in ensuring that a derived
implementation correctly enforces the specified input depen-
dence relation. To achieve correctness, we formalize: (i) a set
of conditions that ensure that a program is consistent, and
(ii) a notion of 𝑃-valid synchronization plans, i.e., plans that
are well-typed with respect to a given program 𝑃 . To achieve
efficiency, we design the framework so that correctness is
independent of which synchronization plan is chosen—as
long as it is 𝑃-valid. The idea of this separation is to enable
future work on optimized query execution, in which an opti-
mizing component searches for an efficient synchronization
plan maximizing a desired cost metric without jeopardizing
correctness. We tie everything together by proving that the
end-to-end system is correct, that is, any concrete implemen-
tation that corresponds to an 𝑃-valid plan is equivalent to a
program 𝑃 that satisfies the consistency conditions.

In order to evaluate DGS, we perform a set of experiments
to investigate the data parallelism limitations of Flink [16]—a
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representative high-performance stream processing system—
and Timely Dataflow [50]—a representative system with it-
erative computation. We show that these limits can be partly
overcome by manually implementing synchronization. How-
ever, this comes at a cost: the code has to be specialized to
the number of parallel nodes and similar implementation
details, forcing the user to sacrifice the desirable benefit of
platform independence. We then develop Flumina, an end-
to-end prototype that implements DGS in Erlang [10], and
show that it can automatically produce scalable implementa-
tions (through generating synchronization plans from the
program) independent of parallelism. In the extended ver-
sion of the paper [36], we also evaluate programmability via
two real-world case studies. In particular, we demonstrate
that the effort required—as measured by lines of code—to
achieve parallelism is minimal compared to the sequential
implementation.

In summary, we make the following contributions:
• DGS: a novel programming model for parallel stream-
ing computations that require synchronization, which
allows viewing input streams as partially ordered sets
of events. (Section 2)

• Synchronization plans: a tree-based execution model
for parallel streaming computations that require syn-
chronization, a framework for generating a synchro-
nization plan given a DGS program, a prototype im-
plementation, and an end-to-end proof of correctness.
(Section 3)

• An evaluation that demonstrates: (i) the throughput
limits of automatically scaling computations on ex-
amples which require synchronization in Flink and
Timely; (ii) the throughput and scalability benefits
achieved by synchronization plans over such automat-
ically scaling computations; and (iii) the programma-
bility benefits of DGS for synchronization-centered
applications (Section 4).

Flumina, our implementation of DGS, is open-source and
available at github.com/angelhof/flumina.

2 Dependency-Guided Synchronization
A DGS program consists of three components: a sequential
implementation, a dependence relation on input events to
enforce synchronization, and fork and join parallelization
primitives. In Section 2.3 we define program consistency,
which are requirements on the fork and join functions to
ensure that any parallel implementation generated from the
program is equivalent to the sequential one.

2.1 DGS programs
For a simple but illustrative example, suppose that we want
to implement a stream processing application that simulates
a map from keys to counters, in which there are two types of
input events: increment events, denoted i(𝑘), and read-reset

// Types

Key = Integer

Event = i(Key) | r(Key)

State = Map(Key , Integer)

Pred = Event -> Bool

// Sequential Code

init: () -> State

init() =

return emptyMap()

update: (State , Event)

-> State

update(s, (i(k), ())) =

s[k] = s[k] + 1;

return s

update(s, (r(k), ())) =

output s[k];

s[k] = 0;

return s

// Dependence Relation

depends: (Event , Event) -> Bool

depends(r(k1), r(k2)) = k1 == k2

depends(r(k1), i(k2)) = k1 == k2

depends(i(k1), r(k2)) = k1 == k2

depends(i(k1), i(k2)) = false

r(1) i(1) r(2) i(2)

· · ·

// Fork and Join

fork: (State , Pred , Pred)

-> (State , State)

fork(s, pred1 , pred2) =

// two forked states

s1 = init(); s2 = init()

for k in keys(s):

if pred1(r(k)):

s1[k] = s[k]

else:
// pred2(r(k)) OR

// r(k) in neither

s2[k] = s[k]

return (s1, s2)

join: (State , State) -> State

join(s1, s2) =

for k in keys(s2):

s1[k] = s1[k] + s2[k]

return s1

Figure 1. DGS program implementing a map from keys to
counters. The depends relation is visualized as a graph with
two keys shown; edges indicate synchronization, while non-
edges indicate opportunities for parallelism.

events, denoted r(𝑘), where each event has an associated
key 𝑘 . On each increment event, the counter associated with
that key should be increased by one, and on each read-reset
event, the current value of the counter should be produced
as output, and then the counter should be reset to zero.

Sequential implementation. In our programming model,
the user first provides a sequential implementation of the
desired computation. A pseudocode version of the sequential
implementation for the example above is shown in Figure 1
(left); Erlang syntax has been edited for readability, and we
use s[k] as shorthand for the value associated with the key
𝑘 in the map or the default value 0 if it is not present. It
consists of (i) the state type State, i.e. the map from keys
to counters, (ii) the initial value of the state init, i.e. an
empty map with no keys, and (iii) a function update, which
contains the logic for processing input events. Conceptually,
the sequential implementation describes how to process the
data assuming it was all combined into a single sequential
stream (e.g., sorted by system timestamp). For example, if the
input stream consists of the events i(1), i(2), r(1), i(2), r(1),
then the output would be 1 followed by 0, produced by the
two r(1) (read-reset) events.
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Dependence relation. To parallelize a sequential com-
putation, the user needs to provide a dependence relation
which encodes which events are independent, and thus can
be processed in parallel, and which events are dependent,
and therefore require synchronization. The dependence re-
lation abstractly captures all the dependency patterns that
appear in an application, inducing a partial order on input
events. In this example, there are two forms of independence
we want to expose. To begin with, parallelization by key
is possible: the counter map could be partitioned so that
events corresponding to different sets of keys are processed
independently. Moreover, each event is processed atomically
in our model, and therefore parallelizing increments on the
counter of the same key is also possible. In particular, dif-
ferent sets of increments for the same key can be processed
independently; we only need to aggregate the independent
counts when a read-reset operation arrives. On the other
hand, read-reset events are synchronizing for a particular
key; their output is affected by the processing of increments
as well as other read-reset events of that key.
We capture this combination of parallelization and syn-

chronization requirements by defining the dependence re-
lation depends in Figure 1 (also visualized as a graph) (see
Section 2.2 for a formal definition). In the program, the set of
events may be symbolic (infinite): here Event is parameterized
by an integer Key. To allow for this, the dependence relation
is formally a predicate on pairs of events, and is given pro-
grammatically as a function from pairs of Event to Bool. For
example, depends(r(k1), r(k2)) (one of four cases) is given
symbolically as equality comparison of keys, k1 == k2. The
dependence relation should also be symmetric, i.e. e1 is in
depends(e2) iff e2 is in depends(e1); the intuition is that e1 can
be processed in parallel with e2 iff e2 can be processed in
parallel with e1.

Parallelization primitives: fork and join. While the
dependence relation indicates the possibility of paralleliza-
tion, it does not provide a mechanism for parallelizing state.
The parallelization is specified using a pair of functions to
fork one state into two, and to join two states into one. The
fork function additionally takes as input two predicates of
events, such that the two predicates are independent (but
not necessarily disjoint): every event satisfying pred1 is inde-
pendent of every event satisfying pred2. The contract is that
after the state is forked into two independent states, each
state will then only be updated using events satisfying the
given predicate. A fork-join pair for our example is shown
in Figure 1. The join function simply adds up the counts for
each key to form the combined state. The fork function has
to decide, for each key, which forked state to partition the
count to. Since read-reset operations r(k) are synchronizing,
i.e., depend on all events of the same key, and require know-
ing the total count, it partitions by checking which of the

two forked states is responsible for processing read-reset
operations, if any.
The programming model exposes parallelism, but the im-

plementation (Section 3) determines when to call forks and
joins. To do this, the implementation instantiates a synchro-
nization plan: a tree structure where each node is a stateful
worker with a predicate indicating the set of events that
it is responsible for. Nodes that do not have an ancestor-
descendant relationship process independent but not nec-
essarily disjoint sets of events. When a node with children
needs to process an event, it first uses join to merge the
states of its children, and then it forks back its children states
using the combined predicates of its descendants, pred1 for
the left subtree, and pred2 for the right subtree. The imple-
mentation can therefore instantiate synchronization plans
with different shapes and predicates to enable different kinds
of parallelism. For example, to indicate parallelization by key,
the left child with pred1 might contain all events of key 1
and the right child with pred2 might contain all events of
key 2. On the other hand, to indicate parallelization on incre-
ments, pred1 and pred2 might both contain i(3), and in this
case neither would contain r(3) (to satisfy the independence
requirement). The latter example also emphasizes that pred1
and pred2 need not be disjoint, nor need they collectively
cover all events. For the events not covered, in this case r(3),
a join would need to be called before an r(3) event can be
processed. Parallelization can also be done repeatedly; the
fork function can be called again on a forked state to fork it
into two sub-states, and each time the predicates pred1 and
pred2 will be even further restricted.

2.2 Formal definition
A DGS program can be more general than we have discussed
so far, because we allow for multiple state types, instead of
just one. The initial state must be of a certain type, but forks
and joins can convert from one state type to another: for ex-
ample, forking a pair into its two components. Additionally,
each state type can come with a predicate which restricts the
allowed events processed by a state of that type. The com-
plete programming model is summarized in the following
definition.

Definition 2.1 (DGS program). Let Pred(T) be a given type
of predicates on a type T, where predicates can be evaluated
as functions T -> Bool. A program consists of the following
components:

1. A type of input events Event.
2. The dependence relation depends: Pred(Event, Event),

which is symmetric: depends(e1, e2) iff depends(e2, e1).
3. A type for output events Out.
4. Finitely many state types State_0, State_1, etc.
5. For each state type State_i, a predicate which speci-

fies which input values this type of state can process,
denoted pred_i: Pred(Event). We require pred_0 = true.
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init r(1) f

i(1) f

i(1)

i(1)

j

j r(1)

init r(1) i(1) i(1) i(1) r(1)

Figure 2. Example of a sequential (top) and parallel (bottom)
execution of the program in Figure 1 on the input stream
r(1), i(1), i(1), i(1), r(1) (f and j denote forks and joins).

6. A sequential implementation, consisting of a single ini-
tial state init: State_0 and for each state type State_i,
a function update_i: (State_i, Event) -> State_i. The
update also produces zero or more outputs, given by a
function out_i: (State_i, Event) -> List(Out).

7. A set of parallelization primitives, where each is either
a fork or a join. A fork has type

(State_i, Pred(Event), Pred(Event)) -> (State_j, State_k),

and a join has type (State_j, State_k) -> State_i, for
some 𝑖, 𝑗, and 𝑘 .

Semantics. The semantics of a program can be visualized
using wire diagrams, as in Figure 2. Computation proceeds
from left to right. Each wire is associated with (i) a state
(of type State_i for some 𝑖) and (ii) a predicate (of type
Pred(Event)) which restricts the input events that this wire
can process. Input events are processed as updates to the
state, which means they take one input wire and produce one
output wire, while forks take one input wire and produce
two, and joins take two input wires and produce one. Notice
that the same updates are present in both sequential and
parallel executions. It is guaranteed in the parallel execution
that fork and join come in pairs, like matched parentheses.
Each predicate that is given as input to the fork function
indicates the set of input events that can be processed along
one of the outgoing wires. Additionally, we require that up-
dates on parallel wires must be on independent events. In the
example, the wire is forked into two parts and then forked
again, and all three resulting wires process i(1) events. Note
that r(1) events cannot be processed at that time because
they are dependent on i(1) events. More specifically, we
require that the predicate at each wire of type State_i im-
plies pred_i, and that after each fork call, the predicates at
each resulting wire denote independent sets of events. This
semantics is formalized in the following definition.

Definition 2.2 (DGS Semantics). A wire is a triple written
using the notation ⟨State_i, pred, s⟩, where State_i is a state
type, s: State_i, and pred: Pred(Event) is a predicate such
that pred implies pred_i. We give the semantics of a program
through an inductively defined relation, which we denote
⟨State, pred, s⟩ u−→

v
⟨State, pred, s'⟩, where ⟨State, pred, s⟩ and

⟨State, pred, s'⟩ are the starting and ending wires (with the
same state type and predicate), u: List(Event) is an input
stream, and v: List(Out) is an output stream. Let l1 + l2 be
list concatenation, and define inter(l, l1, l2) if l is some
interleaving of l1 and l2. For e1, e2: Event, let indep(e1, e2) de-
note that e1 and e2 are not dependent, i.e. not(depends(e1,e2)).
There are two base cases and two inductive cases. (1) For
any State, pred, s, ⟨State, pred, s⟩ []−→

[]
⟨State, pred, s⟩. (2) For

any State, pred, s, and any e: Event, if e satisfies pred then
⟨State, pred, s⟩ [e]−→

out(s, e)
⟨State, pred, update(s, e)⟩. (3) For any

State, pred, s, s', s'', u, v, u', and v', if ⟨State, pred, s⟩ u−→
v

⟨State, pred, s'⟩ and ⟨State, pred, s'⟩ u'−→
v'

⟨State, pred, s''⟩, then

⟨State, pred, s⟩ u + u'−→
v + v'

⟨State, pred, s''⟩. (4) Lastly, for any in-
stances of State, State1, State2, pred, pred1, pred2, s, s1', s2',
u, u1, u2, v, v1, v2, fork, and join, suppose that (the conjunc-
tion) pred1(e1) and pred2(e2) implies indep(e1, e2), pred1 im-
plies pred, and pred2 implies pred. Let fork(s, pred1, pred2) =

(s1, s2) and join(s1', s2') = s'. If we have inter(u, u1, u2),
inter(v, v1, v2), ⟨State1, pred1, s1⟩ u1−→

v1
⟨State1, pred1, s1'⟩, and

⟨State2, pred2, s2⟩ u2−→
v2

⟨State2, pred2, s2'⟩, then ⟨State, pred, s⟩
u−→
v

⟨State, pred, s'⟩.
Finally, the semantics [[𝑃]] of the program 𝑃 is the set of

pairs (u, v) of an input stream u and an output stream v such
that ⟨State_0, true, init⟩ u−→

v
⟨State_0, true, s'⟩ for some s'.

Representing predicates. In the running example, a pred-
icate on a type T was represented as a function T -> Bool, but
note that the programming model above allows other repre-
sentation of predicates, for example using logical formulas.
The tradeoff here is that a more general representation al-
lows more dependence relations to be expressible, but also
complicates the implementation of an appropriate fork func-
tion as it must accept as input more general input predicates.
In our implementation (see Section 3), we assume that an
event consists of a pair of a Tag (relevant for parallelization)
and a Payload (used only for processing), where predicates are
given as sets of tags (or pairs of tags, for depends). This allows
simpler logic in the fork function whose input predicates are
then Tag -> Bool and don’t depend on the irrelevant payload.
In our example, i(𝑘) or r(𝑘) would be tags (not payload) as
they are relevant for parallelization.

2.3 Consistency conditions
Any parallel execution is guaranteed to preserve the sequen-
tial semantics, i.e. processing all input events in order using
the update function, as long as the following consistency con-
ditions are satisfied. The sufficiency of these conditions is
shown in Theorem 2.4, which states that consistency implies
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determinism up to output reordering. This is a key step in the
end-to-end proof of correctness in Section 3.5. Consistency
can be thought of as analogous to the commutativity and
associativity requirements for a MapReduce program to have
deterministic output [22]: just as with MapReduce programs,
the implementation does not assume the conditions are sat-
isfied, but if not the semantics will be dependent on how the
computation is parallelized.

Definition 2.3 (Consistency). A program is consistent if the
following equations always hold:

join(update(s1,e),s2) = update(join(s1,s2),e) (C1)
join(fork(s,pred1,pred2)) = s (C2)
update(update(s,e1),e2)) = update(update(s,e2),e1)) (C3)

subject to the following additional qualifications. First, equa-
tion (C1) is over all joins join: (State_j, State_k) -> State_i,
events e: Event such that pred_i(e) and pred_j(e), and states
s1: State_j, s2: State_k, where update denotes the update func-
tion on the appropriate type. Additionally the correspond-
ing output on both sides must be the same: out(s1, e) =

out(join(s1, s2)). Equation (C2) is over all fork functions
fork: (State_i,Pred(Event),Pred(Event)) -> (State_j, State_k),
all joins join: (State_j, State_k) -> State_i, states s: State_i,
and predicates pred1 and pred2. Equation (C3) is over all
state types State_i, states s: State_i, and pairs of independent
events indep(e1, e2) such that pred_i(e1) and pred_i(e2). As
with (C1), we also require that the outputs on both sides
agree:

out(s, e1) + out(update(s, e1), e2)

= out(update(s, e2), e1) + out(s, e2).

Let us illustrate the consistency conditions for our running
example (Figure 1). If e is an increment event, then condition
(C1) captures the fact that counting can be done in parallel: it
reduces to (s1[k] + s2[k]) + 1 = (s1[k] + 1) + s2[k]. Condi-
tion (C2) captures the fact that we preserve total count across
states when forking: it reduces to s[k] + 0 = s[k]. Condition
(C3) would not be valid for general events e1, e2, because a
read-reset event does not commute with an increment of
the same key (s[k] + 1 ≠ s[k]), hence the restriction that
indep(e1, e2). Finally, one might think that a variant of (C1)
should hold for fork in addition to join, but this turns out
not to be the case: for example, starting from s[k] = 100, an
increment followed by a fork might yield the pair of counts
(101, 0), while a fork followed by an increment might yield
(100, 1). It turns out however that commutativity only with
joins, and not with forks, is enough to imply Theorem 2.4.

Theorem 2.4. If 𝑃 is consistent, then 𝑃 is deterministic up to
output reordering. That is, for all (u, v) ∈ [[𝑃]], the multiset of
events in stream v is equal to the multiset of events in spec(u)

where spec is the semantics of the sequential implementation.

Proof. We show by induction on the semantics in Defini-
tion 2.2 that every wire diagram is equivalent (up to output
reordering) to the sequential sequence of updates. The se-
quential inductive step (3) is direct by associativity of func-
tion composition on the left and right sequence of updates
(no commutativity of updates is required). For the parallel
inductive step (4), we replace the two parallel wires with se-
quential wires, then apply (C1) repeatedly on the last output
to move it outside of the parallel wires, then finally apply (C2)
to reduce the now trivial parallel wires to a single wire. □

3 Synchronization Plans
In this section we describe synchronization plans, which rep-
resent streaming program implementations, and our frame-
work for generating them from the given DGS program in
Section 2. Generation of an implementation can be conceptu-
ally split in two parts, the first ensuring correctness and the
second affecting performance. First a program 𝑃 induces a
set of 𝑃-valid, i.e. correct with respect to it, synchronization
plans. Choosing one of those plans is then an independent
optimization problem that does not affect correctness and
can be delegated to a separate optimization component (Sec-
tion 3.3). Finally, the workers in synchronization plans need
to process some incoming events in order while some can
be processed out of order (depending on the dependence
relation). We propose a selective reordering technique (Sec-
tion 3.4) that can be used in tandem with heartbeats to ad-
dress this ordering issue. We tie everything together by pro-
viding an end-to-end proof that the implementation is correct
with respect to a consistent program 𝑃 (and importantly, in-
dependent of the synchronization plan chosen as long as
it is 𝑃-valid) in Section 3.5. Before describing the separate
framework components, we first articulate the necessary
underlying assumptions about input streams in Section 3.1.

3.1 Preliminaries
In our model the input is partitioned in some number of
input streams that could be distributed, i.e. produced at dif-
ferent locations. We assume that the implementation has
access to some ordering relation O on pairs of input events
(also denoted <O), and the order of events is increasing along
each input stream. This is necessary for cases where the user-
written program requires that events arriving in different
streams are dependent, since it allows the implementation
to have progress and process these dependent events in or-
der. Concretely, in our setting O is implemented using event
timestamps. Note that these timestamps do not need to cor-
respond to real time, if this is not required by the application.
In cases where real-time timestamps are required, this can
be achieved with well-synchronized clocks, as has been done
in other systems, e.g. Google Spanner [21].
Each event in each input stream is given by a quadruple

⟨𝑡𝑔, 𝑖𝑑, 𝑡𝑠, 𝑣⟩, where 𝑡𝑔 is a tag used for parallelization, 𝑖𝑑 is
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𝑤1 { }
update – ⟨ fork, join ⟩

𝑤2 { r(1), i(1) }
update

𝑤3 { r(2) }
update – ⟨ fork, join ⟩

𝑤4 { i(2)𝑎 }
update

𝑤5 { i(2)𝑏 }
update

Figure 3. Example synchronization plan derived from the
program in Figure 1 for two keys 𝑘 = 2 and five input
streams r(1), i(1), r(2), i(2)𝑎, i(2)𝑏 . Implementation tags
i(2)𝑎, i(2)𝑏 both correspond to i(2) events but are sepa-
rate because they arrive in different input streams.

a unique identifier of the input stream, 𝑡𝑠 is a timestamp,
and 𝑣 is a payload. Of these, only the tag and payload are
visible to the programming model in Section 2, and only
the tag is used in predicates and in the dependence relation.
Our implementation currently requires that the number of
possible tags 𝑡𝑔 is finite (e.g. up to some maximum key) as
well as the number of identifiers 𝑖𝑑 .

For the rest of this section, we write events as ⟨𝜎, 𝑡𝑠, 𝑣⟩
where the pair 𝜎 = ⟨𝑡𝑔, 𝑖𝑑⟩ is called the implementation tag.
This is a useful distinction because at the implementation
level, these are the two components that are used for par-
allelization. The relation depends: (Tag, Tag) -> Bool in the
program straightforwardly lifts to predicates over tags and
to implementation tags.

3.2 Synchronization plans
Synchronization plans are binary tree structures that encode
(i) parallelism: each node of the tree represents a sequential
thread of computation that processes input events; and (ii)
synchronization: parents have to synchronize with their chil-
dren to process an event. Synchronization plans are inspired
by prior work on concurrency models including fork-join
concurrency [25, 40] and CSP [30]. An example synchroniza-
tion plan for the program in Figure 1 is shown in Figure 3.
Each node has an id𝑤𝑖 , contains the set of implementation
tags that it is responsible for, a state type (which is omitted
here since there is only one state type State), and a triple of
update, fork, join functions. Note that a node is responsible
to process events from its set of implementation tags, but
can potentially handle all the implementation tags of its chil-
dren. The leaves of the tree can process events independently
without blocking, while parent nodes can only process an
input event if their children states are joined. Nodes without
a ancestor-descendant relationship do not directly communi-
cate, but instead learn about each other when their common
ancestor joins and forks back the state.

Definition 3.1 (Synchronization Plans). Given a program
𝑃 , a synchronization plan is a pair (𝑤, par), which includes

a set of workers 𝑤 = {𝑤1, . . . ,𝑤𝑁 }, together with a parent
relation par ⊆ 𝑤 ×𝑤 , the transitive closure of which is an
ancestor relation denoted as anc ⊆ 𝑤 × 𝑤 . Workers have
three components: (i) a state type𝑤.state which references
one of the state types of 𝑃 , (ii) a set of implementation tags
𝑤.itags that the worker is responsible for, and (iii) an update
𝑤.update and possibly a fork-join pair𝑤.fork and𝑤.join if
it has children.

We now define what it means for a synchronization plan
to be 𝑃-valid. Intuitively, an 𝑃-valid plan is well-typed with
respect to program 𝑃 , and the workers that do not have an
ancestor-descendant relationship should handle independent
and disjoint implementation tags. 𝑃-validity is checked syn-
tactically by our framework and is a necessary requirement
to ensure that the generated implementation is correct (see
Section 3.5).

Definition 3.2 (𝑃-valid). Formally, a 𝑃-valid plan has to
satisfy the following syntactic properties: (V1) The state
State_i = 𝑤.state of each worker 𝑤 should be consistent
with its update-fork-join triple and its implementation tags.
The update must be defined on the node state type, i.e.,
𝑤.update : (State_i, Event) -> State_i , State_i should be
able to handle the tags corresponding to 𝑤.itags, and the
fork-join pair should be defined for the state types of the
node and its children. (V2) Each pair of nodes that do not have
an ancestor-descendant relation, should handle pairwise in-
dependent and disjoint implementation tag sets, i.e.,∀𝑤,𝑤 ′ ∉
anc(𝑤,𝑤 ′),𝑤 .itags∩𝑤 ′.itags = ∅∧ indep(𝑤.itags,𝑤 ′.itags).

As an example, the synchronization plan shown in Figure 3
satisfies both properties; there is only one state type that
handles all tags and implementation tag sets are disjoint
for ancestor-descendants. The second property (V2) repre-
sents the main idea behind our execution model; indepen-
dent events can be processed by different workers without
communication. Intuitively, in the example in Figure 3, by
assigning the responsibility for handling tag r(2) to node
𝑤3, its children can independently process tags i(2)𝑎, i(2)𝑏
that are dependent on r(2).

3.3 Optimization problem
As described in the previous section, a set of 𝑃-valid syn-
chronization plans can be derived from a DGS program 𝑃 .
This decouples the optimization problem of finding a well-
performing implementation, allowing it to be addressed by
an independent optimizer, which takes as input a description
of the available computer nodes and the input streams. This
design means that different optimizers could be implemented
for different performance metrics (e.g. throughput, latency,
network load, energy consumption). The design space for
optimizers is vast and thoroughly exploring it is outside of
the scope of this work. For evaluation purposes, we have
implemented a few simple optimizers, one of which tries
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to minimize communication between workers by placing
them close to their inputs. Intuitively, it searches for divi-
sions of the event tags into two sets such that those sets are
“maximally” independent, using those sets of tags for the
initial fork, and then recursing on each independent subset.
Its design is described in more detail in the extended version
of the paper [36].

3.4 Implementation
Each node of the synchronization plan can be separated into
two components: an event-processing component responsi-
ble for executing update, fork, and join calls; and a mailbox
component responsible for enforcing ordering requirements
and synchronization.

Event processing. The worker processes execute the func-
tions (update, fork, and join) associated with the tree node.
Whenever a worker is handed a message by its mailbox, it
first checks if it has any active children, and if so, it sends
them a join request and waits until it receives their responses.
After receiving these responses, it executes the join function
to combine their states, executes the update function on the
received event, and then executes the fork function on the
new state, and sends the resulting states to its children. In
contrast, a leaf worker just executes the update function on
the received event.

Event reordering. The mailbox of each worker ensures
that it processes incoming dependent events in the correct
order by implementing the following selective reordering
procedure. Each mailbox contains an event buffer and a timer
for each implementation tag. The buffer holds the events of a
specific tag in increasing order of timestamps and the timer
indicates the latest timestamp that has been encountered
for each tag. When a mailbox receives an event ⟨𝜎, 𝑡𝑠, 𝑣⟩ (or
a join request), it follows the procedure described below.
It first inserts it in the corresponding buffer and updates
the timer for 𝜎 to the new timestamp 𝑡𝑠 . It then initiates
a cascading process of releasing events with tags 𝜎 ′ that
depend on 𝜎 . During that process all dependent tags 𝜎 ′ are
added to a dependent tag workset, and the buffer of each tag
in the workset is checked for potential events to release. An
event 𝑒 = ⟨𝜎, 𝑡𝑠, 𝑣⟩ can be released to the worker process if
two conditions hold. The timers of its dependent tags are
higher than the timestamp 𝑡𝑠 of the event (which means that
the mailbox has already seen all dependent events up to 𝑡𝑠 ,
making it safe to release 𝑒), and the earliest event in each
buffer that 𝜎 depends on should have a timestamp 𝑡𝑠 ′ > 𝑡𝑠

(so that events are processed in order). Whenever an event
with tag 𝜎 is released, all its dependent tags are added to the
workset and this process recurses until the tag workset is
empty.

Heartbeats. As discussed in Section 3.1, a dependence
between two implementation tags 𝜎1 and 𝜎2 requires the im-
plementation to process any event ⟨𝜎1, 𝑡𝑖 , 𝑣𝑖⟩ after processing
all events ⟨𝜎2, 𝑡 𝑗 , 𝑣 𝑗 ⟩ with 𝑡 𝑗 ≤ 𝑡𝑖 . However, with the current
assumptions on the input streams, a mailbox has to wait
until it receives the earliest event ⟨𝜎2, 𝑡 𝑗 , 𝑣 𝑗 ⟩ with 𝑡 𝑗 > 𝑡𝑖 ,
which could arbitrarily delay event processing. We address
this issue by periodically generating heartbeat events at each
producer, which are system events that represent the absence
of events on a stream. Heartbeats are interleaved together
with standard events of input streams. When a heartbeat
event ⟨𝜎, 𝑡⟩ first enters the system, it is broadcast to all the
worker processes that are descendants of the worker that is
responsible for tag 𝜎 . Each mailbox that receives the heart-
beat updates its timers and clears its buffers as if it has re-
ceived an event of ⟨𝜎, 𝑡, 𝑣⟩ without adding the heartbeat to
the buffer to be released to the worker process. Similar mech-
anisms are often used in other stream processing systems
under various names, e.g. heartbeats [33], punctuation [61],
watermarks [16], or pulses [55].

In our experience, heartbeat rates are successful in im-
proving the latency of the system unless they are configured
to be very large or very low values. For a wide range of
heartbeat values(∼10-1000 per synchronization event), the
performance of the system is stable and exhibits minor vari-
ance (see more details in the extended version [36]).

3.5 Proof of correctness
We show that any implementation produced by the end-to-
end framework is correct according to the semantics of the
programming model (Theorem 3.5). First, Definition 3.3 for-
malizes the assumptions about the input streams outlined
in Section 3.1, and Definition 3.4 defines what it means for
an implementation to be correct with respect to a sequential
specification. Our definition is inspired by the classical defini-
tions of distributed correctness based on observational trace
semantics (e.g., [44]). However, we focus on how to interpret
the independent input streams as a sequential input, in or-
der to model possibly synchronizing and order-dependent
stream processing computations. The proof of Theorem 3.5
can be found in the extended version of the paper [36].

Definition 3.3. A valid input instance consists of 𝑘 input
streams (finite sequences) u_1, u_2, . . . , u_k of type List(Event |

Heartbeat), and an order relation O on input events and heart-
beats, with the following properties. (1) Monotonicity: for
all 𝑖 , u_i is in strictly increasing order according to <O . (2)
Progress: for all 𝑖 , for each input event (non-heartbeat) x in u_i,
for every other stream 𝑗 there exists an event or heartbeat y
in u_j such that x <O y.

Given a DGS program 𝑃 , the sequential specification is a
function spec: List(Event) -> List(Out), derived from the se-
quential implementation by applying only update and no
fork and join calls. The output specified by spec is produced
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incrementally (or monotonically): if u is a prefix of u', then
spec(u) is a subset of spec(u'). Define the sort function sortO :
List(List(Event | Heartbeat)) -> List(Event) which takes 𝑘

sorted input event streams and sorts them into one sequen-
tial stream, according to the total order relation O, and drops
heartbeat events.

Definition 3.4. Adistributed implementation is correct with
respect to a given sequential specification spec: List(Event) ->

List(Out), if for every valid input instance O, u_1, . . . , u_k, the
set of outputs produced by the implementation is equal to
set(spec(sortO (u_1, . . . , u_k))).

Theorem 3.5 (implementation correctness). Any implemen-
tation produced by our framework is correct according to Defi-
nition 3.4.

4 Experimental Evaluation
In this section we conduct a set of experiments to investigate
tradeoffs between data parallelism and platform independence
in stream processing APIs. That is, we want to distinguish
between parallelism that is achieved automatically and par-
allelism that is achieved manually at the cost of portability
when the details of the underlying platform change. To frame
this discussion, we identify a set of platform independence
principles (PIP) with which to evaluate this tradeoff:

PIP1: parallelism independence. Is the program de-
veloped without regard to the number of parallel in-
stances, or does the program use the number of parallel
instances in a nontrivial way?

PIP2: partition independence. Is the program devel-
oped without regard to the correspondence between
input data and parallel instances, or does it require
knowledge of how input streams are partitioned to be
correct?

PIP3: API compliance. Does the program violate any
assumptions made by the stream processing API?

Having identified these principles, the following questions
guide our evaluation:

Q1 For computations requiring synchronization, what
are the throughput limits of automatic parallelism ex-
posed by existing stream processing APIs?

Q2 Canmanual parallel implementations, i.e., implemen-
tations that may sacrifice (PIP1–3) above, that emulate
synchronization plans achieve absolute throughput im-
provements in existing stream processing systems?

Q3 What is the throughput scalability of the synchro-
nization plans that are generated automatically by our
framework?

Q4 In summary, for each method of achieving data par-
allelism with synchronization, what platform indepen-
dence tradeoffs are made?

In order to study these questions, we design three appli-
cations with synchronization requirements in Section 4.1.

Our investigation compares three systems at different points
in the implementation space with varying APIs and perfor-
mance characteristics. First, Apache Flink [5, 16] represents
a well-engineered mainstream streaming system with an
expressive API. Second, the Rust implementation of Timely
Dataflow [47, 50] (Timely) represents a system with support
for iterative computation. Third, Flumina is a prototype im-
plementation of our end-to-end framework that supports the
communication patterns observed in arbitrary synchroniza-
tion plans, some of which are not supported by the execution
models of Flink and Timely.

Experimental setup. We conduct all the experiments in
this section in a distributed execution environment consist-
ing of AWS EC2 instances. To account for the fact that AWS
instances can introduce variability in results, we chose m6g
medium (1 core @2.5GHz, 4 GB) instances, which do not use
burst performance like free-tier instances. We use instances
in the same region (us-east-2) and we increase the number
of instances for the scalability experiments. Communica-
tion between nodes is managed by each respective system
(the system runtime for Flink and Timely, and Erlang for
Flumina).
We configure Flink to be in true streaming mode by dis-

abling batching (setting buffer-timeout to 0), checkpointing,
and dynamic adaptation. For Timely, it is inherent to the com-
putational model that events are batched by logical times-
tamp, and the system is not designed for event-by-event
streaming, so our data generators follow this paradigm. This
results in significantly higher throughputs for Timely, but
note that these throughputs are not comparable with Flink
and Flumina due to the batching differences. Because the
purpose of our evaluation is not to compare absolute perfor-
mance differences due to batching across systems, we focus
on relative speedups on the same system and how they relate
to platform independence (PIP1–3).

4.1 Applications requiring synchronization
We consider three applications that require different forms
of synchronization. All three of the applications do not per-
form CPU-heavy computation for each event so as to expose
communication and underlying system costs in the measure-
ments. The conclusions that we draw remain valid, since a
computation-heavy application that would exhibit similar
synchronization requirements would scale even better with
the addition of more processing nodes. The input for all three
applications is synthetically generated.

Event-based windowing. An event-based window is a win-
dow whose start and end is defined by the occurrence of cer-
tain events. This results in a simple synchronization pattern
where parallel nodes must synchronize at the end of each
window. For this application, we generate an input consisting
of several streams of integer values and a single (separate)
stream of barriers. The task is to produce an aggregate of
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the values between every two consecutive barriers, where
between is defined based on event timestamps. We take the
aggregation to be the sum of the values. The computation
is parallelizable if there are sufficiently more value events
than barrier events. In the input to our experiments, there
are 10K events in each value stream between two barriers.

Page-view join. The second application is an example
of a streaming join. The input contains 2 types of events:
page-view events that represent visits of users to websites,
and update-page-info events that update the metadata of a
particular website and also output the old metadata when
processed by the program. All of these events contain a
unique identifier identifying the website and the goal is to
join page-view events with the latest metadata of the visited
page to augment them for a later analysis. An additional
assumption is that the input is not uniformly distributed
among websites, but a small number of them receive most
of the page-views. To simulate this behavior in the inputs
used in our experiments, all views are distributed between
two pages.

Fraud detection. Finally, the third application is a version
of the ML fraud detection application mentioned in the in-
troduction, where the synchronization requirements are the
same but the computation is simplified. The input contains
transaction events and rule events both of which are integer
values. On receiving a rule, the program outputs an aggre-
gate of the transactions since the last rule and a transaction
is considered fraudulent if it is equivalent modulo 1000 to
the sum of the previous aggregate (simulating model retrain-
ing) and the last rule event. As in event-based windowing,
we generate 10K transaction events between every two rule
events.

4.2 Implementations in Flink and Timely
In this section we investigate how the Flink and Timely
APIs can produce scalable parallel implementations for the
aforementioned applications. We iterated on different imple-
mentations resulting in a best-effort attempt to achieve good
scalability. These implementations are summarized below,
and the source code is presented in the extended version of
the paper [36]. For each of the implementations, we then
ran an experiment where we increased the number of dis-
tributed nodes and measured the maximum throughput of
the resulting implementation (by increasing the input rate
until throughput stabilizes or the system crashes). The results
are shown in Figure 4.

Event-basedwindowing. Flink’s API supports a broadcast
construct that can send barrier events to all parallel instances
of the implementation, therefore being able to scale with an
increasing parallel input load. Note that Flink does not guar-
antee that the broadcast messages are synchronized with
the other stream events, and therefore the user-written code
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Figure 4. Flink (top) and Timely (bottom)maximum through-
put increase with increasing parallel nodes for the three ap-
plications that require synchronization. For the page-view
example in Timely, two implementations are shown: Page
View uses automatic parallelism while Page View (M) is the
manual parallel implementation in Figure 5.

updates.broadcast().filter(move |x| {
x.name == page_partition_fun(NUM_PAGES, worker_index)

});

Figure 5. Snippet from the Timely manual (M) implemen-
tation of the page-view join example, satisfying PIP1 and
PIP3 but not PIP2.

has to ensure that it processes them in order. By transform-
ing these barriers to Flink watermarks that indicate window
boundaries, we can then aggregate values of each window
in parallel, and finally merge all windows to get the global
aggregate. Similarly, Timely includes a broadcast operator
on streams, which sends all barrier events to all parallel in-
stances; then the reclock operator is used to match values
with corresponding barriers and aggregate them. Both the
Flink and Timely implementations scale because the values
are much more frequent than barriers, i.e., a barrier every
10K events, and are processed in a distributed manner.

Page-view join. The input of this application allows for
data parallelism across keys, in this case websites, but also
for the same key since some keys receive most of the events.
First, for both Flink and Timely, we implemented this applica-
tion using a standard keyed join, ensuring that the resulting
implementation will be parallel with respect to keys. As
shown by the scalability evaluation, this does not scale to
beyond 4 nodes in the case that there are a small number of
keys receiving most or all of the events.
We wanted to investigate whether it was possible to go

beyond the automatic implementations and scale throughput
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for events of the same key. To study this, we provide a “man-
ual” (M) implementation in Timely (Figure 5 and Figure 4,
bottom). Here, we broadcast update-page-info events, then fil-
ter to only those relevant to each node, i.e. corresponding to
page-views that it is responsible for processing. A similar im-
plementation would be possible in Flink. Unfortunately, our
implementation sacrificesPIP2, i.e., the assignment of events
to parallel instances becomes part of the application logic—
there are explicit references to the physical partitioning of
input streams (page_partition_fun) and the the worker that
processes each stream (worker_index). Additionally, the im-
plementation broadcasts all update events to all sharded
nodes (not just the ones that are responsible for them), intro-
ducing a linear synchronization overhead with the increase
of the number of nodes. An alternative choice would have
been to not only broadcast events, but also keep state for
every page at every sharded replica: this would satisfy PIP2
because nodes no longer need to be aware of which events
they process, but it does not avoid the broadcasting issue
and thus we would expect performance overheads. Overall,
we observe inability to automatically scale this application
without sacrificing platform independence in both Flink and
Timely.

Fraud detection. The standard dataflow streaming API
cannot support cross-instance synchronization, and there-
fore we can only develop a sequential implementation of
this application using Flink’s API. Timely offers a more ex-
pressive API with iterative computation, and this allows for
an automatically scaling implementation: after aggregating
local state to globally updated the learning model, we have a
cyclic loop which then sends the state back to all the nodes to
process further events. The results show that this implemen-
tation scales almost as well as the event-based window. This
effectively demonstrates the value of iterative computation
in machine learning and complex stateful workflows.

Take-away (Q1): The streaming APIs of Flink and Timely
cannot automatically produce implementations that scale
throughput for all applications that have synchronization
requirements without sacrificing platform independence.

4.3 Manual synchronization
To address Q2, we next investigate whether synchronization,
implemented manually and possibly sacrificing PIP1–3, can
offer concrete throughput speedups. We focus this imple-
mentation in Flink, and consider the two applications that
Flink cannot produce parallel implementations for, namely
page-view join and fraud detection. We write a DGS program
for these applications and we use our generation framework
to produce a synchronization plan for a specific parallelism
level (12 nodes). We then manually implement the commu-
nication pattern for these synchronization plans in Flink,
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(a) Page-view join.
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Figure 6. Throughput (x-axis) and 10th, 50th, 90th percentile
latencies on the y-axis for increasing input rates (from left
to right) and 12 parallel nodes. Flink (orange) is the parallel
implementation produced automatically, and Flink S-Plan
(blue) is the synchronization plan implementation.

public Integer joinChild(

final int subtaskId ,

final Integer state

) {

final int parentId = subtaskId / pageViewParallelism;

final int childId = subtaskId % pageViewParallelism;

joinSemaphores.get(parentId).get(childId).release();

forkSemaphores.get(parentId).get(childId)

.acquireUninterruptibly ();

return zipCode.get(parentId);

}

Figure 7. Snippet from the implementation of the manual
synchronization join in Flink. This implementation does not
satisfy PIP1–3.

and we measure their throughput and latency compared to
the parallel implementations that the systems produced in
Section 4.2. The results for both applications are shown in Fig-
ure 6. Flink does not achieve adequate parallelism and there-
fore cannot handle the increasing input rate (low throughput
and high latency).

Page-view join. The synchronization plan that we imple-
ment for this application is a forest containing a tree for each
key (website) and each of these trees has leaves that process
page-view events. Each time an update event needs to be
processed for a specific key, the responsible tree is joined,
processes the event, and then forks the new state back.

Fraud detection. The synchronization plan that we imple-
ment for this application is a tree that processes rule events
at its root and transactions at all of its leaves. The tree is
joined in order to process rules and is then forked back to
keep processing transactions.

Implementation in Flink. In order to implement the syn-
chronization plans in Flink we need to introduce communi-
cation across parallel instances. We accomplish this by using
a centralized service that can be accessed by the instances
using Java RMI. Synchronization between a parent and its
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Figure 8. Flumina (DGS) maximum throughput increase
with increasing parallel nodes for the three applications.

children happens using two sets of semaphores, 𝐽 and 𝐹 . A
child releases its 𝐽 semaphore and acquires its 𝐹 semaphore
when it is ready to join, and a parent acquires its children’s
𝐽 semaphores, performs the event processing, and then re-
leases their 𝐹 semaphores (Figure 7). This implementation
of manual synchronization sacrifices all three platform inde-
pendence principles PIP1–3. For PIP1 and PIP2, it refers
explicitly to the number of parallel instances and the par-
titioning (pageViewParallelism, subtaskId, etc.). For PIP3,
it is not API-compliant because it uses an external service
(semaphores) to implement synchronization, whereas Flink’s
documentation requires that operators lack side effects. This
requirement is imposed because, among other considera-
tions, the use of semaphores might cause the program to fail
in cases where work is interrupted and/or repeated after a
node failure. The full code for the Flink implementation can
be found in the extended version of the paper [36].

Take-away (Q2): Synchronization plans achieve higher
throughputs (4-8x for 12 parallel nodes) over the automatic
parallel implementations produced by Flink’s API.

4.4 Implementation in Flumina
To answer Q3, we implement Flumina, a prototype of our
end-to-end framework that can automatically achieve paral-
lelism given a DGS program. Flumina receives a DGS pro-
gram written in Erlang, uses the generation framework that
was described in Section 3 to generate a correct and efficient
synchronization plan, and then implements the plan accord-
ing to the description in Section 3.4. We implemented all
three applications (source code in extended version [36]) in
Flumina, and measured maximum throughput increase with
the addition of parallel nodes (Figure 8).

Event-based windowing and fraud detection. The DGS
program for event-based windowing contains: (i) a sequen-
tial update function that adds incoming value events to the
state, and outputs the value of the state when processing a
barrier event, (ii) a dependence relation that indicates that all
events depend on barrier events, and (iii) a fork that splits the
current state in half, together with a join that adds two states
to aggregate them. The DGS program for fraud detection is

the same with the addition that the fork also duplicates the
sum of the previous transaction and last rule modulo 1000.

Page-view join. In addition to the sequential update func-
tion, the program indicates that events referring to different
keys are independent, and that page-view events of the same
key are also independent. The fork and join are very simi-
lar to the ones in Figure 1 and just separate the state with
respect to the keys.

Take-away (Q3): Across all three examples, Flumina pro-
duces parallel implementations that scale throughput with-
out sacrificing platform independence.

4.5 Summary: development tradeoffs
Finally, regarding Q4, Table 1 shows all the tradeoffs that
need to be made for each of the programs in this section
together with the throughput increase for 12 nodes. Note that
throughput scaling comparison is only relevant for the same
system (each of which is denoted with a different color) and
not across systems due to differing sequential baselines. Of all
the implementations in Section 4.2, the Timely manual page-
view example sacrifices PIP2. The manually synchronizing
Flink implementations in Section 4.3 show good throughput
scaling at the cost of PIP1–3.

Take-away (Q4): Of the three APIs studied, only DGS can
achieve scalable implementations across all examples with-
out sacrificing either parallelism independence, partition
independence, or API compliance.

5 Related Work

Dataflow stream processing systems. Applications over
streaming data can be implemented using high-performance,
fault tolerant stream processing systems, such as Flink [16],
Trill [17], IBM Streams [29], Spark Streaming [63], Storm [6],
Samza [51], Heron [37], and MillWheel [3]. The need for syn-
chronization in these systems has resulted in a number of
extensions to their APIs, but they fall short of a general solu-
tion. Naiad [50] proposes timely dataflow in order to support
iterative computation, which enables some synchronization
but falls short of automatically scaling without high-level
design sacrifices, as shown in our evaluation. S-Store and
TSpoon [1, 48] extend stream processing systems with on-
line transaction processing (OLTP), which includes some
forms of synchronization, e.g. locking-based concurrency
control. Concurrent with our work, Nova [64] also identifies
the need for synchronization in stream processing systems,
and proposes to address it through a shared state abstraction.

Actor-based databases. As data processing applications
are becoming more complex, evolving from data analytics to
general event-driven applications, some stream processing
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Event window Page-view join Fraud detection
Development tradeoff F TD DGS F FM TD TDM DGS F FM TD DGS
(PIP1) Parallelism independence ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓

(PIP2) Partition independence ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓

(PIP3) API compliance ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Scaling 10x 8x 8x 2x 9x 1x 2x 8x 1x 9x 6x 8x

Table 1. Development tradeoffs for each program, together with throughput scaling for 12 nodes, in Flink (F), Flink with
manual synchronization (FM), Timely (TD), Timely with manual partitioning (TDM), and our system (DGS).

and database systems are moving from dataflow program-
ming to more general actor models [12, 13, 15, 56, 62]. For
example, Flink has recently released Stateful Functions, an
actor-based programming model running on top of Flink
[2, 24]. Actor models can encode arbitrary synchronization
patterns, but the patterns still need to be implemented manu-
ally as message-passing protocols. DGS and synchronization
plans can be built on top of the actor abstraction, and in
fact our own implementation relies on actors as provided by
Erlang [10].

Programmingwith synchronization. In the broader con-
text of distributed and parallel programming, synchroniza-
tion is a significant source of overhead for developers, and
a good deal of existing work can be viewed as addressing
this problem. Our model draws inspiration from fork-join
based concurrent programming [25, 40], bringing some of
the expressiveness in those models to the streaming setting,
where parallelism is much less flexible but essential for per-
formance, but also extending them, since in our setting the
system (and not the user) decides when to fork and join
by choosing a synchronization plan. A particularly relevant
example is Concurrent Revisions [14], which is a program-
ming model that guarantees determinism in the presence of
concurrent updates by allowing programmers to specify iso-
lation types that are processed in parallel and then merged
at join points. The difference of our work is that it targets
a more restricted domain providing automation, not requir-
ing programmers to manually specify the execution syn-
chronization points. Another related domain is monotonic
lattice-based programming models, including Conflict-Free
Replicated Data Types [57], Bloom𝐿 [20], and LVars [38, 39],
which are designed for coordination-free distributed pro-
gramming. These models guarantee strong eventual consis-
tency, i.e., eventually all replicas will have the same state, but,
in contrast to our model, CRDTs and Bloom𝐿 do not allow
synchronization between different workers. LVars, which
focuses on determinism for concurrent updates on shared
variables, extends lattice-based models with a freeze opera-
tion that enforces a synchronization point, inducing partial
order executions that are similar to the ones in our model.
Some similarities with our work can be found in the domain
of consistency for replicated data stores. Some examples

include RedBlue consistency [43], MixT [49], Quelea [58],
CISE [28], Carol [42], all of which support a mix of consis-
tency guarantees on different operations, inducing a partial
order of data store operations.

Correctness in stream processing. Finally, in prior work,
researchers have pointed out that parallelization in stream
processing systems is not semantics-preserving, and have
proposed methods to restrict parallelization so that it pre-
serves the semantics [46, 55]. In particular, dependence rela-
tions have been previously used in this context as to specify
and ensure correct parallelism [35, 46] and as a type sys-
tem for synchronization [4]. However, these works do not
propose a general programming model or generation of a
parallel implementation.

6 Future Work
One problem that is not yet adequately explored in our frame-
work is optimization: given a DGS program, how to select a
valid synchronization plan which is most efficient according
to a desired cost metric. Traditional optimization algorithms
for stream processing systems cannot be directly applied to
the complex tree structure of synchronization plans. There
are also possibilities for dynamic optimization, in which
the synchronization plan is modified online in response to
profiling data from the system. Besides optimization, the
implementation of synchronization plans needs to address
a plethora of systems related issues, such as (i) the efficient
management and communication of forked state in a dis-
tributed environment, (ii) execution guarantees in the pres-
ence of faults, and (iii) supporting performance optimizations
such as batching and backpressure.
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