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iii



Acknowledgments

This thesis would not have been possible without the help of many people. I would

like to express my gratitude to them all.

Rajeev Alur has been a good and patient advisor. I can only hope that some of his

ability to think clearly and to find compelling solutions to intricate problems has been

imprinted on me. I learned from him how to be a researcher. It would be impossible

to pinpoint his contributions large and small to this work; his encouragement has

been very important as well.

Andy Gordon, Andre Scedrov, Scott Weinstein and Steve Zdancewic have been

members of my thesis committee. I have greatly benefited from their guidance. This

thesis was markedly improved because of their critical reading and valuable sugges-

tions. I am especially grateful to Scott for his kind words and scientific collaboration

over the past two years.

The faculty, staff and students at the Computer and Information Science de-

partment have provided an excellent academic environment. Swarat Chaudhuri and

Mikhail Bernadsky have become good friends. Our technical discussions have helped

in my work, while our more philosophical discussions have been thoroughly enjoyable.

My friends David, Micah, Mike, Celina and Matt, Cecilia, Colleen, and Marie

have made my stay in Philadelphia fun, exciting and memorable. I thank the people

in the Penn Newman center and Saint Agatha - Saint James parish who helped me

deepen my understanding of the Catholic faith.
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ABSTRACT

SOFTWARE MODEL CHECKING FOR CONFIDENTIALITY

Pavol Černý

Rajeev Alur

Protecting confidentiality of data manipulated by programs is a growing concern

in various application domains. In particular, for extensible software platforms that

allow users to install third party plugins, there is a need for an automated method

that can verify that programs preserve confidentiality of data. Our central thesis is

that software model checking, an algorithmic, specification-driven program analysis,

is an effective way of checking whether programs leak confidential information. Soft-

ware model checking has emerged as a successful technique for analyzing programs

with respect to correctness requirements. However, existing methods and tools are

not applicable for specifying and verifying confidentiality properties. In this thesis,

we develop a specification framework for confidentiality, novel decision procedures

for finite state systems as well as for classes of programs, and an abstraction-based

program analysis technique.

A property f over the program variables is said to be confidential if the adversary

cannot infer the truth of f based on the observed behavior of the program at runtime

and the knowledge of the source code of the program. Confidentiality therefore de-

pends not only on individual program executions, as is the case for classical temporal

logics, but on sets of observationally equivalent executions. Our specification frame-

work thus consists of a new, richer computation tree model and correspondingly

enriched temporal logics.

For finite state systems, we develop an algorithm for the model checking prob-

lem for these temporal logics, and we show that the problem is PSPACE-complete

for a fragment that is expressive enough to allow specifications of information flow

properties such as “agent A does not reveal x (a secret) until agent B reveals y (a

password)”. For infinite-state software systems, we develop two approaches. First,
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we study decidability of confidentiality for programs that access an array. The confi-

dentiality requirement specifies that secret information contained in the array should

not be leaked. We develop novel decision procedures for classes of programs that

access an array whose length is potentially unbounded, and whose elements range

over a potentially infinite, ordered data domain. We show that the reachability

problem for these programs is decidable, and that the result extends to confiden-

tiality. Second, we develop an automated abstraction-based analysis technique for

confidentiality. We show that both over- and under- approximation is needed for

sound analysis. Given a program and a confidentiality requirement, our technique

produces a formula that is satisfiable if the requirement holds.

We evaluate the abstraction-based technique by analyzing Java bytecode of a set

of methods of J2ME midlets for mobile devices. Midlets are third-party programs

designed to enhance the capabilities of the device and often have a legitimate reason

to access data on the mobile device (such as the list of contacts or a phone book), as

well as a legitimate reason to send outgoing messages or requests. We demonstrate

that our approach can be effectively used for certification of these programs.

vii



Contents

Acknowledgments iv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Current state of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Formalizing the notion of confidentiality . . . . . . . . . . . . 6

1.3.2 Specification framework . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Decision problems . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Abstraction-based analysis of Java methods . . . . . . . . . . 9

1.3.5 Implementation and experimental evaluation . . . . . . . . . . 10

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Specifying Confidentiality 13

2.1 Confidentiality requirements . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Confidentiality for programs . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Specifying confidentiality in temporal logics . . . . . . . . . . . . . . 24

2.3.1 Trees with path equivalences . . . . . . . . . . . . . . . . . . . 26

2.3.2 Branching-time logics on equivalence graphs . . . . . . . . . . 28

3 Model Checking Confidentiality Properties for Finite State Sys-

tems 35

viii



3.1 Finite model FM ϕ(K) . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 CTL≈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 µ≈-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Decision Procedures for Confidentiality for Array-Accessing Pro-

grams 49

4.1 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Finite data domain . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Programs, automata and logics on data words . . . . . . . . . . . . . 71

4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Extended data automata . . . . . . . . . . . . . . . . . . . . . 73

4.3.3 Restricted doubly-nested loops . . . . . . . . . . . . . . . . . . 80

4.3.4 Undecidable extensions . . . . . . . . . . . . . . . . . . . . . . 84

4.3.5 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Abstraction-based Program Analysis for Confidentiality 97

5.1 Language of expressions . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Analysis of programs for conditional confidentiality . . . . . . . . . . 99

5.3 Deciding validity of the confidentiality formula . . . . . . . . . . . . . 103

6 Implementation and Experimental Evaluation 107

6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Related Work 112

8 Conclusion 120

ix



List of Tables

1.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.1 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 110

x



List of Figures

1.1 EventSharingMidlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 EventSharingMidlet (malicious version) . . . . . . . . . . . . . . . . . 3

2.1 Program ArraySearch . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 CFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Confidentiality is not a regular property. . . . . . . . . . . . . . . . . 25

2.4 (a) A tree with equivalences (b) Part of its equivalence graph . . 28

3.1 States and transitions of FM ϕ(K) . . . . . . . . . . . . . . . . . . . . 41

4.1 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 A connected component of a graph C0 corresponding to an EDA E . 75

6.1 Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xi



Chapter 1

Introduction

Our central thesis is that algorithmic, specification-driven analysis is an effective way

of checking whether programs leak confidential information. To this end, we develop

a specification framework for confidentiality, novel decision procedures for finite state

systems as well as for classes of programs, and an abstraction-based program analysis

technique, and evaluate the latter on a set of Java methods.

1.1 Motivation

Security and confidentiality are growing concerns in software and system develop-

ment [75, 43]. The problem of ensuring confidentiality of data being processed by

computing systems is long-standing (see [73] for an early approach), yet increasingly

important, as systems are parts of larger networks. The nodes on the network need

to interact, often by communicating sensitive data over the network and thus giving

opportunity to active or passive (eavesdropping) attackers to gain knowledge about

secret data.

Protecting confidentiality is essential in many areas of computing. For example,

in health care systems, it is required by law [3], in order to maintain privacy. Second,

collaboration between companies (or divisions in the same company, or teams of
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researchers) requires data sharing. However, in many cases, parties might not be

willing to share all the information. Third, many platforms (such as mobile phones

or web browsers) are highly extensible. They allow users to download third-party

programs that can access data on a host system, as well as to communicate with the

outside world. The question of how to ascertain that an attacker cannot easily get

information about classified data is central in all these application areas.

A specific application context consists of Java midlets. Midlets are third-party

programs designed to enhance features of mobile devices. J2ME midlets have legit-

imate reasons to access data on the mobile device (such as the list of contacts or

a phone book), and a legitimate reason to send outgoing messages. Therefore an

access control mechanism that would prevent the programs from performing either

of these tasks would be too restrictive. The recently released report [65] describes

several attack vectors through which a malicious midlet can stealthily release private

data through connections such as text messages, emails, or http requests. Thus there

is a question of how to ensure that a given (possibly malicious) midlet does not leak

confidential information.

A verification tool would be very useful in this context. The J2ME security model

uses the concept of protection domains (see MIDP specification [4]). A protection

domain is associated with permissions for security-sensitive APIs. Midlets that need

more privileges have to be either signed by a certificate from a trusted certification

authority (CA) or registered with the manufacturer of the device, depending on the

policy of the vendor. The source code of the midlets is not analyzed, the registration

serves only to enable the possibility of tracking the harmful midlets and their authors.

A verification tool could thus be used for guaranteeing that registered midlets do

not leak confidential information.

We will use a simplified version of the EventSharingMidlet from a J2ME man-

ual [1] as an example. It uses the security-sensitive PIM1 API. It allows accessing

1Personal information management. See https://java.sun.com/javame/index.jsp.
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//get the phone number
number = phoneBook.

elementAt(selected);
//test if the number is valid
if ((number == null)

‖ (number == "")) {
//output error

} else {
String message = inputMessage();
//send a message
sendMessage(number,message);

}
}

Figure 1.1: EventSharingMidlet

...
if ((number == null)

‖ (number == "")) {
//output error

} else {
if (contains(phoneBook,"555-55")) {
String message = inputMessage();
//send a message
sendMessage(number,message);

}
}

Figure 1.2: EventSharingMidlet (mali-
cious version)

the native data (such as the phone book) of the phone. For this API, a confiden-

tiality requirement might be that phone numbers in the phone book should not be

leaked. EventSharingMidlet allows the user to plan an event and send information

about it to contacts in her phone book. The core of the midlet is in Figure 1.1. The

phone number of the intended receiver is retrieved from the phone book. A test is

performed whether this number is valid. If so, a message is prepared and sent. We

suppose that the attacker can observe all messages. The property to be kept secret

for the example is whether a particular number, say “555-55” is in the phone book.

Let us denote it by secret . We want to verify that the attacker cannot infer whether

secret holds or not based on his or her knowledge of the program and observation

of the outputs (in this case, the variable message). Note that the outgoing message

does depend on the variable phoneBook (via the control-flow dependency). However,

in this case, the answer is that the attacker cannot infer whether the secret holds or

not. Now let us consider the case when midlet is malicious as in the Figure 1.2. The

attacker inserted a test on whether the number “555-55” is in the phone book. Now

if a message (any message) is sent, the attacker can infer that secret holds.
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The notion of confidentiality The example in Figure 1.2 shows that the attacker

can learn it even though the secret is never directly revealed in the messages the

attacker sees. Therefore our formalization of confidentiality has to capture also the

more indirect information flows.

Intuitively, a property f over the program variables is confidential if the adversary

cannot infer the truth of f based on the observed behavior of the program at runtime

and the knowledge of the source code of the program. More precisely, a property f

is confidential if for every execution r, there exists another execution r′, such that r

and r′ disagree on the truth of f , but are equivalent to the observer. Two executions

are equivalent to the observer, if they produce the same sequence of observations

(observations can be, for example, inputs and outputs of the program).

1.2 Current state of the art

Software model checking We investigate the possibilities for using automated

verification techniques for verification of confidentiality. Automated software model

checkers have made great progress in recent years, having become efficient and widely

deployed in industry for both bug finding and certification of correctness. For ex-

ample, the tool SDV (based on SLAM [13]) is distributed with the development

kit for Windows device drivers. Existing software model checkers (such as SLAM,

BLAST [52] or Synergy [47]) are designed for checking linear-time properties of pro-

grams, and are based on abstraction, symbolic state-space traversal, and counter-

example guided abstraction refinement. More precisely, a program is modeled as a

logical structure M and a requirement ϕ is given in a formal language, such as a

temporal logic. The model checking problem is then to determine whether ϕ holds

for M . If the system in question is infinite or prohibitively large, we can employ

abstraction techniques to produce a smaller system MA such that if ϕ holds for MA,

then ϕ holds for M . On the other hand, the abstraction is often not complete. That
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is, if ϕ does not hold in MA, then we cannot conclude whether ϕ holds in M . How-

ever, if the decision method returns a counterexample, it is possible to analyze it. It

can prove to be a counterexample to ϕ in the original model M . If it is not, we are

not able to conclude whether ϕ holds in M , but we can use the counterexample to

refine the abstraction MA to make it more precise.

Unfortunately, software model checking techniques and tools are not directly ap-

plicable to verification of confidentiality properties. The reasons are two-fold. First,

confidentiality is not a property of a single execution, and in fact, is not specifi-

able in µ-calculus, which is more expressive than the specification languages of these

tools. Second, definition of confidentiality involves both universal and existential

quantifiers. Therefore, abstraction based on solely over-approximation (or solely on

under-approximation) is not sufficient for checking confidentiality. More precisely,

let us consider two programs P1 and P2, such that P1 is an over-approximation of

P2, that is, the set of executions of P2 is included in the set of executions of P1. The

fact that confidentiality holds for P1 does not imply that confidentiality holds for P2

(and vice-versa).

Language-based security Noninterference is a security property often used to

ensure confidentiality. Informally, it can be described as follows: “if two input states

share the same values of low variables then the behaviors of the program executed

from these states are indistinguishable by the observer”. See [70] for a survey of the

research on noninterference and [63] for a Java-based programming language with a

type systems that supports information flow control based on noninterference.

Noninterference is too strong for the specification of confidentiality for the ex-

ample in Figure 1.1. The reason is, briefly, that the variable number depends on the

variable message via control flow. The definition of confidentiality we present can be

seen as a relaxation of noninterference. It is relaxed by allowing the user to specify

which predicate(s) should stay secret; noninterference requires that all properties
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of high variables stay secret. It is well-known that the noninterference requirement

needs to be relaxed in various contexts. See [72] for a survey of methods for defining

such relaxations via declassification. Compared to these methods, the main benefit

of our approach is automation, as our method allows verification of existing programs

without requiring annotations by the programmer.

1.3 Contributions

1.3.1 Formalizing the notion of confidentiality

The definition of confidentiality should capture the intuition that a fact is secret if

an observer who knows the source code of the program, and can observe (partially)

the behavior of the program at runtime, cannot infer whether the fact holds or not.

This suggests that the definition of confidentiality should be parameterized by (1)

the distinguishing power of the observer, (2) the property to be kept secret, and (3)

the executions of interest. We formalize the definition in the standard framework of

labeled transition systems, which can represent, for example, semantics of programs.

The distinguishing power of the observer is modeled by an equivalence relation on

the runs of the system. A property is conditionally confidential if, for every run

(a sequence of states) of interest, there is an equivalent run such that only one of

these two runs satisfies the property. We demonstrate that the parametric definition

is flexible enough to capture the confidentiality requirement in many programs and

systems. Furthermore, we show that by varying these three parameters, it is possible

to capture a variety of possibilistic definitions of secrecy found in the literature.

1.3.2 Specification framework

A natural question is whether such a notion of confidentiality can be specified using

temporal logics. There are several reasons why such a specification language would
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be useful. First, it would give the user a lot of flexibility in specifying what should

be kept secret. Second, the model-checking algorithms developed for temporal logics

could be used to verify confidentiality. However, we show that confidentiality is not

specifiable in logics such as the µ-calculus. On an intuitive level, the reason why

this holds can be easily explained by the fact that classical tree logics cannot relate

distinct paths in the computation tree.

This motivates our interest in extending temporal logics to reasoning about se-

crecy requirements of systems. To be able to specify properties such as confiden-

tiality, we propose to enrich the traditional tree model with edges that capture ob-

servational indistinguishability: for an agent a, an a-labeled edge is added between

two nodes if the observable behaviors of the agent a along the paths to these nodes

are identical. Note that above we used an observer observing the program execu-

tion. For concurrent programs and protocols, we generalize this setting to multiple

observers, one for each agent. We can thus express what an agent has revealed. One

can now extend classical tree logics CTL and µ-calculus by a next operator over the

new edges in the enriched structure. We denote the operator by EI and we call the

logics CTL≈ and µ≈, respectively. These logics, interpreted over tree models aug-

mented with path equivalences, can express confidentiality properties. To specify

that the agent a keeps the value of a boolean variable x secret, we simply have to

assert that for all tree nodes, the value of x is different from the value of x in one

of its successors along a-labeled edges. We can integrate temporal reasoning with

reasoning about confidentiality to specify requirements such as “agent a does not

reveal x until event e happens.”

1.3.3 Decision problems

Model-checking for finite-state systems We study complexity and decidabil-

ity of the model checking problem for CTL≈ and µ≈. We show that if we consider

multiple equivalence relations (modeling what multiple agents have revealed), the
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model checking problem is undecidable for µ≈. For CTL≈ , we present an algorithm

that keeps track of paths equivalent according to an observer via a type of subset

construction. We show that the key parameter is the nesting depth of the specifi-

cation. Informally, when we need to evaluate a formula ϕ after jumping across an

a-labeled edge, then an additional layer of subset construction is required to process

b-equivalence, for agents b 6= a. The complexity of the algorithm is thus nonelemen-

tary. We also show the corresponding lower bound.

We show that, if we restrict the nesting depth to 1 the model checking problem

for CTL≈ is Pspace-complete, and is Exptime-complete for µ≈. These fragments

of CTL≈ and µ≈ are expressive enough to capture information flow properties such

as “agent A does not reveal x (a secret) until agent B reveals y (a password)” and

to capture partial information games.

Array-accessing programs A natural confidentiality requirement for a program

is that it should not reveal to the outside world (too much) information about the

data structure it is accessing. Verification questions concerning programs are unde-

cidable in general. However, we identify a class of programs for which confidentiality

is decidable. The class contain programs that access a single array whose length is

potentially unbounded, and whose elements range over pairs from Σ ×D, where Σ

is a finite alphabet and D is a potentially unbounded data domain. The program

can have Boolean variables, index variables ranging over array positions, and data

variables ranging over D. Programs can access Σ directly, but can only perform

equality and order tests on elements of D. The programs are built using assign-

ments, conditionals, and for-loops over the array. Even with these restrictions, one

can perform interesting computational tasks including searching for a specific value,

finding the minimum data value, checking that all values in the array are within

specific bounds, or checking for duplicate data values.

We show that the reachability problem, while undecidable in general, is (1)
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Pspace-complete for programs in which the array-accessing for-loops are not nested,

(2) solvable in Expspace for programs with arbitrarily nested loops if array elements

range over a finite data domain, and (3) decidable for a restricted class of programs

with doubly-nested loops. The third result establishes connections to automata and

logics defining languages over data words. Furthermore, we show that the decid-

ability results for reachability extend to verification of confidentiality properties of

programs.

1.3.4 Abstraction-based analysis of Java methods

Successful approaches to software verification of programs with infinite or very large

state spaces are based on abstraction. Our method proceeds in two steps. First,

we compute a formula ϕ that is valid if the conditional confidentiality requirement

holds. In order to do so, we show that one needs to consider both an over- and an

under-approximation of reachable states for every program location. We use user-

specified invariants for over-approximation. In all the examples we considered, the

invariants that were used are simple enough, and could have been discovered by

existing techniques for automatic invariant generation. The under-approximation is

specified by a bound on the number of loop iterations and a bound on the size of

the array.

The second step consists of deciding the validity of the obtained formulas, which

involves both universal and existential quantifiers. For a restricted fragment, we

devise an efficient decision method using satisfiability solvers for quantifier free for-

mulas. The restriction contains a subset of Java that contains booleans, integers,

on which we allow linear arithmetic, as well as data from an unbounded domain D

equipped with only equality tests. Furthermore, the programs can have arrays, which

are a priori unbounded in length and whose elements are from D. We leverage the

restrictions on the program expressions, as well as the specific form of the obtained

formulas, to devise a decision method based on using an existing SMT solver. The

9



restriction on the program expressions is that the domain D (over which the univer-

sal quantification takes place) has only equality tests. Therefore given a formula ϕ,

it is possible to produce an equivalent formula ϕ′ where the universal quantification

takes place over a bounded domain. As ϕ′ can then be seen as a boolean combination

of existential formulas with no free variables, its validity can be decided using an

SMT solver.

1.3.5 Implementation and experimental evaluation

We have implemented a prototype tool called ConAn (for CONfidentiality ANaly-

sis). It takes as input a program in Java bytecode, a secret and a condition under

which the secret should hold. The tool uses WALA [2] library to process Java byte-

code. It then performs the analysis on an intermediate representation called WALA

IR and produces formulas whose satisfiability is subsequently checked by the SMT

(satisfiability modulo theories) solver Yices [37].

We confirmed feasibility of our solution by checking confidentiality for methods

from J2ME midlets, as well as for data- structure accessing methods from the core

Java library. The main practical question is whether the formulas produced can be

decided by existing tools in reasonable time. The running times for the methods

we analyzed were all under two seconds. The size of the methods we analyzed was

small, with the largest one having little over 100 lines. However, the methods we

chose contain parts of the midlets that are key from the security point of view, that

is, the methods that access the confidential data (such as the phone book) and send

out messages. Furthermore, we show that the method size is typical for midlets

by presenting statistics for lines of code per method for 20 most downloaded open

source midlets.
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Reachability Conditional
Confidentiality

Specification language CTL, µ-calculus CTL≈ , µ≈-calculus

Finite-state systems NL-complete Pspace-complete
Array-accessing Pspace-complete Pspace-complete

programs (non-nested loops) (non-nested loops)
Programs (Java methods) Over-approximation Both over- and under-

for sound analysis approximations needed
(of unreachability) for sound analysis

Table 1.1: Summary of results

1.4 Summary

Table 1.1 provides a summary of the results and contributions of the dissertation

in the context of previous results on reachability analysis. Our results are printed

in bold. First, in Chapter 2, we provide a definition of conditional confidentiality

that is flexible (i.e., it is possible to specify what property should be kept secret

and the condition under which its secrecy should hold) and that captures direct

and indirect information flows. We show (also in Chapter 2) that even though

conditional confidentiality is not expressible in standard temporal logics such as the

µ-calculus, it is possible to extend these logics in a way that allows specification

of both temporal and confidentiality properties. The frameworks (CTL≈ and µ≈)

allow specification of properties such as “a secret is revealed only after a certain

condition is met”. Second, in Chapter 3, we show that the problem of checking

confidentiality for finite-state system is PSPACE-complete. Third, confidentiality

requirements often involve (complex) data structures. We examine programs that

access arrays and show that for certain classes the reachability and confidentiality

properties are decidable (Chapter 4). Fourth, we show in Chapter 5 that using

solely over- (under- ) approximation is not sufficient for sound analysis of programs

for conditional confidentiality. We present an analysis approach based on both over-
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and under- approximation. Furthermore, for a certain restricted class of programs,

we develop an efficient implementation based on an SMT-solver and we provide

experimental evaluation of our techniques.

Joint work

Chapters 2 and 3 evolved from two articles: Preserving Secrecy under Refinement [8]

that appeared in the 33rd International Colloquium on Automata, Languages and

Programming (ICALP 2006) and was coauthored with Rajeev Alur and Steve

Zdancewic, and Model Checking on Trees with Path Equivalences [6] that appeared

in the 13th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS 2007) and was coauthored with Rajeev Alur and

Swarat Chaudhuri. Chapter 4 is based on joint work with Rajeev Alur and Scott

Weinstein Algorithmic Analysis of Array-Accessing Programs [7] that will be pre-

sented in the 18th Conference on Computer Science Logic (CSL 2009). Chapter 5

and 6 contain results from a joint paper with Rajeev Alur Automated Analysis of

Java Methods for Confidentiality [24] that was published at the 21st International

Conference on Computer Aided Verification (CAV 2009).
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Chapter 2

Specifying Confidentiality

We introduce a general framework for specifying confidentiality. We first note that

confidentiality is dependent on the distinguishing power of the observer, and is pa-

rameterized by the fact that should be kept secret, as well as the circumstances under

which it should be kept secret.

We will use the standard verification framework — labeled transition systems.

The distinguishing power of the observer is modeled by an equivalence relation on

runs of the system. The property to be kept secret is, in general, a property of the

run. We give the user also the power to specify the set of runs that are of interest,

that is, the set of runs for which the confidentiality should be preserved. A property

is confidential if, for every run of interest, there is an equivalent run such that

exactly one of these two runs satisfies the property. We introduce a formal definition

of confidentiality along these lines for transition systems. Turning to programs, we

then provide an equivalent characterization of confidentiality in the style of classical

data flow definitions.

A natural question is whether such a notion of confidentiality can be specified

using temporal logics. There are several reasons why such a specification language

would be useful. First, it would give the user a lot of flexibility in specifying what,

under what conditions, and when should be kept secret. Second, the model-checking
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algorithms developed for temporal logics could be used to verify confidentiality.

Temporal logics have been successfully used for specifying and verifying require-

ments of reactive systems such as distributed protocols [27, 67]. In particular, in the

branching-time approach, a system is modeled as a labeled tree whose paths corre-

spond to executions of the system; a specification describes a set of correct trees; and

verification reduces to a membership question [55]. Typical branching-time speci-

fication languages include CTL, the µ-calculus, and tree automata [54, 28]. The

theoretical foundations of this approach are now well understood, and model check-

ers such as SMV implement highly optimized algorithms for verifying branching-time

requirements of finite-state systems [23, 26]. However, we show that confidentiality

is not specifiable in logics such as the µ-calculus. On an intuitive level, the reason

why this holds can be easily explained by the fact that classical tree logics cannot

relate distinct paths in the computation tree and that confidentiality depends on a

set of equivalent runs.

This motivates our interest in extending temporal logics to reasoning about se-

crecy requirements of software systems. To be able to specify properties such as

confidentiality, we propose to enrich the traditional tree model with “jump-edges”

that capture observational indistinguishability. More precisely, consider a tree T

whose nodes are labeled with truth values to atomic propositions P . For an agent

a, if the assignment to the propositions O(a) ⊆ P captures the observable behavior

of a, then two tree nodes are considered a-equivalent if the paths from the root to

these nodes agree on the values of propositions in O(a) at every step. We convert

the tree T into a graph IG(T ) by adding, for every agent a of interest, an a-labeled

edge between every pair of a-equivalent nodes and ā-labeled edge between every pair

of a-inequivalent nodes at the same level. One can view IG(T ) as a Kripke model,

where both nodes and edges have labels, and interpret standard tree logics over it.

Tree logics interpreted over tree models augmented with (in)equivalence edges

have rich expressiveness. To specify that the agent a keeps the value of a variable
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x secret, we simply have to assert that for all tree nodes, the value of x is different

from the value of x in one of its successors along a-labeled edges. One can integrate

temporal reasoning with secrecy to specify requirements such as “agent a does not

reveal x unless agent b reveals y.” We also show that using the tree models with jump

edges, partial information games are expressible in our framework. Games are useful

for specifying requirements as well as for formulating synthesis questions. In partial

information games, the strategy can depend only the sequence of observations, rather

than the complete execution of the system.

2.1 Confidentiality requirements

A transition system (TS) T is a tuple (Q, δ, λ, q0), where Q is a set of states, δ ⊆
Q×Q, is a transition relation, λ : Q→ 2P is a map labeling each node with a set of

propositions, and qI ∈ Q is an initial state.

A sequence r = q0q1 . . . of states is a run of the transition system T iff q0 is the

initial state qI and ∀i : 0 ≤ i < |r| ⇒ (qi, qi+1) ∈ δ. Let R(T ) be the set of all runs

of the TS T .

A property α is a subset of the set of runs, i.e. α ⊆ R(T ). A state-property is a

property that depends only on the last state of a run. Formally, α is a state-property

iff there is a set of states Qα ⊆ Q such that r ∈ α iff r = q0q1 . . . qn and qn is in Qα.

Given this model of systems, we want to define what an observer can see and what

he or she can infer based on those observations. The observer cannot see everything

about the current run of the system, that is to say, in general, several runs can

correspond to the same observation. Let O be a subset of the set of propositions

P , defining the set of observables. We will use the set O to define equivalences on

paths in a transition system T as follows. Let the map Tr : Q → 2P , defined as

Tr(q) = λ(q)∩O for all q, return the observables at a state q of T . We lift this map

to runs of T by defining Tr(q0q1 . . .) = Tr(q0)Tr(q1) . . .. Runs r and r′ are equivalent
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(written as r ≈O r′) iff Tr(r) = Tr(r′).

For a property α, the observer is able to conclude that α holds, if α holds for all the

runs that correspond to his or her observations. He or she is able to conclude that α

does not hold, if it does not hold for all the runs that correspond to the observations.

The third possibility is that the observer is not able to conclude whether α holds or

not. We will thus need to use a three-valued domain, {>,⊥,m} (true, false, maybe),

and a partial order that models the knowledge the observer has. v is the following

partial order on {>,⊥,m}: m v m,m v >,m v ⊥,⊥ v ⊥,> v >.

Function IP – inferable properties, is a function that, given a run r, a property

α, and the set of observables O, represents the knowledge of the observer about

the property α after the run r. IP(r, α,O) = > if ∀r′ : r′ ≈O r ⇒ r′ ∈ α,

IP(r, α,O) = ⊥ if ∀r′ : r′ ≈O r ⇒ r′ /∈ α and IP(r, α,O) = m otherwise.

Our notion of confidentiality depends on three parameters: (1) the distinguishing

power of the observer, modeled by the set O, (2) the property to be kept secret α,

and (3) the set of runs of interest, β: instead of requiring a property α to be secret in

every run of the system, we may want to focus only on a subset β of runs that are of

interest, e.g. the set of all terminating runs. This leads to the following formalization

of conditional confidentiality:

Definition 1. (Conditional confidentiality) Let T be a labeled transition system

and α and β be two properties. The property α is a conditionally confidential in β

w.r.t. O if for all r ∈ β, IP(r, α,O) = m.

Example 1. Consider the following two programs. All the variables in programs

A and B are boolean.

A: x=?; y=0; z=x; send z;

B: x=?; y=0; z=y; send z;

It is easy to see how they can be modeled as transition systems in our framework.
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The proposition in states encode valuations of variables. There are two more propo-

sitions: M1, encoding whether a new message was sent, M2, encoding the value of the

message. The set O of observable propositions is composed of the two propositions

M1 and M2. Note that the input (x = ?) is not seen by the observer.

We want to analyze what an observer might infer about whether or not x = 0

during the execution of the program if he or she can observe what the program

sends. Let us suppose that the observer sees an execution where 0 was sent. For the

program A the observer, after having seen the execution, can conclude that x = 0

holds. For the program B the observer does not know whether x = 0. We can

conclude that for program A, the state property x = 0 is not a secret in the set of

all runs w.r.t. ≈ and it is a secret for program B.

We present the following examples in order to show the relation of our definition

to several standard information-flow properties such as noninterference or Perfect

Security Property. Note that we need to vary the three parameters O, α, and β.

Noninterference

Consider the standard formulation of termination insensitive noninterference [70]. It

is defined using low and high variables, where low variables are visible to the observer

and high variables are not. Noninterference can be then formulated informally as

follows: “if two input states share the same values of low variables then the behaviors

of the program executed from these states are indistinguishable by the observer”.

The observer thus does not see any variation in the valuation of low variables, caused

by variation in the valuation of high variables.

We show that in our setting, we can specify that the observer cannot infer a

(user-specified) property based on his observation of low variables. Consider a classic

requirement such as “a secret key should stay secret.” In our framework, this can

be expressed as “the property P of the secret key stays secret”, that is, the property

P will not be revealed.
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In this sense, our framework of conditional confidentiality can be seen as a relax-

ation of noninterference. It enables specification of the properties that should stay

secret, as opposed to noninterference, which requires that there is no information

flow from high to low variables, that is, it requires that all properties stay secret.

We now formalize the idea that conditional confidentiality is a relaxation of non-

interference. We consider a deterministic transition system T , and the standard

definition of noninterference as described above. We then construct a set NI of

properties, such that noninterference holds for T if and only if all the properties in

NI are conditionally confidential.

We model noninterference for deterministic programs. A transition system is

deterministic if each node has at most one outgoing edge. Such a system is a model

of the state space of deterministic programs. The only nondeterminism is allowed

in the choice of initial state. This models the input of the program. The state

labeling function λ can be used to encode the valuation of the variables. The set L

of observable propositions is composed of the propositions encoding the low variables.

We denote the equivalence relation on states induced by L by ≈L.

Noninterference can be then formalized as follows. Noninterference holds for the

transition system T , if for all nodes s0, s1, s
′
0, s
′
1 we have: (s0 →∗ s1 and s′0 →∗ s′1

and s0 ∼L s′0) implies s1 ∼L s′1, where →∗ is the reflexive and transitive closure of

the transition relation →.

In what follows, we will use the notation s|H (s|L) to denote the restriction of a

state s to high (low) variables.

We extend the definition of conditional confidentiality to sets of properties. Let

S be a set of properties that does not include the empty set and the set of all runs

(as the truth of these properties is leaked tautologically). Let β be the set of runs

of interest, as before. The set S is conditionally confidential in β w.r.t. O if for all

properties α ∈ S, α is conditionally confidential in β w.r.t. O.

We define a particular set of properties P that characterizes noninterference.

18



Informally, it can be characterized as the set of all subsets of valuations of high vari-

ables. To formalize this definition, we define the following notions. An H-valuation

A is a valuation (i.e. a truth assignment) to all propositions encoding high variables.

An H-property is a property (i.e. a subset of runs) defined by a set of H-valuations

as follows: an H-property α defined by a set of valuation ρ holds for r, i.e. r ∈ α if

and only if there exists a valuation A ∈ ρ such that for the first state of r, that is,

r0, we have r0|H = A. Let P be the set of all possible H-properties α. Finally, let β

be the set of all terminated runs and recall that L is the set of propositions encoding

low variables. We can now state the desired lemma.

Proposition 1. P is conditionally confidential in β w.r.t. O iff noninterference

holds for T .

Proof. Let us suppose that noninterference does not hold for T . We show that this

implies that P is not conditionally confidential.

If noninterference does not hold, this implies that there exist states s0, s1, s
′
0, s
′
1

such that s0 →∗ s1, s′0 →∗ s′1, s0 ∼L s′0 and s1 6∼L s′1. Let us consider the H-property

α defined by the following set of H-valuations:

{s|H | s|L = s0|L ∧ ∃s′ : s→∗ s′ ∧ s′|L = s1|L}
We first note that α does not define an empty set of runs, as evidenced by the

run represented by s0 →∗ s1, and it does not contain all runs, as evidenced by the

run s′0 →∗ s′1.

Secondly, the property α is not conditionally confidential. The reason is that

when an observer (who see the values of the low variables) sees that the values of

low variables at the start are equal to s0|L and that at the end of the run are equal

to s1|L, then the observer can conclude that α holds. As α is in P , we can conclude

that P is not conditionally confidential.

It is straightforward to prove that if noninterference holds, then P is conditionally

confidential.
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Perfect Security Property

Let us consider the Perfect Security Property (PSP) [83]. It is an information-

flow property defined in a trace-based setting. In order to define it, we divide the

trace labels into low-security and high-security categories. The observer knows the

specification of the system - i.e. the set of all possible traces (sequences of labels)

and he or she can observe low-security labels. PSP ensures that the observer cannot

deduce any information about occurrences of high-security events.

We can model the PSP in our framework by choosing an appropriate labeling

of vertices in a standard way. The set of observables Opsp will contain propositions

corresponding to low-security labels. For each high-security label h, we define the

property αh: a run r is in αh if h occurs in r. Now we can conclude that PSP holds

iff αh is secret in βall w.r.t. Opsp for all high-security labels h, where βall is the set

of all runs of the system.

2.2 Confidentiality for programs

We consider Control Flow Graphs (CFGs) of programs. A CFG G is a tuple

(V,E, L, i, e), where V is a finite set of nodes, E ⊆ V × V is a set of edges, i is

the entry node, and e is the exit node. We assume, without loss of generality, that

a CFG of a program has a unique entry and a unique exit node.

The function L labels each node in V with a command defined by the following

syntax:

C ::= v = Expr

| assume BExpr

The commands include assignment and sequential composition. The command

assume BExpr ensures that BExpr holds in the current execution. If it is not the case,
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result = -1; i = 0;

while (i < n) {
if (A[i]==key) { result=A[i]; }
i++;

}
hist = append(hist,result);

Figure 2.1: Program ArraySearch

the execution fails. Note that the language of expressions (and boolean expressions)

is left unspecified here. The exact details are not relevant for the definition of con-

fidentiality; the framework will be instantiated in later chapters to allow automated

analysis.

The only restriction we place on the CFG is that of reducibility [5]. A CFG is

reducible if for each loop it is possible to uniquely identify a loop header, i.e. the entry

point to the loop. Reducible CFGs capture all the standard intraprocedural control

flow constructs and are more easily amenable to automated analysis. For example,

a statement if B then P1 else P2 can be captured using assume statements as

follows: The node preceding the conditional would have two successors, one labeled

with assume B; P1, the other labeled with assume (not B);P2, assuming that P1

and P2 contain only straight-line code. We do not allow procedure calls.

Example 2. Let us consider the program ArraySearch in Figure 2.1. The

program takes an array and an integer key as an input. It scans through the array

to find if there is an element whose value is equal to key, and if so, returns this

element. The CFG of this program is in Figure 2.2.

In what follows, the CFGs are assumed to be annotated with assignments to a

history variable hist. The variable is of type list and it stores the sequence that

the observer can see. The first command of a program initializes hist to the empty

list. Where the other annotations with an assignment to hist are placed depends

on a particular security model. If an observer can see every change of the value of a
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result = -1

i = 0

assume i < n

assume A[i] = key
result = A[i]

assume not (A[i] = key)

i++

assume not (i < n)

hist = append(hist,result)

Figure 2.2: CFG

variable, then every command that can change the value of the variable is annotated

with an assignment to hist. If an observer sees only values sent via a particular

API, the calls to this API are annotated. For example, a call of a method send(d)

which sends a message (visible to the observer) containing the value of variable d, is

annotated by a command that appends the value of d to the variable hist (hist :=

append(hist,d)). Let us emphasize that this annotation is not program-specific,

and can be done automatically (and is done automatically by our tool). In what

follows, we will assume that hist contains of a list of values from the data domain

D. (The definition and the analysis can be extended to capture also boolean values

being visible.)

Let us fix a CFG G. Let V be the set of its variables. A state is a valuation of

the variables V . Given a node l, the set Rl denotes a set of states that are reachable

at l. An observation is a sequence of data values. It represents what the observer
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sees during an execution of the program.

We can now instantiate Definition 1 for programs. The following version will allow

simpler definition and proofs in the rest of this thesis. To define the distinguishing

power of the observer, we will use the hist variable. Let e be the exit node of the

program. Let secret and cond be predicates over states of the program.

Definition 2. Let h be an observation, let s0, s1, s2 be states. The predicate secret

is confidential w.r.t. the condition cond if and only if

∀h(∃s0 : s0 ∈ Re ∧ s0 |= cond ∧ s0[hist ] = h)⇒
(∃s1 : s1 ∈ Re ∧ s1 |= secret ∧ s1[hist ] = h∧
∃s2 : s2 ∈ Re ∧ s2 6|= secret ∧ s2[hist ] = h)

(2.1)

We rephrase the definition in order to convey the intuition behind it. We say that

an execution (a sequence of states) produces a observation h if s[hist ] = h, where

s is the last state of the execution. Two executions are equivalent iff they produce

the same observation. This notion of equivalence captures when the observer cannot

distinguish between two executions. Let us call a observation h feasible, if there

exists a a state s in Re, such that s[hist ] = h. Intuitively, the definition says that

for all feasible observations h, if there exists an execution for which the condition

cond holds, then there exists an equivalent execution for which secret holds, and an

equivalent execution for which ¬secret holds. Therefore the definition ensures that

the observer cannot infer whether secret holds or not.

Example 3. Let us consider again the program ArraySearch in Figure 2.1.

The secret we would like to protect is whether the array contains 7. We therefore

define secret to be ∃i : A[i] = 7. Now let us consider the observations the observer

sees. Such an observation contains a single number, the final value of result. If the

observer sees the value 7, he or she can conclude that 7 is in the array. Therefore

confidentiality does not hold. However, the program should preserve confidentiality

as long as key is not equal to 7. Thus we set cond to be key 6= 7. In this case, it is
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easy to see that confidentiality is preserved. Intuitively, by observing the final value

of the result, the observer only knows that this value is in the array. If the size

of the array is at least 2, the observer does not know whether 7 is or is not in the

array. As the size of the array is unknown to the observer, we can conclude that the

confidentiality of the secret is preserved. (Note however, that if the observer knows

that the size of the array is 1, the confidentiality of secret does not hold. If the final

value of result is not equal to −1, and is not equal to 7, then the observer can infer

that the array does not contain 7.)

2.3 Specifying confidentiality in temporal logics

We have presented a definition of confidentiality. We now examine the possibilities of

specifying confidentiality in temporal logics, and combining notions of confidentiality

and time in such specifications.

Specifying confidentiality in classical temporal logics

It is well-known that confidentiality cannot be expressed as a predicate on a single

trace and hence cannot be specified in linear-time specification languages such as lin-

ear temporal logic (see, for example, [60], for a proof). We prove that confidentiality

is not a branching-time property either.

Let P be a set of propositions. We consider labeled, unranked, unordered, infinite

trees of the form T = (V,E, λ, r), where V is an infinite set of nodes, E ⊆ V ×V is a

set of tree edges, λ : V → 2P is a map labeling each node with the set of propositions

holding there, and r ∈ V is the root of the tree. A path in T is a sequence of nodes

π = v0v1v2 . . . such that v0 = r and for all i, vi is the parent of vi+1. Note that each

node can be associated with a unique path (the path that leads from the root to this

node) and vice-versa. Note that a tree can be seen as a transition system, where

states correspond to vertices of the tree and edges are the parent-child edges. We
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Figure 2.3: Confidentiality is not a regular property.

now show that conditional confidentiality is not specifiable in branching-time logics

on trees, and therefore it is not specifiable for transition system.

Let P = {A,B}, and let α be a state-property that holds for a run iff its last

state is labeled by A. The set of observables O is the set {B}. Let β be the set of

runs that contain every run, except of the run that contains only the root node.

Theorem 2. The set S of trees T such that α is secret in β is not a regular tree-

language.

Proof. For a proof by contradiction, suppose that S is regular. The fact that α is

secret in β corresponds to the fact that at each depth d (d > 0) of the tree, there is

a node in α and a node not in α.

It is easy to prove that this is not a regular property. Let us suppose that con-

ditional confidentiality is a regular language, i.e. that there exists a tree automaton

A (with k states) that accepts a tree only if the property α is secret in β. We will

prove by contradiction, using a technique similar to pumping lemma, that this is not

the case.

Consider the tree T in Figure 2.3. In T , the confidentiality of α is preserved,

therefore there exists an accepting run of A on T . As k+ 1 is the length of the part
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of the left branch where A holds, there are at least two distinct positions that will

be labeled by the same state. Therefore, one could cut the left branch between those

two positions, leading to a tree where at a certain depth l, there will be only nodes

where ¬A holds. Thus the property α will not be secret for the trace of length l, as

the observer will be able to conclude that α is false.

Corollary 3. The set of trees T such that α is secret in β is not definable in µ-

calculus.

Proof. The results follows from Theorem 2 and the fact that regular tree languages

and µ-calculus have the same expressive power [38].

Note that it is possible to devise algorithms based on standard model-checking

for special cases of our definition of confidentiality. For example, Barthe et al. [15]

claim that it is possible to use CTL model-checking to check for noninterference in

finite-state systems. However, upon examination, this holds only for a specific defini-

tion of noninterference, the one based on functional equivalence relation (as opposed

to, e.g., strong equivalence relation). Barthe et al. reduce checking for noninterfer-

ence to model-checking a CTL formula on self-composition. Self-composition can be

viewed as a (sequential or parallel) composition of a program with itself (variables

are renamed in the other copy of the program). It can be shown, by a proof similar

to the one above, that there is no µ-calculus formula that characterizes the general

definition of noninterference on self-composition.

2.3.1 Trees with path equivalences

We have shown that confidentiality is not specifiable in standard temporal logics in-

terpreted over trees. We show that by enriching the tree model (and correspondingly

enriching the logics), we obtain a specification framework that generalizes classical

temporal logics, and is expressive enough to capture confidentiality.
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We will use the notion of trees defined above. We start by generalizing the

definition of observables. We replace the set O of observable propositions by a map

OM : A → 2P defining the set of observables for an agent. The set A is a fixed set

of agents. We use the map OM to define equivalences among paths in a tree T as

follows. Let the map Tra : V → 2P , defined as Tra(v) = λ(v) ∩ OM(a) for all v,

return the observables of a at a node v of T . We lift this map to paths in T by

defining Tra(v0v1 . . .) = Tra(v0)Tra(v1) . . .. Let u and v be two nodes of T and let

π be a path leading from the root to u and π′ a path leading from the root to v.

Nodes u and v are a-equivalent (written as u ≈a v) iff Tra(π) = Tra(π
′).

We define the equivalence graph IG(T ) of a tree T as the node and edge-labeled

graph where: (1) the set of nodes is the set V of nodes of T ; (2) the root node of

IG(T ) is the root r of T ; (3) the node-labeling map λ is the same as in T ; (4) there

is an unlabeled edge from node u to node v (in this case, we write u→ v) iff (u, v) is

an edge in T ; (5) for each agent a, there is an edge labeled a from u to v (we write

u
a→ v) iff u ≈a v. Intuitively, the structure IG(T ) uses a-labeled edges to capture

equivalence and defined by the relation ≈a. We can now view IG(T ) as a Kripke

structure rooted at r. It is on this structure that we interpret our logics. Fig. 2.4-(a)

depicts a tree T with path equivalences. We have two agents a and a′ satisfying

OM(a) = {p1, p2} and OM(a′) = {p2, p3}, and the nodes u1, u2, . . . are labeled as in

the figure. Now it is easy to check that, for instance, u2 ≈a′ u3. Consequently, the

edges of the equivalence graph IG(T ), part of which is shown in Fig. 2.4-(b), include

u2
a′→ u3 (and u3

a′→ u2.)

The above definition of a-equivalence can be considered time sensitive in the

sense that it can model an observer who knows that a transition has occurred even

if the observation has not changed. We consider also the following time insensitive

equivalence. Let ≡w be the smallest congruence on sequences of sets of propositions

such that U ≡w UU , where U is a set of propositions. This relation is sometimes

called stuttering congruence. Once more, let u and v be two nodes of T and let
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Figure 2.4: (a) A tree with equivalences (b) Part of its equivalence graph

π be a path leading from the root to u and π′ a path leading from the root to v.

Nodes u and v are weakly a-equivalent (written as u ≈wa v) iff Tra(π) ≡w Tra(π
′).

The weak-equivalence graph IGw(T ) graph is defined similarly as IG(T ), with ≈wa
replacing ≈a.

2.3.2 Branching-time logics on equivalence graphs

In this section, we interpret branching-time temporal logics on equivalence graphs

and apply this interpretation to express some natural information-flow and partial-

information requirements.

Note that we will restrict our attention to state-properties, that is, to properties

of runs that only depend on the last state of the run.

µ≈-calculus The µ≈-calculus has modalities to reason about edges labeled a,

for any agent a, as well as unlabeled edges. For example, we have formulas such as

〈a〉ϕ, which holds at a node u iff there is a node v satisfying ϕ such that u
a→ v. In

order to increase the expressiveness of the logic (without increasing the complexity

of model checking), we add an operator 〈ā〉 to the syntax. The formula 〈ā〉ϕ holds

at a node u if there is another node v satisfying ϕ on the same level of IG(T ) (i.e.,

with the same distance from the root) that is not a-equivalent to u. See Example 4

below for an example of a property specified using the 〈ā〉 operator. To define the

semantics of this operator, we will need to refer to nodes that are on the same level.

This can be done using an agent sl such that OM(sl) = ∅. Intuitively, this agent
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does not observe anything, and thus considers all the nodes at the same level to be

equivalent. That is, there is an sl -labeled edge between every two nodes at the same

level.

Formally, let P be the set of propositions labeling our trees, and Var be a set

of variables. Formulas in the µ≈-calculus are given by the grammar: ϕ = p | ¬ϕ′ |
X | ϕ1 ∨ ϕ2 | 〈 〉ϕ′ | 〈a〉ϕ′ | 〈ā〉ϕ′ | µX.ϕ′(X), if X occurs in ϕ′ only under an even

number of negations, where p ∈ P, a ∈ A and X ∈ Var .

As for semantics, consider the equivalence graph IG(T ) of a tree T with path

equivalences. A formula ϕ is interpreted in an environment E that interprets free

variables of the formula as sets of nodes in IG(T ). The set [[ϕ]]E of nodes satisfying

ϕ in environment E is defined inductively in a standard way. We state only a few

cases:

• [[〈 〉ϕ]]E = {u : for some v, u→ v and v ∈ [[ϕ]]E};

• [[〈a〉ϕ]]E = {u : for some v, u
a→ v and v ∈ [[ϕ]]E},

• [[〈ā〉ϕ]]E = {u : for some v, u
sl→ v and ¬(u

a→ v) and v ∈ [[ϕ]]E}.

If ϕ is a closed formula, its satisfaction by u is independent of the environment.

If u satisfies ϕ in this case, then we write u |= ϕ. If IG(T ) has root r, then T satisfies

ϕ (T |= ϕ) iff r |= ϕ.

µw≈-calculus For reasoning on the model IGw(T ), we use a fragment of µ≈-

calculus called µw≈-calculus that does not contain the operator 〈ā〉, since in this case

the same level predicate is not meaningful. If the root r of IGw(T ) satisfies a closed

µw≈-calculus formula ϕ, then T satisfies ϕ (written T |= ϕ).

CTL≈ As we shall see in Chapter 3, the full µ≈-calculus over equivalence trees

turns out to have an undecidable model checking problem1. Consequently, we are

1One may wonder if monadic second order logic (MSO) is of any interest in this context. It
turns out that a single path equivalence relation suffices to encode the “same-level” predicate on
trees studied in the literature [57]. This implies that model checking MSO on trees with path
equivalences is undecidable even for single-agent systems.

29



interested in a simple fragment called CTL≈ that is very similar to CTL interpreted

on equivalence trees. Not only is this logic decidable, but it is also expressive enough

for most of our illustrative examples.

Formulas of CTL≈ are given by: ϕ = p | ϕ1 ∨ ϕ2 | ¬ϕ′ | EX ϕ′ | EIa ϕ′ | EIā ϕ′ |
ϕ1EU ϕ2 | EGϕ′, where p ∈ P and a ∈ A as before. Following CTL conventions, let

us use the following abbreviations EF ϕ and AGϕ. We also write AX ϕ, AIa ϕ and

AIāϕ as shorthand for ¬EX ¬ϕ, ¬EIa ¬ϕ, and ¬EIā ¬ϕ. We define the semantics

of CTL≈ using a map Ψ : ϕ 7→ ψ that rewrites a CTL≈ formula ϕ as a µ≈-calculus

formula ψ. The function Ψ is defined inductively in the standard way. We state the

definition only for a few cases: Ψ(EIa ϕ
′) = 〈a〉Ψ(ϕ′) and Ψ(EIā ϕ

′) = 〈ā〉Ψ(ϕ′). A

tree T with path equivalences satisfies a CTL≈ formula ϕ iff it satisfies Ψ(ϕ).

CTL≈w We also consider the logic CTL≈w for reasoning on the model with

weak path equivalences IGw(T ). This logic does not contain the operator EIā, but

otherwise is same as CTL≈ . Its semantics is defined on IGw(T ).

Semantics on finite Kripke structures. We use finite Kripke structures to model

finite-state systems. Formally, a Kripke structure K is a tuple (Q,→⊆ Q × Q, λ :

Q→ 2P , r), where Q is a finite set of states, → is a transition function, λ : Q→ 2P

is a map labeling each state with the set of propositions, and r ∈ Q is the initial

state.

We want to define when a Kripke structure K satisfies a CTL≈ (CTL≈w ,µ≈,µw≈)

formula ϕ. Note that it is not possible to define whether or not the formula holds in

a particular state of K. The reason is that the equivalence relations are relations on

paths in the structure, rather than on states of the structure. Thus, given a state

s, it is not possible to determine which states are equivalent to s. This also implies

that whether or not a given Kripke structure K satisfies ϕ can be defined inductively

on the structure of ϕ on the tree unrolling of K. For a node in this tree, there is

a unique path leading to it, so the set of equivalent nodes is well-defined. Given

a Kripke structure K, let TK be its tree unrolling. TK can be seen as a tree with
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(weak) path equivalences (which are determined by the set of agents A). Then we

define K |= ϕ iff TK |= ϕ.

We are now ready to show how our definition of confidentiality can be specified

in CTL≈ . Let α and β be state properties defined by propositions a, b ∈ P , that

is we have that r ∈ α(β) iff the last state of r is labeled by a(b). Let O be a set of

observable propositions, and let c be an agent such that OM(c) = O.

Lemma 4. The property α is confidential in β w.r.t. O if and only if ϕ holds, where

ϕ = AG(b→ (a↔ EIc¬a)).

In the rest of this section, we will demonstrate how logics on trees with path

equivalences aid specification.

Example 4. Consider the game of Battleship. In our formulation, each player

owns a grid whose cells are filled with 0’s and 1’s, and at each round, a player asks

another player about the contents of a cell. A central requirement is that player a

does not reveal information about the contents of a cell (i, j) at any time unless the

opponent asks specifically for them. To see how this property may be unintentionally

violated in an automated Battleship game, consider an implementation where rows

in a’s grid are represented as linked lists that a iterates through to answer a query

about a cell. Now, if a is asked about an element in an empty row, it gives an

answer immediately (as it has nothing to iterate over). If the row is non-empty, it

must iterate through a non-empty list and spend more time “thinking”. Thus, a’s

opponent may glean information about whether a row in a’s board is nonempty by

tracking the time a takes to answer a query.

We can write a requirement forbidding the above scenario in CTL≈ . Let propo-

sitions cij and ask ij be true at points in a play respectively iff cell cij contains 1 and

a receives a request to reveal the contents of cell (i, j). We omit the full definition of

a-equivalence in this version; roughly, observables of a include the requests a receives,

the answers it gives, and a “silent proposition” τ that holds when a is “thinking”.
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Now consider the CTL≈ property ϕ = ¬(¬ask ij EU (AIa cij ∨ AIa ¬cij)), which as-

serts that there is no play with a node such that: (1) all behaviors a-equivalent to

the play till this point lead to nodes where the content of (i, j) is the same, and (2)

no explicit request for the contents of cell (i, j) is made by the opponent prior to this

point. This ensures that the adversary cannot infer the contents of (i, j) by watching

a’s observables. On the contrary, in the case when AIaϕ holds at any reachable node

of the tree for some secret property ϕ, then an observer of a can infer the property

ϕ by watching a’s actions till that point. In other words, a leaks the secret ϕ.

Example 5. Logics on trees with path equivalences may be used to specify

properties of systems where participants have partial information. Consider a Kripke

structure representing a blindfold reachability game played by an agent a. At each

round, an active node represents the current state of the game, and when a takes

an action, a child of the current active node becomes the new active node. Because

of partial information, however, a given action may cause different children of the

current node to become active. We say that a has a winning strategy in this game

if it can decide on a sequence of actions a priori, execute actions in it in succession,

and no matter what actual path in the tree is taken, end in a node satisfying a target

proposition p. Letting two paths be a-equivalent iff they agree on the sequence of

actions of a, we find that a has a winning strategy in this game iff the tree satisfies

the CTL≈ requirement EF (AIa p).

Now consider an adaptive reachability game, where a can choose actions to guide

the game while it is in progress. Let some of the tree nodes be now labeled with a

control proposition b. At each round, a is now able to pick, along with an action, one

of the control formulas b and ¬b. At any given point, partial information may cause

different children of the current node to become active; however, the new active

node is guaranteed to satisfy the control formula chosen at the current round. Let

us define a-equivalence as before. It can be shown that a has a strategy to reach

a node satisfying a target proposition p iff the game tree satisfies the µ≈-calculus
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formula ϕ = µX.(p ∨ [a][ ](b ∧X) ∨ [a][ ](¬b ∧X)).

Example 6. In various protocols involving multiple agents, a need for properties

involving secrecy and time arises often. For example in the case of auction protocols

(studied in security literature, see e.g. [25]), the following property is important.

Agent a’s bid is not revealed before the auctioneer reveals all the bids. In order

to illustrate how such requirements can be expressed in our logic, we present the

following formula, which states that agent a does not reveal p (a secret) before agent

b reveals q: ϕ = ¬((EIb q ∧ EIb ¬q)EU (AIa p ∨ AIa ¬p)). The formula expresses

that it is not the case that b does not reveal q (EIb q ∧ EIb ¬q) until a reveals

p (AIa p ∨ AIa ¬p). Now let us consider agents who make only time-insensitive

observations, i.e. ones who cannot tell that an agent has performed an operation if

the observables have not changed. This can be modeled using the weak-equivalence

graph. The correctness of the protocol can thus be established by model checking

the formula ϕ on IGw(T ).

Example 7. Consider a system that is being observed by a low-security observer.

We define low-security (low) and high-security (high) variables, where low variables

are visible to the observer and high variables are not. We now show how to specify in

CTL≈ the following requirement R: “ The sequence of valuations of the low variables

is the same along all execution paths.” Consider for example the case when there is a

secret input, i.e. an input to a high variable. If the above requirement R is satisfied,

the observer cannot infer any property of the secret input, since there cannot be any

flow of information from the high input to low variables. (Note however that the

requirement R is even stronger, it prevents e.g. inputs to low variables.)

The values of variables are encoded by propositions from a set P . We have

one proposition for every bit of every variable. We will use only one agent a. The

subset of propositions observable by the agent is the set of all those propositions that

encode low variables. The requirement R is satisfied iff the following CTL≈ formula
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holds: AGAIā false. This property says that for each node, there does not exist an

a-nonequivalent node at the same level of the execution tree. This implies that all

nodes at the same level are a-equivalent, and therefore have the same valuations of

low variables. Notice that this property cannot be captured without the AIā (EIā)

operators, since we need to refer to all nodes at the same level.
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Chapter 3

Model Checking Confidentiality

Properties for Finite State

Systems

In this chapter, we present a model checking algorithm for CTL≈ and the µ≈-

calculus.

As described in the previous chapter, we enriched the traditional tree model

with “jump-edges” that capture observational indistinguishability. Consider a tree

T whose nodes are labeled with truth values to atomic propositions P . For an agent

a, if the assignment to the propositions O(a) ⊆ P captures the observable behavior

of a, then two tree nodes are considered a-equivalent if the paths from the root to

these nodes agree on the values of propositions in O(a) at every step. We convert

the tree T into a graph IG(T ) by adding, for every agent a of interest, an a-labeled

edge between every pair of a-equivalent nodes and ā-labeled edge between every pair

of a-inequivalent nodes at the same level. One can view IG(T ) as a Kripke model,

where both nodes and edges have labels, and interpret standard tree logics over it.

In our formulation, the model checking question is to decide whether IG(TK)

satisfies a tree logic formula ϕ, where TK is the tree unfolding of a finite-state model
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K. Keeping track of paths equivalent with respect to one agent requires a subset

construction leading to PSPACE complexity. We show that this construction can be

generalized, and the key parameter is the nesting depth of the specification. Infor-

mally, when we need to evaluate a formula ϕ after jumping across an a-labeled edge,

then an additional layer of subset construction is required to process b-equivalence,

for agents b 6= a. We show that, if we restrict the nesting depth to 1, as is the case

for all our example specifications, the model checking problem for a CTL-like logic is

PSPACE-complete, and EXPTIME-complete for µ-calculus. When nesting depth is

unbounded, model checking for CTL≈ (the CTL-like logic) becomes nonelementary,

and is undecidable for µ-calculus.

3.1 Finite model FM ϕ(K)

Recall that K |= ϕ is defined in terms of an infinite state structure. However, we can

still apply model checking on a finite state system. This is because for a given CTL≈
formula ϕ and a given Kripke structure K, we can find a finite model FM ϕ(K) such

that FM ϕ(K) |= ϕ iff TK |= ϕ. Let Aϕ be the set of agents that appear in ϕ.

The nesting depth of a CTL≈ formula ϕ is intuitively the maximum number

of nestings between equivalence operators EIa, EIā, for different agents a. The

only exception is the nesting of EIa operators for the same agent, which does

not contribute to nesting depth. For example, the nesting depth of EIa p is 1,

(EIa p)EU (EIb r) is also 1, while for EIaEIā p it is 2. On the other hand, EIaEIa p

and EIa (ϕ1EU EIa ϕ2) have a nesting depth of 1. The nesting depth of ϕ will be

denoted by nd(ϕ). Formally, the nesting depth is defined as follows. We will use

an auxiliary function that takes two parameters: nd(ϕ, a), where a is an agent. Let

c be an agent that does not appear in ϕ. The function nd(ϕ, a) is then defined as

follows:
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nd(ϕ, a) = 0 if ϕ = p

nd(ϕ, a) = nd(ϕ1) if ϕ = ¬(ϕ1), EX ϕ1, EIa ϕ1, EGϕ1

nd(ϕ, a) = max(nd(ϕ1, a), nd(ϕ2, a)) if ϕ = ϕ1 ∨ ϕ2, ϕ1EU ϕ2

nd(ϕ, a) = nd(ϕ1, b) + 1 if ϕ = EIb ϕ1 where b 6= a

nd(ϕ, a) = nd(ϕ1, c) + 1 if ϕ = EIb̄ ϕ1 (for any b)

The function nd(ϕ) can then be defined as nd(ϕ, a). The complexity of model

checking of a CTL≈ formula ϕ grows rapidly with the nesting depth of ϕ. However,

as we show, the nesting of EIa operators for the same agent does not contribute to

the growth in complexity of the problem. This distinction is especially important in

the case of the µ≈-calculus, where the formulas with unbounded nesting depth are

undecidable in general. However, formulas where only 〈a〉 operators for the same

agent are nested unboundedly are in a decidable (EXPTIME-complete) fragment.

This fragment allows for example specification of adaptive partial-information games

(see Section 2.3.2).

We first give the intuition behind the construction of the finite state model

FM ϕ(K). The states of this model carry enough information so that the semantics

of CTL≈ formulas can be defined on these states in such a way that FM ϕ(K) |= ϕ iff

TK |= ϕ. Consider the case when ϕ is a CTL formula. To determine whether ϕ holds

at a node s of TK , we only need to know to which state of K the node s corresponds,

because if two nodes in TK correspond to the same state of K, they satisfy the same

CTL formulas. Now consider ϕ ≡ EIa ϕ1, where ϕ1 is a CTL formula. Let S be the

set of a-equivalent nodes of TK . In order to determine whether EIaϕ1 holds at s,

one needs to know to which state of K the node s corresponds and to which states of

K the nodes in S correspond. The amount of information needed is thus finite, and

can be stored as a pair (s, U) such that s ∈ Q,U ⊆ Q, where Q is the set of states of

K. We also need to know how to update this information across transitions. There
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are two key ideas: First, the transition relation (s, U) → (t, V ) on these pairs can

be computed locally - the set of nodes V equivalent to t will be all those nodes v

that have the same observation as t and that have predecessors equivalent to s, i.e.

stored in U . Second, we can also define an a-transition (
a→) on these tuples locally,

since the tuple stores the set of nodes that are mutually a-equivalent. The transition

is thus defined as follows: (s, U)
a→ (t, U) for t ∈ U .

This construction lends itself to generalization in three ways: we can have mul-

tiple agents, we can store information needed for ā transitions, and we can keep

enough information to allow nesting of equivalence and nonequivalence operators.

This leads to a definition of the finite-state model of FM ϕ(K). Note that in order

to allow for nesting of equivalence operators, it is not enough to store only a set of

a-equivalent nodes U for all agents a. In fact, for each node in U , we need to store

the set of its b-equivalent nodes (where b 6= a), etc. We store this information as a

tree whose nodes are labeled by states of K. Formally, we define FM ϕ(K) as follows:

States of FM ϕ(K): A state W of FM ϕ(K) is a tree of depth at most nd(ϕ). The

vertices of these trees are labeled by states of K and edges are labeled by a or ā,

where a is in Aϕ. We require that if a subtree is an a-child of its parent, then it

itself does not have a-children. For all nodes in W , we require that no two of its

a-children are isomorphic (similarly for ā-children). The state W is labeled by the

same propositions as its root in the original Kripke structure K.

The intuition behind the definition is simple: a node s in TK corresponds to a

state W , if s is a root of W , the a-equivalent nodes of s correspond to a-children

of W and this correspondence continues to depth nd(ϕ). Such a state thus carries

enough information to allow checking whether or not ϕ of nesting depth nd(ϕ) holds.

An example of a state W is in Figure 3.1. It stores the information about a node

s, which has two a-equivalent nodes u and v, one a-nonequivalent node t and one

b-equivalent node x.

If a subtree rooted at u is an a-child of its parent s, it does not need to have
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a-children, since the nodes that are a-equivalent to u are a-equivalent to s. Therefore

we do not need to replicate these nodes as children of u. The main reason is that for

a subtree of depth d, the a-siblings store more information (they are trees of depths

(at most) d) than would a-children - subtrees of depth (at most) d− 1. This is what

allows arbitrary nesting of EIa (or 〈a〉) operators for the same agent a.

We can bound the number of states in FM ϕ(K). To state an upper bound, we

will use the following function exp: exp(a, b, 0) = a, exp(a, b, n+1) = a∗b∗2exp(a,b,n).

Considering how a state is constructed (it does not have isomorphic a-children), we

can conclude that FM ϕ(K) has less than exp(|K|, 2 ∗ |Aϕ|, nd(ϕ)) states.

Transition relation of FM ϕ(K): We explained above how a transition function

is determined locally for tuples of the form (s, U) representing the node and a set of

its a-equivalent nodes. The construction can be generalized to states of FM ϕ(K).

We abuse the notation slightly and use the same notation for transition relations

→,
a→,

ā→ as is used in TK . Given a state W , root(W ) refers to its root (a node in

K). a-child of W refers to the tree rooted at a node that is an a-child of the root of

W . For a state W of depth n, transition relation → is defined recursively on n.

• n = 0: Trees W and W ′ are of depth 0, i.e. they contain only a root without

any children. W → W ′ if root(W )→ root(W ′) in the Kripke structure K.

• n = k + 1: W → W ′ iff root(W )→ root(W ′) in K and

– V is an a-child of W ′ iff Tra(root(W ′)) = Tra(root(V )) and there exists

an a-child U of W , such that U → V

– V is an ā-child of W ′ iff either there exists an ā-child U of W , such

that U → V or there exists an a-child U ′, such that U ′ → V and

Tra(root(W ′)) 6= Tra(root(V )).

An example of a transition W → W ′ transition in FM ϕ(K) is in Figure 3.1. The

figure captures the following situation: There is a transition in K from s (the root
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of W ) to s′, and from the a-equivalent node u to u′ and the node u′ is a-equivalent

to s′ (similarly for the b-equivalent node x). The node v is a-equivalent to s and

it has a transition to v′ in K. However, v′ is not a-equivalent to s′. The node t is

non-equivalent to s, thus its successor t′ will be nonequivalent to s′. The subtrees

Tu, Tv, Tt, Tx need to be transformed in a similar way.

We defined the structure FM ϕ(K) in order to keep information about a-equivalent

nodes locally. Now we use this information to define a-transitions (transitions of the

form W
a→ W ′). The idea is that on an a-transition, we go from a state W to a

state W ′ represented by an a-child of W . In general, this transition leads from a

tree of depth n to a tree with depth n − 1 (this is true for b-children where b 6= a

and all (ā)-children). However, for a-children we leverage the fact that a-children

of a parent are mutually equivalent, which enables us to construct a tree such that

the depth of a-children does not decrease. Transition relations
a→, ā→ are defined as

follows:

• W a→ W ′ iff W ′ can be constructed as follows: Let V be an a-child of W . Let

V ′ be V with other a-children of W as a-children (note that V did not have

a-children). Let V ′′ be W without all the a-children, and we remove the leaves

for all the other children (to ensure that the depth of W ′ is smaller or equal to

nd(ϕ)). Finally, let W ′ be V ′ with V ′′ as an a-child.

• W ā→ W ′ if W ′ is a ā-child of W

An example of an
a→ transition in FM ϕ(K) W

a→ W ′′ is in Figure 3.1. The idea

is that W ′′ will be a subtree rooted at an a-child of s, which in this case is the subtree

rooted at u. However, as explained above, we add as a-children subtrees rooted at

a-siblings of u (in this case, the subtree rooted at v) and the subtree rooted at the

parent s and its subtrees (except the a-children). We modify these subtrees (T ct and

T cx in the figure) by removing the leaves.
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Figure 3.1: States and transitions of FM ϕ(K)

3.2 CTL≈
We want to prove that the finite state model FM ϕ(K) is adequate for evaluating

the formula ϕ, i.e. that for each node s of TK there is a corresponding state W in

FM ϕ(K), such that ϕ holds in s iff it holds in W . In order to state this claim, we

need to define the correspondence between the states of TK and FM ϕ(K). We will

do so using a family of functions Ωn
a , where a is an agent and n will correspond to

nd(ϕ). The definition is structured in a similar way as the definition of the function

nd . Each Ωn
a is a function that relates a node in TK to a node of FM ϕ(K). It is

defined recursively as follows:

• n = 0: Ω0
a(u), for all a, is a tree of depth 0, whose root is u.

• n = k + 1: Ωk+1
a (u) = W iff W can be constructed as follows: root(W ) = u.

– Consider the set S of all a-equivalent nodes of u. For every node v in

this set, compute V = Ωk
a(v). Let V ′ be V without a-children. Add V ′

as an a-child to W . For every node r at the same depth as u, that is not

a-equivalent to u, add R = Ωk
c (r) as an ā-child to W , where c is an agent

that does not appear in ϕ.

– For all agents b such that b 6= a, consider the set S of all b-equivalent

nodes of u. For every node v in this set, compute V = Ωk−1
b (v). Let V ′
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be V without b-children. Add V ′ as a b-child to W . For every node r at

the same depth as u, that is not b-equivalent to u, add R = Ωk
c (r) as an

ā-child to W , where c is an agent that does not appear in ϕ.

We define the function Ωn as Ωn
c , where c is an agent that does not appear in ϕ.

The following lemma asserts that the construction of FM ϕ(K) is correct. It

implies that model checking of CTL≈ formula ϕ can be performed on FM ϕ(K). It

is proven by induction on the nesting depth of the formula.

Lemma 5. TK , s |= ϕ iff FM ϕ(K),Ωn(s) |= ϕ, where n = nd(ϕ)

Proof. The proof is by structural induction on ϕ. We show the proof for three

operators – the proof is similar in the other cases. Recall that Ωn(s) is Ωn
c (s), where

c is an agent that does not appear in ϕ.

• ϕ ≡ EX ϕ1: Let us assume that TK , s |= ϕ. As TK , s |= EX ϕ1, we have that

there exists t such that TK , t |= ϕ1 and s → t. By induction hypothesis, we

obtain that FM ϕ(K),Ωn(t) |= ϕ1. From the definitions of Ωn and FM ϕ(K),

we have that Ωn
c (s) → Ωn

c (t). Combining the two facts, we can conclude

that FM ϕ(K),Ωn
c (s) |= ϕ. The reasoning can be reversed to prove the other

implication.

• ϕ ≡ EIa ϕ1, where a 6= c: Let us assume that TK , s |= ϕ. As TK , s |= EIa ϕ1,

we have that there exists t such that TK , t |= ϕ1 and s
a→ t. By induction

hypothesis, we obtain that FM ϕ(K),Ωn−1
a (t) |= ϕ1. From the definitions of

Ωn and FM ϕ(K), we have that Ωn
c (s)

a→ Ωn−1
a (t). Combining the two facts,

we can conclude that FM ϕ(K),Ωn
c (s) |= ϕ. The reasoning can be reversed to

prove the other implication.

• ϕ ≡ EIc ϕ1: Let us assume that TK , s |= ϕ. As TK , s |= EIc ϕ1, we have that

there exists t such that TK , t |= ϕ1 and s
c→ t. By induction hypothesis, we

obtain that FM ϕ(K),Ωn
c (t) |= ϕ1. From the definitions of Ωn and FM ϕ(K),
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we have that Ωn
c (s)

a→ Ωn
c (t). Combining the two facts, we can conclude

that FM ϕ(K),Ωn
c (s) |= ϕ. The reasoning can be reversed to prove the other

implication.

A nesting-free formula is a formula with nesting depth at most 1. Thus it is a

formula that can refer to operators EIa, EIā for different agents, but it can nest only

the EIa operators for the same agent. All of the example properties mentioned in

Section 2.3.2 are expressed in this fragment.

Theorem 6. The model checking problem for nesting-free formulas of CTL≈ is

PSPACE-complete.

Proof. We show that the problem is in PSPACE using Lemma 5. The lemma shows

that it is possible to reduce CTL≈ model checking to CTL model checking on an

exponentially larger structure FM ϕ(K), whose number of states is less than |K| ∗
2 ∗ |A| ∗ 2|K|. Note however, that it is not necessary to construct the structure

ahead of time, since the transition function can be computed locally. Instead, the

non-deterministic model checking algorithm for CTL [55] that uses only logarithmic

space in terms of the size of the structure can be used. Therefore the model checking

problem for nesting-free formulas is in PSPACE. The lower bound is obtained by

reduction from equivalence checking of nondeterministic finite automata. Note that

the reduction in fact encodes the equivalence check as a conditional confidentiality

formula. Therefore we also have that checking conditional confidentiality is PSPACE-

complete.

For general CTL≈ formulas we obtain the following result.

Theorem 7. For a fixed CTL≈ formula ϕ such that nd(ϕ) ≥ 2, the model checking

problem is decidable in space polynomial in exp(|K|, 2 ∗ |A|, nd(ϕ)− 1).
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Proof. Similarly as in the proof of Theorem 6, we consider the structure FM ϕ(K).

As noted above, the number of states of this structure is bounded from above by the

expression exp(|K|, 2∗|Aϕ|, nd(ϕ)). However, again as in the proof of Theorem 6, the

non-deterministic model checking algorithm for CTL is used. This algorithm uses

only logarithmic space in terms of the size of the structure, thus we can conclude

that the model checking problem is decidable in space polynomial in exp(|K|, 2 ∗
|A|, nd(ϕ)− 1).

In order to state the lower bound, we define the function Tower(n, k) by

Tower(n, 1) = n and Tower(n, k + 1) = 2Tower(n,k).

Theorem 8. For every algorithm A for the model checking problem of CTL≈ , and

each i ≥ 1, there is a Kripke structure K with n states and a CTL≈ formula ϕ such

that nd(ϕ) = i such that A runs on K and ϕ in time Ω(Tower(n, i)).

Proof. In order to obtain a lower bound for the model checking problem for CTL≈
formulas, we can encode Shilov and Garanina’s Act-CTL-Kn [76] in CTL≈ and use

the fact that model checking for Act-CTL-Kn has a nonelementary lower bound.

Act-CTL-Kn is a logic similar to CTL with actions augmented with knowledge

operators. In order to encode it in CTL≈ , we need to show how to encode the

knowledge operators and the actions. We consider the version of Act-CTL-Kn where

the knowledge operators Ka in are given perfect-recall semantics. Each agent a

can observe only a part of the global state (as specified by the agent’s observation

function). The perfect-recall semantics means that each agent remembers the whole

history of his observations. This semantics can be easily captured in CTL≈ by

defining the equivalence relation ≈a to be such that two paths (sequences of global

states) are equivalent iff the corresponding sequences of states of agent a are the

same, and by encoding the knowledge operator Ka corresponding to agent a can as

follows: Kaϕ = ¬ EIa ¬ ϕ. The actions are encoded of Act-CTL-Kn are encoded in

a standard way: edge labels are transferred from edges to nodes. Given an a-labeled

44



edge between nodes s and r, we create a label (a, s) and label the node r with this

label. Formulas such as EXaϕ are then encoded as EX((a, s) ∧ ϕ).

As the model checking problem for Act-CTL-Kn has a nonelementary lower

bound, we can infer that so does the model checking problem for CTL≈ .

3.3 µ≈-calculus

We now consider the model checking problem for µ≈-calculus formulas on trees with

path equivalences.

Theorem 9. The model checking problem for the µ≈-calculus is undecidable.

Proof. We can prove that the problem is undecidable by encoding by encoding Shilov

and Garanina’s µ-calculus of knowledge with perfect recall semantics - (µPLKn) -

[76].

In general, this problem is undecidable. We can prove it by encoding Shilov and

Garanina’s µ-calculus of knowledge - (µPLKn)[76]. This logic can be encoded in

µ≈-calculus over trees with path equivalences in a similar way as Act-CTL-Kn was

encoded to CTL≈ . The encoding is very similar to the one used in the proof of

Theorem 8. The knowledge operator corresponding to an agent a can be encoded

using the EIa operator. Similarly to Act-CTL-Kn, µPLKn is a temporal logic with

actions. The operators that are parameterized by actions are encoded as indicated

in the the proof of Theorem 8.

As the model checking problem for µPLKn is undecidable, we can conclude that

so is the model checking problem for µ≈-calculus.

We have shown that the model checking problem is undecidable in general for

the µ≈-calculus. However, we identify a decidable fragment of the µ≈-calculus as

follows. Define the set Subf (ϕ) of subformulas of a formula ϕ inductively as: (1) for

ϕ = p or ¬p, Subf (ϕ) = {ϕ}; (2) if ϕ equals ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2, then Subf (ϕ) =
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{ϕ}∪Subf (ϕ1)∪Subf (ϕ2); (3) if ϕ equals 〈〉ϕ′, [ ]ϕ′, 〈a〉ϕ′ or [a]ϕ′, for arbitrary a, we

have Subf (ϕ) = Subf (ϕ′); and (4) for ϕ = µX.ϕ′ or νX.ϕ′, we have Subf (ϕ) = {X}∪
Subf (ϕ′). Now, let us only consider ”well-named” formulas, i.e., closed formulas ϕ

where for each variable X appearing in ϕ, there is a unique binding formula µX.ϕ′

or νX.ϕ′ in Subf (ϕ) such that X ∈ Subf (ϕ′). As for the µ-calculus, every closed

µ≈-calculus formula can be rewritten in a well-named form. Now construct the graph

Gϕ with node set Subf (ϕ) and edges as below:

1. for each node ϕ of the form 〈〉ϕ′, [ ]ϕ′, 〈a〉ϕ′, [a]ϕ′, µX.ϕ′, or νX.ϕ′, add an

edge from ϕ to ϕ′.

2. for each node X, where X ∈ Var , add an edge from X to the unique subformula

of the form µX.ϕ′ or νX.ϕ′ that binds it.

Intuitively, Gϕ captures the operational semantics of ϕ. If there is a path from ϕ′ to

ϕ′′ in Gϕ′ , then evaluation of ϕ′ requires the evaluation of ϕ′′ (note that to evaluate

ϕ′ = X, we must recursively evaluate the formula ϕ′′ binding X).

A formula is said to be a-modal (resp. ā-modal) if it is of the form 〈a〉ϕ or [a]ϕ

(resp. 〈ā〉ϕ or [ā]ϕ). Let π = ψ1ψ2 . . . ψm be a path in Gϕ. The nesting distance

of π is k, where k is the length of the maximum subsequence π′ = ψ′1ψ
′
2 . . . ψ

′
k in π

such that: (1) each ψ′i is an a-modal formula for some agent a; and (2) for each i,

if ψ′i is a-modal and ψ′i+1 is a′-modal, then a 6= a′. A formula ϕ has nesting depth

k if k is the least upper bound on the nesting distance of any path in Gϕ. Note

that such a k may not exist—if it does, then ϕ is said to have a bounded nesting

depth. For instance, the formula ϕ1 = νX.([a1]〈a2〉p∧〈a1〉[ ][a1]X) is bounded, while

ϕ2 = µX.(p ∨ 〈〉[a1]〈a2〉X) is not.

The proof of the following theorem gives rise to a a model checking algorithm for

the fragment of the µ≈-calculus with bounded nesting depth. We show also a lower

bound.
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Theorem 10. The model checking problem for a Kripke structure K and a µ≈-

calculus formula ϕ with nesting depth k is solvable in time exp(|K|, 2 ∗ |A|, k). Also,

for every algorithm A for this problem and every i ≥ 1, there is a Kripke structure K

with n states and a formula ϕ such that A runs on K and ϕ in time Ω(Tower(n, i)).

Proof. Recall that the relationK |= ϕ is defined in terms of an infinite-state structure

TK . The model checking algorithm that we use is based on a finite-state model

checking algorithm. The reason is that we use a finite-state structure FM ϕ(K). We

can prove that the finite state model FM ϕ(K) is adequate for evaluating µ≈formulas.

That is, given a formula ϕ, for each node s of TK there is a corresponding state W

in FM ϕ(K), such that ϕ holds at s iff it holds at W . The proof is analogous to the

proof of Lemma 5.

The size of FM ϕ(K) is less than exp(|K|, 2 ∗ |Aϕ|, nd(ϕ)). The complexity of

the standard CTL model checking algorithm is linear in the number of states of the

structure. Therefore we conclude that the model checking problem for a µ≈-calculus

formula ϕ with nesting depth k is solvable in time exp(|K|, 2 ∗ |A|, k).

We obtain the lower bound by encoding CTL≈ into the fragment of the µ≈-

calculus with bounded nesting depth. This is possible, as all CTL≈ formulas have

bounded nested depth.

Now consider the model checking problem for nesting-free formulas, i.e., formulas

with nesting depth 1. Recall that such formulas can express all properties involving

a single agent.

Theorem 11. Model checking nesting-free µ≈-calculus formulas is EXPTIME-

complete. Model checking single-agent, alternation-free µ≈-calculus formulas is

EXPTIME-hard.

Proof. We first show that the model checking nesting-free µ≈-calculus formulas is

in EXPTIME. Given a Kripke structure K and a set of agents A, we construct the

structure FM ϕ(K) in exponential time. We can interpret nesting-free µ≈-calculus
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formulas on FM ϕ(K). As in Lemma 5, we can show that K satisfies a nesting-free

formula ϕ iff FM ϕ(K) satisfies ϕ.

For a lower bound, we turn to the model of space-bounded private alternating

Turing machines (PA-TM) introduced by Reif [69]. Let PALOGSPACE be the class

of languages recognized by such machines using logarithmic space — Reif shows that

PALOGSPACE = EXPTIME.

Given a PA-TM M and its input w, we construct a Kripke structure K, with ini-

tial state s0, such that K, s0 |= ϕ iff M accepts w, where ϕ is a µ≈formula defined be-

low. The structure of the proof is similar to the proof that the alternation-free modal

µ-calculus is complete for PTIME and consequently alternating LOGSPACE [55].

The states of K will be the states of M augmented with contents of the tape,

and marked by e (the existential nodes) and u (the universal nodes). The existential

player does not have full information (he or she does not see the contents of the

private tapes). This will be captured using the path equivalence relation of an

observer a. The PA-TM accepts iff there is a winning strategy for the existential

player. This can be captured by the µ≈-formula ϕ = µX.(p∨(e∧〈 〉〈a〉X)∨(u∧[ a]X)).

We have thus reduced recognition by a PALOGSPACE-machine to the model

checking problem for an alternation-free, single-agent µ≈-calculus formula. The lat-

ter problem is thus EXPTIME-hard. As the nesting-free fragment of µ≈captures all

single agent formulas, we conclude, using Theorem 10, that model checking nesting-

free µ≈-calculus formulas is EXPTIME-complete.
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Chapter 4

Decision Procedures for

Confidentiality for

Array-Accessing Programs

We develop program analysis methods for confidentiality for programs. We have in-

troduced the definition of conditional confidentiality and we have shown how it can

be checked on finite-state systems. In this chapter, we develop decision procedures

for classes of programs. Verification questions concerning programs are undecidable

in general. However, we identify a class of programs for which confidentiality is

decidable. The class contains programs that access a data structure. The confiden-

tiality requirement can for example specify what information about the data stored

in the data structure can be revealed. The decision procedures for confidentiality is

based on algorithms for deciding reachability. The latter are of independent inter-

est, as detailed below, both from a theoretical point of view (due to connections to

logics on data words) as well as from practical point of view, due to potential use as

back-end decision procedures for software model checkers.

For finite-state programs — programs whose data variables range over finite types

such as Boolean, the number of bits needed to encode a program state is a priori
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bounded, and verification questions such as reachability are decidable. This result

forms the basis of recent tools for software model checking [13, 52, 47].

A natural question is then whether it is possible to extend the Boolean pro-

gram model without losing decidability or worsening computational complexity of

the reachability problem. The first idea might be to add integer variables. However,

adding expressions permitting (Presburger) integer arithmetic would cause undecid-

ability. Therefore, one can investigate the possibility of adding only equality and

order tests on integers to the language. Reachability in such programs is decidable,

but perhaps the programs themselves are not too interesting. We show that it is

possible to extend the model further.

We focus on algorithmic verification of programs that have a read-only access to

a single array. The length of the input array is potentially unbounded. The elements

of the array range over Σ×D, where Σ is a finite set, and D is a data domain that

is potentially unbounded and totally ordered. The array is thus modeled as a data

word, that is, a sequence of pairs in Σ × D. For example, integer arrays are easily

captured by setting D to be N and Σ to be a singleton set. The program can have

Boolean variables, index variables ranging over array positions, and data variables

ranging over D. Programs can access Σ directly, but can only perform equality and

order tests on elements of D. The expressions in the program can use constants in

D, and equality tests and ordering over index and data variables. The programs are

built using assignments, conditionals, and for-loops over the array. Even with these

restrictions, one can perform interesting computational tasks including searching for

a specific value, finding the minimum data value, checking that all values in the array

are within specific bounds, or checking for duplicate data values. Array is a heavily

used data structure. For example, Java midlets designed to enhance features of mo-

bile devices include simple programs accessing the address books, and our methods

can lead to an automatic verification tool that certifies their correctness before being

downloaded. In order to analyze programs statically, it is often necessary to check
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relationships among values in the array, as well as their relationships to values of

other variables and constants. For example, in the case of indirect addressing, it is

needed to check that all the values in the array fall within certain bounds. For pro-

grams that fall outside the restrictions mentioned above, it is possible to use abstract

interpretation [30] techniques such as predicate abstraction [45] to abstract some of

the features of the program, and analyze the property of interest on the abstract pro-

gram. As the abstract programs are nondeterministic, we consider nondeterministic

programs.

Our first result is that the reachability problem for programs in which there are

no nested loops is decidable. The construction is by mapping such a program to

a finite-state abstract transition system such that every finite path in the abstract

system is feasible in the original program for an appropriately chosen array. We

show that the reachability problem for programs with non-nested loops is Pspace-

complete, which is the same complexity as that for finite-state programs with only

Boolean variables. The latter is the basis of successful software verification tools,

and therefore we believe that, coupled with abstraction techniques, our decision

procedure can potentially be the basis of a software model checking tool that better

handles data structures with unbounded size.

Our second result establishes decidability of the reachability problem for pro-

grams with arbitrary nesting of loops that do not use index variables, under the

assumption that the data domain is finite. The algorithm can be used for bounded

model checking of such programs. In this case, the array can be viewed as a finite

word over the finite alphabet of data values. The traversal order of a program with

nested loops and index/data variables does not directly correspond to classical ex-

tensions of automata with multiple passes and/or pebbles (see for example [41]).

We show that the set of arrays for which a particular Boolean state is reachable is

regular, and reachability is solvable in space polynomial in the number of states of

the program, which itself is exponential in the number of variables.
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Our third result shows decidability of reachability for programs with doubly-

nested loops with some restrictions on the allowed expressions. The resulting com-

plexity is non-elementary, and the interest is mainly due to the theoretical con-

nections with the recently well-studied notions of automata and logics over data

words [19, 17, 53]. Among different kinds of automata over data words that have

been studied, data automata [19] emerged as a good candidate definition for the

notion of regularity for languages on data words. A data automaton first rewrites

the Σ-component to another finite alphabet Γ using a nondeterministic finite-state

transducer, and then checks, for every data value d, whether the word over Γ ob-

tained by deleting all the positions in which the data value is not equal to d, belongs

to a regular language over Γ. In order to show decidability of the reachability prob-

lem for programs with doubly nested loops, we extend this definition as follows: An

extended data automaton first rewrites the data word as in case of data automata.

For every data value d, the corresponding projection, obtained by replacing each

position with data value different from d by the special symbol 0, is required to

be in a regular language over Γ ∪ {0}. We prove that the reachability problem for

extended data automata can be reduced to emptiness of multi-counter automata (or

equivalently, to Petri nets reachability), and is thus decidable. We then show that a

program containing doubly-nested loops can be simulated, under some restrictions,

by an extended data automaton. Relaxing these restrictions leads to undecidability

of the reachability problem for programs with doubly-nested loops.

Analyzing the reachability problem for programs brings a new dimension to inves-

tigations on logics and automata on data words. We establish some new connections,

in terms of expressiveness and decidability boundaries, between programs, logics, and

automata over data words. Bojanczyk et al. [19] consider logics on data words that

use two binary predicates on positions of the word: (1) an equivalence relation ≈,

such that i ≈ j if the data values at positions i and j are equal, and (2) an order ≺
which gives access to order on data values, in addition to standard successor (+1)
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and order < predicates. They show that while the first order logic with two variables,

FO2(≈, <,+1), is decidable, introducing order on data values causes undecidability,

that is, FO2(≈,≺, <,+1) is undecidable. In this context, our result on programs

with non-nested loops is perhaps surprising, as we show that the undecidability does

not carry over to these programs, even though they access order on the data domain

and have an arbitrary number of index and data variables.

We show that our decidability results concerning reachability problem for various

classes of array-accessing programs lead to decidability of confidentiality properties.

Note that this is not immediate, as the definition of confidentiality involves quan-

tifier alternation on runs. For confidentiality, we require that for all runs, there

exists an equivalent run with certain properties. Nevertheless, we will show how the

confidentiality question reduces to two reachability queries under certain restrictions.

4.1 Programs

In this section, we define the syntax and semantics of programs that we will consider.

We start by defining arrays. Let D be an infinite set of data values. We will consider

domains D equipped with equality (D,=), or with both equality and linear order

(D,=, <). Let Σ be a finite set of symbols. An array is a data word w ∈ (Σ×D)∗.

The program can access the elements of the array via indices into the array.

Syntax. The programs have one array variable A. Variables b, b1, b2, . . . are

boolean. Variables p, p1, p2, . . . range over N, and are called index variables. Vari-

ables i, j, i1, i2, . . . range over N and are called loop variables. Variables v, v1,

v2, . . . range over D and are called data variables. Constants c, c1, c2, . . . are in D,

and constants s, s1, s2, . . . are in Σ. We make a distinction between loop and index

variables because loop variables cannot be modified outside of the loop header.

Index expressions IE are defined by the following grammar IE ::= p | i. Data

expressions DE are of the form DE :: = v | c | A[IE].d, where A[IE].d accesses
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the data part of the array. Σ-expressions SE are of the form SE :: = s | A[IE].s,

where A[IE].s accesses the Σ part of the array. Boolean expressions are defined by

the following grammar:

B :: = true | b | B and B | not B

| IE = IE | IE < IE

| DE = DE | DE < DE

| SE = SE

The programs are defined by the grammar:

P :: = skip | { P }
| b:=B | p:=IE | v:=DE

| if B then P else P

| if * then P else P

| for i:=1 to length(A) do P

| P;P

The commands include a nondeterministic conditional. We consider nondeter-

ministic programs, in order to enable modeling of abstracted programs. Software

model checking approaches [45, 13, 52] often rely on predicate abstraction. For ex-

ample, if the original program contains an assignment of the form b := E, where

E is a complicated expression that falls out of scope of the intended analysis, the

assignment is abstracted into a nondeterministic assignment to b. This is modeled

as if * then b:=true else b:=false in the language presented here.

Semantics. A global state of the program is a valuation of its boolean, loop,

index and data variables, as well as of the array variable. We denote global states by

g, g1, and the set of global states by G. For a boolean, index, loop or data variable

v, we denote the value of v by g[v]. The value of the array variable A is a word

w ∈ (Σ × D)∗. It is denoted by g[A]. The length of the array at global state g is
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denoted by l(g[A]) and evaluates to the length of w. Note that the length and the

contents of the array do not change over the course of the computation.

Semantics of boolean, index, data and Σ expressions is a partial function: [[B]] :

G × B, [[IE]] : G × N, [[DE]] : G × D and [[SE]] : G × Σ. It is not defined only in

cases when there is an array access out of bounds. For example, in a state g where

g[A] is a word of length 10 and g[p] is 20, the semantics of the expression A[p].d is

undefined. The semantics of commands is defined as a relation on G, [[P]] ⊆ G×G.

• (g, g) ∈ [[skip]], for all g in G

• (g, g′) ∈ [[v:=E]], iff g′ = g[v← [[E]](g)], for any assignment.

• (g, g′) ∈ [[if B then P1 else P2]] iff [[B]](g) = true and (g, g′) ∈ [[P1]] or

[[B]](g) = false and (g, g′) ∈ [[P2]].

• (g, g′) ∈ [[if * then P1 else P2]] iff (g, g′) ∈ [[P1]] or (g, g′) ∈ [[P2]].

• (g, g) ∈ [[for i1:=1 to length(A) do P]] iff l(g[A]) = 0.

• (g, g′) ∈ [[for i1:=1 to length(A) do P]] iff l(g[A]) > 0 and there exist

g1, g2, . . . , gl+1, where l = l(g[A]), such that g1 = g[i1 ← 1], gl+1 = g′, and

for all i such that 1 ≤ i ≤ l, we have that there exists a g′i+1, such that

(gi, g
′
i+1) ∈ [[P]] and gi+1 = g′i+1[i1← i+ 1].

• (g, g′) ∈ [[P1;P2]] iff there exists g′′ such that (g, g′′) ∈ [[P1]] and (g′′, g′) ∈ [[P2]].

Given a program, a global state is initial if either i) the array variable contains

a nonempty word, all boolean variables are set to false, all index and loop variables

are set to 1, and all data variables are set to the same value as the first element of

the array; or ii) the array variable contains an empty word, all boolean variables are

set to false, all index and loop variables are set to 1, and all data variables are set to

constant cD ∈ D. The intention is that the only unspecified part of the initial state,

the part that models input of the program, is the array.
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Note that for the programs we have defined, where the only iteration allowed is

over the array, the termination is guaranteed. Therefore for all initial global states

gI there exists a global state g such that (gI , g) ∈ [[P]].

A boolean state is a valuation of all the boolean variables of a program. For

a given global state g, we denote the corresponding boolean state by bool(g). For

any boolean variable b of the program, we have that bool(g)[b] = g[b]. We denote

boolean states by m,m1 and the set of boolean states by M .

Restricted fragments. We classify programs using the nesting depth of loops.

We denote programs with only non-nested loops by ND1, programs with nesting depth

at most 2 by ND2, etc. Restricted-ND2 programs are programs with nesting depth at

most 2, that do not use index or data variables, and do not refer to order on data

or indices. Furthermore, a key restriction, such that if it is lifted, the reachability

problem becomes undecidable, is a restriction on the syntax of the code inside the

inner loop. Let P1 be the code inside an inner loop, and let i be the loop variable

of the outer loop and let j be the loop variable for the inner loop. P1 must be of

the following form: if A[i].d=A[j].d then P2 else P3. Furthermore, P3 cannot

refer to A[j], i.e. it does not contain occurrences of A[j].d or A[j].s.

Examples. We present three illustrative examples for the classes of programs

we defined.

Example 8. We consider a simple array accessing program that scans through an

array to find a minimal data value. It has one index variable, min, and it is an ND1

program, as it does not contain nested loops. Note that by definition of program

semantics, min is initialized to 1.

for i:= 1 to length(A) do {

if A[i].d < A[min].d then {min := i}

}

The correctness requirement for this program is that the index min points to a
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b:=true;

for i:= 1 to length(A) do {
if A[i].d < v then b:=false

else skip;

v := A[i].d

}

Figure 4.1: Example 2

b:=false;

for i:= 1 to length(A) do {
for j:= 1 to length(A) do

if (A[i].d = A[j].d) then {
if (not (i = j)) then b:=true

else skip

} else skip

}

Figure 4.2: Example 3

minimal element, that is ∀ i: A[i] ≥ A[min]. Verifying the correctness of the

program can be reduced to checking reachability, as the requirement itself can be

expressed as a program.

b:= true;

for i:= 1 to length(A) do {

if A[i].d < A[min].d then {min := i}

}

for i:= 1 to length(A) do {

if A[i].d < A[min].d then {b:=false}

}

We can now ask a reachability question: Does the control reach the end of the

program in a state where b == false holds?

Example 9. Figure 4.1 shows an ND1 program that tests whether the array is

sorted. It uses one data variable called v (note that by definition of the semantics,

v is initialized to the same value as the first element of the array).

Example 10. The Restricted-ND2 program in Figure 4.2 tests whether there is a

data value that appears twice in the array.
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4.2 Reachability

Given a program P, a boolean state m is reachable if and only if there exists an

initial global state gI and a global state g such that (gI , g) ∈ [[P]] and bool(g) = m.

The reachability problem is to determine, for a given program P and a given boolean

state m, whether m is reachable.

Local states. We will use a notion of a local state. Given a program, a local state

is a valuation of all its boolean, index, loop, and data variables, as well as the values

of array elements corresponding to index and loop variables. For each index and loop

variable v, local states have an additional variable A v that stores the value of the

array element at position given by v. The main difference between local and global

states is that local states do not contain valuation of the array, they only store a

finite number of values from the unbounded domain D.

Notation for local states For a given global state g, we denote the corresponding

local state by loc(g). For any variable v of the program, we have that loc(g)[v] = g[v].

If v is an index or a loop variable, we also have that loc(g)[A v] = [[A[v]]](g). We

denote local states by q, q1, and the set of local states by Q. A local state q is initial

if there exists an initial global state gI such that loc(gI) = q.

Normal form In order to simplify the presentation of proofs of the decidability

results, we will first translate the programs into a normal form. A program is in

normal form if the branches of if statements do not contain loops.

We define a translation function norm(P), that given a program P returns an

equivalent program in normal form. We use an auxiliary function assume(B, P),

and we set norm(P) = assume(true, P). The function assume(B, P) is defined

inductively as follows:

• assume(B, skip) = skip.
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• assume(B, v:=E) = if B then v:=E else skip,

if B is not true, and v:=E otherwise.

• assume(B, if B1 then P1 else P2) =

b := B1;

assume(B and b, P1);

assume(B and (not b), P2),

where b is a new boolean variable

• assume(B, if * then P1 else P2) =

if * then b:=true else b:=false;

assume(B and b, P1);

assume(B and (not b), P2),

where b is a new boolean variable

• assume(B, for i1:=1 to length(A) do P) =

for i1:=1 to length(A) do assume(B, P).

• assume(B, P1;P2) =

assume(B, P1);assume(B, P2).

The program norm(P) has more variables than the program P. However, intu-

itively the programs norm(P) and P compute the same function on the common

variables. We now formalize this notion.

Let P be a program, let G be its set of global states and let V be its set of variables.

Similarly, let G′ and V ′ be the sets of states and variables of P’. Furthermore, we

will assume that V ⊆ V ′. We define an equivalence relation ∼V,V ′ as follows. We

have that [[P]] ∼V,V ′ [[P’]] if and only if for all g′1, g
′
2 ∈ G′ it holds that (g′1, g

′
2) ∈

[[P’]] iff (πV,V ′(g′1), πV,V ′(g′2)) ∈ [[P]], where πV,V ′ : G′ → G as follows: πV,V ′(g′) = g

iff g and g′ agree on variables from V . The following lemma is proven by induction

on the structure of the program P.
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Lemma 12. Let P be a program, let V be its set of variables, and let V ′ be the set of

variables of norm(P). We have that [[norm(P)]] ∼V,V ′ [[P]]. Furthermore, the nesting

depth of loops is the same in norm(P) as it is in P. The number of boolean variables

in norm(P) increased by at most the number of if statements in P.

Theorem 13. Reachability for ND1 programs is decidable. The problem is Pspace-

complete.

The structure of the proof is as follows. We first characterize the semantics of a

program in terms of a transition system T whose states are (tuples of) local states.

Let us first consider the following simple program P: for i1:=1 to length(A) do

P1. Here, and in the rest of the proof, we assume that the length of the array

is non-zero. (In the case the length of the array is zero, the program effectively

contains no loops, and reachability can be computed in time polynomial in number

of variables.) The program P can be seen as a transition system whose states are

local states of P and which processes an input word in Σ × D, with each iteration

consuming one symbol of the word. For sequential composition of commands, a

product construction (augmented with some bookkeeping) is used.

Note that T is still an infinite-state system, as its states store values from D.

Therefore, we construct a finite state system Tα that abstracts the infinite part of

the local states, that is the values of index, loop and data variables. The abstract

state transition system Tα keeps only order and equality information on the index,

loop and data variables. Let IV be the set of index and loop variables of P. Let

DV be the set of data variables of P. An abstract state is a tuple (m, SI , SD),

where m is a boolean state in M ; SI defines an equivalence relation on IV and a

total order on equivalence classes of this relation; and SD defines an equivalence

relation on DV ∪ IV and a total order on equivalence classes of this relation. An

abstract state represents a set of local states. For example, if a program has an index

variable p1, a loop variable i1 and a data variable v1, a possible abstract state is

(m, p1 < i1, p1 = i1 < v1). This abstract state represents a set of concrete states
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whose boolean state is m and, the value of p1 is less than the value of i1, the value

of the array at position p1 is the same as the value of the array at position i1, which

is less than the value of v1.

We show that reachability of a boolean state m can be decided on the abstract

system, in the sense that m is reachable in T if and only if it is reachable in Tα. (A

boolean state m is reachable in Tα iff there exist SI and SD such that (m, SI , SD)

is reachable in Tα.) The main part of the proof shows that every finite path in the

abstract transition system is feasible in the concrete transition system.

The first idea for a proof might be to show that the abstraction defines a bisim-

ulation between abstract and concrete transition systems. However, this is not the

case. We present a simple counterexample. Let us consider a program P and let us

focus on two data variables v1 and v2. Let q1 be a local state such that its boolean

component is m, the value of v1 at q is 5 and the value of v2 at q is 6. The abstract

state corresponding to r1, rα1 is thus (m, SI , SD), where SD , the order on data and

index variables, includes v1 < v2. Furthermore, let us suppose that the program is

such that the abstract state rα1 can transition (in a way that does not change the

values of v1 and v2) to an abstract state rα2 that requires that another data variable

v3 has a value greater than the value of v1, but smaller than the value of v2. Note

now that the concrete state r1 cannot transition to any state that would correspond

to the order on data variables required by rα2 , because there is no value between 5

and 6.

In a key part of the proof, we show that if an abstract state rα2 is reachable from

rα1 , then there exists a state r1 (abstracted by rα1 ) and a state r2 (abstracted by rα2 )

such that r2 is reachable from r1. The main idea for proof by induction is that we

can choose r1 in such a way that the gaps between values are large enough. More

precisely, if (1) rα1 requires that e.g. v1 > v2 for two data variables v1 and v2 and

(2) rα2 is reachable from rα1 in k steps, then it is sufficient to choose r1 such that

v1− v2 > 2k.
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Proof of Theorem 13. To simplify the presentation, we will suppose that there

are no constants in D in the programs. At the end of this subsection, we will explain

how the proof that follows can be extended to programs with constants from D.

Transition system semantics. We show that for programs that contain only non-

nested loops and are in normal form, [[P]] can be represented by a triple (e, T, f),

where T = (R, δ ⊆ R× (Σ×D)×R,F ) is a transition system whose set of states is

R. The set F ⊆ R is the set of final states. The transition relation δ will simulate

executions of the loops that appear in the program. Its input will be, in addition to

a state from R, also a pair (a, d) from (Σ ×D) representing the current element of

the input array. The relation e is a subset of Q×R and the relation f is a subset of

F ×Q. The relation e will represent the loop-free part of the program before the first

non-nested loop, and the relation f will represent the loop-free part of the program

after the last non-nested loops. Recall that for program in normal form, loops do

not appear in branches of if statements.

We define a function [[P]]t which for loop-free programs returns a binary relation

over Q, and returns a triple (e, T, f) for programs that contain non-nested loops.

Intuitively, a loop free program P will be represented by a binary relation over Q.

For a loop command we use the relation representing the (loop free) body of the

loop to construct a transition system. For sequential composition of commands,

a product construction augmented with some bookkeeping is used. We explain the

construction for two sequentially composed loops that iterate through the array. The

transition system is a product of the transition systems defined by the two loops,

and the bookkeeping part ensures that the second loop starts from a state where the

first loop finished.

Construction of [[P]]t For the following commands P: skip, v := E, if B then

P1 else P2, if * then P1 else P2, [[P]]t is defined by

[[P]]t = {(loc(g), loc(g′))|(g, g′) ∈ [[P]]}.
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Note that for the conditionals, we have that P1 and P2 are loop-free. For loops and

sequential composition we have:

• [[for i1:=1 to length(A) do P]]t = (e, (Q, δ,Q), f), where e and f are iden-

tity relations on Q, and (q, (a, d), q′) ∈ δ if there exists a local state q′′ ∈ Q

such that (q, q′′) ∈ [[P]]t and q′ = q′′[i1 = i + 1, A i1 = (a, d)], where i = q[i1].

(Note that P is loop free.)

• [[P1;P2]]t is defined as follows:

1. If [[P1]]t = f1 and [[P2]]t = f2, then [[P1;P2]]t = f1 ◦ f2.

2. If [[P1]]t = f1 and [[P2]]t = (e2, T2, f2), then [[P1;P2]]t = ((f1 ◦ e2), T2, f2).

3. If [[P1]]t = (e1, T1, f1) and [[P2]]t = f2, then [[P1;P2]]t = (e1, T1, (f1 ◦ f2)).

4. If [[P1]]t = (e1, T1, f1) and [[P2]]t = (e2, T2, f2), then [[P1;P2]]t = (e, T, f),

where the components are defined as follows. Let T1 = (R1, δ1, F1) and

T2 = (R2, δ2, F2). The transition system T = (R, δ, F ) is defined as fol-

lows: R = R1×R2×R2, ((r1, r2, r3), (a, d), (r′1, r
′
2, r
′
3)) ∈ δ iff (r1, (a, d), r′1)

∈ δ1, r2 = r′2, and (r3, (a, d), r′3) ∈ δ2. A state (r1, r2, r3) is in F if and only

if r1 ∈ F1, r3 ∈ F2, and (r1, r2) ∈ (f1 ◦e2). The function e is defined in the

following way: (q, (r1, r2, r3)) ∈ e if and only if r2 = r3 and (q, r1) ∈ e1.

For the function f , we have ((r1, r2, r3), q) ∈ f if (r1, r2, r3) ∈ F and

(q, r3) ∈ f2.

We now show that [[P]]t = (e, T, f) captures the semantics of P. In what follows,

we suppose that the program that we analyze contains at least one non-nested loop,

and therefore [[P]]t has the form (e, T, f).

Given a transition system T = (R, δ, F ), where δ is a subset of R× (Σ×D)×R,

we extend the definition of δ to words in (Σ × D)∗. We define a relation δ∗ on

R × (Σ × D)∗ × R as follows: for w = w1 . . . wl we have that (r, w, r′) ∈ δ∗ iff
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∃r1, . . . rl+1 such that r = r1, r′ = rl+1 and for all i such that 1 ≤ i ≤ l we have that

(ri, wi, ri+1) ∈ δ.
Given a word w in (Σ × D)∗, we say that q2 is w-reachable from q1 in [[P]]t iff

[[P]]t = (e, T, f), T = (R, δ, F ) and there exist r1, r2 ∈ R such that (q1, r1) ∈ e,

(r2, q2) ∈ f , and (r1, w, r2) ∈ δ∗.

Lemma 14. A local state q2 is w-reachable from q1 in [[P]]t if and only if there exist

states g1 and g2 such that loc(g1) = q1, g1[A] = w, loc(g2) = q2, g2[A] = w and

(g1, g2) ∈ [[P]].

Proof. The proof uses induction on the structure of the program P.

A boolean state m is w-reachable in [[P]]t if there exist an initial local state qI , a

local state q such that bool(q) = m and q is w-reachable from qI in [[P]]t.

The next lemma follows from Lemma 14.

Lemma 15. Given a program P, a boolean state m is reachable if and only if there

exists a word w ∈ (Σ×D)∗ such that m is w-reachable in [[P]]t.

Furthermore, if [[P]]t = (e, T, f) and T = (R, δ, F ), we have that R = Q2k−1,

where k is the number of loops in P.

Abstract transition system. We fix a program P for the rest of this subsection.

Let [[P]]t be (e, T, f), where T = (R, δ, F ), and R = Q2k−1. We show that we can find

a finite state system Tα (and corresponding relations eα and fα) such that we can

reduce reachability in T to reachability in Tα. The main idea in the construction of

the abstract transition system is that it will keep track of only the order of index

and data variables, not their values.

We will need an abstract version of the set Q. Let IV be the set of index and loop

variables of P. Let DV be the set of data variables of P. An abstract state is a tuple

(m, SI , SD), where m is a boolean state in M , SI is a total order on equivalence

classes on IV and SD is a total order on equivalence classes on DV∪IV . For example,
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if a program has an index variable p1, a loop variable i1 and a data variable d1, a

possible abstract state is (m, p1 < i1, p1 = i1 < d1). This means that the program

is in a boolean state m, p1 is less than i1, and A[p1] is equal to A[i1] and is less

than d1. Let Qα be the set of abstract states.

We will also need an abstract version of R, the set of states of T . We consider

sets IV 2k−1 and DV 2k−1, where there are 2k − 1 copies of each variable. Let SIR

be a total order on IV 2k−1 and let SDR be a total order on DV 2k−1 ∪ IV 2k−1. We

will consider the set U = M2k−1. Let Rα be the set of abstract states of the form

(u, SIR, SDR), where u is in U .

The abstraction function αQ : Q→ Qα can be defined straightforwardly: αQ(q) =

(m, SI , SD) iff bool(q) = m and for all index and loop variables p1, p2, we have that

p1 < p2 in SI iff q[p1] < q[p2], and p1 = p2 in SI iff q[p1] = q[p2]. The definition

is similar for SD . We present the case of one index variable p1 and one data variable

v1. We have that p1 < v1 in SD if and only if [[A[p1]]] < q[v1], and p1 = v1 in

SD if and only if [[A[p1]]] = q[v1]. We define the abstraction function αR : R→ Rα

similarly.

We now define the abstract transition system. More precisely, we define [[P]]α =

(eα, Tα, fα) using [[P]]t as follows: Let Tα = (Rα, δα, Fα). The transition relation

δα ⊆ Rα × Rα is defined in a standard way: δα(rα1 , r
α
2 ) iff there exist r1, r2 and a

pair (a, d) ∈ (Σ ×D)∗, such that (r1, (a, d), r2) ∈ δ and α(r1) = rα1 and α(r2) = rα2 .

The set Fα of final states is defined as follows: rα ∈ Fα iff there exists r ∈ F and

α(r) = rα. The relation δα∗ denotes the transitive closure of δα. Given a relation e

on Q × R, we define its abstract version eα on Qα × Rα similarly to the definition

of the abstract transition relation. Also, given a relation f on R × Q, we define its

abstract version fα on Rα ×Qα.

The following lemma is the key part of the proof. It relates reachability of a

boolean state in the abstract and concrete systems.
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Lemma 16. For all rα1 , r
α
2 in Rα,we have that δα∗(rα1 , r

α
2 ) if and only if there ex-

ist r1, r2 ∈ R and a word w ∈ (Σ × D)∗ such that α(r1) = rα1 , α(r2) = rα2 , and

δ∗(r1, w, r2).

Proof. It is straightforward to prove that if there exist r1, r2 and w such that α(r1) =

rα1 , α(r2) = rα2 , and δ∗(r1, w, r2) then δα∗(rα1 , r
α
2 ). We only need to apply the definition

of δα inductively.

The proof of the other implication uses induction on the length of the path from rα1

to rα2 that witnesses δα∗(rα1 , r
α
2 ). We will also need the following notion: The relation

Gap(r, o) holds for r ∈ R and o ∈ N iff for all data variables (and values pointed

to by index variables) v1, v2, we have that if r[v1] > r[v2], then r[v1] − r[v2] ≥ o.

The relation δαk (rα1 , r
α
2 ) is defined as follows: δαk (rα1 , r

α
2 ) if there exists a state rα3 ∈ Rα

such that δα(rα1 , r
α
3 ) and δαk−1(rα3 , r

α
2 ) for k > 1; and δα1 = δα.

We will prove the following inductive claim: If δαk (rα1 , r
α
2 ), then for all r1 such

that αR(r1) = rα1 and Gap(r1, 2
k), there exists r2 and a word w ∈ (Σ × D)k, such

that (r1, w, r2) ∈ δ, and αR(r2) = rα2 .

The base case, where k = 0 is straightforward. For the inductive case, sup-

pose that δαk (rα1 , r
α
2 ). Then there exists a state rα3 ∈ Rα such that δα(rα1 , r

α
3 ) and

δαk−1(rα3 , r
α
2 ). Let r1 be such that α(r1) = rα1 and Gap(r1, 2

k). (It is easy to show that

such r1 exists for all rα1 .) We need to find a state r3 ∈ R and a pair (a, d) ∈ Σ×D such

that (r1, (a, d), r3) ∈ δ, αR(r3) = rα3 and Gap(r3, 2
k−1). This is done by case analy-

sis of the transition δα(rα1 , r
α
3 ). Informally, the transition can require that the data

value d of the current position (the position pointed to by the loop variable) has to

be between two stored values, but as Gap(r1, 2
k) holds, we can always choose d such

that we ensure that Gap(r3, 2
k−1). We can conclude by using induction hypothesis

for δαk−1(rα3 , r
α
2 ).

A boolean state m is reachable in [[P]]α if there exists an initial state gI , an

abstract state qαI such that α(loc(gI)) = qαI , and states qα2 ∈ Qα, rα1 , r
α
2 ∈ Rα such

that (qαI , r
α
1 ) ∈ eα, δα∗(rα1 , r

α
2 ), (rα2 , q

α
2 ) ∈ fα, and bool(qα2 ) = m.
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Lemma 17. A boolean state m is reachable if and only if it is reachable in [[P]]α.

Proof. The proof uses Lemmas 15 and 16.

Complexity The proofs of the preceding lemmas give rise to an algorithm for

deciding reachability of a boolean state m. The algorithm tests reachability of m

in the abstract transition system. We show that the algorithm is in Pspace. The

number of states in Tα depends exponentially the number of variables in the program.

Furthermore, given two abstract states, rα1 and rα2 , one can decide (in polynomial

time in the number of variables), whether the tuple (rα1 , r
α
2 ) is in δα.

In order to show that the problem is Pspace-hard, we can reduce Succinct-

Reachability (see [66]) to our reachability problem. Note that the resulting in-

stance will use only boolean variables, not data or index variables.

This completes the proof of Theorem 13.

As noted above, we presented the proof for programs without constants in D.

The proof can be extended to programs with constants in a straightforward way: Let

c1 be the smallest and let c2 be the greatest constant that a given program P uses.

The abstract system [[P]]α will need to track the values between c1 and c2 precisely,

and track only the order between the stored values for values less than c1 or greater

than c2. The resulting system will thus still have a finite number of states. The

reachability problem can be solved in space polynomial in the number of variables

and the size (number of bits) of the largest constant.

4.2.1 Finite data domain

In this subsection, we consider the case when the data domain D is finite. We

also syntactically restrict the programs: we consider programs which do not have

index variables and which do not contain expressions of the form IE = IE and IE

< IE, that is the index expressions (consisting now only of loop variables) are not

compared. We call these programs index-free. The reason we consider this restriction
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is that in this case, the local state needs only to store a fixed number of data values.

As the data values are from a finite domain, the set of local states is finite.

Since the set of local states is finite, there is a natural question about how such

programs are related to finite state automata on words. Let us consider an execution

of a program P. The traversal order of this execution is different from standard finite

state automata, as the program reads the input array many times. The number

of times P scans the array in fact depends on the length of the input word, and is

therefore unbounded. If n is the length of the input word, and k is the nesting depth

of loops in a program P, then P scans the array nk times.

We show that for index-free programs on a finite domain D, we can allow the

nesting depth of loops to be arbitrary without losing decidability of the reachability

problem.

Theorem 18. Reachability is decidable for index-free programs if the data domain

D is finite. The problem is in Expspace.

We start by describing the structure of the proof. We will show how all the

traversals of the array can be simulated by a finite state system. We explain the main

idea of the construction using a program with a doubly nested loop. The number of

iterations of the inner loop depends on the length of the input word. However, each

iteration can be characterized by a pair of states of the program - a state q1 in which it

begins, and a state q2 in which it ends. We can thus reduce the reachability problem

to the reachability problem in a finite state system T whose states will contain

sets of pairs of states of the original program (and, in addition, some bookkeeping

information). The number of states of T is thus doubly-exponential in the number

of variables of the program. The reachability problem can therefore be solved in

Expspace.

The full proof of Theorem 18 follows. We will first construct the finite state

system T .
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Construction of a finite-state transition system. In the rest of this subsec-

tion, we fix a program P. A program in normal form can be seen as a sequence

f1L1f2L2 . . . fkLkfk+1, where fi is a binary relation over Q representing a loop-free

part of the program, and Li is a loop, i.e. a command of the form for i1:=1 to

length(A) do P1. We present the construction of such a sequence Seq(P).

For the following commands P: skip, v := E, if B then P1 else P2, if *

then P1 else P2, Seq(P) is defined by

Seq(P) = {(loc(g), loc(g′))|(g, g′) ∈ [[P]]}.

Note that for the conditionals, we have that P1 and P2 are loop free. For loops and

sequential composition we have:

• Seq(for i1:=1 to length(A) do P) = f1Lf2, where (q, q) ∈ f1 and (q, q) ∈
f2, for all q ∈ Q, and L = for i1:=1 to length(A) do P.

• Seq(P1;P2) is defined as follows: If Seq(P1) = f1L1f2L2 . . . fkLkfk+1 and

Seq(P2) = f ′1L
′
1f
′
2L
′
2 . . . f

′
k′L′k′f ′k′+1, then Seq(P1;P2) = f1L1f2L2 . . . fkLk(fk+1◦

f ′1)L′1f
′
2L
′
2 . . . f

′
k′L′k′f ′k′+1.

Given a program P, we construct a finite-state transition system FS (P) = (S,D,

δ, s0). Let L be the set of all loop commands that appear in the program. Let SP

be a set of all tuples of the form Q×Q×L×Q. The set S is then 2SP ∪{s0}, where

s0 will be the initial state.

Given two states q1 and q2, we say that a state s of FS (P) models a triple

(q1, P, q2) (denoted by s |= (q1, P, q2)) iff Seq(P) = f1L1f2L2 . . . fk+1 and there exist

q1
1q

2
1q

1
2q

2
2 . . . q

1
kq

2
kq

1
k+1 such that for all i, if 1 ≤ i ≤ k, then (q1

i , q
2
i ) ∈ fi, there exists a

state q such that (q2
i , q, Li, q

1
i+1) is in s, q1

1 = q1 and q1
k+1 = q2.

A state s is called starting iff there exist an initial local state q1 and a local state

q2 such that s |= (q1, P, q2) and for all tuples (q1, q2, L, q3) in s, we have that q1 = q2.

A state s is called ending iff for all tuples (q1, q2, L, q3) in s, we have that q2 = q3.
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The transition relation δ ⊆ S×((Σ×D)∪{ε})×S is defined as follows. The initial

state s0 transitions on ε to a state s iff s is a starting state. In addition, we have that

(s1, (a, d), s2) ∈ δ iff for all tuples t ∈ s, there exists a tuple t′ ∈ s′ such that t
(a,d),s,s′−−−−−→

t′, and for all tuples t′ ∈ s′, there exists a tuple t ∈ s such that t
(a,d),s,s′−−−−−→ t′. The

auxiliary relation t
(a,d),s,s′−−−−−→ t′ is defined as follows: (q1, q2, L, q3)

(a,d),s,s′−−−−−→ (q′1, q
′
2, L, q

′
3)

iff L = for i1 := 1 to length(A) do P, q1 = q′1, q3 = q′3, and there exist a state

q′′ such that s |= (q2, P, q
′′
2) and q′2 = q′′2 [A i1 = (a, d)].

Given a data word w in (Σ×D), we say that q2 is w-reachable from q1 in FS (P) iff

there exist a starting state s, an ending state s′, a word w = w1w2 . . . wl, and states

s1, s2, . . . , sl+1 such that s |= (q1, P, q2), s = s1, s′ = sl+1, and (si, wi, si+1) ∈ δ, for

all i such that 1 ≤ i ≤ l.

Lemma 19. A local state q2 is w-reachable from q1 in FS (P) if and only if there

exist states g1 and g2 such that loc(g1) = q1, g1[A] = w, loc(g2) = q2, g2[A] = w and

(g1, g2) ∈ [[P]].

Proof. The proof uses induction on the nesting depth of P. The inductive step is

proven by induction on the number of sequentially composed loops in the program.

A boolean state m is w-reachable in Seq(P) if there exist an initial local state qI

and a local state q, such that bool(q) = m, and q is w-reachable from qI in FS (P).

The proof of the following lemma uses Lemma 19.

Lemma 20. A boolean state m is reachable if and only if it is reachable in FS (P).

Lemma 20 reduces the reachability problem to the reachability problem in a finite

state transition system whose size is doubly exponential in the number of variables

of the program. We also have that given two states of FS (P), s1 and s2, and a

pair (a, d) ∈ (Σ × D), it is possible to decide (in polynomial time in the number

of variables), whether (s1, (a, d), s2) ∈ δ. Therefore we have that the problem of

deciding reachability is in Expspace. This concludes the proof of Theorem 18.
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4.3 Programs, automata and logics on data words

In this section, we will examine the decidability boundary for array-accessing pro-

grams, and compare the expressive power of these programs to that of logics and

automata on data words. We will show that the reachability problem for Restricted-

ND2 programs is decidable, and that it is undecidable for full ND2 programs. We

start by reviewing the results on automata and logics on data words, as these will

be needed for the decidability proof. We will reduce the reachability problem for

Restricted-ND2 programs to the nonemptiness problem of extended data automata,

a new variation of data automata. The latter is a definition intended to correspond

to the notion of regular automata on finite words.

4.3.1 Background

We briefly review the results on automata and logics on data words from [19]. Recall

that a data word is a sequence of pairs Σ×D. A data language is a set of data words.

Let w be a data word (a1, d1)(a2, d2) . . . (an, dn). The string str(w) = a1a2 . . . an is

called the string projection of w. Given a data language L, we write str(L) to denote

the set {str(w) | w ∈ L}. A class is a maximal set of positions in a data word with

the same data value. Let S(w) be the set of all classes of the data word w. For a

class X in S(w) with positions i1 < . . . < ik, the class string str(w,X) is ai1 . . . aik .

Data automata A data automaton (DA) A = (G,C) consists of a transducer

G and a class automaton C. The transducer G is a nondeterministic finite-state

letter-to-letter transducer from Σ to Γ and C is a finite-state automaton on Γ. A

data word w = (a1, d1)(a2, d2) . . . (an, dn) is accepted by a data automaton A if

there is an accepting run of G on the string projection of w, yielding an output

string b = b1 . . . bn, and for each class X in S(w′), the class automaton C accepts

str(w′, X), where w′ = w′1 . . . w
′
n is defined by w′i = (bi, di), for all i such that

1 ≤ i ≤ n. Given a DA A, L(A) is the language of data words accepted by A. The
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nonemptiness problem for data automata is decidable. The proof is by reduction to

a computationally complex problem, the reachability problem in Petri nets.

Logics on data words We define logics whose models are data words. Follow-

ing [19], we consider two predicates on positions in a data word whose definition also

involves the data values at these positions. The predicate i ≈ j is satisfied if both

positions i and j have the same data value. The predicate i ≺ j is satisfied if the

data value at position i is smaller than the data value at position j. Furthermore,

standard successor and order predicates on positions in a data word are used.

Let us first consider logics that use the ≈ predicate and not the ≺ predicate.

We first note that for a first order logic FO(≈, <,+1) satisfiability is undecidable,

even if we restrict the number of variables to three. If we restrict the number

of variables to two, the logic becomes decidable, and the proof is by reduction to

the nonemptiness problem of data automata. The decidability naturally extends

to existentially quantified second order monadic logic with two first order variables,

denoted by EMSO2(≈,+1,⊕1). Moreover, EMSO2(≈,+1,⊕1) is precisely equivalent

in expressive power to data automata. The predicate ⊕1 denotes the class successor,

and i⊕1 = j is satisfied if i and j are two successive positions in the same class of the

data word. Furthermore, the logic EMSO2(≈, <,+ω,⊕1) is included in EMSO2(≈
,+1,⊕1). The symbol +ω represents all predicates of the form +k, k ∈ N, i.e. the

logic includes all predicates i+ 2 = j, i+ 3 = j, etc.

Example 11. We present a data automaton A such that str(L(A)), the set of

string projections, is exactly the set of all words over {a, b, c} that contain the same

number of as, bs, and cs. The transducer of A computes the identity function, i.e.

it accepts all words and its output string is the same as its input string. The class

automaton ensures, for each class, that the class contains exactly one occurrence of

a, one occurrence of b and one occurrence of c.
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4.3.2 Extended data automata

Position-preserving class string Note that the class automaton does not know

the positions of symbols in the word w. The symbols from other classes have simply

been erased. However, let us consider a program with a doubly-nested loop where

i is the loop variable of the outer loop and j is the loop variable of the inner

loop, and let us suppose that the program inside the inner loop is of the form: if

(A[i].d=A[j].d) then P1 else P2.

The inner loop of the program scans the array from left to right and and mod-

ifies the state in two different ways (given by P1 and P2), depending on whether

(A[i].d=A[j].d) holds or not. Simply erasing the positions from other classes

seems therefore not good enough. We thus define an extension of the notion of class

string and a corresponding extension of the class automaton.

Given a data word w ∈ (Σ × D)∗, a position-preserving class string pstr(w,X)

is a string over Σ ∪ {0}. (We assume that 0 /∈ Σ.) Let w = w1w2 . . . wn, let i be a

position in w, and let wi be (ai, di). The string v = pstr(w,X) has the same length

as w, and for vi we have that vi = ai iff i ∈ X, and vi = 0 otherwise. That is, for

each position i which does not belong to X, the symbol from Σ at the position i is

replaced by 0.

An extended data automaton (EDA) E = (G,C) consists of a transducer G and a

class automaton C. The transducer G is a finite-state letter-to-letter transducer from

Σ to Γ and C is a finite-state automaton over Γ ∪ {0}. A data word w = w1 . . . wn

is accepted by the EDA E if there is an accepting run of G on the string projection

of w, yielding an output string b = b1 . . . bn, and for each class X in S(w′), the

class automaton C accepts pstr(w′, X), where w′ = w′1 . . . w
′
n is defined as follows:

w′i = (bi, di), for all i such that 1 ≤ i ≤ n. Given an EDA E , L(E) is the language of

data words accepted by E .

Example 12. We consider L, a language of data words defined by the following
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property: A data word w is in L iff for every class X in S(w), we have that between

every two successive positions in the class, there is exactly one position from another

class. We show that there exists an EDA E = (G,C) such that L(E) = L. The

transducer G computes the identity function. The class automaton C is given by

the following regular expression: 0∗(Σ0)∗0∗. It is easy to see that E accepts L. We

first note that for each DA A, it is easy to find an EDA E such that L(E) = L(A).

We just modify the class automaton C, by adding the tuple (q, 0, q), for each q, to the

transition relation. This means that on reading 0 the state of the class automaton

does not change.

We will also show in this section that for each EDA E we can find an equivalent

DA A. This might not be obvious at a first glance, as class automata of DAs do

not get to see the distances between positions in a class. Indeed, we show that the

language from Example 12 cannot be captured by a deterministic DA. However,

we show that EMSO2(≈,+1,⊕1) and EDAs are expressively equivalent, and since

EMSO2(≈,+1,⊕1) and DAs are also expressively equivalent, we conclude that for

every EDA there exists a DA that accepts the same language. Showing that for

every EDA there exists an equivalent EMSO2(≈,+1,⊕1) formula also establishes

that non-emptiness is decidable for EDAs. However, the proof of decidability of

satisfiability of EMSO2(≈,+1,⊕1) formulas is rather involved. We present a direct

proof for decidability of emptiness for EDAs, as it also gives an intuitive reason why

emptiness is decidable fro EDAs.

Theorem 21. Given an EDA E, it is decidable whether L(E) = ∅.

Proof. Let E = (G,C) be an EDA, let G be defined by a tuple (QG,Σ,Γ, δG, q
G
0 ,

FG), and let C be defined by a tuple (QC ,Γ, δC , q
C
0 , FC). We start by describing a

more operational view of EDAs. A run of an EDA on a data word w is a function

% from positions in w to tuples of the form (q, o, c), where q ∈ QG is a state of

the transducer G, o (a symbol from Γ) is the output of the transducer, and c is a

function from S(w) to QC , the set of states of C. Furthermore, we require that % is
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Figure 4.3: A connected component of a graph C0 corresponding to an EDA E

consistent with δG and δC , the transition functions of G and C. We define %(0) to

be (qG0 , γ, λX.q
C
0 ), i.e. the transducer and all the copies of the class automaton are

in initial states. Furthermore, for each position i, %(i) is equal to (q′, o′, c′) if and

only if wi = (a, d), %(i− 1) = (q, o, c) and (i) (q′, o′) ∈ δG(q, a), (ii) for the unique X

such that i ∈ X we have c′(X) ∈ δC(c(X), o′), (iii) for X such that i /∈ X we have

c′(X) ∈ δC(c(X), 0).

A run is accepting iff %(n) = (q, o, c), q is a final state of G and for all X in S(w),

we have that c(X) is a final state of C.

Let us consider the class automaton C. Without loss of generality, we suppose

that C is a complete deterministic automaton on Γ∪{0}. The transition function δC

defines a directed graph C0 with states of C as vertices and 0-transitions as edges,

i.e. there is an edge (p1, p2) in C0 if and only if δC(p1, 0) = p2. Every vertex in C0

has exactly one outgoing edge (and might have multiple incoming edges). Therefore,

each connected component of C0 has exactly one cycle. A vertex is called cyclic

if it is part of a cycle, and it is called non-cyclic otherwise. It is easy to see that

each connected component is formed by the cyclic vertices and their 0-ancestors. An

example of a connected component is in Figure 4.3. The vertex labeled q6 is cyclic,

its ancestors q9, q10, q11 are non-cyclic.

The graph C0 consists of a number of connected components. We denote these

components by Cj
0 , for j ∈ [1..k], where k is the number of the components. Let

75



W be the set of all non-cyclic vertices. For each non-cyclic vertex v, let D(v) be

defined as follows: D(v) = d for non-cyclic vertices connected to a cycle, where d

is the length of the unique path connecting v to the closest cyclic vertex. For the

graph C0, we define D(C0) to be maxv∈W D(v).

Let i be a position in a data word w. The data word w1w2 . . . wi is denoted by

prefix (w, i). Let us consider a position i in a data word w and the set of classes

S(w). Let Sact(w, i) be a set of active classes, i.e. classes X such that there is a

position in X to the left of the position i. More formally, a class X ∈ S(w) is in

Sact(w, i) if the string str(prefix (w, i), X) is not equal to 0i.

Lemma 22. Let % be a run of E on w. Let i be a position in w. Let %(i) be (q, o, c).

The number N of classes X, such that X is in Sact(w, i) and c(X) is a noncyclic

vertex, is bounded by D(C0), i.e. N ≤ D(C0).

Proof. Let i be a position in a word w. If i ≤ D(C0), then the number of active

classes is at most D(C0), and we conclude immediately.

Let us consider the case i > D(C0). Let %(i) be (q, o, c) and let s be the string

of length D(C0) defined by s = wi−D(C0)+1 wi−D(C0)+2 . . . wi. There are two possible

cases for each class X in S(w):

• pstr(s,X) = 0D(C0). Let %(i − D(C0)) = (q′, o′, c′), and let c′(X) = v. We

can easily prove that δ∗C(p, 0e) is not in W , for all p and for all e ≥ D(p). By

definition, D(C0) ≥ D(q′). Therefore, we can conclude that c(X) 6∈ W .

• pstr(s,X) 6= 0D(C0). This is true for at most D(C0) classes, because, for all

positions x, there is exactly one class X, such that the symbol at the position

x of the class string pstr(s,X) is not 0.

Therefore we have that c(X) ∈ W for at most D(C0) classes.

We reduce emptiness of EDAs to emptiness of multicounter automata. Multi-

counter automata are equivalent to Petri nets [40], and thus the emptiness of mul-

ticounter automata is decidable. We use the definition of multicounter automata
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from [19].

A multicounter automaton is a finite, non-deterministic automaton extended by

a number k of counters. It can be described as a tuple (Q,Σ, k, δ, qI , F ). The set of

states Q, the input alphabet, the initial state qI ∈ Q and final states F ⊆ Q are as

in a usual finite automaton.

The transition relation is a subset of Q×(Σ∪{ε})× {inc(i), dec(i)}×Q. The idea

is that in each step, the automaton can change its state and modify the counters, by

incrementing or decrementing them, according to the current state and the current

letter on the input (which can be ε). Whenever it tries to decrement a counter of value

zero the computation stops and rejects. The transition of a multicounter automaton

does not depend on the value of the counters in any other way. In particular, it

cannot test whether a counter is exactly zero.

Nevertheless, by decrementing a counter k times and incrementing it again after-

ward it can check that the value of that counter is at least k.

A configuration of a multicounter automaton is a tuple (q, (ci)i≤n), where q ∈
Q is the current state and ci ∈ N is the value of the counter i. A transition

(p, ε, inc(i), q) ∈ δ can be applied if the current state is p. For a ∈ Σ, a transi-

tion (p, a, inc(i), q) ∈ δ can be applied if furthermore the current letter is a. In

the successor configuration, the state is q, while each counter value is the same as

before, except for counter i, which now has value ci + 1. Similarly, a transition

(p, a, dec(i), q) ∈ δ with a ∈ Σ ∪ {ε} can be applied if the current state is p, the

current letter is a, if a ∈ Σ, and counter i is non-zero. In the successor configura-

tion, all counter values are unchanged, except for counter i, which now has value

ci = ci − 1. A run over a word w is a sequence of configurations that is consistent

with the transition function. A run is accepting if it starts in the state qI with all

counters empty and ends in a configuration where all counters are empty and the

state is final.

Lemma 23. Let E be an EDA. A multicounter automaton V such that str(L(E)) =
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L(V ) can be computed from E.

Proof. We present the construction of a multicounter automaton V that simulates E .

The multicounter automaton V simulates the transducer G and a number of copies

of C. There is one copy per class in S(w), where w is the word the automaton is

reading. We say that a class automaton performs a 0-transition if the input symbol

it reads is 0, and it performs a Γ-transition if the input symbol it reads is from Γ.

Intuitively, at each step, the automaton V :

1. Simulates the transducer G using the finite state part (i.e. not the counters).

2. It guesses to which class the current position belongs, and it executes the Γ-

transition of the automaton for that class with the symbol that is the output of

the transducer at this step. For all the other simulated automata, V executes

the 0-transition. (This is sufficient because each position belongs to exactly

one equivalence class.)

The counters of the multicounter automaton V correspond to the cyclic vertices

in C0. (In what follows, we call a state of C (non-)cyclic if it corresponds to a

(non-)cyclic vertex in C0.) The value of the counter h corresponds to the number of

copies of C currently in the state h. The finite part of the automaton state tracks

the number of copies in each non-cyclic state. The key idea of the proof is that the

total number of copies in non-cyclic states is finite and bounded (by D(C0)). This

fact is implied by Lemma 22.

Furthermore, one copy e of the class automaton is used to keep track of all the

classes that are not active yet, i.e. not in Sact(w, i) at step i - thus when a position-

preserving class string contains a symbol in Γ for the first time, a new copy of the

automaton C is started from the state at which the copy e is.

Let γ ∈ Γ be the current input symbol. The automaton works as follows: The

first step consists of the automaton V nondeterministically guessing the equivalence

class X to which the current position belongs. The copy of the class automaton for
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X is then set aside while the second step is performed. That is, if the copy is in

state s, then s is remembered in a separate part of the finite state. In the second

step, the automaton V simulates 0-transitions for all the other copies (other than the

copy that performed the Γ-transition). For copies in non-cyclic states, this is done

by a transition modifying the finite state of V . The copies that transition from a

non-cyclic to a cyclic state are dealt with by modifying the finite state and increasing

the corresponding counter. The copies in cyclic states are tracked in the counters.

Note that if we restrict the graph to only cyclic states, each state has exactly one

incoming and one outgoing 0-edge. For all the copies in cyclic states, the 0-transition

is accomplished by ’relabeling’ the counters. This is done by remembering in the the

finite state of V for each loop for one particular state to which counter it corresponds.

This is then shifted in the direction of the 0-transition.

The third step is to perform the Γ transition for the class X. For the copy of the

automaton corresponding to this class, a Γ-transition is performed. That is, if it is

in state q, and δ(q, γ) = q′, then there are four possibilities:

• If q, q′ are cyclic states, the counter corresponding to q is decreased and the

counter corresponding to q′ is increased.

• If q, q′ are non-cyclic state, a transition that changes the state of V is made.

• If q is a cyclic state and q′ is a non-cyclic state, the counter corresponding to

q is decreased, and the finite state of V is changed to reflect that the number

of copies in q′ has increased.

• If q is a noncyclic state and q′ is a cyclic state, the transition is simulated

similarly.

This concludes the proof of Theorem 21.
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4.3.3 Restricted doubly-nested loops

We will reduce the reachability problem of Restricted-ND2 programs to the emptiness

problem of EDAs. The main idea of the proof is that the transducer G guesses an

accepting run of the outer loop, while the class automaton C checks that the inner

loop can be executed in a way that is consistent with the guess of the transducer.

We will need the following notion: For a given program P and a given boolean state

m, we consider a language of data words such that the execution of P on a word from

this language ends in a global state whose boolean component is m. More precisely,

the language Lm(P) is the set of data words w, such that there exist an initial state

gI and a state g, such that gI [A] = w, bool(g) = m, and (gI , g) ∈ [[P]].

Theorem 24. Reachability for Restricted-ND2 programs is decidable.

Proof. In this proof, we fix a program P of the following form:

for i1 := 1 to length(A) do

P1;

for j1: 1 to length(A) do P2;

P3

where P1, P2, P3 are loop free programs. We present the proof for programs

of this form. It can be extended for general programs using product construction

techniques similar to those from the proof of Theorem 13. Similarly to the proof of

Theorem 13, we assume that we assume that the length of the array is non-zero. (In

the case the length of the array is zero, the program effectively contains no loops, and

reachability can be computed in time polynomial in number of variables.) Recall that

according to the definition of Restricted-ND2 programs, P2 must be of the following

form: if A[i].d=A[j].d then P21 else P22, where P22 cannot contain A[i1].d

or A[i1].s.
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Given a boolean state mr, we construct an EDA E = (G,C) such that w ∈ Lmr(P)

iff w ∈ L(E).

The task of the finite state transducer G = (QG,Σ,Γ, δG, q
G
0 , FG) is to guess a

run of the program P. The output alphabet Γ consists of tuples in Σ×M ×M × V ,

where M is the set of boolean states of the program P.

The main idea of the construction is that the transducer G guesses an accepting

run of the outer loop, while the class automaton C checks that the inner loop can be

executed in a way that is consistent with the guess of the transducer. If a position

i is marked with (ai,m,m
′, v), the class automaton corresponding to class X such

that i ∈ X will verify that if the inner loop, which ran when the loop variable of the

outer loop pointed to i, was started at m, then it will finish at m′.

The set V is defined as VC ∪ V ′C ∪ {e}, with e /∈ V . The set VC is the set of all

constants from D that appear in the program P. The set V ′C contains a symbol c′

for each c ∈ VC . The symbol e will represent the fact that the current input is not

equal to any of the constants in the program.

First, let us summarize the effect of the loop-free subprograms P1 and P3 by

relations f1, f3 ⊆ M × (Σ × V ) × M . The programs P1 and P3 can access the

boolean state, read the value [[A[i].s]], compare the value [[A[i].d]] to constants,

and modify the boolean state.

The transducer reads a word a1a2 . . . al ∈ Σ∗, and produces a word b1b2 . . . bl ∈ Γ∗

such that:

• b1 = (a1,m,m
′, v), for some m such that there exists a global state gI such

that (bool(gI), (a, v),m) ∈ f1.

• for all i such that 1 ≤ i < l, if bi = (ai,m1,m2, v) and bi+1 = (ai+1,m
′
1,m

′
2, v
′),

then there exist boolean states m3, m′1, m′2 such that (m2, (ai, v),m3) ∈ f3 and

(m3, (ai+1, v
′),m′1) ∈ f1.

• bl = (al,m,m
′, v), for some m ∈M and v ∈ V such that (m′, (al, v),mr) ∈ f3.
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• There is an additional requirement on the fourth component of the tuple

(a,m,m′, v) that will enable the class automaton to verify that the position

of constants has been guessed consistently. The transducer guesses a value in

VC ∪ {e}, but at the rightmost position where it guesses a particular value

v ∈ VC , it outputs v′ instead of v. This enables the class automata to check

that each value v ∈ VC has been guessed for at most one class.

It is straightforward to show that this is possible to do with a finite state trans-

ducer.

We now define the class automaton C. The position preserving class string

defined by a data value d looks as follows:

00(a1,m1,m
′
1, v)000(a2,m2,m

′
2, v) . . . 0(al,ml,m

′
l, v)00

The task of the class automaton is twofold. First, it checks that if we consider

only non-0 elements of the sequence and project to the fourth component of the

tuple, the sequence observed is either of the form e∗ or v∗v′, for a constant v. This

ensures that constants have been guessed consistently, i.e. that each constant has

been assigned to a unique class, and at most one constant has been assigned to a

class.

Second, the class automaton for a class X checks that the inner loops that ran

when i1, the variable of the outer loop, pointed to one of the positions belonging

to X, can run as the transducer has guessed. That is, if the position i ∈ X has a

tuple of the form (ai,mi,m
′
i, v), the inner loop that started at state mi, with the

value of i1 equal to i, will finish at state m′i. It is not difficult to construct a regular

automaton this condition.

The proof of Theorem 24 gives a decision procedure, but one whose running

time is non-elementary. The reason is that while the problem of reachability in

multicounter automata is decidable, no elementary upper bound is known.
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However, the following proposition shows that the problem is at least as hard as

the reachability in multicounter automata, which makes it unlikely that a more effi-

cient algorithm exists. The best lower bound for the latter problem is Expspace [58].

Proposition 25. The reachability problem for multicounter automata can be reduced

to the reachability problem for Restricted-ND2 programs in polynomial time.

Proof. Given a multicounter automaton A, we construct a Restricted-ND2 program

P operating on data words that encode runs of A. The proof is similar to the proof

of Theorem 14 from [19].

More precisely, we will construct a program P with a boolean state m such that

Lm(P) is non-empty if and only if there is an accepting run of A, i.e. iff L(A) is

non-empty.

Let A be defined by the tuple (QA,ΣA, kA, δA, q
A
I , FA). The array of the program

P is a word on Σ × D. The set Σ is defined as Q ∪ {Ij | 1 ≤ j ≤ kA} ∪ {Dj |
1 ≤ j ≤ kA}. Ij models the increase operation of the counter j, and similarly, Dj

models the decrease operation of the counter j. A transition (q1, inc(j), q2) ∈ δA is

encoded by having q1, Ij and q2 as Σ values in successive positions. A transition

(q1, dec(j), q2) ∈ δA is encoded by having q1, Dj and q2 as Σ values in successive

positions.

The program P consists of two sequentially composed parts. The first part is a

single non-nested loop that examines only the Σ part of the data word, and check

whether: (a) the first symbol is the initial state of A, (b) the word encodes transitions

in δA, and (c) the last position contains a state in FA. The second part uses data

values to check that each decrement matches exactly one previous decrement, and

each increment matches exactly one subsequent decrement, that is, the counters are

never less than zero, and are equal exactly to zero at the end of the computation.

This is ensured by requiring that each occurrence of Ij has a different data value,

while each occurrence of Dj has the same data value as exactly one preceding Ij.
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It is easy to write a Restricted-ND2 program (of polynomial size) that checks the

second part above.

b:=false;

b1:=true;

for i:= 1 to length(A) do {
if (A[i].s = I j) {

for j:= 1 to length(A) do {
b1 := checkForD j

}
}
...

}
if b1:=true then b:=true;

The code fragment above shows the core structure of the program P. The reach-

ability question we will ask is whether a state where b is true is reachable. The

variable b is set to true at the end of the program if b1 is true, which will be the case

only if no error was found during the tests such as checkForDj above. This particular

test is run if the Σ part of the current element in the outer loop is equal to Ij and the

test checks whether the equivalence class of the current element contains exactly two

elements, with the other element at a position greater than the current value of i

(no order tests need to be used, this can be checked by switching a boolean variable

when i = j holds) and its Σ part contains Dj. Note that checkForDj denotes a few

lines of code, it is not a procedure call.

4.3.4 Undecidable extensions

We show that if we lift the restrictions we imposed on Restricted-ND2 programs, the

reachability problem becomes undecidable.
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Theorem 26. The reachability problem for ND2 programs is undecidable.

Proof. The proof is by reduction from the reachability problem of two-counter au-

tomata [62]. We note that the proof also implies that the reachability problem is

undecidable even for ND2 programs that do not use order on the data domain and

do not use index or data variables.

The proof uses a reduction from reachability in two-counter automata. Two-

counter automaton has a finite set of states and two integer counters. The main

difference between two-counter automata and multicounter automata is that a two-

counter automaton can test whether the value of a counter is equal to 0. More

precisely, a two-counter machine is a tuple (Q, δ, q0, F ), where Q is a set of states,

q0 ∈ Q is an initial state and F ⊆ Q is a set of final states. The transition relation

δ is a subset of Q× (({+}× {1, 2}×Q)∪ ({−}× {1, 2}×Q×Q)). A configuration

is a tuple in Q×N×N representing the current state and current values of the two

counters. At each step, the machine can either increment one of the counters and

transition to a new state, or (try to) decrement one of the counter and transition to

one of two possible new states depending on whether the value of the counter was

0. The automaton accepts by final state. It is well-known that the nonemptiness

problem for multicounter automata is undecidable [62, 56].

Given a two-counter automaton A, we construct an ND2 program P that has a

boolean state m such that for all data words w, we have that w ∈ Lm iff w encodes

runs of A. A configuration (q, i, j) is encoded as a data word as follows: The Σ part

of the data word will be of the form

(#q${a, b}h1${a, b}h2)∗

where Σ = {#, $} ∪ Q ∪ {a, b}. The first counter is represented between the first

and second $ symbols and its value is given by the number of times the symbol a

occurs. Similarly, the second counter is represented between the second and third $

symbols. A run is a sequence of configurations, and it will be encoded as a sequence
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of encodings of configurations. Note that the maximal value the counters can have

in a run (denoted by h1, h2 above) does not change during the run in this encoding.

The ND2 program P checks that the run has the form above, the first configuration

has an initial state and the values of counters are zero, the last configuration in the

input word has a final state, and that the transition relation δ is respected at every

step. We describe how the program checks the last condition.

Let us consider two successive configurations, represented as follows:

. . .#q$C1$C2#q′$C ′1$C ′2 . . .

Let us describe how the program check that the length of the string C1 is the

same as the length of the string C ′1. The program first checks that every data value

that appears in the C1 part appears there exactly once, and appears exactly once in

the C ′1 part. Similarly, every data value that appears in the C ′1 part should appear

there exactly once, and should appear exactly once in the C1 part.

The program guesses a transition and checks that it matches the two successive

configurations. We proceed by case analysis on the form of tuples in the transition

relation. Let us suppose that the transition guessed is given by the tuple (q1,+, 1, q2).

The automaton checks that q = q1, q′ = q2, the value of the first counter (represented

by C1) has increased by one and the value of the second counter has not changed.

We show how a program can check that the value of the first counter increased by

one. The program also checks that every data value d in the C1 and C ′1 parts of the

data word appears in pairs (a, d) or (b, d), and not in pairs with other symbols from

Σ. Furthermore, the program checks that:

• If a data value d appeared in the C1 part in a pair (a, d), then it appears in

the C2 part in a pair (a, d).

• Let d be the leftmost data value d that appears in the C1 part in a pair (b, d).

The program checks that it appears in the C2 part in a pair (a, d).
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• For all other data values that appear in the C1 part in a pair (b, d), the program

checks that they appear in a pair (b, d) in the C ′1 part.

Thus the program determines that the number of a’s has increased by one. Checking

that the value of the second counter has not changed can be done similarly. Con-

formance to other transition tuples can be verified analogically. Therefore we can

conclude that for all words w, we have that w ∈ Lm(P) if and only if w represents

an accepting run of the two-counter automaton.

This concludes the proof of Theorem 26.

We investigate the case of programs obtained by adding access to order on the

data domain and adding data or index variables to Restricted-ND2 programs. We

show that if we add order on the data domain as well as at least one data variable,

the reachability problem becomes undecidable. The proof is by reduction from the

Post’s Correspondence Problem, and uses the encoding developed in the proofs of

Propositions 26 and 27 of [19].

Proposition 27. Reachability for Restricted-ND2 programs that use order on D and

at least one data variable is undecidable.

A natural question, which is now open, is whether it is possible to add only one

of these features (order on data domain or data (index) variables) to Restricted-ND2

programs without losing decidability of the reachability problem.

4.3.5 Expressiveness

In this section, we compare expressiveness of logics and automata on data words

and array-accessing programs. We make our comparisons in terms of languages of

data words these formalisms can define. Due to a lack of space, we present only the

results in this subsection.

Language of a program. In order to define the language of a program, we

extend the notion of a program by adding a final state. That is, in this section we
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will assume that every program P has a final state mf , where m is a boolean state

of P. The language Lm(P) is the set of data words w, such that there exist an initial

state gI and a state g, such that gI [A] = w, bool(g) = m, and (gI , g) ∈ [[P]]. We say

that a program P accepts the language Lm(P), where m is the final state.

The following proposition shows that EDAs and EMSO2(≈,+1,⊕1) are equally

expressive. This means that somewhat surprisingly, DAs and EDAs are expressively

equivalent.

Proposition 28. EDAs and EMSO2(≈,+1,⊕1) are equally expressive.

Proof. The fact that EDAs are at least as expressive follows from two facts mentioned

in Section 4.3.2. First, the logic EMSO2(≈,+1,⊕1) and data automata are equally

expressive, and second, for each DA there exists an EDA that accepts the same

language on data words.

To show that EMSO2(≈,+1,⊕1) is at least as expressive as EDAs, we present a

construction that given an EDA E constructs an EMSO2(≈,+1,⊕1) formula ϕ such

that for all words w ∈ D∗, w |= ϕ iff w ∈ L(E).

First, we recall a result of [19] that states that EMSO2(≈,+1,⊕1) and EMSO2(≈
, <,+ω,⊕1) are expressively equivalent. It is thus sufficient to construct an EMSO2(≈
, <,+ω,⊕1) formula. The construction is similar to classical simulation of finite state

automata in EMSO2(+1).

Due to space constraints, we present only the core part of the proof that is

different from the classical construction. A formula ϕ that simulates an accepting

run of E is constructed. It needs to simulate the run of the transducer, as well as

the run of a priori unbounded number of copies of the class automaton. We present

the simulation of the runs of copies of the class automaton C. Note that we cannot

mark (via existentially quantified monadic second order variables) each position in

the string with the state of all the copies of C. Instead, monadic second order

variables will correspond to single states of C, and each position in a word is marked

by exactly one of these state predicates. If the position p is in class X, it will be
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marked with a state in which the copy of C corresponding to X is at p. The task of

the first order part of ϕ is then to verify, for each class, that the labeling encodes an

accepting run of the class automaton. As part of this task, it needs to verify that

a correct number of 0 positions appeared between successive class positions. If Pq

and P ′q are labels on successive class positions p and p′, then one needs to verify that

the class automaton that ran with the position-preserving class string as input and

thus saw the 0 symbols will indeed be in the state q′ after processing the string of

0s followed by the symbol at position p′. The formula that verifies this condition

of course depends closely on the transition relation of the class automaton. We will

not present the proof for a general transition relation, but will use an illustrative

example. Let us suppose that the class automaton (its 0-transitions) are as depicted

in Figure 4.3, and let us suppose that position p is labeled by q1 and position p′

with a Γ symbol a is labeled with a some state s such that there is a transition

δC(q7, a) = s. The formula now needs to check that the distance between p and p′ is

6 + 5i, for some i, as this would guarantee that the class automaton transitions to

q4 on the initial string. The part of the formula that checks this property is:

∀x ∀y (x⊕ 1 = y ∧ Pq(x) ∧ Pq′(y))→
(

∧
1≤k≤5

∀y ((x+ k = y)→ (x 6≈ y)))∧

C0(x)↔ C1(y) ∧ C1(x)↔ C2(y) ∧ C2(x)↔ C3(y)∧
C3(x)↔ C4(y) ∧ C4(x)↔ C0(y)

where C0, C1, C2, C3, C4 are existentially quantified monadic second order predicates

that are used for counting modulo the length of the cycle (which is 5 in the example).

Note that this is an FO2(≈, <,+ω,⊕1) formula.

The following proposition sheds light on the difference between DAs and EDAs.

We saw that DAs and EDAs are expressively equivalent. However, one difference
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between EDAs and DAs is that deterministic EDAs are more expressive than deter-

ministic DAs. It is the nondeterminism that then levels the difference.

Proposition 29. Deterministic EDAs are more expressive than deterministic DAs.

Proof. Let L be the language defined in Example 12. We showed that there is a

deterministic EDA E such that L(E) = L.

We now show that there is no deterministic DA A = (GA, CA) such that L(A) =

L. The proof will be by contradiction. We suppose that there is such a data automa-

ton. As the alphabet Σ is a singleton, the Σ part of the data word is determined by

the length of the word in this case. We therefore define data words only by their data

part in the rest of this proof. Let k be the number of states of the transducer GA.

We consider a data word w1 = (d1d2)k+1, where d1, d2 are values in D. This word is

in L. There is therefore an accepting run of GA. Let us consider the even positions

in w1. Clearly, there are two positions 2i and 2j such that GA is in the same state

at 2i as it is at 2j. We now consider the words w2 = (d1d2)i(d1d2)k+1−j(d1d4)j−i

and w3 = (d1d2)i(d1d3)j−i(d1d4)k+1−j. Note that both w2 and w3 are in L and the

run of the transducer GA on both of these words is the same as on w1, as GA is

deterministic and the Σ parts of w1, w2, and w3 are the same.

Now we look at the word w4 = (d1d2)i(d1d3)j−i(d1d2)k+1−j and show that it is

accepted by E . Again, the run of the transducer is the same as for w1. The class

automaton for the class corresponding to d1 reads the same input as was the case

for w1. The class automaton for the class corresponding to d2 reads the same input

as was the case for w2 (here the fact that the transducer is in the same state at 2i

and 2j is used), and the class automaton for the class corresponding to d3 gets the

same input as was the case for w3. Therefore in each case, the class automaton CA

accepts its input. Thus we have reached a contradiction, as w4 is not in L.

We show that nondeterminism adds to the expressive power of EDAs. We will

use the following example from [19].
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Example 13. Let L# be the language of data words defined by the following

properties: (1) str(w) = a∗$a∗, (2) the data value of the $-position occurs exactly

once, and each other data value occurs precisely twice — once before and once after

the $ sign, and (3) the order of data values in the first a-block is different from the

order of data values in the second a-block.

There exists a nondeterministic EDA for this language (we can use the DA con-

structed in [19] in Example 8). We will use the example to prove the following

proposition.

Proposition 30. Deterministic EDAs are strictly less expressive than EDAs.

Proof. It remains to prove that there is no deterministic EDA that accepts the

language L#. We adapt the proof from the Example 8 from [19]. The proof is by

contradiction. Let us assume that there exists a deterministic EDA E = (G,C) that

accepts L#.

Let n be the number of statesG. As for the automatonA, we assume (without loss

of generality) that it is deterministic. We consider the graph C0 and its components

Cj
0 for j ∈ [1..k], as defined in the proof in Theorem 21. For each component Cj

0 let

loop(Cj
0) be the length of the loop in Cj

0 . Let K0 be the product of the lengths of the

loops, i.e. K0 =
∏

j:1≤j≤k loop(Cj
0). Recall the definition of D(C0) from the proof of

Theorem 21. Let K be the smallest multiple of K0 greater than D(C0).

Let w be the word (a, d1)(a, d2)...(a, dK(n+2))($, d)(a, d1)(a, d2) . . . (a, dK(n+2)),

where d1, . . . , dK(n+2), d are distinct. The word w is not in the language, but we show

that there is an accepting run of E on this word. Let us consider the following n+ 1

position in the first part of the word: K, 2 ∗K, 3 ∗K, . . . , (n+ 1) ∗K. There exist p1

and p2, p1 < p2 between 1 and n+1 such that G has the same state after reading the

position p1 ∗K and p2 ∗K. Let v be the data word obtained by switching the data

values at p1∗K and p2∗K. We can observe that the run of G on v and w is the same.
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The position-preserving class strings for classes other than the classes defined by dp1

and dp2 are the same. Consider the position-preserving class string sv of the word

v for the class defined by the value dp1 . It is of the form 0p2−1(a, dp1)0
k(n+2)−p20 . . ..

The corresponding string sw in w is of the form 0p1−1(a, dp1)0
k(n+2)−p10 . . .. It is easy

to see that C does not distinguish between the two strings in the following sense: (a)

C has the same state after reading the position p2 of sv as it does after reading the

position p1 of sw, and (b) C has the same state after reading the position K(n+2)+1

in both sv and sw. (We use (a) to show (b).) We now use the same argument for

the class defined by dp2 . We have thus shown that the accepting run of E on v can

be sued to construct the accepting run of E on w, which creates a contradiction.

We will now compare the expressive power of array-accessing programs to logics

and automata on data words. Specifically, we will use the logic EMSO2(≈,+1,⊕1)

for comparison. Recall that this logic is expressively equivalent to data automata.

First, we will show that Restricted-ND2 programs are not as expressive as EMSO2(≈
,+1,⊕1).

Proposition 31. Restricted-ND2 programs are strictly less expressive than EMSO2(≈
,+1,⊕1).

Proof. For every Restricted-ND2 program P and its boolean state m, we can find

an EMSO2(≈,+1,⊕1) formula ϕ such that w ∈ Lm(P) iff w |= ϕ. The proof of

Theorem 24 gives, for each Restricted-ND2 program P and a boolean state m, an

equivalent EDA E . In the proof of Proposition 28, we have constructed an EMSO2(≈
,+1,⊕1) formula equivalent to a given EDA.

We will now show that there is a language of data words that can be specified

by an EMSO2(≈,+1,⊕1) formula ϕ, but not by a Restricted-ND2 program. We

will use Example 13. We have stated that the language L# can be captured by

a nondeterministic EDA, and thus by an EMSO2(≈,+1,⊕1) formula. There is no

Restricted-ND2 program P that captures L#. The reason is that the programs, as

opposed to transducers in DAs, cannot mark the input array in any way.
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Second, we compare the expressive power of ND1 programs and EMSO2(≈,+1,⊕1).

Proposition 32. There exists an EMSO2(≈,+1,⊕1) property that is not expressible

by an ND1 program.

Proof. Let us consider the language L of data words w such that every data value

that appears in w appears at least twice. It is easy to construct a (deterministic)

Restricted-ND2 program that checks this property. The property can thus be specified

in EMSO2(≈,+1,⊕1).

We now show that this property cannot be specified by an ND1 program. For the

sake of contradiction, suppose that there exists an ND1 program P with k index and

data variables. Let us consider a word w = w1w2 . . . w2(k+1) of length 2(k + 1), such

that corresponding data values are such that for all i ≤ k + 1, di+1 > di, and there

exists a d′i such that di < d′i < di+1. The positions greater than k + 1 are defined by

dk+1+i = di. As w is in L, there is an accepting run of P. Let us consider this run

after k + 1 steps. At this point, there is one value dj among the first k + 1 values

in w that is not stored in a data variable or pointed to by an index variable. Let us

now construct a word w′ by replacing the value at k+ 1 + j by d′j. We can show that

P accepts w′ with the same run, even though w′ is not in L. We have thus reached

a contradiction.

Note that ND1 programs allow order on the data domain, and thus can check

a property specifying that the elements in the input data word are in increasing

order. It is easy to see that this property is not specifiable in EMSO2(≈,+1,⊕1).

However, if we syntactically restrict ND1 programs not to use order on D, they can

be captured by EMSO2(≈,+1,⊕1) formulas. The reason is that ND1 programs that

do not refer to the order on D can be simulated by register automata introduced

in [53]. For every register automaton, there is an equivalent data automaton [17].

Another natural question is whether there is an order-invariant property that can
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be captured by ND1 programs (that have access to order), but is not expressible in

EMSO2(≈,+1,⊕1). We leave this question for future work.

4.4 Confidentiality

Our goal in this section is to verify that a program protects confidentiality of a

property f of its inputs. That is, we would like to certify that an observer, who knows

the source code of the program, and observes the outputs, cannot infer whether the

property f holds or not.

We now instantiate Definition 2, that is, we specify more precisely the property

to be kept secret, the condition cond , and the equivalence relation that determines

the distinguishing power of the observer.

First note that Definition 2 is for general control flow graphs, but in this chapter,

we consider a more restricted type of iteration — for-loops. Another difference is

that here we consider nondeterministic programs. However, note that Definition 2

applies equally well to nondeterministic programs.

• The secret will be defined as a property f of the array. That is, f is a set of

arrays, or data words. For example, the property f can ask whether the array

contains the data value 7, that is f ≡ (∃i. [[A[i].d]] = 7).

• For ease of presentation, we set the condition cond to be true. The results

below can be extended for other classes of formulas defining the condition

cond under which confidentiality is required to hold.

• We will assume that the observer can observe the values of all boolean variables

of the program at the end of the program. We define the following equivalence

relation ≈ on states in G. Two states g1 and g2 are equivalent (g1 ≈ g2) iff

they agree on values of all boolean variables, i.e. if for all boolean variables b

we have that g1[b] = g2[b]. We extend the equivalence relation to runs of the
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program. Two runs, r and r′ are equivalent (r ≈ r′) iff their last states are

equivalent.

Instantiating Definition 2 with the three parameters defined above leads to the

following characterization. The property f is confidential in P if and only if the

following condition holds: if there exists a state g1 such that g1[A] ∈ f and there

exists a state g′1 such that (g1, g
′
1) ∈ [[P]], then there exists a state g2 such that

g2[A] 6∈ f and a state g′2 such that (g2, g
′
2) ∈ [[P]] and g′1 ≈ g′2.

ND1 programs Let f be a property specifiable as an ND1 program P1. We assume

that P1 has a boolean variable accept and that P1 ends in a state g1 such that

g1[accept] = true if and only if f holds for the input array.

Proposition 33. Let f be a property specified by an ND1 program, and let P be an

ND1 program. Confidentiality of f in P is decidable.

Proof. Let P1 be a program corresponding to f as above. Let us suppose that the

variable names of P1 and P are disjoint, except for the name of the array variable,

which is shared. We construct a program T as P1;P.

We ask two reachability questions for T for each boolean state m. First, we ask

if a state g1 such that g1[accept] = true and boolP (g1) = m is reachable. Second,

we ask if a state g2 such that g2[accept] = false and boolP (g2) = m is reachable.

(Given a state g of the program T , we denote the boolean state of the program P

by boolP (g).) We have that confidentiality is preserved if and only if for all boolean

states m, the first reachability test succeeds if and only if the second reachability test

succeeds. This gives rise to an algorithm for deciding confidentiality of f in P.

Restricted-ND2 programs We now consider the case of Restricted-ND2 programs

and a property f specifiable by an EMSO2(≈,+1,⊕1) formula.

Proposition 34. Let f be a property specified by an EMSO2(≈,+1,⊕1) formula,

and let P be a Restricted-ND2 program. Confidentiality of f in P is decidable.
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Proof. Let ϕ be an EMSO2(≈,+1,⊕1) formula characterizing f . From the proof

of Theorem 24, we have that for a Restricted-ND2 program P and its boolean state

m, there exists an EMSO2(≈,+1,⊕1) formula ψ that characterizes the set of data

words on which m is reachable. More precisely, there exists a formula ψ such that

w ∈ Lm iff w |= ψ.

We can now rewrite the definition of confidentiality as follows :

∀w : w |= ψ → ∃w′ : w′ |= ψ ∧ w |= ϕ↔ w′ 6|= ϕ

Furthermore, let formula F1 be defined as follows:

∀w : w |= ψ ∧ w |= ϕ→ ∃w′ : w′ |= ψ ∧ w′ 6|= ϕ

Formula F2 is created similarly.

We can now remark that the formula has the form: F1 = ∀w : F11(w) → ∃w′ :

F12(w′), which is equivalent to F1 = ∃w : F11(w) → ∃w′ : F12(w′). The subformula

F11 is ψ ∧ ϕ, and the subformula F12 is ψ ∧ ¬ϕ. The validity of the formula F1 can

therefore be decided by deciding satisfiability of two EMSO2(≈,+1,⊕1) formulas

F11 and F12.
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Chapter 5

Abstraction-based Program

Analysis for Confidentiality

We focus on methods written in a subset of Java that contains booleans, integers,

on which we allow linear arithmetic, as well as data from an unbounded domain D

equipped with only equality tests. Furthermore, the programs can have arrays, which

are a priori unbounded in length and whose elements are from D. For example, in

the application domain of interest, J2ME midlets, the data domain D models strings

(representing names or phone numbers), and the array might contain a phone book or

a list of events. Our technique currently does not handle method calls. (In practice,

midlet methods call methods from a small set of APIs. The effect of these methods

has been hard-coded into the tool. In a future version, we plan to allow specification

of these methods using pre-/post-conditions.)

Our method proceeds in two steps. First, we compute a formula ϕ that is valid

if the conditional confidentiality requirement holds. In order to do so, we need

to consider both an over- and an under-approximation of reachable states for every

program location. We use user-specified invariants for over-approximation. In all the

examples we considered, the invariants that were used are simple enough, and could

have been discovered by existing techniques for automatic invariant generation [48,
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68, 74]. The under-approximation is specified by a bound on the number of loop

iterations and a bound on the size of the array.

The second step consists of consists of deciding the validity of the obtained for-

mulas, which involves both universal and existential quantifiers. We leverage the

restrictions on the program expressions, as well as the specific form of the obtained

formulas, to devise a decision method based on using an existing SMT solver. The

restriction on the program expressions used is the fact that the domain D (over

which the universal quantification takes place) has only equality tests. Therefore

given a formula ϕ, it is possible to produce an equivalent formula ϕ′ where the uni-

versal quantification takes place over a bounded domain. As ϕ′ can then be seen as

a boolean combination of existential formulas with no free variables, its validity can

be decided using an SMT solver.

5.1 Language of expressions

We consider methods in a subset of Java that contains boolean variables, integer

variables, data variables, and array variables. Data variables are variables ranging

over an infinite domainD equipped with equality. The domainD models any domain,

but we restrict the programs to use only equality tests on data variables. The length

of the arrays is unbounded, and their elements come from the domain D.

We instantiate the framework from Section 2.2 to capture this fragment. We will

use three types of expressions: integer expressions, data expressions, and boolean

expressions.

Integer expressions IE are defined by the following grammar:

IE ::= s | i | IE OP IE,

where s is a constant, i is a variable, and OP is in +,−.

Data expressions DE are of the form:

DE ::= c | v | A[IE],
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where c is a constant, v is a data variable and A is an array. Note that there is no

arithmetic on data expressions. The only way to access the data domain is through

equality tests.

Boolean expressions are defined by the following grammar:

B ::= true | b | B and B | not B

| IE = IE | IE < IE

| DE = DE

Furthermore, we restrict observations to be finite sequences of data values d,

where d is in D. This restriction implies that observables cannot be produced in an

unbounded loop.

5.2 Analysis of programs for conditional confiden-

tiality

We consider Definition 2 of conditional confidentiality and we show that one needs

to compute both over- and under- approximation. If only one of these techniques

is used, it is not possible to get a sound approximation of the confidentiality prop-

erty. The reason is, at a high level, that the definition involves both universal and

existential quantification over the set of executions of the program. More precisely,

recall that as explained in Section 2.2, the definition requires that for all feasible

observations h, if there exists a execution t1 for which the condition cond holds,

then there exists an equivalent execution t2 for which secret holds, and an equivalent

execution t3 for which ¬secret holds. If we use only over-approximation, that is, a

technique that makes the set of executions larger, we might find an execution t2 or t3

as required, even though it is not an execution of the original program. Such analysis

is thus unsound. If we use under-approximation, some feasible observations might

become infeasible. An analysis on the under-approximation would tell us nothing
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about such observations. It is not difficult to construct a concrete example where

reasoning only about the under-approximation would be unsound.

We thus need to consider over- and under-approximations of sets Re. Let R+
e

be an over-approximation of Re, that is, Re ⊆ R+
e . Similarly, let R−e be an under-

approximation R−e , that is, Re ⊇ R−e .

Using the sets R+
e and R−e , we can approximate conditional confidentiality as

follows:

∀h(∃s0 : s0 ∈ R+
e ∧ s0 |= cond ∧ s0[hist ] = h)⇒

(∃s1 : s1 ∈ R−e ∧ s1 |= secret ∧ s1[hist ] = h ∧
∃s2 : s2 ∈ R−e ∧ s2 6|= secret ∧ s2[hist ] = h)

(5.1)

The formula (5.1) soundly approximates conditional confidentiality, as expressed by

the following lemma.

Lemma 35. If the formula (5.1) holds, then secret is confidential w.r.t cond.

We will now show how, given a program and the predicates secret and cond spec-

ified as logical formulae, we can derive a logical formula expressing the formula (5.1).

We will use the following logic.

Logic L. The formulas of L will use boolean, integer, data and array variables (sim-

ilarly to the expressions defined in Section 2.2). The definition of integer and data

expressions will be the same as well. The grammar defining the boolean formulas is:

BL ::= true | b | BL | BL | not BL

| IE = IE | IE < IE | DE = DE

| ∃ b: BL | ∃ i: BL | ∃ v: BL

The difference between the formulas in L and the boolean expressions in the

programs we consider is that in L we allow quantification in the logic.
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Weakest precondition. We will need the notion of the weakest precondition com-

putation (see e.g. [82]). Given a program P and a formula ϕ, WP(P, ϕ) is the weakest

formula that guarantees that if P terminates, it terminates in a state in which ϕ holds.

We will need the weakest-precondition computation for CFGs that are acyclic.

For an acyclic CFG G and a formula ϕ, we define the weakest precondition WP(P, ϕ)

as follows. Given a node k of G, let Entry(k) and Exit(k) be two formulas associated

with k. Let us consider the equations:

Exit(k) =
∧

l∈Succ(k)

Entry(l)

Entry(k) = WP(L(k),Exit(k))

where L(k) is the program with which the node k is labeled and where WP(C,ϕ

is defined as follows for a command C (as defined in Section 2.2) and a formula ϕ.

WP(v = E, ϕ) = ϕ[E/x]

WP(assumeB, ϕ) = (B→ ϕ)

We can now calculate the weakest precondition of ϕ w.r.t. G by setting Exit(e)

to ϕ and using the above equations to calculate Entry(i), where i is the entry node

of the CFG and e is the exit node of the CFG.

The main property we require for the logic L is that it should be closed under

the weakest precondition of loop-free programs, that is, for any L-formula ϕ and any

loop-free program P, WP(P, ϕ) is in L. Given the restrictions on expressions in the

language, it is easy to show that this requirement holds.

Over-approximation R+
e . Let us consider the antecedent of the formula (5.1),

i.e. (∃s0 : s0 ∈ R+
e ∧ s0 |= cond ∧ s0[hist ] = h). We need to obtain an L formula

characterizing this requirement, given that cond is an L formula. Given an L formula
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ψ that characterizes R+
e , we obtain the desired characterization as ϕ+ ≡ ∃pv :

ψ ∧ cond ∧ hist = h. Note that the free variables in ψ and cond are the program

variables, and the notation ∃pv : F (for a formula F ) is a shorthand for saying that

all program variables are existentially quantified.

The formula ψ that characterizes the set of reachable states at a program location

can be either provided by the user or computed by standard methods of abstract

interpretation [30], using a standard abstract domain (e.g. octagons [61], polyhe-

dra [31]) Recently, such techniques have been extended for discovering disjunctive

invariants (see [48, 68, 74]). These latter techniques would be needed to discover the

invariants needed for the examples we present in Section 6.2.

Under-approximation R−e . The under-approximation is obtained by unrolling

the loops in the CFG G. More precisely, all loops are unrolled a fixed number of

times (k) and the CFG is thus transformed to a loop-free CFG G′.

Recall from Section 2.2 that we consider only reducible CFGs. A reducible CFG

is one where it is possible to identify a unique loop header.

A node l1 dominates a node l2 when all the paths from i (the entry node) to l2

pass through l1. An edge in the CFG is a back edge when its head (target of the

edge) dominates its tail (source of the edge). A loop is uniquely identified by its

header and a back edge.

Given a loop, let h be its header and let b be the origin of the back edge. Note

that h is the only entry point to the loop. The k unrolling of a loop is obtained

removing the back edge and by copying the nodes in the loop k times (and keeping

the edges outgoing from the loop at every copy). Thus all executions with up to k

iterations are kept by the new CFG.

LetG′ be the CFG obtained by this transformation. Let R′e be the set of reachable

states obtained for the exit node of G′. It is straightforward to prove that R′e ⊆ Re.
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We are interested in characterizing the requirement (from the consequent of for-

mula (5.1)): ∃s1 : s1 ∈ R−e ∧ s1 |= secret ∧ s1[hist ] = h by a L-formula ϕ−1 .

It is computed using the weakest precondition computation on the CFG G′ as

follows: ϕ−1 ≡ ∃pv : WP(G′, hist = h ∧ secret). Similarly, ϕ−2 is defined as

∃pv : WP(G′, hist = h ∧ ¬secret).

Computing confidentiality We can now check if confidentiality holds using the

following formula:

∀h :(∃pv : ψ ∧ cond ∧ hist = h)⇒
(∃pv : WP(G′, hist = h ∧ secret)∧
∃pv : WP(G′, hist = h ∧ ¬secret))

(5.2)

As formulas (2) and (3) are equivalent, we can use Lemma 35 to prove the

following:

Lemma 36. If the formula (5.2) holds, then secret is confidential w.r.t cond.

5.3 Deciding validity of the confidentiality formula

In this section, we describe a method for deciding the confidentiality formula (5.2).

The method is based on satisfiability modulo theories (SMT) solving.

Restrictions on cond and secret First we identify some restrictions on the pred-

icates cond and secret . The restriction on cond is that we will consider only ex-

istential formulas. The predicate secret appears in the formula (5.2) also under

negation, therefore we restrict it not to use quantification. Note that for some ex-

amples, the property secret contains a quantification on the array indices. This is

the case for the ArraySearch example discussed in Section 3. In such cases, the

under-approximation uses also a bound on the size of the array, thus making the

quantification to be effectively over a bounded set.
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The L-formula (5.2) has one quantifier alternation (taking into account the re-

strictions above). Here we show how such a formula can be decided using an SMT

solver. In order to simplify the presentation, in this section we will suppose the

observation h in the confidentiality formula consists of only one data value d (and

not of a sequence of values from D). The results in this section, as well as their

proofs, can be easily extended to the general case.

Let us first suppose that we have an existential formula %(h) (in the logic L) with

one free data variable h. Let D be an infinite set, let C be the finite set of values

interpreting in D the constants that appear in %(h). For an element d of D, we write

d |= % if % holds when h is interpreted as d.

We show that the formula % cannot distinguish between two values d and d′, if d

and d′ are not in C.

Lemma 37. For all d, d′ ∈ D, if d /∈ C and d′ /∈ C, then d |= %↔ d′ |= %.

Intuitively, the lemma holds, because the formula % can only compare the value

of h to constants in C or to other existentially quantified data variables. The proof

proceeds by structural induction on the formula %.

Lemma 37 suggests a method for deciding whether ∀h : % holds: First, check

whether %(c) holds for all constants in C, and second, check whether %(c) and for

one value not in C. Note that as C is finite and D infinite, there must exist an

element of D not in C.

The following lemma shows that this method can be extended to the confiden-

tiality formula (3). Let C ′ be C ∪ {d}, where d is in D, but not in C.

Lemma 38. Let ψ be a formula: ∀h : ϕ0(h)→ (ϕ1(h)∧ϕ2(h)), where ϕ0, ϕ1, ϕ2 are

existential formulas with one free data variable h. Then ψ is equivalent to
∧
c∈C′ ψc,

where ψc is ϕ0(c)→ (ϕ1(c) ∧ ϕ2(c)).

The proof uses Lemma 37 for all of ϕ0, ϕ1 and ϕ2.
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Let us now consider the resulting formula
∧
c∈C′ ψc. Each ψc has the form ϕ0(c)→

(ϕ1(c) ∧ ϕ2(c)), where ϕ0(c), ϕ1(c), and ϕ2(c) are existential formulas without free

variables. Therefore we can check satisfiability of each of these formulas separately,

and then combine the results appropriately (i.e. if ϕ0(c) is satisfiable, then both

ϕ1(c) and ϕ2(c) have to be satisfiable).

We have thus leveraged the fact that the only operation on the data domain is

equality to devise a decision method based on SMT checking for the confidentiality

formula (5.1).

Example 14. Let us consider the ArraySearch example presented in Section 2.2.

Recall that we considered the predicate secret to be ∃i : A[i] = 7 and the condi-

tion cond to be key 6= 7. Recall also that the observer might either see an empty

observation, or a observation containing a single number, the final value of result.

For the over-approximation, we will need an invariant asserting that (result

= key or result = −1). The formula ϕ+ will thus be: ϕ+ ≡ ((result = −1) ∨
(result = key)) ∧ (key 6= 7) ∧ result = h.

The under-approximation will be specified by a number of unrollings and the

size of the array. We choose 2 in both cases. We then compute ϕ−1 using the

weakest precondition computation ∃s1 : WP(P, hist = h ∧ ∃i : A[i] = 7) and ϕ−2 as

∃s2 : WP(P, hist = h ∧ ¬∃i : A[i] = 7).

The formula characterizing confidentiality becomes:

∀h :(∃s : ((result = −1) ∨ (result = key)) ∧ (result = h) ∧ (key 6= 7))⇒
(ϕ−1 ∧ ϕ−2 )

The formulas contains two constants from the data domain −1 (appeared in the

program) and the value 7 (appeared in cond and secret). We also need to consider

one value that is different from these constants. We can pick for example the value 1.

For −1 (1) the formula says that if the observer sees the value, he or she cannot infer

whether 7 is in the array and are easily proven. For 7, the antecedent of the formula

105



is false (as the purpose of the condition was to exclude 7 from consideration), thus

the formula is proven.
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Chapter 6

Implementation and Experimental

Evaluation

6.1 Implementation

We have performed experiments in order to confirm that the proposed method is

feasible in the sense that the formulas produced can be decided by existing tools in

reasonable time. The experiments were performed on methods of J2ME classes and

classes from the core Java library on a computer with a 2.8Ghz processor and 2GB

of RAM.

We have implemented a prototype tool called ConAn (for CONfidentiality ANal-

ysis). It takes as input a program in Java bytecode, a secret, a condition, and

parameters specifying the over- and under- approximation to be used.

The complete toolchain is shown in Figure 6.1. The WALA [2] library is used to

process the bytecode. The ConAn tool then performs the analysis on an intermediate

representation called WALA IR and produces formulas whose satisfiability is then

checked by an SMT (satisfiability modulo theories) solver Yices [37].

The WALA IR represents a method’s instructions in a language close to JVM

bytecode, but in an SSA-based language which eliminates the stack abstraction. The
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Figure 6.1: Toolchain

IR organizes instructions in a control flow graph of basic blocks. The tool analyzes

a fragment of the IR subject to the same restrictions on expressions as described

in Section 5.1. Furthermore, the treatment of method calls and dynamic memory

allocation is incomplete. The methods call methods from a small set of APIs such

as the PIM API mentioned in Section 1.1. The effect of these methods has been

hard-coded into the tool. In a future version, we plan to allow specification of these

methods using pre-/post-conditions. Furthermore, the programs we examined use

iterators (with operations such as hasNext and Next to iterate over data structures).

The effect of these methods was also hard-coded using iteration over arrays. Dynamic

memory allocation is represented with the new instruction in the WALA IR. As

the weakest precondition computation is applied to loop-free CFGs, we treat each

allocation as a separate variable. The current version of the tool also assumes there

is no aliasing. In the future versions, we plan to use the results of the alias analysis

implemented in WALA.

As shown in Figure 6.1, the ConAn tool takes as input a specification for the

over-approximation (in the form of the invariant) and the specification of the under-

approximation (in the form of the number of loop unrollings to consider and a bound

on the size of the array). The tool Yices [37] is used for deciding satisfiability of the

resulting formulas.
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6.2 Experiments

We briefly describe the examples we considered and report on the performance of

the tool. Table 6.1 contains, for each example, the number of lines of code, the

running time of the tool, and the result, i.e. whether the formula was satisfiable

(and confidentiality preserved) or unsatisfiable (i.e. no conclusion possible). Note

that the running times presented in the table do not include the running time of

the translation from bytecode to the WALA IR format. It includes only the running

time of the analysis in ConAn, and the time taken by the Yices tool to decide the

satisfiability of the formulas.

In all cases the secret is a fact about the array. We used the predicate ∃i : A[i] = 7

as the secret. The condition cond is specified for each example separately. The

over-approximation was specified via an invariant, and the under-approximation was

specified via the number of loop unrollings (as shown in Table 6.1) and the bound on

the size of the array (chosen to be 2 in all of the examples). The observation visible

to the observer is defined by either the message(s) the program send out, or the

values the functions return. The latter is useful for modular verification of programs

that access a data structure via a call to the analyzed functions and subsequently

send messages depending on the returned value.

Example 1 is from the class Vector, whose method elementAt returns an element

at the specified position of the array. Examples 2 and 3 are from a J2ME example

called EventSharingMidlet. This is the example described in Section 1.1. We con-

sidered both the correct version and a version with an artificially introduced bug as

in Example 1.2. This example is taken from [1].

Examples 4 and 5 are versions of the ArraySearch example from Section 2.2. For

Example 4, we used only one unrolling of the loop. The tool did not prove that the

secret is not leaked. Increasing the number of unrollings to two (Example 5) helped;

the confidentiality was proved in this case.
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project / # of lines running
class Method Name in Java unroll time (s) result

1 Vector elementAt 6 1 0.18 valid
2 EventSharing SendEvent 122 2 1.83 valid
3 EventSharing SendEvent (bug) 126 2 1.80 unsat

4 find 9 1 0.31 unsat
5 find 9 2 0.34 valid
6 Funambol/Contact getContact 13 2 0.32 valid
7 Blackchat/ getContact- 23 2 0.24 valid

ICQContact ByReference
8 password check 9 2 0.22 valid

Table 6.1: Experimental evaluation

Example 6 from the class Contact found in the Funambol library scans the phone-

book obtained via a call to PIM API to find an element corresponding to a key.

Example 7 is similar to Example 6.

Example 8 is a version of the classical password checking example - an array is

scanned and if the name/password pair matches, the function returns 1. The results

show that no password is leaked. Example 8 is taken from [51].

Discussion. All Java methods we considered are small in size. For these pro-

grams, the running times were all lower than two seconds. The experiments suc-

ceeded in showing that our approach is feasible for relatively short Java methods.

We argue that this shows that our methods is suitable for the intended application,

certification of J2ME midlets. Firstly, J2ME midlets are rather small in size. We

surveyed 20 of the most popular1 midlet applications. We used the tool LOCC2 to

calculate for each of this midlets the average number Na as well as maximal num-

ber Nm of lines of code per method. Over all of these programs, the average of Na

numbers was 15, the maximum of the Na numbers was 25. The average of the Nm

numbers was 206, the maximum of the Nm numbers was 857. These data confirm

1The criterion was the number of downloads from sourceforge.net
2http://csdl.ics.hawaii.edu/Tools/LOCC/
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that the size of methods in J2ME midlets is small, and our methods are directly

applicable to average-sized method. Secondly, for each midlet we reported on in

Table 6.1 we analyzed the methods that are key from the point of view of preserving

secrecy, i.e. the methods that access the data structure for which the secret should

hold, or methods that send messages. Therefore we believe that a pre-processing

phase using program slicing followed by our techniques would enable our tool to

analyze most of the methods of midlets.
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Chapter 7

Related Work

Defining confidentiality

Language-based security Noninterference is a security property often used to

ensure confidentiality. Informally, it can be described as follows: “if two input states

share the same values of low variables then the behaviors of the program executed

from these states are indistinguishable by the observer”. See [70] for a survey of the

research on noninterference and [63] for a Java-based programming language with a

type systems that supports information flow control based on noninterference.

The definition of confidentiality we presented can be seen as a relaxation of

noninterference. It is relaxed by allowing the user to specify which property(-ies)

should stay secret; noninterference requires that all properties of high variables stay

secret. Furthermore, we show how noninterference can be captured in our framework

— this is formally shown by Lemma 1.

It is well-known that the noninterference requirement needs to be relaxed in

various contexts. See [72] for a survey of methods for defining such relaxations via

declassification. In this context, the main benefit of our approach is automation, as

our method allows verification of existing programs without requiring annotations

by the programmer.
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To illustrate the difference between our approach (conditional confidentiality) and

declassification in language-based security, we turn again to the EventSharingMidlet

(Figure 1.1). As before, we will consider the property to be kept secret for the

example is whether a particular number, say “555-55” is in the phone book. Let

us now assume that we want to capture this requirement by noninterference. We

consider the variable phoneBook as high (i.e. secret), and the variable message as

low (i.e. public). Noninterference is too strong for the specification of confidentiality

for the example in Figure 1.1. The reason is, briefly, that the variable message

depends on the variable phoneBook via control flow. Therefore this program would

be rejected. On the other hand, we have seen in Section 1.1 that the requirement

can be specified as conditional confidentiality, and that it holds for the program in

Figure 1.1.

Let us now show how to relax the noninterference requirement via declassification.

We will use the notion of delimited release [71]. This policy requires that information

is leaked only through escape hatch expressions. More precisely, a program satisfies

delimited release if it has the following property: for any initial memory state s and

any state t obtained by varying the secret part of s, if the value of escape hatch

expressions is the same in both s and t, then the publicly observable effect of run-

ning the program in state s and t will be the same. The escape hatch expressions

are marked by the keyword declassify in the code. Returning to the example,

we can specify the permissible information release by enclosing the expression in

the if conditional in a call to declassify. Concretely, in the example in Figure 1.1,

the if test would now be: (if declassify((number == null) ‖ (number == ""))

...). The delimited release property now holds for the program, thus the program

can be deemed secure. Note however again that this approach relies on the annota-

tions by the programmer. It is thus suitable for making programs that are secure by

construction, but it is unsuitable for checking existing, possibly malicious, programs.
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Probabilistic notions of confidentiality We have presented a possibilistic def-

inition of confidentiality. Probabilistic definitions have been examined in the lit-

erature (see e.g. [46, 81]). We chose a possibilistic one for two reasons: first, a

probabilistic definition could not be applied without making (artificial) assumptions

about the probability distribution on inputs, and second, common midlets do not

use randomization (so a security measure might be to reject programs that use ran-

domization). However, there are settings where a probabilistic definition would be

appropriate, and the question on how to extend the analysis method to a probabilis-

tic definition is left for future work.

Opacity The definition of confidentiality we use is related to opacity [22]. In [22],

several variants of opacity are considered. The possibility of specifying the condi-

tions under which confidentiality should be preserved is limited. In particular, the

conditional confidentiality (with the secret specified by a property f and the con-

dition specified by a property g), is not specifiable in the framework of [22]. If we

set g to be true, then the confidentiality notion considered in this thesis corresponds

exactly to the property f being final-opaque under a static observation function, in

the terminology of [22].

Cryptographic protocols Preservation of confidentiality is an important part

of correctness of cryptographic protocols. Cortier et al. [29] compare two styles of

secrecy definitions: the first based on reachability (which implies that a secret term

should never be directly exposed), the second based on observational equivalence of

traces. The latter is conceptually close to the definition presented in this thesis, but

the details are significantly different — the definition is given for a process calculus

as a congruence on terms. The tool ProVerif [18] implements a sound (but not

complete) algorithm for checking equivalence-based confidentiality.
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Specification frameworks

In some aspects, tree logics with path equivalences are related to logics of knowl-

edge [39]. The main semantic difference is that logics of knowledge are concerned

about what an agent knows, whereas in the temporal logics presented in this the-

sis we are concerned about what an agent has revealed. From an intuitive point of

view, it might be possible to capture what an agent a reveals by adding one “observer

agent”, who would observe a and record its observations (e.g. outputs and inputs

of a) and then ask about the knowledge of this observer agent. However, in a finite

state setting under the standard semantics for knowledge operators (the semantics

is defined in terms of equivalence relations on states of the Kripke structure, not the

paths), this is not possible.

The idea of introducing an observer agent would work in the case of perfect recall

semantics [39], i.e. when an agent remembers the sequence of its past states. In this

case, our equivalence operator EIaϕ can be translated as ¬KObsa¬ϕ, where Obsa is

the agent introduced to record the observable actions of a. Note however, that the

nonequivalence operator EIāϕ cannot be expressed in logic of knowledge with perfect

recall, because this logic can express properties that some or all equivalent nodes have

and there is no way to refer to nonequivalent nodes. In the setting of perfect recall

semantics, van der Meyden and Shilov [79] have considered model checking of LTL

with knowledge operators and Shilov and Garanina [76] consider model checking of

CTL and µ-calculus with knowledge operators. Note also that the construction of

our finite-state model is similar to “k-trees” used in these papers. However, note

that the notions of nesting depths are different, and that our notion yields better

complexity bounds. We argue that our logics are more suitable for specifying secrecy

and information flow properties than logics of knowledge. First, we showed that it

is possible to specify information flow properties using standard tree logics (CTL,

µ-calculus), provided that we enrich the tree model with path equivalences. This

approach can be readily extended to other tree logics, such as ATL [9]. Second,
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we are also able to model information flow properties directly, without the need

to introduce an observer agent for each agent in the original system. Third, some

information flow properties can be expressed naturally using the EIā operator. This

is not possible in logic of knowledge. For µ-calculus, we have identified a decidable

fragment (Exptime-complete), in which it is possible to specify partial-information

adaptive games.

For simplicity, we presented our approach using Kripke structures as a basic

model. However, there are other models, such as alternating transition systems

(see [9]), which are better suited for modeling games. We believe our results can be

easily lifted to ATSs. Note that partial information games have also been studied in

the context of ATL, but were proven undecidable for multiple players.

Confidentiality analysis for programs

Software model checking Traditional software verification is not directly appli-

cable to checking confidentiality. The reason is that conditional confidentiality can-

not be expressed in branching-time temporal logics, such as µ-calculus. Furthermore,

abstractions based solely on over-approximations or solely on under-approximations

are not sufficient for checking conditional confidentiality. Frameworks for three-

valued abstractions of modal transition systems ([34],[42]) combine over- and under-

approximations, but the logics studied in this context (µ-calculus or less expressive

logics) cannot express the conditional confidentiality requirement.

Program analysis Program analysis for (variants of) noninterference has been

examined in literature. The approaches that have been considered include slicing [77]

or using a logic for information flow [10]. These methods conservatively approximate

noninterference, and thus would not certify valid midlets. It is possible to relax these

requirements by using e.g. escape-hatch expressions [10]. It would be interesting to

see if these ideas can be used to develop a specification-driven automated method
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for checking confidentiality.

For finite state systems, noninterference has been shown decidable in [80]. De-

cidability of some of the variants of noninterference for while-programs is shown

in [32].

Dam and Giambagi [33] introduce a notion of admissible information flow, al-

lowing a finer grained control. Admissible information flow is a relaxation of nonin-

terference, where the programmer can specify which specific data dependencies are

allowed. The information required from the programmer are quite complex however

(a set of relabellings) and it is not straightforward to see how this method can be

automated.

Other approaches for checking confidentiality are also based on noninterference

variants. A weaker notion, when an observer is allowed to see only the observable

part of final states lends itself to checking a safety property on self-composition, a

composition of a program with itself. This approach is explored in [14, 78].

Malacaria [59] provides information-theoretic semantics of programs, and de-

velops a method for quantifying information leakage in a program. However, the

approach is not automated, and it is unclear whether it can be automated.

Backes et al [11] provide an automated method to calculate the how much obser-

vation reduces the uncertainty the attacker has about inputs. It would be interesting

to see if the method can be used to determine how the uncertainty of the attacker

about a property of the inputs decreases.

Analyzing array-accessing programs Our results establish connections between

verification of programs accessing arrays and logics and automata on data words.

Kaminski and Francez [53] initiated the study of finite-memory automata on infinite

alphabets. They introduced register automata, that is automata that in addition

to finite state have a fixed number of registers that can store data values. The

results of Kaminski and Francez were recently extended in [64, 19, 17, 16]. Data
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automata introduced in this line of research were shown to be more expressive than

register automata. Furthermore, the logic EMSO2(≈,+1,⊕1) was introduced, and

Bojanczyk et al. ([19]) show that EMSO2(≈,+1,⊕1) and data automata are equally

expressive. The reduction from EMSO2(≈,+1,⊕1) to data automata and the fact

that emptiness is decidable for data automata imply that satisfiability is decidable

for EMSO2(≈,+1,⊕1). We show that Restricted-ND2 programs can be encoded in

EMSO2(≈,+1,⊕1).

However, adding a third variable to the logic or allowing access to order on data

variable makes satisfiability undecidable for the resulting logic, even for the first order

fragment. We show, perhaps somewhat surprisingly, that the undecidability does not

translate into undecidability of reachability for ND1 programs that access order on the

data domain and have an arbitrary number of index and data variables. The results

on automata and logics on data words model were applied in the context of XML

reasoning [64] and extended temporal logics [35]. The connection to verification of

programs with unbounded data structures is the first to the best of our knowledge.

Deutsch et al. [36] consider a model of database-driven systems similar in some

aspects to our model of programs. The key difference is that they consider a dense

order. They specifically note that the model-checking problem they consider is open

for the case of a discrete order. It would be interesting to see if our result on programs

on structures with discrete order can be extended to the setting of database-driven

systems.

Fragments of first order logic on arrays have been shown decidable in [21, 50,

12, 20]. These fragments do not restrict the number of variables (as was the case

with EMSO2(≈,+1,⊕1)), but restrict the number of quantifier alternations. These

papers focus on theory of arrays, rather than on analysis of array-accessing programs.

In particular, reachability in programs (that contain loops) is not reducible to these

first-order fragments.

Static analysis of programs that access arrays is an active research area, with
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recent results including [44, 49, 12]. The approach consists in finding inductive

invariants for loops using abstraction methods, such as abstract domains that can

represent universally quantified facts [49] and a predicate abstraction approach to

shape analysis [12]. In contrast, our results yield decision procedures for array-

accessing programs, with an interesting feature in the context of previous work being

that our method does not need to discover the loop invariants explicitly. However,

the methods based on abstraction are applicable to a richer class of programs.

119



Chapter 8

Conclusion

In this thesis, we show how it is possible to extend software model-checking to confi-

dentiality properties. Software model checking is a specification-driven approach to

program analysis. The central question here is whether (an abstraction of) a pro-

gram satisfies a property specified by the user. Automated software model checkers

have become efficient and widely deployed in industry for both verification and bug

finding.

We start by observing that confidentiality is not specifiable in standard temporal

logics. We extend the specification language traditionally used, namely the temporal

logics, in order to be able to express confidentiality properties. We then develop

a model checking algorithm for systems with finite number of states. Turning to

software systems, we present a decision procedure for confidentiality for classes of

array-accessing programs. The programs in these classes have boolean variables as

well as variables from an infinite domain D, and can access a single array, which is of

unbounded size. The domain of the elements of the array is D. The classes include

programs that find a particular value in the array, programs that find a minimal

value, checking that all values in the array are within specific bounds, or checking

for duplicate data values. The decision procedures for confidentiality is based on

algorithms for reachability. We believe that the algorithms for reachability are of
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independent interest, both theoretically due to its connections with logics on data

words and practically, due to a potential use as a back-end decision procedure in

software model checkers. Finally, we develop abstraction-based program analysis

methods for confidentiality for a more general class of programs.

There are many possible directions for future work. First, we believe it would

be interesting to investigate the extensions of our decidability results to classes of

programs that access a single array. These extensions include (1) programs ac-

cessing data structures other than the array, (2) programs that modify the data

structure, (3) programs accessing more than one data structure, and finally, (4) pro-

grams with procedures. The extension to linked lists seems straightforward. We

will study the extension to data structures with more successors, such as trees. The

proof of decidability of the reachability problem for programs with non-nested loops

can be extended to programs that modify the contents of the array. However, the

proofs of the other two main decidability results cannot be extended in a straight-

forward way, and the question of decidability remains open. Second, one possible

approach to improving practical performance of our solution would be to combine

it with a coarser-grained approach such as taint-analysis style dataflow analysis.

Third, we have shown that both over- and under- approximation are necessary for

sound analysis of confidentiality requirements, therefore an interesting question for

future research is how to develop a counter-example guided abstraction refinement

for checking confidentiality. Fourth, one of the most important current challenges

in the field of software verification is the area of concurrent and parallel programs.

Devising scalable methods for checking confidentiality for concurrent programs is a

challenging goal with many potential applications.
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