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Abstract

Complex systems often consist of multiple agents (or components) interacting with

each other and their environment to perform certain tasks and achieve specified objectives.

For example, teams of robots are employed to perform tasks such as monitoring,

surveillance, and disaster response in different domains including assembly planning,

search and rescue, and object transportation. With growing complexity of systems and

guarantees they are required to provide, the need for automated and formal design

approaches that can guarantee safety and correctness of the designed system is becoming

more evident. To this end, an ambitious goal in system design and control is to

automatically synthesize the system from a high-level specification given in a formal

language such as linear temporal logic.

The goal of this dissertation is to investigate and develop the necessary tools and

methods for automated synthesis of controllers from high-level specifications for multi-

agent systems. We are particularly interested in studying how the existing structure

in systems can be exploited to achieve more efficient synthesis algorithms through

compositional reasoning. We consider systems where multiple controllable agents react

to their environment that can be dynamically changing and potentially adversarial. The

objective of the system is given as a global specification, and the goal is to synthesize

controllers for each controlled agent such that the overall system satisfies the specified

objective.

We explore three different frameworks for compositional synthesis of controllers for

multi-agent systems. In the first framework, we decompose the global specification into

local ones, we then refine the local specifications until they become realizable, and we

show that under certain conditions, the strategies synthesized for the local specifications

guarantee the satisfaction of the global specification. In the second framework, we show

how parametric and reactive controllers can be specified and synthesized, and how they

can be automatically composed to enforce a high-level objective. Parameters allow us

to take advantage of the symmetry in many synthesis problems, while reactivity of the

controllers takes into account that the environment may be dynamic and potentially

adversarial. Finally, in the third framework, we focus on a special but practically useful

class of multi-agent systems, and show how by taking advantage of the structure in

the system and its objective, and through compositional and symbolic synthesis, we

can achieve significantly better scalability and can solve problems where the centralized

synthesis algorithm is infeasible.
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1

Introduction

Complex systems often consist of multiple agents (or components) interacting with each

other and their environment to perform certain tasks and achieve specified objectives. For

example, teams of robots are employed to perform tasks such as monitoring, surveillance,

and disaster response in different domains including assembly planning [HLW00], evacuation

[RA10], search and rescue [JWE97], localization [FBKT00], object transportation [RDJ95],

and formation control [BA98]. With growing complexity of systems and guarantees they

are required to provide, the need for automated and reliable design and analysis methods

and tools is increasing. The necessity becomes more evident considering the safety-critical

nature of some of these systems where the consequences of errors can be too catastrophic

and even life threatening.

To address these challenges, an emerging trend in systems design and control is to use

formal methods, e.g., model checking, to ensure the safety and correctness of the designed

controllers and guarantee that the system satisfies specified high-level objectives. In model

checking, a model of the system is checked exhaustively and automatically for correctness

with respect to a given specification. This approach usually involves a design-verify cycle;

if verification tool finds a problem, the designer corrects it and runs the verification again.

Changing the design to resolve a problem often introduces other problems, causing this

cycle to repeat several times until the design is satisfactory.

An alternative and more appealing approach is to automate the design process, i.e.,

to systematically build the system where the correctness follows from construction. To

this end, reactive synthesis with the ambitious goal of automatically synthesizing correct-

by-construction controllers from high-level specifications, has recently attracted significant

attention. Given a specification in a formal language such as linear temporal logic over sets
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of input and output signals, the synthesis problem is to find a finite-state reactive system

that assigns an output sequence to every possible input sequence such that the resulting

computation satisfies the given specification. Intuitively, the input signals are those that

are uncontrollable, i.e., system has no control over their values, contrary to output signals

whose values are decided by the system. The synthesis problem can be viewed as a game

between two players, the system and its environment. The goal of synthesis is to construct a

finite-state system that satisfies the specification regardless of how its environment behaves.

Unfortunately, high complexity of synthesis procedures has restricted the application

to relatively small-sized problems. The pioneering work by Pnueli et. al [PR89] showed

that reactive synthesis from linear temporal logic specifications is intractable. This high

computational burden has prohibited the practitioners from utilizing automated synthesis

algorithms. Nevertheless, recent advances in this growing research area have enabled

automatic synthesis of interesting real-world systems [BJP+12], indicating the potential of

the synthesis algorithms for solving realistic problems. The key insight is to consider more

restricted yet practically useful subclasses of the general problem, and in this dissertation

we take a step toward this direction.

The goal of this dissertation is to investigate and develop the necessary tools and methods

for automated synthesis of controllers from high-level specifications for multi-agent systems.

We are particularly interested in studying how the existing structure in such problems can

be exploited to achieve more efficient synthesis algorithms, e.g., through compositional

synthesis techniques. We are interested in systems where a set of controlled agents react

to their environment that includes other uncontrolled, dynamic and potentially adversarial

agents. The objective of the system is given as a global specification, and the goal is to

synthesize controllers for each controlled agent such that the overall system satisfies the

specified objectives.

To this end, we explore different frameworks for compositional synthesis of controllers

for multi-agent systems. The general problem is, given a multi-agent system consisting of

controllable (cooperative) and uncontrollable (adversarial) agents, and a global objective

specified in temporal logic, how we can synthesize controllers for each controllable agent

such that the resulting system satisfies the given objective. The overall theme of the solution

approaches is to take advantage of the existing structure in multi-agent systems in order to

decompose the synthesis problem into smaller and more manageable subproblems, solving

2
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Figure 1.1: One-way streets connected by intersections.

the subproblems, and merging the results to obtain a solution to the main problem. Next

we present a brief summary of each proposed framework within this dissertation. A more

thorough exposition will be provided in the subsequent chapters.

1.1 Pattern-Based Assume-Guarantee Synthesis

Compositional synthesis techniques can potentially address the scalability problem by

solving the synthesis problem for smaller components and merging the results such that the

composition satisfies the specification. The challenge is then to find proper decompositions

and assumptions-guarantees such that each component is realizable, its expectations of its

environment can be discharged on the environment and other components, and circular

reasoning is avoided, so that the local controllers can be implemented simultaneously and

their composition satisfies the original specification.

In pattern-based assume-guarantee synthesis framework, we consider a system with two

controllable agents reacting to their dynamically changing and adversarial environment. We

decompose the global specification into two local specifications, one for each agent. We

refine the local specifications by automatic synthesis of assumptions and guarantees through

analysis of strategies and counter-strategies obtained for the agents’ local specifications.

We show how behaviors of the environment and the system can be inferred from counter-

strategies and strategies, respectively, as formulas in special forms called patterns. Local

specifications are refined until both become realizable, and under certain conditions, the

strategies synthesized for the local specifications guarantee the satisfaction of the global

specification. Intuitively, additional assumptions and guarantees synthesized during the

refinement process are “contracts” between the agents that allow each of them to compute a

3



strategy for its local specification while ensuring the satisfaction of the global specification

for the system.

Example 1.1. Consider the network of one-way roads divided into grids as shown in Figure

1.1. Assume there are two autonomous vehicles V1 and V2 that starting from locations s0

and s2, respectively, must reach and cross the intersection I1 without collision with each

other. For simplicity, assume each vehicle can either stop and stay at the same grid, or

move one step forward in the road’s specified direction. We can write these requirements as a

temporal logic specification. In the first framework, we assume that the global specification is

decomposed into local specifications, one for each controlled agent. A possible decomposition

is as follows. The local specification for vehicle V1 requires it to eventually reach and

cross the intersection. That is, V1 has no knowledge of V2. The local specification for V2

requires it to reach and cross the intersection, and also to avoid collision with V1. The

synthesized controllers for these local specifications will also guarantee satisfaction of the

global specification.

A controller for V1 that can satisfy its local specification can be automatically synthesized.

For example, V1 can keep moving forward until it reaches and then crosses the intersection.

However, the local specification for the vehicle V2 is unrealizable, i.e., there is no controller

that can satisfy it. From the perspective of V2, V1 can stop at the intersection forever as it is

“allowed” in V2’s local specification. In the first framework, such counterexamples are analyzed

and a set of additional assumptions and guarantees are automatically synthesized. For

example, an assumption that V1 always eventually leaves the intersection can be synthesized

and added to V2’s local specification. It is also checked that V1 can indeed guarantee

this assumption. This way, the first framework iteratively discovers and refines the local

specifications until all of them become realizable.

1.2 Compositional Synthesis with Parametric Re-

active Controllers

In practice, complex systems are often not constructed from scratch but from a set of existing

building blocks. For example in robot motion planning, a robot usually has a number of

predefined motion primitives that can be selected and composed to enforce a high-level

objective. Intuitively, a compositional approach that solves smaller and more manageable
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subproblems, and hierarchically composes the solutions to implement more complicated

behaviors seems to be a more plausible way to synthesize complex systems.

We propose a compositional and hierarchical framework for synthesis from a library of

parametric and reactive controllers. Parameters allow us to take advantage of the symmetry

in many synthesis problems, e.g., in motion planning for autonomous robots and vehicles.

Reactivity of the controllers takes into account that the environment may be dynamic and

potentially adversarial. We show how these controllers can be synthesized from parametric

objectives specified by the user to form a library of parametric and reactive controllers. We

then give a synthesis algorithm that selects and instantiates controllers from the library

in order to satisfy a given safety and reachability objective. To show the potential of our

framework, we implement and apply the methods to an autonomous vehicle case study,

where a controller is synthesized from a library of parametric and reactive controllers to

safely navigate a controlled vehicle to its destination while avoiding collision with other

uncontrolled vehicles.

Example 1.2. Consider the network of one-way roads shown in Figure 1.1. Assume there is

a controlled vehicle V1 that must safely navigate from its initial location s0 to its destination

d. Safe navigation means that V1 must obey the traffic rules (e.g., move in the specific

direction of the road) and avoid collision with static obstacles and other uncontrolled vehicles.

In the second framework, we can take advantage of the symmetry in the problem to

synthesize parametric and reactive controllers. Assume x and y are two variables indicating

the location of V1. Let a and b be two parameters. The user can specify a controller C1

that starting from the parametric state (x, y) = (a, b), eventually advances the vehicle three

steps toward east, i.e., eventually (x, y) = (a + 3, b), while avoiding collision with other

dynamic and uncontrolled vehicle. Similarly, a parametric and reactive controller C2 can be

synthesized that advances the vehicle two steps toward north while avoiding collision with

other vehicles. Synthesized controllers are the building blocks for the compositional algorithm

proposed in the second framework. The composer automatically selects and instantiates the

controllers from a given library to enforce the high-level objective. For example, to navigate

V1 from its initial location to its destination, the composer can consecutively instantiate and

apply C1 to safely navigate V1 to the right-most column, and then consecutively apply C2 to

move V1 toward north until it finally reaches its destination.

5



1.3 Compositional Synthesis for Decoupled Multi-

Agent Systems

In assume-guarantee synthesis framework described above, systems with multiple components

can be treated in a decentralized manner by considering one component as a part of the

environment of another component. However, in this synthesis approach it is difficult

to capture and model the need for joint decision-making and cooperative objectives. To

address this difficulty, we propose a compositional framework for a special class of multi-

agent systems (inspired by decentralized control and swarm robotics literature) based on

automatic decomposition of objectives and compositional reactive synthesis using maximally

permissive strategies [FJR11]. In this approach, we assume that the objective of the system

is given in a conjunctive form. We make an observation that in many cases, each conjunct

of the global objective only refers to a small subset of agents in the system. We take

advantage of this structure to decompose the synthesis problem: for each conjunct of the

global objective, we only consider the agents that are involved, and compute the maximally

permissive strategies for those agents with respect to the considered conjunct. We then

intersect the strategies to remove potential conflicts between them, and project back the

constraints to subproblems. The subproblems are solved again with updated constraints,

and this process is repeated until the strategies reach a fixed point. With this approach we

manage to solve synthesis problems for systems with multiple agents and objectives such as

collision avoidance, formation control and reachability, and for grid-worlds of sizes that are

much larger than the cases considered in similar works in the related literature. We show

that the compositional algorithm outperforms the centralized synthesis approach, both from

time and memory perspective, and can solve problems where the centralized algorithm is

infeasible.

Example 1.3. Consider the network of one-way roads shown in Figure 1.1. Assume there

are two controlled autonomous vehicles V1 and V2 initially at positions s0 and s1. Suppose

the objective of the system is for V1 and V2 to infinitely visit locations d and s0 while obeying

traffic rules, avoiding collision with each other, with static obstacles and also with other

uncontrolled vehicles. Furthermore, assume V1 and V2 are required to stay close to each other,

e.g., they must not be more than two steps away from each other. The latter requirement

needs cooperation and joint decision-making between V1 and V2. In the third framework,
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we show how such requirements can be specified and propose a compositional and symbolic

algorithm for synthesizing controllers for controlled agents.

1.4 Contributions

We now provide a short summary of the contributions made by this dissertation1:

• We propose algorithms for automatic refinement of temporal logic specifications by

synthesizing additional environment assumptions or system guarantees. The suggested

refinements can be validated by the user to ensure compatibility with her design intent.

• We propose three different approaches that can be used to refine the specifications of the

components in the context of compositional synthesis. Intuitively, these approaches differ

in how much information about one component is shared with the other one. We show

that providing more knowledge of one component’s behavior for the other component can

make it significantly easier to refine the local specifications, with the expense of increasing

the coupling between the components. We illustrate and compare the methods with

examples and a case study.

• We give a symbolic algorithm for synthesizing a control strategy that reactively chooses

and instantiates controllers from a given library of controllers to enforce a high-level

safety and reachability objective for the system. We show how a designer can simply

specify parametric controllers and then a controller and its interface along with acceptable

parameter values are synthesized automatically. We implement our algorithms symbolically

using binary decision diagrams (BDDs) and apply them to an autonomous vehicle case

study to show the potential of our approach.

• We propose a framework for modular specification and compositional controller synthesis

for multi-agent systems with imperfect controlled agents, i.e., agents that can only partially

observe the state of the system. We give a compositional algorithm that automatically

decomposes the synthesis problem using the structure in the system and compositionally

synthesizes controllers for the agents. We implement the methods symbolically using BDDs

and apply them to a robot motion planning case study. We report on our experimental

results and show that the compositional algorithm can significantly outperform the

centralized approach.

1All the results appearing in this dissertation are published in [AMT13, AMT15, AMT16, AMT].
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The organization of the subsequent chapters is as follows. Chapter 2 introduces some

notation, background and definitions that are used in the rest of the dissertation. Proposed

frameworks are described in chapters 3, 4 and 5. These chapters are written in a way that

can be read independently from each other. Chapter 6 provides an overview of the related

work in the area and discusses how the proposed methods described in this manuscript

differs from earlier work. Finally, Chapter 7 concludes this dissertation by summarizing its

contributions and highlighting some of the potential future directions.
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2

Preliminaries

In this chapter we introduce some notation, background and definitions that are used

in the rest of the dissertation. Let Z be the set of integers. For a, b ∈ Z, let [a..b] =

{x ∈ Z | a ≤ x ≤ b}.

Linear temporal logic (LTL). We use LTL to specify system objectives. LTL is a formal

specification language with two types of operators: logical connectives (e.g., ¬ (negation), ∧

(conjunction), ∨ (disjunction), and → (implication)) and temporal operators (e.g., and �

(always), © (next), U (until), ♦ (eventually)). Let V be a finite set of Boolean variables

(atomic propositions). The formulas of LTL are defined over a set of atomic propositions V .

The syntax is given by the grammar:

Φ := v | Φ ∨ Φ | ¬Φ | © Φ | Φ U Φ for v ∈ V

We define true = v ∨ ¬v, false = v ∧ ¬v, ♦Φ = true U Φ, and �Φ = ¬♦¬Φ. A formula

with no temporal operator is a Boolean formula or a predicate. Given a predicate φ over

variables V, we say s ∈ 2V satisfies φ, denoted by s |= φ, if the formula obtained from φ by

replacing all variables in s by true and all other variables by false is valid. Formally, we

define s |= φ inductively as

• for v ∈ V, s |= v if and only if v ∈ s,

• s 6|= φ if and only if s 6|= φ, and

• s |= φ ∨ ψ if and only if s |= φ or s |= ψ.

We call the set of all possible assignments to variables V states and denote them by ΣV ,

i.e., ΣV = 2V . An LTL formula over variables V is interpreted over infinite words w ∈ (ΣV)ω.

The language of an LTL formula Φ, denoted by L(Φ), is the set of infinite words that satisfy
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Φ, i.e., L(Φ) = {w ∈ (ΣV)ω | w |= Φ}, where the satisfaction relation w = σ0σ1σ2 · · · |= Φ is

inductively defined as follows:

1. w |= v if v ∈ σ0,

2. w |= Φ1 ∨ Φ2 if w |= Φ1 or w |= Φ2,

3. w |= ¬Φ if w 6|= Φ,

4. w |=©Φ if σ1σ2 · · · |= Φ, and

5. w |= Φ1UΦ2 if there is n ≥ 0 such that σnσn+1 · · · |= Φ2 and

for all 0 ≤ i < n, σiσi+1 · · · |= Φ1.

Example 2.1. Let V = {r, c, g, v} be a set of Boolean variables. Here r, c, g and v stand for

request, clear, grant and valid signals, respectively. Consider the following LTL formulas:

Φ1 = �(r → ©♦g), Φ2 = �((c ∨ g) → ©¬g), Φ3 = �(c → ¬v) and Φ4 = �♦(g ∧ v).

Intuitively, Φ1 requires that every request must be granted eventually starting from the next

step by setting signal g to high. Φ2 says that if clear or grant signal is high, then grant must

be low at the next step. Φ3 says if clear is high, then the valid signal must be low. Finally,

Φ4 says that system must issue a valid grant infinitely often.

We often use predicates over V ∪V ′ where V ′ is the set of primed versions of the variables

in V, i.e., V ′ = {v′ | v ∈ V}. Given a subset of variables X ⊆ V and a state s ∈ ΣV , we

denote by s|X the projection of s to X , i.e., s|X = {x ∈ X | x ∈ s}. For a predicate φ

over variables V, we let JφK be the set of valuations over V that make φ true, that is,

JφK = {s ∈ ΣV | s |= φ}. For a set Z ⊆ V, let Same(Z,Z ′) be a predicate specifying that

the value of the variables in Z stay unchanged during a transition. Ordered binary decision

diagrams (OBDDs) can be used for obtaining concise representations of sets and relations

over finite domains [CGP99]. If R is an n-ary relation over {0, 1}, then R can be represented

by the BDD for its characteristic function:

fR(x1, · · · , xn) = 1 if and only if R(x1, · · · , xn) = 1.

With a little bit abuse of notation and when it is clear from the context, we treat sets and

functions as their corresponding predicates.

Generalized Reactivity (1) (GR(1)). Let V be a set of Boolean variables partitioned

into input I and output O variables. GR(1) specifications are of the form Φ = Φe → Φs,

where Φα for α ∈ {e, s} can be written as a conjunction of the following parts:

10



1 2

3 4

Figure 2.1: A small grid-world

• φαi : A predicate over I if α = e and over I ∪ O otherwise, characterizing the initial state.

• Φα
g : A formula of the form

∧
i�♦Bi characterizing fairness/liveness, where each Bi is a

predicate over I ∪ O.

• Φα
t : An LTL formula of the form

∧
i�ψi characterizing safety and transition relations,

where ψi is a predicate over expressions v and ©v′ where v ∈ I ∪ O and, v′ ∈ I if α = e

and v′ ∈ I ∪ O if α = s.

Observe that GR(1) is a fragment of LTL. Intuitively, Φe indicates the assumptions on the

environment and Φs characterizes the requirements of the system. Any correct implementa-

tion that satisfies the specification guarantees to satisfy Φs, provided that the environment

satisfies Φe.

Example 2.2. Consider the 2× 2 grid-world shown in Figure 2.1. Assume there are two

robots R1 and R2 initially at locations 1 and 4, respectively. We use variables X1, X2 ∈ [1..4]

to encode the location of each robot at any time-step. At each time-step, each robot can move

from its current location to one of its neighboring cells by moving up, down, left or right.

Assume R1 is controlled while R2 is not, i.e., X1 is the output variable and X2 is the input

variable. The goal of R1 is to always eventually visit the cell 3, and it must also avoid being

at the same cell as R1 at any time-step. We assume that R2 infinitely often visits the cell 3.

We can formally specify above requirements in GR(1) as follows. The predicates φei :=

X2 = 4 and φsi := X1 = 1 specify the initial locations of R2 and R1, respectively. The

formula

Φi
t = �(Xi = 1→©(Xi = 2 ∨Xi = 3)) ∧�(Xi = 2→©(Xi = 1 ∨Xi = 4))∧

�(Xi = 3→©(Xi = 1 ∨Xi = 4)) ∧�(Xi = 4→©(Xi = 2 ∨Xi = 3))

for i ∈ {1, 2} characterizes the transitions of robot Ri. The formula Φ1
s = �(X1 6= X2)

indicates that R1 must not be at the same cell with R2. The formula Φ1
g = �♦(X1 = 3)

characterizes the goal of R1. Similarly, the formula Φ2
g = �♦(X2 = 3) characterizes the

liveness assumption about R2. Finally, the GR(1) specification Φ = Φe → Φs encodes the

11
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Figure 2.2: An LTS T

system requirements where Φe = φ2
i ∧ Φ2

t ∧ Φ2
g encodes assumptions on the environment

(robot R1,) and Φs = φ1
i ∧ Φ1

t ∧ Φ1
s ∧ Φ1

g characterizes system guarantees.

Labeled Transition System (LTS). An LTS is a tuple T = 〈Q,Q0, δ,L〉 where Q is a

finite set of states, Q0 ⊆ Q is a set of initial states, δ ⊆ Q×Q is a transition relation, and

L : Q → φ is a labeling function that maps each state to a predicate φ over variables V.

Without loss of generality, we assume that every state of an LTS has an outgoing edge,

i.e., for all q ∈ Q there exists q′ ∈ Q such that (q, q′) ∈ δ. A run of an LTS is an infinite

sequence of states σ = q0q1q2... where q0 ∈ Q0 and for any i ≥ 0, qi ∈ Q and (qi, qi+1) ∈ δ.

The language of an LTS T is defined as the set L(T ) = {w ∈ Qω | w is a run of T }, i.e.,

the set of infinite words generated by the runs of T . We often consider an LTS as a directed

graph with a natural bijection between the states and transitions of the LTS and vertices

and edges of the graph, respectively. Formally for an LTS T = 〈Q,Q0, δ,L〉, we define the

graph GT = 〈V,E〉 where each vi ∈ V corresponds to a unique state qi ∈ Q, and (vi, vj) ∈ E

if and only if (qi, qj) ∈ δ.

Example 2.3. Consider the setting introduced in Example 2.2. We can model the transitions

of robot R1 with an LTS T = 〈Q,Q0, δ,L〉 where Q = {q1, q2, q3, q4}, Q0 = {q1}, δ =

{(q1, q2), (q1, q3), (q2, q1), (q2, q4), (q3, q1), (q3, q4), (q4, q2), (q4, q3)}, and the labeling function

L is defined as L(qi) = (X1 = i) for i ∈ [1..4], i.e., each state of T corresponds to a possible

location for R1 in the grid-world. Figure 2.2 shows the graphical representation of the LTS

T .

Moore (Mealy) Transducer. A Moore transducer is a tuple M = (S, s0, I,O, δ, γ), where

S is a set of states, s0 ∈ S is an initial state, ΣI = 2I is the input alphabet, ΣO = 2O is

the output alphabet, δ : S × ΣI → S is a transition function and γ : S → ΣO is a state
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Figure 2.3: A Mealy transducer

output function. A Mealy transducer is similar, except that the state output function is

γ : S×ΣI → ΣO. For an infinite word w ∈ (ΣI)
ω, a run of M is an infinite sequence σ ∈ Sω

such that σ0 = s0 and for all i ≥ 0, σi+1 = δ(σi, wi). The run σ on input word w produces

an infinite word M(w) ∈ (ΣV)ω such that M(w)i = γ(σi) ∪ wi for all i ≥ 0. The language

of M is the set L(M) = {M(w) | w ∈ Iω} of infinite words generated by runs of M .

Example 2.4. Let r and g be two Boolean variables representing request and grant signals,

respectively. Figure 2.3 shows a Mealy transducer M = (S, s0, I,O, δ, γ) where S = {s0, s1},

I = {r}, O = {g}, the transition function δ is defined as δ(s0, {r}) = s1, δ(s0, {}) = s0,

δ(s1, {r}) = s1, and δ(s1, {}) = s0, and the state output function γ is defined as γ(s0, {r}) =

{}, γ(s0, {}) = {}, γ(s1, {r}) = {g}, and γ(s1, {}) = {g}. Intuitively, everytime the request

signal is high, the mealy transducer M produces a grant at the next step.

LTL Realizability and Synthesis. An LTL formula Φ is satisfiable if there exists an

infinite word w ∈ (ΣV)ω such that w |= Φ. A Moore (Mealy) transducer M satisfies an LTL

formula Φ, written as M |= φ, if and only if L(M) ⊆ L(φ). An LTL formula Φ is Moore

(Mealy) realizable if there exists a Moore (Mealy, respectively) transducer M such that

M |= Φ. The realizability problem asks whether there exists such a transducer for a given Φ.

Given an LTL formula Φ over variables V and a partitioning of V into I and O, the synthesis

problem is to find a Mealy transducer M with input alphabet ΣI = 2I and output alphabet

ΣO = 2O that satisfies Φ. A counter-strategy for the synthesis problem is a strategy for the

environment that can falsify the specification, no matter how the system plays. Formally, a

counter-strategy can be represented by a Moore transducer Mc = (Sc, sc0, Ic,Oc, δc, γc) that

satisfies ¬Φ, where Ic = O and Oc = I are the input and output variables for Mc which

are generated by the system and the environment, respectively.

Game structures. A game structure G of imperfect information is a tuple G =

(V,Λ, τ,OBS, γ) where V is a finite set of variables, Λ is a finite set of actions, τ is

a predicate over V ∪Λ∪ V ′ defining G’s transition relation, OBS is a finite set of observable
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variables, and γ : ΣOBS → 2ΣV\∅ maps each observation to its corresponding set of states.

We assume that the set {γ(o) | o ∈ ΣOBS} partitions the state space ΣV
2. A game structure

G is called perfect information if OBS = V and γ(s) = {s} for all s ∈ ΣV . We omit (OBS, γ)

in the description of games of perfect information.

Within the scope of this dissertation, we consider two-player turn-based game structures

where player-1 and player-2 take turn playing. Let t ∈ V be a special variable with domain

{1, 2} determining which player’s turn it is during the game. Without loss of generality,

we assume that player-1 always starts the game unless specified otherwise. For i = 1, 2,

let Σi
V =

{
s ∈ ΣV | s|t = i

}
denote player-i’s states in the game structure. At any state

s ∈ Σi
V , player-i chooses an action ` ∈ Λ such that there exists a successor state s′ ∈ ΣV ′

where (s, `, s′) |= τ . Intuitively, at a player-i state, she chooses an available action according

to the transition relation τ and the next state of the system is chosen from the possible

successor states. For every state s ∈ ΣV , we define Γ(s) = {` ∈ Λ | ∃s′ ∈ ΣV ′ . (s, `, s′) |= τ}

to be the set of available actions at that state. A run in G from an initial state sinit ∈ ΣV

is a sequence of states π = s0s1s2 · · · such that s0 = sinit and, for all i > 0, there is an

action `i ∈ Λ with (si−1, `i, s
′
i) |= τ , where s′i is obtained by replacing the variables in si

by their primed copies. A run π is maximal if either it is infinite or it is finite and ends

in a state s ∈ ΣV where Γ(s) = ∅. The observation sequence of π is the unique sequence

Obs(π) = o0o1o2 · · · such that for all i ≥ 0, we have si ∈ γ(oi). For ` ∈ Λ and X ⊆ ΣV ,

let PostG` (X) = {r ∈ ΣV | ∃s ∈ X : (s, `, r′) |= τ}. Composition of two game structures

G1 = (V1,Λ1, τ1),G2 = (V2,Λ2, τ2) of perfect information, denoted by G⊗ = G1 ⊗ G2, is a

game structure G⊗ = (V⊗,Λ⊗, τ⊗) of perfect information where V⊗ = V1∪V2, Λ⊗ = Λ1∪Λ2,

and τ⊗ = τ1 ∧ τ2.

Example 2.5. Let t ∈ {1, 2} and x ∈ [0..4] be two variables. Figure 2.4 shows an explicit

representation of a two-player turn-based game structure G of perfect information where

player-1 (player-2) states are represented with ovals (boxes, repsectively). The game structure

G is defined over variables V = {t, x} and actions Λ = {inc, dec}. Intuitively, at any player-i

state for i ∈ {1, 2}, she chooses an available action to increment or decrement the value

of x. Note that at player-2 states with x ∈ [0..2] if she chooses the action inc, the value

of x can be incremented non-deterministically by one or two. Also note that inc action is

2This assumption can be weakened to a covering of the state space where observations can overlap
[CDHR06, DWDR06].
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Figure 2.4: A game structure G defined over a variable x ∈ [0..4].

not available at player-2 states with x ∈ [3..4]. The transition relation τ of G is defined

symbolically as τ = τe ∧ τs where

τe := t = 1 ∧ t′ = 2 ∧
4∧
i=1

(x = i ∧ dec ∧ x′ = i− 1)∧

3∧
i=0

(x = i ∧ inc ∧ x′ = i+ 1), and

τs := t = 2 ∧ t′ = 1 ∧
4∧
i=1

(x = i ∧ dec ∧ x′ = i− 1)∧

2∧
i=0

(x = i ∧ inc ∧ (x′ = i+ 1 ∨ x′ = i+ 2)).
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Intuitively, τe (τs) defines player-1 (player-2, respectively) transitions.

Strategies. A strategy S in G for player-i, i ∈ {1, 2}, is a function S : (ΣV)∗.Σi
V → Λ.

A strategy S in G for player-2 is observation-based if for all prefixes ρ1, ρ2 ∈ (ΣV)∗.Σ2
V , if

Obs(ρ1) = Obs(ρ2), then S(ρ1) = S(ρ2). We are interested in the existence of observation-

based strategies for player-2. Given two strategies S1 and S2 for player-1 and player-2,

respectively, the possible outcomes ΩS1,S2(s) from a state s ∈ ΣV are runs: a run s0s1s2 · · ·

belongs to ΩS1,S2(s) if and only if s0 = s and for all j ≥ 0 either sj has no successor, or

sj ∈ Σi
V and (sj , Si(s0 · · · sj), s′j+1) |= τ .

Strategies may need memory to remember the history of a game. Let M be a finite

set called memory. A finite-memory strategy S = (m0, fM , fΛ) for player-i is defined as

an initial memory m0 ∈ M along with a pair of functions: a memory-update function

fM : M × ΣV →M , which given the current state of the game and the memory, updates

the memory, and a next-action function fΛ : M × Σi
V → Λ, which given the current player-i

state and the memory, suggests the next action for the player. A strategy S is memory-less

(a.k.a. positional) if the memory M is a singleton, i.e., |M | = 1. A memory-less strategy

is independent of the history of the game and only depends on the current state. Thus, a

memory-less strategy for player-i can be represented as a function S : Σi
V → Λ.

Winning condition. A game (G, φinit,Φ) consists of a game structure G, a predicate φinit

specifying a set of initial states, and an LTL objective Φ for player-2. A run π = s0s1 · · ·

is winning for player-2 if it is infinite and π ∈ L(Φ). Let Π be the set of runs that are

winning for player-2. A strategy S2 is winning for player-2 if for all strategies S1 of player-1

and all initial states sinit |= φinit, we have ΩS1,S2(sinit) ⊆ Π, that is, all possible outcomes

are winning for player-2. It is well known that for ω-regular objectives, the games are

determined, i.e., either player-2 has a winning strategy or player-1 has a spoiling strategy

[GH82]. We say the game (G, φinit,Φ) is realizable if and only if the system has a winning

strategy in the game (G, φinit,Φ).

Knowledge game structure. For a game structure G = (V,Λ, τ,OBS, γ) of imperfect

information, a game structure GK of perfect information can be obtained using a subset

construction procedure such that for any objective Φ, there exists a deterministic observation-

based strategy for player-2 in G with respect to Φ if and only if there exists a deterministic

winning strategy for player-2 in GK for Φ [Rei84, CDHR06]. Formally, we define the

knowledge-based subset construction of G as the game structure GK = (VK ,Λ, τK) of perfect
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information where VK = 2V\ {∅} and (s1, `, s2) ∈ τK iff there exists obs ∈ OBS such that

s2 = PostG` (s1) ∩ γ(obs) and s2 6= ∅. Intuitively, each state in GK is a set of states of G that

represents player-2’s knowledge about the possible states in which the game can be after a

sequence of observations. In the worst case, the size of GK is exponentially larger than the

size of G. We refer to GK as the knowledge game structure corresponding to G. In the rest

of this chapter, we only consider game structures of perfect information.

Solving games. Let G = (V,Λ, τ) be a game structure of perfect information. Let

ϕ = ∃Λ ∃V ′.τ be a predicate specifying the set of states in G with at least one outgoing

transition, i.e., the set of states s ∈ ΣV for which there exists an action ` ∈ Λ and next state

s′ ∈ ΣV ′ such that (s, `, s′) |= τ . The set D = ΣV\JϕK of dead-end states, i.e., states with no

outgoing transition, can be computed symbolically as ϕD = ¬ϕ. That is, D = JϕDK. Note

that any dead-end state is losing for player-2 by definition.

The operator EpreΛ : 2ΣV → 2ΣV maps a set X ⊆ ΣV of states to the states for which

there exists an action ` ∈ Λ such that all `-successors belong to the set X, and is formally

defined as follows:

EpreΛ(X) = {v ∈ ΣV | (∃` ∈ Λ∀w ∈ ΣV .(v, `, w
′) |= τ → w ∈ X) ∧ v |= ϕ}

= (∃Λ∀V ′.(τ → X ′)) ∧ ϕ.

Note that the set of dead-end states are excluded from EpreΛ(X) by conjoining the pre-image

states with the predicate ϕ.

The operator ApreΛ : 2ΣV → 2ΣV maps a set X ⊆ ΣV of states to the states for which

for all actions ` ∈ Λ all `-successors belong to the set X, and is formally defined as

ApreΛ(X) = {v ∈ ΣV | (∀` ∈ Λ∀w ∈ ΣV .(v, `, w
′) |= τ → w ∈ X) ∧ v |= ϕ}

= (∀Λ∀V ′.(τ → X ′)) ∧ ϕ.

Symbolic algorithms for solving the realizability and synthesis problems are based on the

controllable predecessor operator [MPS95]. The (player-2) controllable predecessor operator

CPre : 2ΣV → 2ΣV maps a set X ⊆ ΣV of states to the states from which player-2 can force

the game into X in one step. Player-2 can force the game into X from a state s ∈ Σ1
V iff for

all available moves `, all `-successors of s are in X, and she can force the game into X from

a state s ∈ Σ2
V iff there is some available action ` such that all `-successors of v are in X.
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Formally,

CPre(X) = (t = 2 ∧ EpreΛ(X)) ∨ (t = 1 ∧ApreΛ(X)).

The set of states from which player-2 can avoid a set JΦerrK ⊆ ΣV of states is the greatest

fixed point νX.J¬ΦerrK∩CPre(X) (safety objective,) and the set of states from which player-

2 can reach a set JΦreachK ⊆ ΣV of states is the least fixed point µX.JΦreachK ∪ CPre(X)

(reachability objective). Roughly speaking, the fixed point algorithm that computes the set

W of winning states over the game structure G and with respect to a safety or reachability

objective, iteratively computes sets of states Wi for i ≥ 0 until it reaches the fixed point

Wi =Wi+1 =W.

Safety Games. In Chapter 5, we use the bounded synthesis approach [SF07a, FJR11] to

solve the synthesis problems from LTL specifications. In [FJR11], it is shown how LTL

formulas can be reduced to safety games. Formally, a safety game is a game (G, φinit,Φ) with

a special safety objective Φ = �(true). That is, any infinite run in the game structure G

starting from any initial state s |= φinit is winning for player-2. We drop Φ from description

of safety games as it is implicitly defined. Intuitively, in a safety game, the goal of player-2

is to avoid the dead-end states, i.e., states that there is no available action. We refer the

readers to [FJR11, Ehl12] for details of reducing LTL formulas to safety games and solving

them. To solve a game (G, φinit,Φ) using bounded synthesis approach, we first obtain the

game structure GΦ corresponding to Φ using the methods proposed in [FJR11], and then

solve the safety game (G ⊗ GΦ, φinit) to determine the winner of the game and compute a

winning strategy for player-2, if one exists.

Maximally permissive strategies. Safety games are memory-less determined, i.e., player-

2 wins the game if and only if there exists a strategy S : Σ2
V → Λ. Intuitively, a memory-less

strategy only depends on the current state and is independent from the history of the game.

Let (G, φinit) be a safety game, where G = (V ,Λ, τ ) is a game structure of perfect information.

Assume W ⊆ ΣV be the set of winning states for player-2, i.e., from any state s ∈W there

exists a strategy S2 such that for any strategy S1 chosen by player-1, all possible outcomes

π ∈ ΩS1,S2(s) are winning. The maximally permissive strategy S : Σ2
V → 2Λ for player-2 is

defined as follows: for all s ∈ Σ2
V , S(s) = {` ∈ Λ | ∀r ∈ ΣV ′ . (s, `, r) |= τs → r ∈W}, i.e., the

set of actions ` where all `-successors belong to the set of winning states. It is well known

that S subsumes all winning strategies of player-2 in the safety game (G,Φinit). Composition

of two maximally permissive strategies S1,S2 : Σ2
V → 2Λ, denoted by S = S1⊗S2, is defined
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as S(s) = S1(s) ∩ S2(s) for any s ∈ ΣV , i.e., the set of allowed actions by S at any state

s ∈ ΣV is the intersection of the allowed actions by S1 and S2. The restriction of the

game structure G with respect to its maximally permissive strategy S is the game structure

G[S] = (V,Λ, τ ∧ φS) where φS is the predicate encoding S, i.e., for all (s, `) ∈ Σ2
V × Λ,

(s, `) |= φS if and only if ` ∈ S(s). Intuitively, G[S] is the same as G but player-2’s actions

are restricted according to S.
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3

Pattern-Based Assume-Guarantee Synthesis

The reactive synthesis problem is known to be intractable for general LTL specifications

[Ros92]. However, there are fragments of LTL, such as Generalized Reactivity(1), for which

the realizability and synthesis problems can be solved in polynomial time in the size of

the state space [BJP+12]. Yet scalability is a big challenge as increasing the number of

formulas in a specification may cause an exponential blowup in the size of its state space

[BJP+12]. Compositional synthesis techniques are used to address this issue by solving the

synthesis problem for smaller components and merging the results such that the composition

satisfies the specification. The challenge is then to find proper decompositions and interface

specifications such that each component is realizable, its expectations of its environment can

be discharged on the environment and other components, and circular reasoning is avoided,

so that the local controllers can be implemented simultaneously and their composition

satisfies the original specification [OTM11].

In this chapter, we study the problem of synthesizing interface specifications between

components in the context of compositional reactive synthesis. To this end, we consider

a problem in which the system consists of two components C1 and C2 and that a global

specification is given which is realizable and decomposed into two local specifications,

corresponding to C1 and C2, respectively. We consider a special case in which there is

a serial interconnection between the components [OTM11], i.e., roughly speaking, the

dependency between components’ output variables is acyclic and only the output variables

of C2 depend on the output variables of C1. We are interested in computing refinements

such that the refined local specifications are both realizable and when implemented, the

resulting system satisfies the global specification.

Our solution is based on automated refinement of assumptions and guarantees expressed
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in LTL. The core of the method is the synthesis of a set of LTL formulas of special form,

called patterns, which hold over all runs of an abstraction of the strategy or counter-strategy

computed for the specification. If the local specification for a component C2 is unrealizable,

we refine its environment assumptions, while ensuring that the other component C1 can

indeed guarantee those assumptions. To this end, it is sometimes necessary to refine

C1’s specification by adding guarantees to it. We propose three different approaches that

can be used to synthesize the interface specifications of the components in the context of

compositional synthesis. Intuitively, these approaches differ in how much information about

one component is shared with the other one. We show that providing more knowledge of one

component’s behavior for the other component can make it significantly easier to refine the

interface specifications, with the expense of increasing the coupling between the components.

We illustrate and compare the methods with examples and a case study.

3.1 Overview and Problem Statement

Assume a global LTL specification is given that is realizable. Furthermore, assume the

system consists of a set of components, and that a decomposition of the global specification

into a set of local ones is given, where each local specification corresponds to a system

component. The decomposition may result in components whose local specifications are

unrealizable, e.g., due to the lack of adequate assumptions on their environment. The

general question is how to refine the local specifications such that the refined specifications

are all realizable, and when implemented together, the resulting system satisfies the global

specification.

We consider a special case of this problem. We assume the system consists of two

components C1 and C2, where there is a serial interconnection between the components

[OTM11]. Intuitively, it means that the dependency between the output variables of the

components is acyclic, as shown in Figure 3.1. This assumption enables us to define a

total order over the components and avoid circular reasoning. Let I be the set of input

variables controlled by the environment and O be the set of output variables controlled by

the system, partitioned into O1 and O2, the set of output variables controlled by C1 and

C2, respectively. For a specification Φ = Φe → Φs, we define an assumption refinement

Ψe =
∧
i Ψei as a conjunction of a set of environment assumptions such that (Φe ∧Ψe)→ Φs

is realizable. Similarly, Ψs =
∧
i Ψsi is a guarantee refinement if Φe → (Φs∧Ψs) is realizable.
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Figure 3.1: Serial interconnection.

An assumption refinement Ψe is consistent with Φ if Φe ∧Ψe is satisfiable. Note that an

inconsistent refinement Φe∧Ψe = false leads to an specification which is trivially realizable,

but neither interesting nor useful.

We now formally define the problem that is considered in this chapter.

Problem Statement 3.1. Consider a realizable global specification Φ = Φe → Φs. Assume

Φ is decomposed into two local specifications Φ1 = Φe1 → Φs1 and Φ2 = Φe2 → Φs2 such

that Φe → (Φe1 ∧ Φe2) and (Φs1 ∧ Φs2)→ Φs. We assume Φe, Φs, Φe1, Φs1, Φe2, and Φs2

are LTL formulas which only contain variables from the sets I, I ∪ O, I, I ∪ O1, I ∪ O1,

and I ∪ O, respectively. We would like to find refinements Ψ and Ψ′ such that the refined

specifications Φref
1 = Φe1 → (Φs1 ∧Ψ′) and Φref

2 = (Φe2 ∧Ψ)→ Φs2 are both realizable, and

Ψ′ → Ψ.

If refinements Ψ and Ψ′ exist, then the resulting system from implementing the refined

specifications Φref
1 and Φref

2 satisfies the global specification Φ [OTM11]. We use this fact to

establish the correctness of the decomposition and refinements in our proposed approaches.

As Φ is realizable, and C1 is independent from C2, it follows that Φ1 (in case it is not

realizable) can be made realizable by adding assumptions on its environment. Especially,

providing all the environment assumptions of the global specification for C1 is enough to

make its specification realizable. However, this might not be the case for Φ2. In the rest

of this chapter, we assume that Φ1 is realizable, while Φ2 is not. We investigate how the

strategy and counter-strategy computed for C1 and C2, respectively, can be used to find

suitable refinements for the interface specifications.

Our solution is based on an automated refinement of assumptions and guarantees

expressed in LTL. We refine an unrealizable specification by adding assumptions on its

environment. The refinement is synthesized step by step guided by counter-strategies. When

the specification is unrealizable, a counter-strategy is computed and a set of formulas of
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Algorithm 3.1: FindGuarantees

Input: Φ = Φe → Φs: a realizable specification, U : subset of variables
Output: P: A set of formulas Ψ such that Φe → (Φs ∧Ψ) is realizable

1 Ms = ComputeStrategy(Φ);
2 P := Infer-GR(1)-Formulas(Ms, U);
3 P ′ := Infer-Complement-GR(1)-Formulas(Ms, U);
4 foreach Ψ ∈ P ′ do
5 if (Φe → (Φs ∧ ¬Ψ)) is realizable then
6 P = P ∪ ¬Ψ ;

7 return P ;

the forms ♦�ψ, ♦ψ, and ♦(ψ ∧©ψ′), which hold over all runs of the counter-strategy, is

inferred. Intuitively, these formulas describe potentially “bad” behaviors of the environment

that may cause unrealizability. Their complements (which are in forms allowed by GR(1)

syntax) form the set of candidate assumptions, and adding any of them as an assumption

to the specification prevents the environment player (player-1) from behaving according to

the counter-strategy (without violating its assumptions). We say the counter-strategy is

ruled out from the environment’s possible behaviors. Counter-strategy-guided refinement

algorithm (explained in detail in Section 3.3) iteratively chooses and adds a candidate

assumption to the specification, and the process is repeated until the specification becomes

realizable, or the search cannot find a refinement within the specified search depth. The user

is asked to specify a subset of variables to be used in synthesizing candidate assumptions.

This subset may reflect the designer’s intuition on the source of unrealizability, and help to

narrow down the search for finding a proper refinement.

A similar idea can be used to refine the guarantees of a specification. When the

specification is realizable, a winning strategy can be computed for the system. The winning

strategy might not be unique, that is, there may be several strategies that can satisfy the

same specification. The computed strategy for a realizable specification restricts the possible

runs of the system to the ones which satisfy the given specification. As it is deterministic, it

might also put different restrictions on the system. These restrictions define the differences

between two winning strategies that satisfy the same specification.

We can use patterns to infer the behaviors of the strategies as LTL formulas. The inferred

formulas can be used in two ways. One is to get an insight into the possible behaviors and

additional guarantees that a given strategy provide. They can also be used to restrict the
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Figure 3.2: Room in Example 3.1

system by adding guarantees, similar to restricting the environment by adding assumptions.

Restricting the system can be used to compute a different winning strategy which satisfies

the original specification, and also provides additional guarantees.

Formulas of the form �♦ψ, �ψ, and �(ψ → ©ψ′) can be used to infer implicit

guarantees provided by the given strategy, i.e., they can be added to the original specification

as guarantees, and the same strategy satisfies the new specification as well as the original

one. These formulas can be seen as additional guarantees a component can provide in the

context of compositional synthesis. Formulas of the form ♦�ψ, ♦ψ, and ♦(ψ ∧©ψ′) can

be used to restrict the system by adding the complement of them to the specifications as

guarantees. As a result, the current strategy is ruled out from system’s possible strategies

and therefore, the new specification, if still realizable, will have a different strategy which

satisfies the original specification, and also provides additional guarantees. Algorithm 3.1

shows how a set of additional guarantees P are computed for the specification Φ and subset

of variables U . For the computed strategy Ms, the procedure Infer-GR(1)-Formulas

synthesizes formulas of the forms �♦ψ,�ψ, and �(ψ →©ψ′) which hold over all runs of

the strategy. Similarly, the procedure Infer-Complement-GR(1)-Formulas synthesizes

formulas of the form ♦�ψ,♦ψ, and ♦(ψ ∧©ψ′). These procedures are explained in Section

3.2. In what follows, we will use grid-world examples commonly used in robot motion

planning case studies to illustrate the concepts and techniques [LaV06].

Example 3.1. Assume there are two robots, R1 and R2, in a room divided into eight cells

as shown in Figure 3.2. Both robots must infinitely often visit the goal cell 4. Besides, they

cannot be in the same cell simultaneously (no collision). Finally, at any time-step, each

robot can either stay put or move to one of its neighbor cells. In the sequel, assume i ranges

over {1, 2}. We denote the location of robot Ri with LocRi, and cells by their numbers.

Initially LocR1 = 1 and LocR2 = 8.

The global specification is realizable. Note that in this example, all the variables are

controlled and there is no external environment. Assume that the specification is decomposed

into Φ1 and Φ2, where Φi = Φei → Φsi is the local specification for Ri. Assume Φe1 = true,
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i.e., no assumption on the environment of R1, and Φs1 only includes the initial location of

R1, its transition rules, and its goal to infinitely often visit cell 4. Φs2 includes the initial

location of R2, its transition rules, its objective to infinitely often visit cell 4, while avoiding

collision with R1. Here R1 serves as the environment for R2 which can play adversarially.

Assume Φe2 only includes the initial location of R1.

Inferring formulas: Φ1 is realizable. A winning strategy MS1 for R1 is to move to

cell 2 from the initial location, then to cell 3, and then to move back and forth between cells

4 and 3 forever. The following are examples of formulas inferred from this strategy:

• eventually always: ♦�(LocR1 ∈ {3, 4}),

• eventually: ♦(LocR1 = 3), ♦(LocR1 = 4),

• eventually next: ♦(LocR1 = 3 ∧©LocR1 = 4), ♦(LocR1 = 4 ∧©LocR1 = 3),

• always eventually: �♦(LocR1 = 3), �♦(LocR1 = 4),

• always: �(LocR1 ∈ {1, 2, 3, 4}), and

• always next: �(LocR1 = 2→©LocR1 = 3), �(LocR1 = 3→©LocR1 = 4).

Refining assumptions: Note that Φ2 includes no assumption on R1 other than its

initial location. Specifically, Φ2 does not restrict the way R1 can move. That is, from the

perspective of R2, R1 can go to any cell at any time-step. The specification Φ2 is unrealizable.

A counter-strategy for R1 is to move from cell 1 to the goal cell 4, and stay there forever,

preventing R2 from fulfilling its requirements. Using counter-strategy-guided refinement for

refining the assumptions on the environment, we find the refinements Ψ1 = �♦(LocR1 6= 4),

Ψ2 = �(LocR1 6= 4), and Ψ3 = �(LocR1 = 4 → ©LocR1 6= 4). Ψ1 states that R1 should

infinitely often move out of the goal location. Ψ2 says that R1 must never enter the goal

location. Ψ3 says that if R1 is at the goal location, it must move out of it at the next

time-step. Intuitively, these refinements suggest that R1 is not present at cell 4 at some

point during the execution. Adding any of these formulas to the assumptions of Φ2 makes it

realizable. The designer can validate and choose the appropriate refinement.

Refining guarantees: Formula Ψ4 = ♦�(LocR1 ∈ {3, 4}) is satisfied byMS1 , meaning

that R1 eventually reaches and stays at the cells 3 and 4 forever. An example of a guarantee

refinement is to add the guarantee ¬Ψ4 = �♦(LocR1 6∈ {3, 4}) to Φ1, meaning that the

robot R1 should infinitely often move out of cells 3 and 4. A winning strategy for the new

specification is to move back and forth in the first row between initial and goal cells. That is,

R1 has the infinite run (1, 2, 3, 4, 3, 2)ω.
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We use these techniques to refine the interface specifications. We propose three different

approaches for finding suitable refinements, based on how much information about the

strategy of the realizable component is allowed to be shared with the unrealizable component.

The first approach has no knowledge of the strategy chosen by C1, and tries to find a

refinement by analyzing counter-strategies. The second approach iteratively extracts some

information from the strategies computed for Φ1, and uses this information to refine the

specifications. The third approach encodes the strategy as a conjunction of LTL formulas,

and provides it as a set of assumptions for C2, allowing it to have a full knowledge of the

strategy. These approaches are explained in detail in Section 3.4.

Compositional Refinement: AssumeMS1 is the computed strategy for R1. The first

approach, computes a refinement for the unrealizable specification, then checks if the other

component can guarantee it. For example, Ψ3 is a candidate refinement for Φ2, i.e., by

assuming that R1 infinitely often leaves the goal cell, there exists a strategy for R2 to satisfy

its objective. Now we need to ensure that this assumption is indeed guaranteed by R1 in

order to ensure that the global specification is satisfied. The strategy MS can provide such

a guarantee. However, there exists other winning strategies that can satisfy φ1 which do

not guarantee Ψ3. For example, if R1 reaches the goal location and stays there forever,

Φ1 is still satisfied. However, this strategy does not satisfy Ψ3 anymore. To ensure that

the specification for R1 satisfies Ψ3 no matter how the strategy is computed, Φ1 should be

refined. Φ1 can be refined by Ψ3 added to its guarantees. The strategy MS1 still satisfies

the new specification, and refined specifications are both realizable. Thus, the first approach

returns Ψ3 as a possible refinement.

Using the second approach, formula Ψ5 = �♦(LocR1 = 3) is inferred fromMS1 . Refining

both specifications with Ψ5 leads to two realizable specifications, hence Ψ4 is returned as

a refinement. The third approach encodes MS1 as conjunction of transition formulas

Ψ6 =
∧3
i=1 �(LocR1 = i → ©LocR1 = i + 1) ∧ �(LocR1 = 4 → ©LocR1 = 3). Refining

assumptions of Φ2 with Ψ6 makes it realizable.

3.2 Inferring Behaviors as LTL Formulas

In this section we show how certain types of LTL formulas that hold over all runs of a

counter-strategy or strategy can be synthesized. The user chooses the subset U of variables

to be used in synthesizing the formulas of each kind. These formulas are obtained in the
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following manner. First an LTS T is obtained from the given Moore (Mealy) transducer

M which represents the counter-strategy (strategy, respectively). Next, using the set U ,

an abstraction T a of T is constructed which is also an LTS. A set of patterns which hold

over all runs of T a is then synthesized. The instantiations of these patterns form the set of

formulas which hold over all runs of the input transducer. Next we explain these steps in

more detail.

3.2.1 Constructing the Abstract LTS

We now provide the details of obtaining an abstract LTS from a given Moore (Mealy)

transducer M = (S, s0, I,O, δ, γ). Without loss of generality we assume that all incoming

transitions of a state si ∈ S of a Moore transducer have the same truth valuation over

input and output propositions. That is, if si, sj , sk ∈ S are states of M, and γ(si) = out,

δ(si, in) = sk, γ(sj) = out′, and δ(sj , in
′) = sk for in, in′ ∈ ΣI and out, out′ ∈ ΣO, then

we have in = in′ and out = out′. We make a similar assumption about Mealy transducers.

This way each state of the M would have a unique label, and we define a labeling function

ΓM : S → ΣV which maps each state s ∈ S to a set of propositions that hold in s.

Given the Moore (Mealy) transducer M of the counter-strategy (strategy, respectively),

first an LTS T = (Q, {q0} , δT ,L) is obtained which keeps the structure ofM while removing

its input and output details. Formally, for each si ∈ S, there is a unique qi ∈ Q, and q0 ∈ Q

is the state corresponding to s0 ∈ S. There exists a transition between qi, qj ∈ Q, i.e.,

(qi, qj) ∈ δT if and only if there exists some input σ ∈ ΣI such that δ(si, σ) = sj . We let

L(qi) = ΓM(si) for each state qi ∈ Q. That is, the label L(qi) is consistent with the truth

values of the input and output variables in the state si ∈ S.

Using the subset U ⊆ I ∪ O of variables chosen by the user, an abstraction T a =

(Qa, Qa0, δT a ,La) of T is computed based on the state labels L. There is a surjective function

F : Q→ Qa which maps each state of T to a unique state of T a. Intuitively, the abstraction

T a has a unique state for each maximal subset of states of T which have the same projected

labels, and if there is a transition between two states of T , there will be a transition between

their mapped states in T a. Formally, there exists a unique state qu ∈ Qa for any u ∈ ΣU

corresponding to the maximal set Qqu =
{
q ∈ Q | L(q)|U = u

}
, i.e., the maximal subset of

states of T that have the same projected label. For all qu ∈ Qa, we define F−1(qu) = Qqu ,

and L(qu) = u. The initial state qa0 of T a is defined as Qa0 = {F (q0) = qa0}. Finally, there is
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a transition between qai , q
a
j ∈ Qa, i.e., δa(qai ) = qaj if and only if there exist qi, qj ∈ Q such

that F (qi) = qai , F (qj) = qaj , and δ(qi) = qj . The following theorem states that T a simulates

T . Therefore, any LTL formula Φ that is satisfied by T a is also satisfied by T .

Theorem 3.1. For any two states p ∈ Qa and q ∈ Q, if F (q) = p then (1) L(p) = L(q)|U ,

(2) for any q′ ∈ Q where q′ ∈ δT (q), there is a state p′ ∈ Qa such that p′ ∈ δT a(p) and

F (q′) = p′.

Proof. (1) easily follows from the construction. We prove that the mapping function F

defines a simulation relation between states of T and T a, that is, T �F T a. Assume there

are states p ∈ Q and q ∈ Qa such that F (p) = q. Assume there is a state p′ ∈ Q such that

δ(p) = p′, that is, there is a transition from p to p′. By definition of T a, there should be a

state q′ ∈ Qa, such that F (p′) = q′ and δa(q) = q′.

3.2.2 Synthesizing Patterns

Next we discuss how patterns of certain types can be synthesized from a given LTS T .

A pattern ψP is an LTL formula which is satisfied over all runs of T , i.e., T |= ψP . We

are interested in patterns of the forms ♦�ψP , ♦ψP , ♦(ψP ∧ ©ψ′P), �♦ψP , �ψP , and

�(ψP → ©ψ′P), where ψP and ψ′P are propositional formulas expressed as a disjunction

of subset of states of T . Patterns are synthesized using graph search algorithms that

search for special configurations. For an LTS T = (Q,Q0, δ,L), a configuration C ⊆ Q is a

subset of states of T . A configuration C is a ./-configuration where ./∈ {�,�♦,♦,♦�} if

T |=./
∨
q∈C q. For example, C is an �♦-configuration if any run of T always eventually

visits a state from C. A ./-configuration C is minimal, if there is no configuration C ′ ⊂ C

which is an ./-configuration, i.e., removing any state from C leads to a configuration which

is not a ./-configuration anymore. Minimal ./-configurations are interesting since they lead

to the strongest patterns of ./-form. Formally, given two non-equivalent predicates φ1 and

φ2, we say φ1 is stronger than φ2 if φ1 → φ2 holds. We will come back to this point in

Section 3.3.

Synthesizing �♦ψP Patterns

To compute all minimal always eventually patterns one can enumerate the configurations,

each time pick a configuration and remove its corresponding states from the input LTS, and

check whether there exists a cycle in the remaining transition system. However, the problem
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of finding all minimal always eventually patterns is NP-hard as stated in the following

theorem.

Theorem 3.2. Computing all minimal �♦-configurations is NP-hard.

Proof. We give a reduction from the hitting set problem to the problem of deciding whether

there is a minimal always eventually configuration of size less than or equal to α. In hitting

set problem n sets A1, A2, ..., An are given where each set Ai for 1 ≤ i ≤ n is a subset of a

universal set A, and A = ∪iAi. The problem of deciding whether there is a minimal set

B ⊆ A with size less than or equal to some 0 < β ≤ |A| whose intersection with all Ai sets

is not empty, i.e., ∀1 ≤ i ≤ n B ∩Ai 6= ∅, is NP-hard.

Given the universal set A, the sets Ai for 1 ≤ i ≤ n, and the size β, we construct an LTS

T = (Q, {q0} , δ,L) such that there is a minimal hitting set B with size less than or equal to

β if and only if there is a minimal always eventually configuration with size less than or

equal to β. Assume an order over elements of A = {a1, a2, ..., ak}. Assume the elements of

each set Ai are sorted with the same order. For any ai ∈ A we consider a state qai ∈ Q for

T . We also consider two other states: q0 ∈ Q as the initial state, and qsink ∈ Q as an state

with a transition to every state corresponding to the first element of each set. For each set

Ai =
{
ai1 , ai2 , ..., aij

}
, we add a transition δ(qaip ) = qaip+1

between states qaip and qaip+1

for 1 ≤ p < j corresponding to the consecutive elements aip and aip+1 of Ai. We connect

the initial state q0 to the state qai1 corresponding to the first element of Ai, and we connect

the state qaij corresponding to the last element of Ai to the state qsink. All the runs of T

eventually reaches qsink which is connected to the states corresponding to first elements of

sets Ai, that is, δ(qsink) =
{
qa11

, qa21
, ..., qan1

}
where qai1 for 1 ≤ i ≤ n is the first element

of the set Ai. The label function L is not important for the proof and we set it to empty for

all states. It is easy to see that the construction can be done in polynomial time.

Intuitively, each run of T starts at q0, non-deterministically chooses a set Ai, and visits

the states CAi =
{
qui1 , qui2 , ..., quij

}
corresponding to its elements in order and ends up at

the state qsink, where a set is chosen non-deterministically again, and the run continues.

If B is a hitting set, removing its corresponding states from T will leave no cycle in T

since qsink is not reachable anymore. Thus, the configuration CB corresponding to B is an

always eventually configuration. Conversely, if CB is an always eventually configuration,

its corresponding set B ⊆ A is a hitting set. Therefore, any minimal always eventually

configuration CB corresponds to a minimal hitting set B ⊆ A and vice versa.
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Algorithm 3.2: Synthesizing �♦ψP patterns

Input: LTS T = (Q, {q0} , δ,L)
Output: Patterns of the form �♦ψP where T |= �♦ψP

1 Patterns:=Empty;
2 visitedConfs:=〈q0〉;
3 last := 1;
4 j := −1;
5 while true do
6 Next = {qi ∈ Q | ∃q ∈ visitedConfs[last] ∧ ∃(q, qi) ∈ δ};
7 if ∃k : visitedConf[k] = Next then
8 j := k;
9 break;

10 else
11 last := last+ 1;
12 visitedConf[last] := Next;

13 foreach j ≤ i ≤ last do
14 Let Ψi := �♦

∨
q∈visitedConf[i] q;

15 Add Ψi to Patterns;

16 return Patterns;

Consequently, computing all minimal always-eventually patterns is infeasible in practice

even for medium sized specifications. We propose an alternative algorithm that computes

some of the always eventually patterns. Although the algorithm has an exponential upper-

bound, it is simpler and terminated faster in our experiments, as it avoids enumerating

all configurations. Algorithm 3.2 computes �♦ψP patterns, where ψP is a disjunction of a

subset of states of T . It starts with the configuration {q0}, and at each step computes the

next configuration, i.e., the set of states that the runs of T can reach at the next step from

the current configuration. A sequence C0, C1, ..., Cj of configurations is discovered during

the search, where C0 = {q0} and j ≥ 0. The procedure terminates when a configuration

Ci is reached that is already visited, i.e., there exists 0 ≤ j < i such that Cj = Ci. There

is a cycle between Cj and Ci−1 and thus, all the configurations in the cycle will always

eventually be visited over all runs of T . In Algorithm 3.2 the set visitedConfs keeps track of

the visited configurations, last is the index of the last configuration visited in visitedConf,

and j is an index pointing to the configuration which is the start of the cycle. Initially, j is

set to −1. Since there are only finite number of configurations, Algorithm 3.2 terminates,

and it is of complexity O(2|Q|).
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Algorithm 3.3: Synthesizing �ψP pattern

Input: LTS T = (Q, {q0} , δ,L)
Output: Pattern of the form �ψP where T |= �ψP

1 Let ψP =
∨
q∈Q q;

2 return �ψP ;

Synthesizing �ψP Pattern

For a given LTS T , a safety pattern of the form �ψP is synthesized where ψP is simply the

disjunction of all the states in T , i.e., ψP =
∨
q∈Q q. It is easy to see that removing any

state from ψ leads to a formula that is not satisfied by T anymore. The synthesis procedure

is of complexity O(|Q|). Algorithm 3.3 computes a pattern of the form �ψP . The following

theorem states that computed �ψP pattern is the strongest formula of its specific form that

holds over all runs of the input LTS.

Theorem 3.3. The pattern �ψP = �
∨
q∈Q q is the strongest safety pattern that is satisfied

over all runs of T .

Proof. First we show that any propositional formula over the states Q of T that holds over

some run of it can be transformed into an equivalent formula in disjunctive form without

negations.

Lemma 3.1. Let T = (Q, {q0} , δ,L) be a labeled transition system. Consider a propositional

formula φ over the states Q. Assume there exists a run σ of T and i ≥ 0 such that σi |= φ.

Then there exists Qφ′ ⊆ Q such that the formulas φ and φ′ =
∨
q∈Qφ′

q are equivalent.

Proof. Without loss of generality assume that φ only includes negation and disjunction

connectives. Note that for any run σ of T , σi |= ¬
∨
q∈Q′ q for some Q′ ⊆ Q and i ≥ 0 if

and only if σi |=
∨
q∈Q\Q′ q. Therefore, subformulas of the form ¬

∨
q∈Q′ q can be replaced

by
∨
q∈Q\Q′ q. Using this rule, all negation operators can be removed from φ to obtain an

equivalent formula φ′. Let Qφ′ ⊆ Q be the set of states q ∈ Q which appears in φ′. It follows

that the formulas φ and φ′ =
∨
q∈Qφ′

q are equivalent.

From Lemma 3.1 it follows that any propositional formula over the states of T can be

transformed to an equivalent formula in disjunctive form without negations. Obviously

the safety pattern returned by the Algorithm 3.3 holds over all runs of T . Removing any

state from the computed pattern leads to a formula that is not satisfied by T anymore.
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Algorithm 3.4: Synthesizing �(ψP →©ψ′P) patterns

Input: LTS T = (Q, {q0} , δ,L)
Output: Patterns of the form �(ψP →©ψ′P) where T |= �(ψP →©ψ′P)

1 Let Patterns = Empty;
2 foreach state q ∈ Q do
3 Patterns = Patterns ∪ �(q →©

∨
q′∈Next(q) q

′);

4 return Patterns;

Therefore, the synthesized safety pattern is the strongest formula of the form �ψP such

that T |= �ψP .

Synthesizing �(ψP →©ψ′P) Patterns

For a given LTS T , a set of transition patterns of the form �(ψP →©ψ′P) is synthesized

as follows. Each ψP consists of a single state q ∈ Q, for which the ψ′P is disjunction of its

successors, i.e. ψ′P =
∨
q′∈Next(q) q

′ where Next(q) = {q′ ∈ Q | δ(q) = q′}. Intuitively, each

transition pattern states that, always when a state is visited, its successors will be visited

at the next step. The synthesis procedure is of complexity O(|Q| + |δ|). Algorithm 3.4

summarizes the steps for computing patterns of the form �(ψP → ©ψ′P). The following

theorem states that computed �(ψP →©ψ′P) patterns are the strongest formulas of their

specific form that hold over all runs of the input LTS.

Theorem 3.4. Synthesized �(ψP →©ψ′P) patterns are the strongest transition patterns

that are satisfied over all runs of T .

Proof. Similar to proof of Theorem 3.3.

Synthesizing ♦ψP Patterns

For an LTS T = (Q, {q0} , δ,L), we say a configuration C is an eventually configuration

if for any run σ = σ0σ1σ2 · · · of T there exists a state q ∈ C and a time-step i ≥ 0 such

that σi = q. That is, any run of T eventually visits a state from configuration C. It

follows that if C is an eventually configuration for T , then T |= ♦
∨
q∈C q. We say an

eventually configuration C is minimal if there exists no C ′ ⊂ C such that C ′ is an eventually

configuration. Note that removing any state q ∈ C from a minimal eventually configuration

leads to a configuration which is not an eventually configuration.
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Algorithm 3.5 constructs eventually patterns that correspond to minimal eventually

configurations of T with size less than or equal to β which is specified by the user. The larger

configurations usually lead to larger formulas that are harder for the user to understand.

The user can specify the value of β. Heuristics can also be used to automatically set β based

on the properties of Tc, e.g., the maximum outdegree of the vertices in the corresponding

directed graph GTc , where the outdegree of a vertex is the number of its outgoing edges.

In Algorithm 3.5, the set ♦Configurations keeps the minimal eventually configurations

discovered so far. Algorithm 3.5 initializes the sets Patterns and ♦Configurations to {♦q0}

and {q0}, respectively. Note that ♦q0 holds over all runs of T simply because all runs of

T start from the initial state q0. Algorithm 3.5 then checks each possible configuration

Q′ ⊆ Q\ {q0} with size less than or equal to β in a non-decreasing order of |Q′| to find

minimal eventually configurations. Without loss of generality, we assume that all states in

Tc have outgoing edges3. At each iteration, a configuration Q′ is chosen. It is then checked

if there is a minimal eventually configuration Q′′ that is already discovered and Q′′ ⊂ Q′. If

such Q′′ exists, Q′ is not minimal. Otherwise, the algorithm checks if it is an eventually

configuration by first removing all the states in Q′ and their corresponding incoming and

outgoing transitions from T to obtain another LTS T ′. Now, if there is an infinite run from

q0 in T ′, then there is a run in T that does not visit any state in Q′. Otherwise, Q′ is

a minimal eventually configuration and is added to ♦Configurations. The corresponding

formula Ψ = ♦
∨
q∈Q′ q is also added to the set of eventually patterns. Note that checking if

there exists an infinite run in T ′ can be done by considering T ′ as a graph and checking if

there is a reachable cycle from q0, which can be done in linear time in number of states and

transitions of T . Therefore, the algorithm is of complexity O(|Q|β(|Q|+ |δ|)). Computing

all minimal eventually patterns is NP-hard, as stated in the following theorem4.

Theorem 3.5. Computing all minimal eventually configurations is NP-hard

Proof. The proof is similar to that of Theorem 3.2. Given the universal set A, the sets

Ai for 1 ≤ i ≤ n, and the size β, we construct an LTS T = (Q, {q0} , δ,L) such that

there is a minimal hitting set B with size less than or equal to β if and only if there is a

minimal eventually configuration with size less than or equal to β other than the trivial

3A transition from any state with no outgoing transition can be added to a dummy state with a self loop.
Patterns which include the dummy state will be removed.

4In practice, we use an idea similar to the one used in Algorithm 3.2 for computing some of the eventually
patterns.
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Algorithm 3.5: Synthesizing ♦ψP patterns

Input: LTS T = (Q, {q0} , δ,L)
Input: β: maximum number of states in generated patterns
Output: a set of patterns of the form ♦ψP where T |= ♦ψP

1 Patterns := {♦q0};
2 ♦Configurations := {q0};
3 foreach Q′ ⊆ Q\ {q0} with non-decreasing order of |Q′| where |Q′| ≤ β do
4 if 6 ∃Q′′ ∈ ♦Configurations s.t. Q′′ ⊆ Q′ then
5 Let L′(q) = L(q) for all q ∈ Q\Q′;
6 Let δ′ = {(q, q′) ∈ δ|q 6∈ Q′ ∧ q′ 6∈ Q′};
7 Let T ′ = 〈Q\Q′, {q0} , δ′,L′〉;
8 if there is no infinite run from q0 in T ′ then
9 Add Q′ to ♦Configurations;

10 Let Ψ = ♦
∨
qi∈Q′ qi;

11 Add Ψ to Patterns;

12 return Patterns;

eventually configuration {q0}. LTS T is constructed similarly, and the only difference is

the transitions from qsink. We let δ(qsink) = {qsink}, i.e., qsink has a self-loop. Intuitively,

each run of T starts at q0, non-deterministically chooses a set Ai, and visits the states

CAi =
{
qui1 , qui2 , ..., quij

}
corresponding to its elements in order and ends up at the state

qsink and stays there forever. If B is a hitting set, removing its corresponding states from T

will leave no infinite run in T since qsink is not reachable anymore. Thus, the configuration

CB corresponding to B is an eventually configuration. Conversely, if CB is an eventually

configuration, its corresponding set B ⊆ A is a hitting set. Therefore, any minimal eventually

configuration CB 6= {q0} corresponds to a minimal hitting set B ⊆ A and vice versa.

Example 3.2. Consider the LTS shown in Figure 3.3. Algorithm 3.5 starts at initial

configuration {q0} and generates the formula ♦q0. None of {q1}, {q2} or {q3} is an even-

tually configuration. For example for configuration {q1}, there exists the run σ = q0, (q3)ω

which never visits q1. Configurations {q1, q3} and {q2, q3} are minimal eventually con-

figurations. For example removing {q1, q3} will lead to an LTS with no infinite run (no

cycle is reachable from q0 in the corresponding graph). It is easy to see that configuration

{q1, q2} is not an eventually configuration. Configuration {q1, q2, q3} is not minimal, al-

though it is an eventually configuration. Thus Algorithm 3.5 returns the set of patterns

{♦q0,♦(q1 ∨ q3),♦(q2 ∨ q3)}.
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Algorithm 3.6: Synthesizing ♦�ψP patterns

Input: LTS T = (Q, {q0} , δ,L)
Output: A set of patterns of the form ♦�ψP where T |= ♦�ψP

1 Let Qcycle = {q ∈ Q | there exists a cycle ∈ T including q};
2 return Ψ = ♦�

∨
q∈Qcycle q;

Synthesizing ♦�ψP Patterns

To compute formulas of the form ♦�ψP that hold over all runs of an LTS T = (Q, {q0} , δ,L),

we view T as a graph and partition its states into two groups: Qcycle ⊆ Q, the set of states

that are part of a cycle in T (including the cycle from one node to itself), and Q′ = Q\Qcycle.

Without loss of generality we assume that any state q ∈ Q is reachable from q0. Therefore,

any state q ∈ Qcycle belongs to a reachable strongly connected component SCC of T . Also

for any strongly connected component SCC of T , there exists a run σ of T that reaches

states in SCC and keeps cycling there forever. Hence, the formula Ψ1 = ♦�
∨
q∈SCC q holds

over the run σ. Indeed Ψ1 is the minimal formula of disjunctive form that holds over all

runs that can reach the strongly connected component SCC. That is, by removing any of

the states from Ψ1, one can find a run σ′ that can reach the strongly connected component

SCC and visit the removed state, falsifying the resulted formula. Therefore, eventually for

any execution of T , the state of the system will always be in one of the states q ∈ Qcycle.

Thus the formula Ψ = ♦�
∨
q∈Qcycle q is the minimal formula of the form ♦�ψP that holds

over all runs of T . Algorithm 3.6 summarizes the steps for synthesizing the patterns of the

form ♦�ψP . To partition the states of the T into Qcycle and Q′, we use Tarjan’s algorithm

for computing strongly connected components of the graph. Thus the algorithm is of linear

time complexity in number of states and transitions of T .

Example 3.3. Consider the LTS shown in Figure 3.3. It has three strongly connected

components: {q0}, {q1, q2} and {q3}. Only the latter two components include a cycle inside

them, that is Qcycle = {q1, q2, q3}. Thus, the pattern Ψ = ♦�(q1 ∨ q2 ∨ q3) is generated. Note

that the possible runs of the system are σ1 = q0, (q1, q2)ω and σ2 = q0, (q3)ω. The generated

pattern Ψ holds over both of these runs. Observe that removing any of the states in Ψ will

result in a formula that is not satisfied by T any more.
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Synthesizing ♦(ψP ∧©ψ′P) Patterns

To generate candidates of the form ♦(ψP ∧©ψ′P), first note that ♦(ψP ∧©ψ′P) holds only

if ♦ψP holds. Therefore, a set of eventually patterns ♦ψP is first computed using Algorithm

3.5. Then for each formula ♦ψP , the pattern ♦(ψP ∧©
∨
q∈Next(ψP ) q) is generated, where

Next(ψP) is the set of states that can be reached in one step from the configuration specified

by ψP . Formally, Next(ψP) = {qi ∈ Q | ∃qj ∈ C s.t. (qj , qi) ∈ δ} and C is the configuration

represented by ψP , i.e., ψP =
∨
q∈C q. The most expensive part of this procedure is computing

the eventually patterns, therefore its complexity is the same as Algorithm 3.5. Algorithm

3.7 summarizes the steps for synthesizing patterns of the form ♦(ψP ∧©ψ′P).

Algorithm 3.7: Synthesizing ♦(ψP ∧©ψ′P) patterns

Input: LTS T = (Q, {q0} , δ,L)
Input: β, maximum number of states in eventually configurations
Output: a set of patterns of the form ♦(ψP ∧©ψ′P) where T |= ♦(ψP ∧©ψ′P)

1 ♦Patterns = eventually patterns generated by Algorithm 3.5 with input T and β;
2 Patterns := Empty;
3 foreach formula ♦ψP ∈ ♦Patterns do

4 Patterns = Patterns ∪
{
♦(ψP ∧©

∨
q∈Next(ψP ) q)

}
;

5 return Patterns;

Example 3.4. Consider the LTS shown in Figure 3.3. Given the eventually formulas

♦q0, ♦(q1 ∨ q3), and ♦(q2 ∨ q3) produced in Example 3.2, patterns ♦(q0 ∧ ©(q1 ∨ q3)),

♦((q1 ∨ q3) ∧©(q2 ∨ q3)) and ♦((q2 ∨ q3) ∧©(q1 ∨ q3)) are generated.

q0start

q1 q2

q3

Figure 3.3: An LTS T

The following theorem states that the procedures described above generate the strongest

patterns of the specified forms.
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Theorem 3.6. For any formula of the form ♦ψ,♦�ψ, or ♦(ψ1 ∧ ©ψ2) that holds over

all runs of a given LTS T , there is an equivalent or stronger formula of the same form

synthesized by the algorithms 3.5, 3.6 and 3.7, respectively.

Proof. Note that if C is an eventually configuration, then any configuration C ′ such that

C ⊂ C ′ is also an eventually configuration. Moreover, ♦
∨
q∈C q → ♦

∨
q′∈C′ q

′, that is,

the formula corresponding to C is stronger than the one corresponding to C ′. We prove

the theorem for Algorithms 3.5 and 3.6. The proof for Algorithm 3.7 is similar. First

consider the eventually formulas ♦ψP generated by Algorithm 3.5. We assume that β = 2|Q|,

that is, the algorithm finds all minimal eventually configurations. Assume there exists a

formula ♦φ which holds over all runs of T . By Lemma 3.1 there exists Qφ ⊆ Q such that

♦φ = ♦(
∨
q∈Qφ q). Since ♦φ holds over all runs of T , Qφ must be an eventually configuration.

Algorithm 3.5 finds all minimal eventually configurations of T . Therefore, there exists a

minimal eventually configuration Qψ ⊆ Q corresponding to a formula ♦ψ generated by

Algorithm 3.5 such that Qψ ⊆ Qφ. It follows that ♦ψ → ♦φ. That is, there exists a formula

generated by Algorithm 3.5 which is stronger than or equivalent to ♦φ.

Eventually always formula ♦�ψ generated by Algorithm 3.6 is such that removing any

state from ψ makes the formula unsatisfiable and adding any state to it makes the formula

weaker. Thus any formula ♦�φ which holds over all runs of T should be equivalent to or

weaker than ♦�ψ.

3.2.3 Instantiating Patterns

To obtain LTL formulas over a specified subset U of variables from patterns, we replace

the states in patterns by their projected labels. For example, from an eventually pattern

♦ψP = ♦(
∨
q∈QψP

q) where QψP ⊆ Q is a configuration for T = (Q, {q0} , δ,L), we obtain

the formula ψ = ♦(
∨
q∈QψP

L(q)|U ).

Example 3.5. Let Σ = {a, b, c} be the set of variables. Consider the LTS T shown in

Figure 3.4, where L(q0) = ¬a ∧ ¬b ∧ ¬c, L(q1) = ¬a ∧ b ∧ ¬c, L(q2) = a ∧ ¬b ∧ ¬c,

L(q3) = ¬a∧ b∧¬c Let U = {a, b} be the set of variables specified by the designer to be used

in all forms of formulas. Figure 3.5 shows T a which is an abstraction of T with respect to

U , where the mapping function F is defined such that F−1(qa0) = {q0}, F−1(qa1) = {q1, q3},

and F−1(qa2) = {q2}, and the labels are defined as La(qa0) = ¬a ∧ ¬b, La(qa1) = ¬a ∧ b,

and La(qa2) = a ∧ ¬b. A set of patterns are synthesized using the input LTS. For example,
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q0start q1 q2 q3

Figure 3.4: An LTS T

qa0startstart qa1 qa2

Figure 3.5: Abstract LTS T a of T

ψP = ♦(qa1) is an eventually pattern where T a |= ψP , meaning that eventually over all runs

of the T a the state qa1 is visited. An LTL formula is obtained using the patterns, labels and

specified subset of variables. For example, Ψ = ♦(¬a ∧ b) is obtained from the pattern ψP ,

where the state qa1 is replaced by its label. Note that the formula Ψ′ = ♦((¬a∧ b)∧©(a∧¬b))

can be synthesized from the pattern Ψ′P = ♦(q1 ∧©q2) from T , however, T a does not satisfy

Ψ′. A more conservative formula ♦((¬a∧ b)∧©((a∧¬b)∨ (¬a∧¬b)) is obtained using the

abstraction.

Remark 3.1. Patterns can be synthesized from either T or T a. It is sometimes necessary

to use T a due to the high complexity of the algorithms for computing certain types of

patterns (e.g., eventually patterns), as T a may have significantly less number of states

compared to T which improves the scalability of the methods. However, abstraction may

introduce additional non-determinism into the model, leading to refinements that are more

“conservative.” Besides, some of the formulas which are satisfied by T , cannot be computed

from T a. It is up to the user to choose techniques that serve her purposes better.

3.3 Counter-Strategy-Guided Refinement of Unre-

alizable GR(1) Specifications

Writing a correct and complete formal specification that conforms to the (informal) design

intent is a hard and tedious task [CHJ08, KHB09]. Initial specifications are often incomplete

and unrealizable. Unrealizability of the specification is often due to inadequate environment

assumptions. In other words, assumptions about the environment are too weak, leading to

an environment with too many possible behaviors that make it impossible for the system

to satisfy the specification. Usually there is only a rough and incomplete model of the

environment in the design phase; thus it is easy to miss assumptions on the environment

side. We would like to automatically find such missing assumptions that can be added to

the specification and make it realizable. Computed assumptions can be used to give the

user insight into the specification. They also provide ways to correct the specification. In
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the context of compositional synthesis [KPV06, OTM11], derived assumptions based on the

components specifications can be used to construct interface rules between the components.

An unrealizable specification cannot be executed or simulated which makes its debugging

a challenging task. Counter-strategies are used to explain the reason for unrealizabilty of

LTL specifications [KHB09]. Intuitively, a counter-strategy defines how the environment can

react to the outputs of the system in order to enforce the system to violate the specification.

Konighofer et al. in [KHB09] show how such a counter-strategy can be computed for an

unrealizable LTL specification. The requirement analysis tool RATSY [BCG+10] implements

their method for GR(1) specifications.

Counter-strategies can still be difficult to understand by the user especially for larger

systems. In this section, we propose a debugging approach that uses the counter-strategies

to strengthen the assumptions on the environment in order to make the specification

realizable. For a given unrealizable specification, our algorithm analyzes the counter-

strategy and synthesizes a set of candidate assumptions in the forms that are allowed

in GR(1) specifications. Any of the computed candidate assumptions, if added to the

specification, restricts the environment in such a way that it cannot behave according to the

counter-strategy—without violating its assumptions—anymore. Thus we say the counter-

strategy is ruled out from the environment’s possible behaviors by adding the candidate

assumption to the specification. We now formally define the problem considered in the rest

of this section.

Problem Statement 3.2. Given a GR(1) specification Φ = Φe → Φs that is satisfiable

but unrealizable, find a refinement Ψ =
∧
i Ψi as a conjunction of environment assumptions

Ψi such that Φe ∧Ψ is satisfiable and Φe ∧Ψ→ Φs is realizable.

Specification refinements are constructed in two phases. First, given a counter-strategy’s

Moore machine Mc, we build an abstraction which is an LTS T . A set of patterns are then

synthesized over T . These patterns along with a subset of variables specified by the user

are used to generate a set of LTL formulas that hold over all runs of Mc. We ask the user

to specify a subset of variables which she thinks contribute to the unrealizability of the

specification. This set can also be used to guide the algorithm to generate formulas over

the set of variables which are underspecified. Using a smaller subset of variables leads to

simpler formulas that are easier for the user to understand.

The complement of the generated formulas form the set of candidate assumptions that
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(a)

q0 q1

q2

q3

(b)

Figure 3.6: (a) A counter-strategy produced by RATSY for the specification of Example 3.6
with the additional assumption �♦(¬r), where c = true holds in all states. (b) The LTS T
corresponding to the counter-strategy of part (a).

can be used to rule out the counter-strategy from the environment’s possible behaviors. We

remove the candidates that are not consistent with the specification in order to avoid a

trivial solution false. Note that adding inconsistent assumptions leads to an unsatisfiable

environment, i.e. Φe = false and the specification Φe → Φs is trivially realizable, but

obviously it is not an interesting solution.

Any assumption from the set of generated candidates can be used to rule out the counter-

strategy. Our approach does a breadth-first search over the candidates. If adding any of

the candidates makes the specification realizable, the algorithm returns that candidate as a

solution. Otherwise at each iteration, the process is repeated for any of the new specifications

resulting from adding a candidate. The depth of the search is controlled by the user. The

search continues until either a consistent refinement is found or the algorithm cannot find

one within the specified depth (hence the search algorithm is sound, but not complete).

Example 3.6. Let I = {r, c} and O = {g, v} be the set of input and output variables,

respectively. Here r, c, g and v stand for request, clear, grant and valid signals, respectively.

We start with no assumption, that is, we assume Φe = true. Consider the following system

guarantees:

• Φ1 = �(r →©♦g)

• Φ2 = �((c ∨ g)→©¬g)

• Φ3 = �(c→ ¬v)

• Φ4 = �♦(g ∧ v)

Let Φs =
∧4
i=1 Φi be the conjunction of these formulas. Φ1 requires that every request must

be granted eventually starting from the next step by setting signal g to high. Φ2 says that
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if clear or grant signal is high, then grant must be low at the next step. Φ3 says if clear

is high, then the valid signal must be low. Finally, Φ4 says that system must issue a valid

grant infinitely often.

The specification Φe → Φs is unrealizable. A simple counter-strategy is for the environ-

ment to keep r and c high at all times. Then, by Φ3, v needs to be always low and thus Φ4

cannot be satisfied by any system. RATSY produces this counter-strategy which is then fed to

our algorithm. An example candidate synthesized to rule out this counter-strategy is the as-

sumption Ψ = �♦(¬r). Adding Ψ to the specification prevents the environment from always

keeping r high, thus the environment cannot use the counter-strategy anymore. However,

the specification Φe ∧ Ψ → Φs is still unrealizable. RATSY produces the counter-strategy

shown in Figure 3.6(a) for the new specification. The new counter-strategy keeps the c high

all the times. The value of r is changed depending on the state of the counter-strategy as

shown in Figure 3.6(a). The top block in each state of Figure 3.6(a) is the name of the

state and the bottom block is the value(s) of the environment variables. Variables which have

constant value over all states are given separately, for example signal c is always high for the

counter-strategy in Figure 3.6. RATSY produces additional information, shown in middle

blocks, on how the counter-strategy enforces the system to violate the specification. We do

not use this information in the current version of the algorithm.

The following formulas are examples of consistent refinements produced by our algorithm

for the specification Φe → Φs as possible ways to resolve the unrealizability of the specification:

• Ψ1 = �(¬r ∨ ¬c) ∧�(r ∨ ¬c)

• Ψ2 = �(r →©¬c) ∧�(¬r →©¬c)

• Ψ3 = �♦(¬r) ∧�(¬c ∨ r) ∧�(¬r →©¬c))

Assumptions in both of the refinements Ψ1 and Ψ2 imply �(¬c), that is, adding them

requires the environment to keep the signal c always low. Although adding these assumptions

make the specification realizable, it may not conform to the design intent. Refinement Ψ3

does not restrict c like Ψ1 and Ψ2, and only assumes that the environment sets the signal r

to low infinitely often and that, when the request signal is low, the clear signal should be low

at the same and the next step. Refinements Ψ1 and Ψ2 may also remind the designer to add

the assumption �♦(c) to the specification, meaning that clear happens infinitely often. By

running the algorithm on this new specification, we only get Ψ3, since both Ψ1 and Ψ2 are

inconsistent with the new specification.
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Algorithm 3.8: Specification Refinement

Input: Φ = Φe → Φs, initial specification
Input: U , set of variables to be used in patterns
Input: α, maximum depth of the search
Output: Ψ, additional assumptions such that Φe ∧Ψ→ Φs is realizable

1 Mc := CounterStrategy(Φ);
2 CandidatesQ := GenerateCandidates(Mc,U);
3 while CandidatesQ is not Empty do
4 Ψ := CandidatesQ.DeQueue;
5 if Consistent(Φ,Ψ) then
6 Φnew = Φe ∧Ψ→ Φs;
7 if Realizable(Φnew) then
8 return Ψ;

9 else
10 if Depth(Ψ) < α then
11 Mc := CounterStrategy(Φnew);
12 newCandidates := GenerateCandidates(Mc,U) ;
13 foreach Ψnew ∈ newCandidates do
14 CandidatesQ.EnQueue(Ψ ∧Ψnew);

15 return No refinement was found;

3.3.1 Refining Unrealizable Specifications

Algorithm 3.8 finds environment assumptions that can be added to the specification to

make it realizable. It gets as input the initial unrealizable specification Φ = Φe → Φs, the

set U of variables to be used in generated assumptions and the maximum depth α of the

search. It outputs a consistent refinement Ψ, if it can find one within the specified depth.

The complements of these formulas form the set of candidate assumptions that can be

used to rule out the counter-strategy. For an unrealizable specification, a counter-strategy

is computed as a Moore transducer using the techniques proposed in [BCG+10, KHB09].

Procedure GenerateCandidates produces a set of candidate assumptions in the forms

allowed by GR(1) as follows: It first infers a set of formulas of the forms ♦�ψ, ♦ψ and

♦(ψ ∧©ψ′) (complement of the forms allowed in GR(1)) using the methods described in

Section 3.2. The complements of these formulas are of desired GR(1) forms and form the

set of candidate assumptions that can be used to rule out the counter-strategy.

Algorithm 3.8 runs a breadth-first search to find a consistent refinement. Each node of
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the search tree is a generated candidate assumption, while the root of the tree corresponds

to the assumption true (i.e., no assumption). Each path of the search tree starting from the

root corresponds to a candidate refinement as a conjunction of candidate assumptions of the

nodes visited along the path. When a node is visited during the search, its corresponding

candidate refinement is added to the specification. If the new specification is consistent and

realizable, the refinement is returned by the algorithm. Otherwise, if the depth of the current

node is less than the maximum specified, a set of candidate assumptions are generated based

on the counter-strategy for the new specification and the search tree expands.

In Algorithm 3.8, the queue CandidatesQ keeps the candidate refinements that are found

during the search. At each iteration, a candidate refinement Ψ is removed from the head of

the queue. The procedure Consistent checks if Ψ is consistent with the specification Φ. If

it is, the algorithm checks the realizability of the new specification Φnew = Φe ∧Ψ→ Φs

using the procedure Realizable [BJP+12, BCG+10]. If Φnew is realizable, Ψ is returned as

a suggested refinement. Otherwise, if the depth of the search for reaching the candidate

refinement Ψ is less than α, a new set of candidate assumptions are generated using the

counter-strategy computed for Φnew. Algorithm 3.8 keeps track of the number of counter-

strategies produced along the path to reach a candidate refinement in order to compute

its depth (Depth(ψ)). Each new candidate assumption Ψnew results in a new candidate

refinement Ψ ∧Ψnew which is added to the end of the queue for future processing . The

algorithm terminates when either a consistent refinement Ψ is found, or there is no more

candidates in the queue to be processed.

Remark 3.2. Note that there might be repetitive formulas among the generated candidates.

We remove the repeated formulas in order to prevent the process from checking the same

assumption repeatedly.

3.3.2 Removing the Restrictive Formulas

Given two non-equivalent predicates φ1 and φ2, we say φ1 is stronger than φ2 if φ1 → φ2

holds. Assume Ψ1 and Ψ2 are LTL formulas that hold over all runs of the counter-strategy

computed for the specification Φe → Φs, and that Ψ1 → Ψ2. Note that ¬Ψ2 → ¬Ψ1 also

holds, i.e., ¬Ψ1 is a weaker assumption compared to ¬Ψ2. Adding either ¬Ψ1 or ¬Ψ2 to the

environment assumptions Φe rules out the counter-strategy. However, adding the stronger

assumption ¬Ψ2 restricts the environment more than adding ¬Ψ1. That is, Φe ∧ ¬Ψ2 puts

43



more constraints on the environment compared to Φe ∧ ¬Ψ1.

As an example, consider the counter-strategy Mc shown in Figure 3.6(a). Both Ψ1 =

♦(c ∧ ¬r) and Ψ2 = ♦(c) hold over all runs of Mc. Moreover, Ψ1 → Ψ2. Consider the

corresponding assumptions ¬Ψ1 = �(¬c ∨ r) and ¬Ψ2 = �(¬c). Adding ¬Ψ2 restricts the

environment more than adding ¬Ψ1. The refinement ¬Ψ2 requires the environment to keep

the signal c always low, whereas in case of ¬Ψ1, the environment is free to assign additional

values to its variables. It only prevents the environment from setting c to high and r to low

at the same time.

We construct patterns that are strongest formulas of their specified form that hold over

all runs of the counter-strategy. Removing the weaker patterns leads to shorter formulas that

are easier for the user to understand. It also decreases the number of generated candidates at

each step. More importantly, the generated candidate assumptions are the weakest formulas

that can be constructed for the given structure and the user specified subset of variables. If

the restriction imposed by any of these candidates is not enough to make the specification

realizable, the method analyzes the counter-strategy computed for the new specification to

find assumptions that can restrict the environment more. This way the counter-strategies

guide the method to synthesize assumptions that can be used to achieve realizability.

3.3.3 Examples

We now illustrate the counter-strategy-guided refinement method with two examples. We use

RATSY to generate counter-strategies and Cadence SMV model checker [McM] to check the

consistency of the generated candidates. In our experiments, we set α in Algorithm 3.8 to 2,

and β in Algorithm 3.5 to the maximum outdegree of the vertices of the counter-strategy’s

abstract directed graph. We slightly change Algorithm 3.8 to find all possible refinements

within the specified depth.

Lift Controller

We borrow the lift controller example from [BJP+12]. Consider a lift controller serving three

floors. Assume that the lift has three buttons, denoted by the Boolean variables b1, b2 and b3,

which are controlled by the environment. The location of the lift is represented using Boolean

variables f1, f2 and f3 controlled by the system. The lift may be requested on each floor by

pressing the corresponding button. We assume that (1) once a request is made, it cannot be
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withdrawn, (2) once the request is fulfilled it is removed, and (3) initially there are no requests.

Formally, the specification of the environment is Φe = φeinit∧Φe
11
∧Φe

12
∧Φe

13
∧Φe

21
∧Φe

22
∧Φe

23
,

where

• φeinit = (¬b1 ∧ ¬b2 ∧ ¬b3),

• Φe
1i

= �(bi ∧ fi →©¬bi), and

• Φe
2i

= �(bi ∧ ¬fi →©bi).

The lift initially starts on the first floor. We expect the lift to be only on one of the

floors at each step. It can move at most one floor at each time step. We want the system

to eventually fulfill all the requests. Formally the specification of the system is given as

Φs = φsinit ∧ Φs
1

∧
i Φs

2,i ∧ Φs
3

∧
j Φs

4,j ∧ Φs
5, where

• φsinit = f1 ∧ ¬f2 ∧ ¬f3,

• Φs
1 = �(¬(f1 ∧ f2) ∧ ¬(f2 ∧ f3) ∧ ¬(f1 ∧ f3)),

• Φs
2,i = �(fi →©(fi−1 ∨ fi ∨ fi+1)),

• Φs
3 = �((f1 ∧©f2) ∨ (f2 ∧©f3)→ (b1 ∨ b2 ∨ b3)), and

• Φs
4,j = �♦(bj → fj).

The requirement Φs
3 says that the lift moves up one floor only if some button is pressed.

The specification Φ = Φe → Φs is realizable. Now assume that the designer wants to

ensure that all floors are infinitely often visited; thus she adds the guarantees
∧
j Φs

5,j where

Φs
5,j = �♦(fj) to the set of system requirements. The specification Φ′ = Φe → Φs

∧
j Φs

5,j

is not realizable. A counter-strategy for the environment is to always keep all bi’s low.

We run our algorithms with the set of all the environment variables {b1, b2, b3} for all

assumption forms. The algorithm generates the refinements Ψ1 = �♦(b1 ∨ b2 ∨ b3) and

Ψ2 = �((¬b1 ∧¬b2 ∧¬b3)→©(b1 ∨ b2 ∨ b3)). Refinement Ψ1 requires that the environment

infinitely often presses a button. Refinement Ψ2 is another suggestion which requires the

environment to make a request after any inactive turn. Refinement Ψ1 seems to be more

reasonable and the user can add it to the specification to make it realizable.

Only one counter-strategy is processed during the search for finding refinements and three

candidate assumptions are generated overall, where one of the candidates is inconsistent

with Φ′ and the two others are refinements Ψ1 and Ψ2. Thus, the search terminates after

checking the generated assumptions at first level. Only 0.6 percent of total computation

time was spent on generating candidate assumptions from the counter-strategy. Note that
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to generate Ψ1 using the template-based method in [LDS11], the user needs to specify a

template with three variables which leads to 23 = 8 candidate assumptions, although only

one of them is satisfied by the counter-strategy.

AMBA AHB

ARM’s Advanced Microcontroller Bus Architecture (AMBA) defines the Advanced High-

Performance Bus (AHB) which is an on-chip communication protocol. Up to 16 masters and

16 slaves can be connected to the bus. The masters start the communication (read or write)

with a slave and the slave responds to the request. Multiple masters can request the bus at

the same time, but the bus can only be accessed by one master at a time. A bus access can

be a single transfer or a burst, which consists of multiple number of transfers. A bus access

can be locked, which means it cannot be interrupted. Access to the bus is controlled by the

arbiter. More details of the protocol can be found in [BJP+12]. We use the specification

given by one of RATSY’s example files (amba02.rat). There are four environment signals:

• HBUSREQ[i]: Master i requests access to the bus.

• HLOCK[i]: Master i requests a locked access to the bus. This signal is raised in combination

with HBUSREQ[i].

• HBURST[1 : 0]: Type of transfer. It can be SINGLE (a single transfer), BURST4 (a

four-transfer), or INCR (unspecified length burst).

• HREADY: Raised if the slave has finished processing the data. The bus owner can change

and transfers can start only when HREADY is high.

The first three signals are controlled by the masters and the last one is controlled

by the slaves. The specification of amba02.rat consists of one master and two slaves.

For our experiment, we remove the fairness assumption �♦HREADY from the specifica-

tion. The new specification is unrealizable. We run our algorithm with the sets of

variables {HREADY}, {HREADY, HBUSREQ[0], HBUSREQ[1], HLOCK[0], HLOCK[1]}, {HREADY} and

{HBUSREQ[0], HBUSREQ[1]} to be used in liveness, safety, left and right hand side of transition

assumptions, respectively. Some of the refinements generated by our method are:

• Ψ1 = �♦HREADY,

• Ψ2 = �(HREADY∨¬HBUSREQ[0]∨¬HLOCK[0]∨¬HBUSREQ[1]∨¬HLOCK[1])∧�♦HREADY, and

• Ψ3 = �(HREADY→©¬HBUSREQ[0]) ∧�(¬HREADY→©¬HBUSREQ[0]).
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Note that although Ψ2 is a consistent refinement, it includes Ψ1 as a subformula and it

is more restrictive. The refinement Ψ3 implies that HBUSREQ[0] must always be low from the

second step on. Among these suggested refinements, Ψ1 appears to be the best option. Our

method only processed one counter-strategy with five states and generates five candidate

assumptions to find the first refinement Ψ1. To find all refinements within the depth two,

overall five counter-strategies are processed by our method during the search, where the

largest counter-strategy had 25 states. The number of assumptions generated for each

counter-strategy during the search is less than nine. 28.6 percent of total computation time

was spent on generating candidate assumptions from the counter-strategies.

3.4 Compositional Refinement

We propose three approaches for compositional refinement of the specifications Φ1 and Φ2 in

the problem stated in Section 5.1. These approaches differ mainly in how much information

about the strategy of the realizable component is shared with the unrealizable component.

All three approaches use bounded search to compute the refinements. The search depth

(number of times the refinement procedure can be called recursively) is specified by the user.

Note that the proposed approaches are not complete, i.e., not finding a refinement does not

mean that there is no refinement.

Approach 1 (“No knowledge of the strategy of C1”): One way to synthesize the

refinements Ψ and Ψ′ is to compute a refinement Ψ′ for the unrealizable specification Φ2

using the counter-strategy-guided refinement method described in the previous section. The

specification Φ2 is refined by adding assumptions on its environment that rule out all the

counter-strategies for Φ2, and the refined specification Φref
2 = (Φe2 ∧Ψ′)→ Φs1 is realizable.

We add Ψ = Ψ′ to guarantees of Φ1 and check if Φref
1 = Φe1 → (Φs1 ∧Ψ) is realizable. If

Φref
1 is not realizable, another assumption refinement for Φ2 must be computed, and the

process is repeated for the new refinement. Note that if adding Ψ to the guarantees of Φ1

does not make it realizable, there is no Ψ′′ such that Ψ′′ → Ψ, and adding Ψ′′ keeps Φ1

realizable. Therefore, a new refinement must be computed.

An advantage of this approach is that the assumption refinement Ψ′ for Φ2 is computed

independently using the weakest assumptions that rule out the counter-strategies. Thus, Ψ′

can be used even if C1 is replaced by another component C ′1 with different specification, as

long as C ′1 can still guarantee Ψ′. However, not having enough information about the strategy
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Algorithm 3.9: CompositionalRefinement1

Input: Φ1 = Φe1 → Φs1 : a realizable specification, Φ2 = Φe2 → Φs2 : an unrealizable
specification, α: search depth, U : subset of variables

Output: Ψ such that Φe1 → (Φs2 ∧Ψ) and (Φe2 ∧Ψ)→ Φs2 are realizable
1 while true do
2 Let Ψ := NextAssumptionRefinement(Φ2, α, U);
3 if Ψ = false then
4 break;

5 if Φe1 → (Φs1 ∧Ψ) is realizable then
6 return Ψ;

7 return No refinement found;

computed for C1, can result in producing counter-strategies that would have not existed if

the strategy chosen for C1 was taken into account. Roughly speaking, the counter-strategy is

“irrelevent” with respect to the strategy of C1. Considering the costly process of generating

candidate assumptions for refining the specification, having more knowledge of the strategy

of C1, and hence producing more relevant counter-strategies, might be more desirable, as it

decreases the search effort, with the expense of computing an interface specification that is

more dependant on the other component’s implementation.

Algorithm 3.9 summarizes the first approach. The procedure NextAssumptionRe-

finement is a slightly modified version of Algorithm 3.8 that returns the next possible

assumption refinement in the search tree, and false if there is no more assumption refinement

within the specified depth.

Approach 2 (“Partial knowledge of the strategy of C1”): For a given counter-

strategy, there may exist many different candidate assumptions that can be used to refine the

specification. Checking the satisfiability and realizability of the resulting refined specification

is an expensive process, so it is more desirable to remove the candidates that are not promising.

For example, a counter-strategy might represent a problem that cannot happen due to the

strategy chosen by the other component. Roughly speaking, the more one component knows

about the other one’s implementation, the less number of scenarios it needs to consider and

react to.

The second approach shares information about the strategy synthesized for C1 with

C2 as follows. It computes a set P of candidate LTL formulas that can be used to refine

guarantees of Φ1. Then at each iteration, a formula Ψ ∈ P is chosen, and it is checked if the

48



Algorithm 3.10: CompositionalRefinement2

Input: Φ1 = Φe1 → Φs1 : a realizable specification, Φ2 = Φe2 → Φs2 : an unrealizable
specification, α: search depth, U : subset of variables

Output: Refinement Ψ such that Φe1 → (Φs2 ∧Ψ) and (Φe2 ∧Ψ)→ Φs2 are
realizable, or false if no such refinement was found

1 if α = 0 then
2 return false;

3 Let P = FindGuarantees(Φ2, U);
4 while P is not empty do
5 Remove formula Ψ from P;
6 Let MCS be the counter-strategy for Φ2;
7 if MCS |= ¬Ψ then
8 if Φe2 ∧Ψ is satisfiable then
9 if ((Φe2 ∧Ψ)→ Φs2) is realizable then

10 return Ψ;

11 else
12 Let Φnew

1 := Φe1 → (Φs1 ∧Ψ);
13 Let Φnew

2 := (Φe2 ∧Ψ)→ Φs2 ;
14 Let Ψ′ = CompositionalRefinement2(Φnew

1 ,Φnew
2 , α− 1, U);

15 if Ψ′ 6= false then
16 return Ψ ∧Ψ′;

17 return false

counter-strategy for Φ2 satisfies ¬Ψ (similar to assumption mining in [LDS11]). If it does

and Ψ is consistent with Φ2, it is checked if Ψ is an assumption refinement for Φ2, in which

case Ψ can be used to refine the guarantees (assumptions) of Φ1 (Φ2 , respectively), and Ψ

is returned as a suggested refinement. Otherwise, the local specifications are refined by Ψ

and the process is repeated with the new specifications. In this approach, some information

about C1’s behavior is shared as LTL formulas extracted from the C1’s strategy. Only

those formulas that completely rule out the counter-strategy are kept, hence reducing the

number of candidate refinements, and keeping the more promising ones, while sharing as

much information as needed from one component to the other one. Algorithm 3.10 shows

the second approach for computing refinements for input specifications Φ1 and Φ2, given

the user specified subset of variables U and search depth α.

Approach 3 (“Full knowledge of the strategy of C1”) It might be preferred to

refine the specification by adding formulas that are already satisfied by the current imple-
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mentation of the realizable component in order not to change the underlying implementation.

For example, assume a strategy MS is already computed and implemented for Φ1, and

the designer prefers to find a refinement Ψ that is satisfied by MS . To this end, we can

synthesize a set of formulas that hold over all runs of MS . Any of these formulas can be

added as a guarantee to Φ1, and MS will still satisfy the new specification. Yet in some

cases, the existing strategy for C1 must be changed, otherwise C2 will not be able to fulfill

its requirements. In this setting, the guarantees of C1 can be refined to find a different

winning strategy for it.

The third approach is based on this idea. It shares the full knowledge of strategy

computed for C1 with C2 by encoding the strategy as an LTL formula and providing it as

an assumption for Φ2. Knowing exactly how C1 plays might make it much easier for C2 to

synthesize a strategy for itself, if one exists. Furthermore, a counter-strategy produced in

this case indicates that it is impossible for C2 to fulfill its goals if C1 sticks to its current

strategy. Therefore, both specifications are refined and a new strategy is computed for the

realizable component.

Algorithm 3.11 summarizes the third approach. Once a strategy is computed for the

realizable specification, its corresponding LTS T = (Q, {q0} , δ,L) is obtained, and encoded

as a conjunction of transition formulas as follows. We define a set Z =
{
z0, z1, · · · , zdlog|Q|e

}
of new propositions that encode the states Q of T . Intuitively, these propositions represent

the memory of the strategy in the generated transition formulas, and are considered as

environment variables in the refined specification Φ′2. For ease of notation, let |Z|i indicate

the truth assignment to the propositions in Z which represents the state qi ∈ Q. We encode

T with the conjunctive formula

Ψ = (|Z|0 ∧ L(q0) ∧
∧
qi∈Q

�((|Z|i ∧ L(qi))→©(
∨

qj∈Next(qi)

|Z|j ∧ L(qj))

where Next(qi) is the set of states in T with a transition from qi to them. We refer to Ψ as

full encoding of T . Intuitively, Ψ states that always when the strategy is in state qi ∈ Q

with truth assignment to the variables given as L(qi), then at the next step it will be in

one of the adjacent states qj ∈ Next(qi) with truth assignment L(qj) to the variables, and

initially it is in state q0. The procedure Encode-LTS in Algorithm 3.11 takes an LTS and

returns a conjunctive LTL formula representing it.
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Algorithm 3.11: CompositionalRefinement3

Input: Φ1 = Φe1 → Φs1 : a realizable specification, Φ2 = Φe2 → Φs2 : an unrealizable
specification, α: search depth, U : subset of variables

Output: Ψ such that Φe1 → (Φs2 ∧Ψ) and (Φe2 ∧Ψ)→ Φs2 are realizable
1 if α < 0 then
2 return false;

3 Let S be the strategy for Φ1;
4 Ψ := Encode-LTS(S);
5 Φ′2 := (Ψ ∧ Φe2)→ Φs2 ;
6 if Φ′2 is realizable then
7 return Ψ;

8 else
9 Let CS ′ be a counter-strategy for Φ′2;

10 P := findCandidateAssumptions(CS ′, U);
11 foreach Ψ ∈ P do
12 Let Φ′′2 be (Ψ ∧ Φe2)→ Φs2 ;
13 Let Φ′′1 be Φe1 → (Φs1 ∧Ψ);
14 if Φ′′1 is realizable and Φ′′2 is satisfiable then
15 if Φ′′2 is realizable then
16 return Ψ;

17 else
18 Ψ′ := CompositionalRefinement3(Φ′′1,Φ

′′
2, α− 1, U);

19 if Ψ′ 6= false then
20 return Ψ′ ∧Ψ;

21 return False;

Unrealizable specification Φ2 is then refined by adding the encoding of the strategy as

assumptions to it. If the refined specification Φ′2 is realizable, there exists a strategy for C2,

assuming the strategy chosen for C1, and the encoding is returned as a possible refinement.

Otherwise, the produced counter-strategy CS ′ shows how the strategy for C1 can prevent

C2 from realizing its specification. Hence, the specification of both components need to be

refined. Procedure findCandidateAssumptions uses algorithm 3.8 to compute a set P of

candidate assumptions that can rule out CS ′, and at each iteration, one candidate is chosen

and tested by both specifications for satisfiability and realizability. If any of these candidate

formulas can make both specifications realizable, it is returned as a refinement. Otherwise,

the process is repeated with only those candidates that are consistent with Φ2, and keep Φ1

realizable. As a result, the set of candidate formulas is pruned, and the process is repeated
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with the more promising formulas. If no refinement is found within the specified search

depth, false is returned.

Remark 3.3. Introducing new propositions representing the memory of the strategy S1

computed for Φ1 leads to assumptions that provide C2 with full knowledge of how C1 reacts

to its environment. Therefore, if the new specification refined by these assumptions is not

realizable, the counter-strategy would be an example of how S1 might prevent Φ2 from being

realizable, giving the designer the certainty that a different strategy must be computed for

C1, or in other words, both specifications must be refined. However, if introducing new

propositions is undesirable, an abstract encoding of the strategy (without memory variables)

can be obtained by returning conjunction of all transition formulas �(ψ →©ψ′) computed

over the strategy. The user can specify the set of variables in which she is interested. This

encoding represents an abstraction of the strategy that might be non-deterministic, i.e., for

the given truth assignment to the environment variables, there might be more than one truth

assignment to outputs of C1 that are consistent with the encoding. Such relaxed encoding can

be viewed as sharing partial information about the strategy of C1 with C2. As an example,

consider the LTS T in Figure 3.4 which can be encoded as

ΨT = (q0 ∧ ¬a ∧ ¬b ∧ ¬c) ∧�((q0 ∧ ¬a ∧ ¬b ∧ ¬c)→©(q1 ∧ ¬a ∧ b ∧ ¬c))

∧ · · · ∧�((q3 ∧ ¬a ∧ b ∧ ¬c)→©(q0 ∧ ¬a ∧ ¬b ∧ ¬c)).

An abstract encoding without introducing new variables and considering only a and b

results in formula

Ψa
T = �((¬a ∧ ¬b)→©(¬a ∧ b)) ∧�((¬a ∧ b)→©((¬a ∧ ¬b) ∨ (a ∧ ¬b))

∧�((a ∧ ¬b)→©(¬a ∧ b)).

3.5 Case Study

We now demonstrate the techniques on a robot motion planning case study. We use RATSY

[BCG+10] for computing counter-strategies, JTLV [PSZ10] for synthesizing strategies, and

Cadence SMV model checker [McM] for model checking. The experiments are performed on

a Intel core i7 3.40 GHz machine with 16GB memory.

Consider the robot motion planning example over the discrete workspace shown in Figure
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Figure 3.7: Grid-world for the case study

5.1. Assume there are two robots R1 and R2 initially in cells 1 and 25, respectively. Robots

can move to one of their neighbor cells at each step. There are two rooms in bottom-left

and the upper-right corners of the workspace protected by two doors D1 (cell 10) and D2

(cell 16). The robots can enter or exit a room through its door and only if it is open. The

objective of R1 (R2) is to infinitely often visit the cell 5 (21, respectively). The global

specification requires each robot to infinitely often visit their goal cells, while avoiding

collision with each other, walls and the closed doors, i.e., the robots cannot occupy the same

location simultanously, or switch locations in two following time-steps, they cannot move to

cells {4, 9, 17, 22} (walls), and they cannot move to cells 10 or 16 if the corresponding door

is closed. The doors are controlled by the environment and we assume that each door is

always eventually open.

The global specification is realizable. We decompose the specification as follows. A local

specification Φ1 = Φe1 → Φs1 for R1 where Φe1 is the environment assumption on the doors

and Φs1 is a conjunction of R1’s guarantees which consist of its initial location, its transition

rules, avoiding collision with walls and closed doors, and its goal to visit cell 5 infinitely often.

A local specification Φ2 = Φe2 → Φs2 for R2 where Φe2 includes assumptions on the doors,

R1’s initial location, goal, and its transition rules, and Φs2 consists of R2’s initial location,

its transition rules, avoiding collision with R1, walls and closed doors while fulfilling its goal.

The specification Φ1 is realizable, but Φ2 is not. We use the algorithms outlined in Section

3.4 to find refinements for both components. We slightly modified the algorithms to find

all refinements within the specified search depth. We use the variables corresponding to

the location of R1 for computing the abstraction and generating the candidate formulas.

Furthermore, since the counter-strategies are large, computing all eventually and always

eventually patterns is not feasible (may take years), and hence we only synthesize some of

them using algorithms explained in Section 3.2.

Using the first approach along with abstraction, three refinements are found in 173
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minutes which are conjunctions of safety and transition formulas. One of the computed

refinements is

Ψ1 =�(LocR1 = 7→©(LocR1 6∈ {7, 8, 12}))

∧�(LocR1 = 13→©(LocR1 6∈ {12, 14}))

∧�(LocR1 = 11→©(LocR1 6= 16))

∧�(LocR1 = 2→©(LocR1 6= 7))

∧�(LocR1 6∈ {2, 12})

Intuitively, Ψ1 assumes some restrictions on how R1 behaves, in which case a strategy for

R2 can be computed. Indeed, R1 has a strategy that can guarantee Ψ1. Without using

abstraction, four refinements are found within search depth 1 in 17 minutes. A suggested

refinement is �(LocR1 6∈ {7, 12, 16}), i.e., if R1 avoids cells {7, 12, 16}, a strategy for R2 can

be computed. Using abstraction reduces the number of states of the counter-strategy from

576 to 12 states, however, not all the formulas that are satisfied by the counter-strategy,

can be computed over its abstraction, as mentioned in Remark 3.1. Note that computing

all the refinements within search depth 3 without using abstraction takes almost 5 times

more time compared to when abstraction is used.

Using the second approach (with and without abstraction) the refinement

Ψ2 = �(LocR1 = 10→ LocR1 = 5)

is found by inferring formulas from the strategy computed for R1. Using abstraction slightly

improves the process. Finally, using the third approach, providing either the full encoding

or the abstract encoding of the strategy computed for Φ1 as assumptions for Φ2, makes

the specification realizable. Therefore, no counter-strategy is produced, as knowing how R1

behaves enables R2 to find a strategy for itself.

Table 3.1 shows the experimental results for the case study. The columns specify the

approach, whether abstraction is used or not, the total time for the experiment in minutes,

number of strategies (counter-strategies) and number of states of the largest strategy

(counter-strategy, respectively), the depth of the search, number of refinements found, and

number of candidate formulas generated during the search. As it can be seen from the table,

knowing more about the strategy chosen for the realizable specification can significantly
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Table 3.1: Evaluation of approaches on a robot motion planning case study

Appr. Abstr. time (min) #S max |Q|S #CS max |Q|CS α #ref. #cand.

1 yes 173.05 - - 17 12 3 3 104

1 no 17.18 - - 1 576 1 4 22

1 no 869.84 - - 270 644 3 589 7911

2 yes 69.21 1 8 18 576 1 2 19

2 no 73.78 1 22 19 576 1 2 24

3 yes 0.01 1 8 0 0 1 1 0

3 no 0.02 1 22 0 0 1 1 0

reduce the time needed to find suitable refinement (from hours for the first approach to

seconds for the third approach). However, the improvement in time comes with the cost of

introducing more coupling between the components, i.e., the strategy computed for C2 can

become too dependent on the strategy chosen for C1.
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4

Compositional Synthesis with Parametric Reactive

Controllers

Although automatic synthesis of realistic systems with large state spaces currently appears

unattainable, in practice, complex systems are often not constructed from scratch (an

implicit assumption in many of the related works,) but from a set of existing building blocks.

For example in robot motion planning, a robot usually has a number of predefined motion

primitives that can be selected and composed to enforce a high-level objective [FDF05].

Intuitively, a compositional approach that solves smaller and more manageable subproblems,

and hierarchically composes the solutions to implement more complicated behaviors seems

to be a more plausible way to synthesize complex systems.

To this end, we propose a compositional and hierarchical framework for synthesis from a

library of parametric and reactive controllers. Parameters allow us to take advantage of

the symmetry in many synthesis problems, e.g., in motion planning for autonomous robots

and vehicles. Reactivity of the controllers takes into account that the environment may be

dynamic and potentially adversarial. We first show how these controllers can be synthesized

from parametric objectives specified by the user to form a library of parametric and reactive

controllers. We then give a synthesis algorithm that selects and instantiates controllers from

the library in order to satisfy a given safety and reachability objective.

Consider an autonomous vehicle V1 that, starting from an initial location s0, needs to

navigate safely through streets and intersections to reach a final destination d, as shown

in Figure 4.1. Safe navigation means that the vehicle must follow the traffic rules (e.g.,

moving in specific directions of streets), and besides avoid collision with other vehicles. In

this example, V1 can cross both intersections I1 and I2 on its way toward the location d.
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→

Figure 4.1: One-way streets connected by intersections.

One can observe that although intersections I1 and I2 are located in different positions,

V1 can safely cross them in a similar way. In other words, V1 can employ a controller to

cross the intersection I1 and employ the same controller to cross I2. To take advantage of

such symmetry in synthesis problems, we introduce parametric controllers. Let (x, y) be

the location of V1 at any time step. Assume a, b are two parameters. We would like to

synthesize a controller that starting from a parametric location (x, y) = (a, b), guarantees

to eventually move two steps forward horizontally, i.e., eventually (x, y) = (a+ 2, b), while

avoiding collision with other vehicles. To this end, the parametric controller must also

be reactive, i.e., it must react to other vehicles’ movements to avoid collision. Once such

a parametric reactive controller is obtained, it can be instantiated by assigning values to

parameters. For example, the same parametric controller can be instantiated based on the

current location of the vehicle and be used to advance the vehicle in different locations.

Note that in many application domains, systems may have task-specific controllers that are

designed and verified a priori, e.g., an autonomous vehicle can have specialized controllers

for different scenarios such as crossing intersections, making U-turns, switching lanes, etc.

Such controllers can be defined parametrically and instantiated and composed to perform

more complicated tasks.

The proposed framework has two layers, parametric controller synthesis (bottom layer)

and synthesis from a library of parametric controllers (top layer). In the bottom layer, a

set of parametric controllers are synthesized from parametric objectives specified by the

user. Here, unlike other related works [LV13, SRK+14, FDF05], we do not assume that

the controllers are a priori given, and we let the user specify them and synthesis is done

automatically. This flexibility facilitates the design process, allowing the user to utilize her

57



insight into the system being designed to construct different libraries. Furthermore, the user

may not know the range of the parameter values that guarantees correct behavior of the

controller. We allow the user to provide a parametric specification and the set of acceptable

parameter values are discovered automatically. On the other hand, the high-level composer

does not necessarily need to know how controllers enforce their objectives. Thus a controller

interface that hides the controller’s specific implementation while providing information on

possible outcomes of the controller is synthesized for each parametric controller. A library

of parametric controllers can be reused to realize more complex behaviors. In the top layer

of the framework, given a library of parametric controllers and a high-level objective for

the system, a control strategy that selects and instantiates parametric controllers from the

library such that their composition enforces the objective is synthesized.

Note that adding parameters increases the size of the state space and can add to the

complexity of the problem. Therefore, how parameters are handled is crucial. We provide

symbolic algorithms that efficiently explore the parametric space. Besides, we show that the

upper bound on the number of symbolic steps, i.e., pre-image or post-image computations,

performed by the symbolic algorithm is independent from the parameters. Nevertheless,

this does not mean that adding parameters has no cost as it increases the complexity of

the symbolic steps. The main advantages of the introduced framework are twofold: i)

Reusability of controllers (parametric controllers are computed once and can be reused in

different compositions to achieve higher level objectives), ii) Separation of concerns (design

of controllers is separated from their composition which can also lead to strategies that are

defined hierarchically and are easier to understand).

The concept of motion primitives is popular and widely used in robotics and control

literature, since they can be designed by one group, e.g., the robot designer, and then be

used by other groups of people such as the end-users to implement higher level objectives.

The end-user only needs to have an understanding of what a specific motion primitive does

through a provided interface, and the actual implementation is encapsulated and hidden

from the end-user. A compositional motion planning framework for multi-robot systems

is presented in [SRK+14] where given a library of motion primitives, the motion planning

problem is reduced to solving a satisfiability modulo theories problem. A similar approach

to ours is considered in [FDF05] for solving motion-planning problems for time-invariant

dynamical control systems with symmetries, such as mobile robots and autonomous vehicles,
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where motion plans are described as concatenation of a number of motion-primitives chosen

from a finite library. The main difference of our work with [FDF05, SRK+14] is that our

motion primitives are reactive, i.e., the controllers also takes the ongoing interaction between

system and environment into account. To the best of our knowledge, we are the first to

study the problem of synthesizing controllers from a library of parametric and reactive

controllers.

The problem of LTL synthesis from a library of reusable components is considered

in [LV13]. Sequential composition of controllers considered in this chapter is similar to

control-flow composition in [LV13] and is inspired by software systems. In the software

context, when a function is called, the function gains the control over the machine and the

computation proceeds according to the function until it calls another function or returns.

Similarly, the controllers in our framework gain and relinquish control over computations

of the system. The controllers have a designated set of final states. Intuitively, a reactive

controller receives the control by entering an initial state and returns the control when

reaching a final state. The goal of the composer is to decide which controller will gain

control when the control is returned from the controller currently in charge. Although

by enumerating the parameter values and instantiating parametric controllers to obtain a

library of non-parametric controllers our problem can be reduced to the one considered in

[LV13], such naive enumeration may lead to an exponentially larger number of controllers in

the library, making the method infeasible in practice. Our algorithms symbolically explore

the parametric space, thus avoiding the excessive explicit enumeration.

4.1 Controllers, Controller Interfaces, and Sequen-

tial Composition

Controllers are building blocks of the proposed framework in this chapter. Given a high-

level objective, the composer selects and instantiates the appropriate controllers using the

information provided through their interfaces. Let Z be the set of integers. For a, b ∈ Z,

let [a..b] = {x ∈ Z | a ≤ x ≤ b}. Let P = {p1, · · · , pk} be a set of parameters where each

parameter p ∈ P is defined over a finite domain Σp. We define ΣP = Σp1 × · · · × Σpk to be

the collective domain of the parameters.

For a predicate φ, let VP(φ) be the set of variables and parameters that appear in the
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predicate’s formula. We say φ is a parametric predicate, if VP(φ) ∩ P 6= ∅, i.e., there is at

least one parameter in the predicate’s formula. Otherwise we say φ is non-parametric. Given

a parametric predicate φ over V ∪ P and a valuation p ∈ ΣP over parameters, restriction

of φ by p is a non-parametric predicate φ↓p obtained by replacing each parameter with its

corresponding value. Given a parametric set Π = ΣV × ΣP and a parameter value p ∈ ΣP ,

projection of Π by p, denoted by Π↓p, is the set {s ∈ ΣV | (s, p) ∈ Π}.

Without loss of generality and to simplify the specification language, we assume that

all variables and parameters are defined over bounded integer domains in the rest of this

chapter. Boolean variables are special case where the domain is {0, 1}. Note that since

the domains of variables and parameters are finite, they can be encoded using Boolean

variables. Ordered binary decision diagrams (OBDDs) can be used for obtaining concise

representations of sets and relations over finite domains [CGP99]. Before formally stating

the problems that are considered in this chapter, we provide some definitions.

Controller. We refer to memory-less strategies for player-2 with a designated set of

final states as finite-horizon reactive controllers (or controllers for short). In our setting,

controllers receive control of the system for a finite number of steps and interact with

environment until reaching a desirable target state while avoiding some specified error states.

Formally, a controller C is a pair (S,F) where S : ΣV → Λ is a memory-less strategy and

F ⊆ ΣV is a designated set of final states. At any time-step, if current state s ∈ ΣV is a final

state, i.e., s ∈ F , the controller has reached the end of its computation. Note that we only

consider controllers with reachability and safety objectives for which memory-less strategies

suffice. A parametric reactive controller is a controller whose strategy and set of final states

are parametric. Given a parameter valuation p ∈ Σp and a parametric controller C = (S,F),

instantiation of C with p ∈ P is the controller C↓p = (S↓p,F↓p) obtained by instantiating the

strategy and projecting the set of final states by p.

Controller interface. A controller interface abstracts a controller by providing high-

level information about its behavior while hiding the actual implementation and executions

of the controller. Formally, a controller interface IC = (φinitC , φinvC , φfC) for a controller C

is a tuple where φinitC is a set of initial valuations over variables (and parameters), φinvC is

an invariant that holds over all possible runs of C while it has the control, φfC is a possible

set of valuations over variables (and parameters) once C reaches a final state. A controller

C = (S,F) over a game structure G realizes a controller interface IC if S is a winning
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strategy for the game (G, φinitC ,Ψ) where Ψ = φinvC U (φinvC ∧φfC ) and F ⊆ JφfCK. That is,

starting from any initial state v |= φinitC , controller C guarantees that eventually a final state

vf |= φfC is visited and besides all the visited states along any possible outcome satisfy φinvC ,

i.e., only safe states are visited. Instantiation of a controller interafce IC by p ∈ ΣP is the

non-parametric controller interface IC↓p = (φinitC↓p , φinvC↓p , φfC↓p ). A parameter valuation

p ∈ ΣP is admissible for controller C with interface IC over a game structure G if and only

if the instantiation of C by p, C↓p, realizes the non-parametric interface IC↓p . Intuitively, a

parametric controller can be instantiated by any admissible parameter value, and enforce its

safety and reachability objectives, provided that its execution starts from a valid initial state.

A set Σa
P ⊆ ΣP of admissible parameter values is maximal, if for any parameter valuation

p ∈ ΣP\Σa
P , C↓p does not realize IC↓p . A controller interface I1 = (φinit1 , φinv1 , φf1) respects

a controller interface I2 = (φinit2 , φinv2 , φf2) if φinit1 → φinit2 , φinv1 → φinv2 , and φf1 → φf2 .

It is easy to see that any controller that realizes I1 also realizes the restricted interface

I ′2 = (φinit1 , φinv2 , φf2). Note that I ′2 is obtained from the interface I2 by restricting its

initial states to Jφinit1K ⊆ Jφinit2K. In our setting, the designer can specify a parametric

interface for the controllers without knowing for what parameter valuations the controller

can enforce its safety and reachability objectives. A parametric controller, a maximal set of

admissible parameter values, and an interface that respects the user-specified interface are

then synthesized automatically.

Composing Controllers Let G = (V,Λ, τ) be a game structure, and ΓC = {C1, · · · Cn}

be a set of parametric controllers. For a given set of initial states φinit and objective Φ, the

goal of the composer is to iteratively select a parametric controller and instantiate it with

a parameter valuation, delegate the control to the instantiated controller until it enters a

final state and relinquishes the control, upon which the composer selects the next controller

and the next parameter valuation, and the process is repeated such that the objective Φ is

enforced starting from any initial state vinit |= φinit. A control strategy SC : ΣV → ΣP × ΓC

is a (partial) function that maps states of the game to a controller and a parameter valuation

(note that we do not consider memory for the control strategy since it is not needed for

safety and reachability objectives). A control strategy SC induces a finite-memory strategy

S = (m0, fM , fΛ) obtained by sequentially composing instantiated controllers according to

SC as follows. Let M ⊆ ΣP×ΓC∪{⊥} be the memory of the strategy where m0 =⊥ and ⊥ is

a special symbol indicating the initial memory where a controller and a parameter valuation
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is yet to be selected. Intuitively, the memory of the strategy keeps track of the controller

that currently has the control and the parameter valuation used to instantiate it. The

memory-update function fM : M ×ΣV →M and the next-action function fΛ : M ×Σ2
V → Λ

are defined as

fM (m, v) =

m if m 6=⊥ ∧v 6∈ FCm

SC(v) otherwise

fΛ(m, v) =

SCm(v) if m 6=⊥ ∧v 6∈ FCm

SCnext(v) otherwise

where Cm = (SCm ,FCm) = Ci↓p is the instantiated controller for the memory m = (p, Ci), and

Cnext = (SCnext ,FCnext) = Cnext↓pnext with SC(v) = (pnext, Cnext) is the next controller chosen

by the control strategy. Intuitively, when a final state of the currently active controller is

reached or initially when no controller is selected, the next controller and the next parameter

valuation are chosen according to the control strategy and the memory is updated to reflect

this selection. The selected and instantiated controller then becomes active and guides the

actions of the system while the memory stays unchanged, until the active controller enters

a final state, upon which the control strategy decides the next action and the process is

repeated. Note that in practice, the induced strategy S from SC is not computed explicitly,

and the controllers can be dynamically fetched, instantiated and executed according to the

control strategy.

4.2 Problem Statement and Overview

We are now ready to formally define the problems considered in this chapter and give an

overview of our solution approach. Let V and P be sets of variables and parameters defined

over finite domains ΣV and ΣP , respectively, Λ be a finite set of actions, and G be a game

structure over V and Λ. We are interested in how a parametric controller can be synthesized

from a given parametric controller interface. Formally,

Problem Statement 4.1. (Synthesis of Parametric Reactive Controllers.) Given a game

structure G and a parametric controller interface I = (φinit , φinv , φf), synthesize a parametric

reactive controller C, its corresponding interface IC, and a maximal set Σa
P ⊆ ΣP of admissible
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Figure 4.2: Part of a road divided into grids.

parameter valuations such that IC respects I, and for any admissible parameter valuation

p ∈ Σa
P for C, instantiation of C by p, C↓p, realizes the instantiated controller interface IC↓p .

A designer can specify a set of parametric controller interfaces. The synthesis algorithm

then automatically computes the set of controllers, their corresponding interfaces and

admissible parameter values. Once the parametric controllers are computed, they can be

reused in different compositions to synthesize control strategies for different objectives.

Once a library of parametric controllers and their corresponding interfaces are obtained,

the next natural question is how they can be composed to enforce high-level objectives.

Let φinit be a non-parametric predicate specifying initial states of the game, Φ be a non-

parametric LTL objective over V, ΓC = {C1, · · · , Cn} be a set of parametric controllers,

and ΓIC = {IC1 , · · · , ICn} be the set of corresponding controller interfaces. Our goal is to

synthesize a control strategy SC that instantiates and composes controllers from ΓC using

the information provided through interfaces ΓIC such that its induced strategy enforces the

global objective Φ in the game (G, φinit,Φ). Formally,

Problem Statement 4.2. (Synthesis with Parametric Reactive Controllers.) Given a

game structure G, a set of initial states specified by a non-parametric predicate φinit, a non-

parametric LTL objective Φ, and a set of parametric controllers ΓC and their corresponding

interfaces ΓIC , compute a control strategy SC, if one exists, such that its induced strategy S

is winning in the game (G, φinit,Φ).

We assume that Φ is given as a safety and/or reachability objective. We illustrate the

methods with a simple example.

Example 4.1. Consider a block of a double-lane road divided into grids each identified by

a tuple (x, y) as shown in Figure 4.2. Assume there is a controlled vehicle V1 initially at

(x1, y1) = (0, 1) moving from left to right. Moreover, assume there is an uncontrolled vehicle

V2 initially at (x2, y2) = (7, 1) moving from right to left while staying on the same lane at

all times, i.e., always y2 = 1. Formally, let φinit = (x1 = 0∧ y1 = 1∧ x2 = 7∧ y2 = 1) be the
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predicate specifying the initial state of the system. Assume V1 has two actions: move-forward

action, `1, that moves the vehicle one step ahead by incrementing x1 while keeping it on the

same lane, and lane-switch action, `2, that moves the vehicle one step forward and changes

the lane at the same time. Our goal is to synthesize a controller that guides V1 from the

starting point to the other end of the road without colliding with V2. This objective can be

specified with the formula Φ = φ1 U (φ1 ∧ φ2) where φ1 = (x1 6= x2∨y1 6= y2) (no collision)

and φ2 = (x1 = 7) (reaching the other end.)

Let a and b be two parameters. Assume the designer specifies a parametric controller

interface I = (φinit, φinv , φf) where φinit = (x1 = a)∧ (y1 = b), φinv = (x1 6= x2)∨ (y1 6= y2),

and φf = (x1 = a+ 1), i.e., starting from initial parametric state (x1, y1) = (a, b), V1 must

move one step forward (to satisfy φf) while avoiding collision with V2 (thus satisfying φinv).

A parametric controller C = (S,F) is then synthesized with a memory-less strategy S defined

as

S(x1, y1, x2, y2, a, b) =



`2 if 0 ≤ a ≤ 6 ∧ x1 = a ∧ y1 = b

∧y1 = y2 ∧ x2 = a+ 1

`1 if 0 ≤ a ≤ 6 ∧ x1 = a ∧ y1 = b∧

(x1 6= x2 ∨ (y2 6= b ∧ y2 6= b+ 1))

Intuitively, the controller C switches the current lane of the vehicle V1 by taking lane-switch

action `2 if the other vehicle V2 is on the same lane and one cell ahead of V1, and otherwise

keeps moving forward by taking move-forward action `1. This way the controller C ensures

that V1 eventually makes progress by incrementing x1 while avoiding collision with the other

vehicle. For the set of final states of C we have F = (0 ≤ a ≤ 6 ∧ x1 = a + 1 ∧ ((x1 6=

x2)∨(y1 6= y2))), i.e., once the controller reaches a final state, V1 has moved one step forward

and does not occupy the same grid with V2. Besides, correct behavior of the controller is

guaranteed for the parameter values 0 ≤ a ≤ 6. A potential controller interface IC for C is

(φ′init, φinv , φf) where φ′init = φinit ∧ 0 ≤ a ≤ 6. Note that IC respects I and C realizes IC.

Once the parametric controllers are synthesized and a library is formed, the next step is to

instantiate right parametric controllers and compose them to enforce a given system objective.

In the above example, the controller C can be instantiated and composed sequentially in order

to enforce the objective Φ according to the memory-less control strategy SC(x1, y1, x2, y2) =

((x1, y1), C) if 0 ≤ x1 ≤ 6. Intuitively, while V1 has not reached the end of the road (i.e.,
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q0 : x = 0

q1 : x = 1

q2 : x = 2

q3 : x = 3

incdec

incdec

incdec

Figure 4.3: A game structure G defined over a variable x ∈ [0..3].

x1 6= 7), the control strategy selects C and instantiates it with (a = x1, b = y1), i.e., V1’s

current location. To enforce the objective Φ, the parametric controller C is instantiated and

composed 7 times, where each controller moves the vehicle one step forward without colliding

with the other vehicle.

4.3 Synthesizing Parametric Reactive Controllers

In this section we describe our solution for Problem 4.1 stated in Section 4.2. Let G =

(V,Λ, τ) be a game structure, and I = (φinit , φinv , φf) be the user-specified controller

interface. Our goal is to synthesize a controller C and its corresponding controller interface

IC = (φinitC , φinvC , φfC) and a set Σa
P of admissible parameter values such that for any

p ∈ Σa
P , C↓p realizes IC↓p and IC respects I.

To this end, we first obtain a parametric game structure GP from G. The idea is to

treat parameters as special variables that have unknown initial value in a bounded set, but

their value stays constant over the transitions of the game structure. Formally, let P ′ be a

primed copy of parameters, and assume same(P,P ′) is a predicate stating that the value of

parameters stay unchanged. The parametric game structure GP is defined as (V ∪ P,Λ, τP)

where τP = τ ∧ same(P,P ′).

For example, Figure 4.3 shows a game structure where player-1 (player-2) states are

depicted by ovals (boxes, respectively.) Each state is labeled by a state name qi and a

valuation over a variable x with domain Σx = [0..3]. At each player-i state for i = 1, 2, the
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q0
0 : x = 0, p = 0

q0
1 : x = 1, p = 0

q0
2 : x = 2, p = 0

q0
3 : x = 3, p = 0

q1
0 : x = 0, p = 1

q1
1 : x = 1, p = 1

q1
2 : x = 2, p = 1

q1
3 : x = 3, p = 1

q2
0 : x = 0, p = 2

q2
1 : x = 1, p = 2

q2
2 : x = 2, p = 2

q2
3 : x = 3, p = 2

incdec

incdec

incdec

incdec

incdec

incdec

incdec

incdec

incdec

Figure 4.4: A parametric game structure GP obtained from G with parameter p ∈ [0..2].

player can choose one of the actions inc or dec (if available,) to increment or decrement

x, respectively. Assume p is a parameter with domain Σp = [0..2]. Figure 4.4 shows the

parametric game structure obtained from the game structure in Figure 4.3. Each state is

labeled with a state name qji and a valuation over x and p. Each state qji in the parametric

game structure GP correspond to the state qi in the game structure G. Intuitively, the

parametric game structure has parallel copies of the non-parametric game structure for

different values of the parameters and moreover, there is no transition between different

copies. Note that explicit-state representations of (parametric) game structures are not

constructed in practice, and they are represented and manipulated symbolically, thus

avoiding the explicit enumeration of the parameters.

Algorithm 4.1 shows how a parametric controller is synthesized for a given game structure

G and specified interface I. Once the parametric game structure GP is obtained, the game

(GP , φinit,ΦI), where ΦI = φinv U (φinv ∧ φf), can be solved by standard realizability

and synthesis algorithms and a set of winning states can be computed [MPS95]. Let

W ⊆ ΣV × ΣP be the set of winning states in GP with respect to objective ΦI , and let

φW be a predicate specifying W, i.e., JφWK = W. We define φinitC = φinit ∧ φW as the

intersection of set of parametric initial states specified by the user and set of winning states

where player-2 can enforce the objective ΦI . The set JφinitCK includes all the parametric

initial states from which player-2 can win the game (GP , φinitC ,ΦI) and hence, it contains

all the admissible parameter valuations. The set Σa
P of admissible parameter values can
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Algorithm 4.1: Parametric Controller Synthesis

Input: Game structure G = (V,Λ, τ), controller interface I = (φinit , φinv , φf) and
parameters P

Output: Parametric controller C, controller interface IC , and admissible parameter
values Σa

P s.t. IC respects I and ∀p ∈ Σa
P . C↓p realizes IC↓p.

1 τP := τ ∧ same(P,P ′);
2 GP := (V ∪ P,Λ, τP);
3 ΦI := φinv U (φinv ∧ φf);
4 Let JφWK be the set of winning states in GP with respect to ΦI ;
5 φinitC := φinit ∧ φW ;
6 φaP := ∃V. φinitC ;
7 Σa

P := JφaPK;
8 Let S be a parametric winning strategy in the game (GP , φinitC ,ΦI);
9 φR := Reachable(GP , φinitC ,S);

10 F := Jφf ∧ φRK;
11 C := (S,F);
12 φinvC := φR;
13 φfC := φf ∧ φR;
14 IC = (φinitC , φinvC , φfC);
15 return (C, IC ,Σa

P);

be computed by existentially quantifying the variables from φinitC , i.e., Σa
P = ∃V. φinitC .

Algorithm 4.1 then computes a parametric winning strategy over the game (GP , φinitC ,ΦI)

using a game solver. Let φR = Reachable(GP , φinitC ,S) be a predicate specifying the set

JφRK ⊆ ΣV × ΣP of reachable states in the parametric game structure GP starting from

any initial state s |= φinitC when player-2 actions are chosen according to the strategy S.

We define IC = (φinitC , φinvC , φfC) as the controller interface for C where φinvC = φR and

φfC = φf ∧ φR. Intuitively, φinvC specifies the set of states that may be visited during the

game when player-2 behaves according to the controller C, and serves as the invariant of the

computed controller interface. Similarly, φfC specifies a set of reachable final states when

C is active. The following theorem states that Algorithm 4.1 can correctly synthesize a

parametric controller, if one exists, and that it computes the controller with effort O(|ΣV |),

where effort is measured in symbolic steps, i.e., in the number of pre-image or post-image

computation [BGS06].

Theorem 4.1. Algorithm 4.1 is sound and complete. It performs O(|ΣV |) symbolic steps

in the worst case.

Proof. We first show that Algorithm 4.1 is sound. We need to show that IC respects I,
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and for any parameter valuation p ∈ Σa
P for C, C↓p realizes IC↓p . Note that the parametric

transition relation τP has two components: τ , the transition relation of the game structure

G, that is independent from parameters, and same(P,P ′) that is independent from variables

V. Therefore, any run πP in the parametric game structure GP is of the form πP =

(v0, p)(v1, p)(v2, p) · · · where vi ∈ ΣV for i ≥ 0 and p ∈ ΣP . Also note that πP corresponds

to a run π = v0v1v2 · · · in the game structure G where the parameters are simply stripped

away. Line 4 of algorithm 4.1 computes the set JφWK of all winning states in the parametric

game structure GP with respect to the objective φI . Thus, φinitC given as intersection

of the specified parametric initial states φinit and the set of winning states φW from

which the objective φI can be enforced, represents the largest subset of JφinitK that is

winning. We have JφinitCK = {(v, p) ∈ ΣV × ΣP | (v, p) |= φinit ∧ φW}. In lines 6 and 7

in Algorithm 4.1 the set Σa
P of admissible parameter valuations is computed as Σa

P =

{p ∈ ΣP | ∃v ∈ ΣV .(v, p) |= φinitC}. Let p ∈ Σa
P be a parameter valuation. Let v0 ∈ ΣV

be any valuation over variables V such that (v0, p) |= φinitC . By definition of Σa
P such v0

exists. Let C = (S,F) be the controller computed by Algorithm 4.1. We show that for any

p ∈ Σa
P , the controller C↓p realizes IC↓p . Let πp = (v0, p)(v1, p) · · · (vf , p) · · · be any run in

the game structure GP where (v0, p) |= φinitC and actions of player-2 are chosen according

to the parametric strategy S. Since S is a winning strategy in the game (GP , φinitC , φI),

it follows that the run πp is winning and there exists f ≥ 0 such that (vf , p) |= φf and

for any 0 ≤ i ≤ f , (vi, p) |= φinv . Also note that the run πp↓p = v0v1 · · · vf · · · is a run in

the game structure G where the actions are chosen according to the instantiated strategy

S↓p. Note that v0 |= φinitC↓p , vf |= φf↓p , and for any 0 ≤ i ≤ f , vi |= φinv↓p . Hence we

have πp↓p |= φI↓p , that is, S↓p is winning in the game (G, φinitC↓p , φI↓p). It is easy to see that

F↓p ⊆ Jφf↓pK. Therefore, it follows that for any parameter valuation p ∈ Σa
P , C↓p realizes the

instantiated interface IC↓p . It is easy to see that φinitC → φinit and φfC → φf . Note that

φinvC = JφRK ⊆ φinv since S is a parametric winning strategy in the game (GP , φinitC , φI).

Therefore, it follows that IC respects I.

Now we show that Algorithm 4.1 is complete, that is, if there exists a parametric controller

C′ = (S ′,F ′) with interface IC′ = (φinitC′ , φinvC′ , φfC′ ) and a set of admissible parameter

values Σ′P ⊆ ΣP satisfying the conditions of Problem 4.1, then Algorithm 4.1 computes

such a controller. Let p ∈ Σ′P be an admissible parameter valuation. Consider any run

πp↓p = v0v1v2 · · · ∈ ΣV in the game structure G where v0 |= φinitC′↓p
and player-2 actions are

68



chosen according to the instantiated strategy S ′↓p. Since C′ realizes the interface IC′ and IC′

respects the user-specified interface I, it follows that πp↓p |= φI↓p , i.e., the run πp↓p is winning

in the game structure G with respect to φI↓p . Consider the run πp = (v0, p)(v1, p)(v2, p) · · · ∈

ΣV × ΣP obtained from πp↓p by concatenating the parameter valuations to the states. We

have (v0, p) |= φinitC′ and πp |= φψC′ where ψC′ = φinvC′ U (φinvC′ ∧ φfC′ ), and because IC′

respects I, it follows that (v0, p) |= φinit and πp |= φI . Note that πp is a run of parametric

game structure GP that satisfies the objective φI . Since any run πp in the parametric

game structure GP starting from (v0, p) |= φinitC′ where the actions of player-2 are chosen

according to S ′ enforces the objective φI , it follows that (v0, p) is a winning state in GP

with respect to φI , and therefore it belongs to the set of winning states JφWK computed in

line 4 of Algorithm 4.1. Indeed, since JφWK is the set of all winning states, it follows that

JφinitC′ K ⊆ JφinitCK and Σ′P ⊆ Σa
P . Given that the set of winning states JφWK and the set

φinitC of winning initial states are not empty, Algorithm 4.1 computes a controller C, its

interface IC , and a set of parameter valuations Σa
P such that IC respects I and any p ∈ Σa

P

is admissible.

Next we discuss the complexity of Algorithm 4.1. The most computationally expensive

parts of Algorithm 4.1 are lines 4, 8, and 9 that can be computed in O(|ΣV × ΣP |), i.e., in

linear time in the size of the parametric game structure [MPS95]. To see that the algorithm

performs only O(|ΣV |) number of symbolic steps, first note that the value of the parameters

stay constant over transitions of the parametric game structure GP . Intuitively, for any

parameter valuation p ∈ ΣP , the parametric game structure has a copy of the game structure

G, where each copy is independent and there is no transition between different copies (see

Figure 4.4 for an example). Furthermore, each copy has the same size as the original

game structure G, that is, each copy is of size |ΣV |. The symbolic algorithm computes the

controllable predecessors of any set of parametric states simultaneously for all parameter

valuations over parallel copies in the parametric game structure. Since there is no transition

between copies corresponding to each parameter valuations and each copy needs O(|ΣV |)

symbolic steps in the worst case, it follows that Algorithm 4.1 performs O(|ΣV |) symbolic

steps in the worst case.

The number of symbolic steps is not the only factor determining the time taken by

the symbolic algorithm, however, it is an important measure of difficulty since image and

pre-image computations are typically the most expensive operations [BGS06]. Intuitively,
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the number of symbolic steps in Algorithm 4.1 is independent of the parameters because the

symbolic algorithm for computing the set of winning states can manipulate the parallel copies

in the parametric game structure simultaneously, and that each copy is of size O(|ΣV |) (the

parametric game structure can be viewed as |ΣP | copies of the original game structure.) As

an example, consider the parametric game structure in Figure 4.4. Observe that each copy

for each parameter valuation is of the same size of the non-parametric game structure shown

in Figure 4.3. Let Φ = (x = p) be a parametric predicate. It is easy to see that states q0
0, q

1
1,

and q2
2 in the parametric game structure satisfy Φ. The pre-image of these states (states that

can reach them in one step) is the set
{
q1

0, q
0
1, q

1
2, q

2
1, q

2
3

}
that is computed by the symbolic

algorithm in one step. Note that although the number of symbolic steps in Algorithm 4.1 is

independent of the parameters, it does not mean that adding parameters has no additional

cost as they may increase the complexity of the symbolic steps. However, transitions over

parameters have a special structure that may be utilized for efficient implementation of the

symbolic steps.

4.4 Synthesis of Control Strategy with Parametric

Controllers

In this section we describe our solution for Problem 5.1 stated in Section 4.2. Our goal

is to synthesize a control strategy SC such that its induced strategy is winning in the

game (G, φinit,Φ). To this end, we first obtain a control game structure GC using the set of

controller interfaces ΓIC . Intuitively, GC models what controllers and parameter valuations

the system can choose at any state, possible states that may be visited while the selected

controller is active, and potential final states that may be reached once the controller is

done. From the standpoint of the composer, each instantiated controller that becomes active

goes through three steps: initialization (the controller starts its execution from a valid

initial state), execution (the state of the system evolves according to the controller), and

termination (the controller enters a final state and returns the control).

Formally, let γC 6∈ V defined over the domain ΣγC = [1..n] be a variable representing the

controllers, i.e., γC = i corresponds to the controller Ci ∈ ΓC for i = 1, · · · , n. Let tc 6∈ V

defined over Σtc = {1, 2} be a variable indicating which player’s turn it is in the control

game structure. Moreover, let te 6∈ V defined over Σte = {1, 2} be an additional variable
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that player-1 uses to distinguish a controller’s possible initial states from intermediate states

that may be visited during the execution of the controller. A control game structure GC

is a tuple (VC ,ΛC , τC) where VC = V ∪ {tc, te, γC} ∪ P is a set of variables defined over the

domain ΣVC = ΣV × Σtc × Σte × ΣγC × ΣP , ΛC = ΣP ′ × Σγ′C
is a set of actions, and τC is

symbolically defined as τC =
∨n
i=1(τCis ∨ τCie1 ∨ τ

Ci
e2 ) with

τCis := tc = 2 ∧ same(V,V ′) ∧ t′c = 1 ∧ t′e = 1 ∧ γ′c = i ∧ φ′initCi ,

τCie1 := tc = 1 ∧ γc = i ∧ te = 1 ∧ t′c = 1 ∧ t′e = 2 ∧ φ′invCi∧

same(P,P ′) ∧ same(γc, γ′c), and

τCie2 := tc = 1 ∧ te = 2 ∧ γc = i ∧ t′c = 2 ∧ φ′fCi∧

same(P,P ′) ∧ same(γc, γ′c).

In the above predicates, γ′C is a primed copy of γC , and φ′ is obtained by replacing variables

in φ by their primed copies. Note that the primed copies of the parameters and γC encode

the actions ΛC of the control game structure to indicate that the composer (player-2 in GC)

selects the parameter valuation and the parametric controller when it is her turn, and also

to avoid introducing additional variables. We denote by Σi
VC =

{
vC ∈ ΣVC | vC|tc = i

}
the

set of player-i states in the control game structure for i = 1, 2.

At any player-2 state in the control game structure, the composer must choose a controller

C ∈ ΓC and an admissible parameter valuation p ∈ ΣP , if one exists. Furthermore, the

composer must ensure that the selected controller starts from a valid initial state, i.e., the

state where the instantiated controller C↓p receives the control satisfies the predicate φinitC↓p .

This is captured in the predicate τCis of τC for each controller Ci. According to τCis at any

state (v, tc = 2, te, γC , p) ∈ Σ2
VC , the controller Ci can be chosen by selecting γ′C = i if there

exists a parameter valuation p′ ∈ ΣP ′ such that the initial condition of the controller is

satisfied, i.e., (v′, p′) |= φ′initCi
where v′ is obtained by replacing variables in v by their

primed copies. t′c = 1 means that it is player-1 state in the next turn, and t′e = 1 means that

player-1 states in the next turn satisfy the initial condition of the controller. Intuitively,

each predicate τCis for i = 1..n models initialization of a controller Ci.

Once a controller Ci and a parameter valuation p ∈ ΣP are selected by the composer, the

control is transferred to the instantiated controller Ci↓p, and the controller and parameter

valuation are fixed until the control is returned to the composer. This is captured in τCie1
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q0 : x = 1

q1 : x = 1, te = 1,
p = 1, γC = 1

q2 : x = 1, te = 2,
p = 1, γC = 1

q3 : x = 2, te = 2,
p = 1, γC = 1

q4 : x = 1, te = 1,
p = 1, γC = 2

q5 : x = 0, te = 2,
p = 1, γC = 2

q6 : x = 1, te = 2,
p = 1, γC = 2

q7 : x = 2

q8 : x = 2, te = 1,
p = 2, γC = 2

q9 : x = 1, te = 2,
p = 2, γC = 2

q10 : x = 2, te = 2,
p = 2, γC = 2

q11 : x = 0

q12 : x = 0, te = 1,
p = 0, γC = 1

q13 : x = 0, te = 2,
p = 0, γC = 1

q14 : x = 1, te = 2,
p = 0, γC = 1

C1↓1

C2↓1

C2↓2

C1↓0

Figure 4.5: Control game structure for Example 4.2 where player-2 states are grouped
together for a compact representation. Outgoing edges from player-2 states are labeled by
an instantiated controller that the composer can choose at those states. A Control strategy
for objective Φ = �(x 6= 2) ∧ ♦(x = 1) is to choose solid edges at player-2 states.

and τCie2 by same(P,P ′) ∧ same(γC , γ′C). Player-1 states with te = 1 (te = 2) and γCi = i in

GC represent initial (intermediate) states where the predicate φinitC↓p (φinvC↓p , respectively)

of the instantiated controller interface ICi↓p is satisfied. Intuitively, each predicate τCie1

captures transitions from controller’s initial state to its intermediate states (representing the

execution of the controller), and τCie2 shows the transition from intermediate states to final

states (modeling termination) where the controller has reached a final state and control is

returned to the composer. We illustrate the ideas with a simple example.

Example 4.2. Let x ∈ [0..2] be a variable, and p ∈ [0..2] be a parameter. Consider

two controllers C1 and C2 with controller interfaces IC1 = (φinitC1 , φinvC1 , φfC1 ) and IC2 =

(φinitC2 , φinvC2 , φfC2 ) defined as follows:

• φinitC1 = (φP1 ∧ x = p),

• φfC1 = (φP1 ∧ (x = p+ 1)),

• φinvC1 = φinit1 ∨ φfC1 ,

• φinitC2 = (φP2 ∧ x = p),

• φfC2 = (φP2 ∧ (x = p− 1)), and

• φinvC2 = φinit2 ∨ φfC2 .

where φP1 = (0 ≤ p ≤ 1) and φP2 = (1 ≤ p ≤ 2). Intuitively, C1 eventually increments the

value of x by 1, while C2 eventually decrements it by 1. Furthermore, φinvCi = φiniti ∨ φfCi ,
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for i = 1, 2, indicates that the set of states that are possibly visited during execution of

controller Ci is the union of initial states and final states. Figure 4.5 shows the control

game structure for this example where player-2 (player-1) states are depicted by boxes (ovals,

respectively) and player-2 states are grouped together based on their valuations over x for a

compact representation. Each node of the graph in Figure 4.5 is labeled with a name qj and

a set of predicates that hold in those states. For example, node q0 represents all player-2

states in the control game structure for which x = 1. Nodes q7 and q11 can be interpreted in

a similar way. Outgoing edges from player-2 states are labeled by an instantiated controller

that the composer can select at those states, e.g., at q0, the composer can select either the

instantiated controller C1↓1 (corresponding to the action (p′ = 1, γ′C = 1),) or the instantiated

controller C2↓1. If the composer chooses C2↓1, then the control of the system is transferred

to C2↓1, and q4 is visited next in the control game structure. Note that the controller and

parameter valuations are selected by the composer and they do not change in player-1 states.

Once the controller is initialized, any intermediate state that satisfies the invariant of the

instantiated controller can be visited in the control game structure (nodes q5 and q6 in Figure

4.5,) and at the next step, a final state of the instantiated controller is visited (represented

by q11), indicating the execution of the controller is over and the composer must decide the

next action.

Once the control game structure is obtained, we solve the control game (GC , φCinit,Φ)

where φCinit = (tc = 2 ∧ φinit), i.e., the control game starts from a player-2 state so that

the composer can initially select a controller and a parameter valuations. If player-2 has a

winning strategy in the control game, we synthesize a winning strategy SΦ of special form

that only depends on the valuation over variables V and then extract a control strategy SC

from it. Formally, let Υ = VC\V be the set of parameters and additional variables introduced

for the control game structure. We say a player-2 strategy SΦ in the control game structure

is Υ-independent if there exists a partial function fC : ΣV → ΛC such that for any player-2

state vC = (v, 2, i, j, p) ∈ Σ2
VC , S

Φ(v, 2, i, j, p) = fC(v). Intuitively, it means that SΦ only

depends on the valuation over variables V. The following theorem states that if player-2

can win the control game, then a Υ-independent winning strategy can be synthesized.

Theorem 4.2. If the control game is realizable, then there exists a Υ-independent winning

strategy for player-2.
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Proof. Let WC be the set of winning states in the control game structure (GC ,ΦCinit,Φ).

The following lemma shows that if there exists a player-2 state vC ∈ Σ2
VC with valuation

v ∈ ΣV over variables V, i.e., vC|V = v, such that vC is winning, i.e., vC ∈ WC, then for all

wC ∈ Σ2
VC with wC|V = v, we have wC ∈ WC , i.e., any player-2 state with the same valuation

v ∈ ΣV over variables V is also winning. Intuitively, it means that the existence of a winning

strategy at a player-2 state in the control game structure only depends on its valuation over

the variables V.

Lemma 4.1. There exists vC ∈ Σ2
VC with vC|V = v such that vC ∈ WC if and only if for all

wC ∈ Σ2
VC with wC|V = v, we have wC ∈ WC .

Proof. We prove one direction. The other direction is trivial. Let vC = (v, 2, j, γ, p) ∈

ΣV ×{2}×Σte ×ΣγC ×ΣP = Σ2
VC be a player-2 state with vC|V = v ∈ ΣV such that vC ∈ WC .

Then by definition of winning states, there must exist an action ` = (p∗, i) ∈ ΣP ′ ×Σγ′C
such

that all `-successor states v′C ∈ Succ(vC , `) are winning, i.e., v′C ∈ WC. It follows that for

any v′C ∈ Succ(vC , `) we have (vC , `, v′C) |= τCis . Note that in the control game structure,

there exists an outgoing transition from a player-2 state if and only if there exist a truth

assignment to the variables VC and their primed copies such that tCks is satisfied for some

1 ≤ k ≤ n. Furthermore, note that the predicate τCis does not depend on the current value

of the variables te, γC, and P. Thus, for all (l, c, p2) ∈ Σte × ΣγC × ΣP and for any state

wC = (v, 2, l, c, p2) ∈ Σ2
VC , and for all v′C ∈ Succ(vC , `), (wC , `, v′C) |= τCis and it follows that

wC is also a winning state, i.e., wC ∈ WC .

Let Φ be a safety objective, and φW be a predicate specifying the set of winning states in

the game structure GC with respect to Φ. Let τW := (tc = 2∧ τC ∧φW ∧φ′W) = (
∨n
i=1 τ

Ci
s )∧

φW∧φ′W characterize the set of outgoing transitions from player-2 states that keep the state of

the game in the set of winning states, where φ′W is obtained from φW by replacing its variables

by their primed copies. We construct a Υ-independent strategy SΦ with a corresponding

partial function fC : ΣV → ΛC from τW as follows. Let (t∗e, γ
∗
C , p
∗) ∈ Σte × ΣγC × ΣP be

arbitrarily chosen values for variables te, γC , and P. For any vC = (v, 2, l, c, p) ∈ Σ2
VC such

that vC |= φW , i.e., vC is a winning player-2 state, we let fC(v) = (p′, c′) ∈ ΣP ′ × Σγ′C

and SΦ(vC) = fC(vC|V) where (p′, c′) is an arbitrary truth assignment to P ′ and γ′C that

is consistent with τW , that is, when variables V, tc, te, γC ,P, γ′C , and P ′ are replaced by

valuations v, 2, t∗e, γ
∗
C , p
∗, c′, and p′ in τW , respectively, the resulting formula is satisfiable.
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Intuitively, it means that (p′, Cc′) is a controller and parameter valuation that is consistent

with τW and leads to a next state that is winning. It follows from Lemma 4.1 that, if vC

is winning, then any state wC ∈ Σ2
VC that has the same valuation over variables V, i.e.,

vC|V = wC|V , is also winning. It then follows that the constructed strategy is a Υ-independent

winning strategy.

Now let Φ be a reachability objective. The least fixed-point algorithm for computing the

set of winning states for reachability objective computes a sequence W0 ⊆ W1 ⊂ · · · ⊆ Wd

for d ≥ 0 until a fixed-point is reached where Wi ⊆ ΣVC and Wd = WC is the fixed-point

that characterizes the set of winnig states. Let W−i =Wi\
⋃i−1
j=0Wj be the set of winning

states that are discovered for the first time at i-th step, for 0 ≤ i ≤ d. A winning strategy

SΦ
# enforcing the reachability objective chooses the actions such that any player-2 state in

layer i, i.e., vC ∈ W−i will reach a state v′C in lower layers, i.e., v′C ∈
⋃i−1
j=0Wj . We will

construct a Υ-independent strategy SΦ with a corresponding partial function fC : ΣV → ΛC

from the winning strategy SΦ
#. The following lemma states that if a player-2 winning state

vC ∈ Σ2
VC with valuation v over variables V , i.e., vC|V = v ∈ ΣV belongs to winning layer W−i

for some 0 ≤ i ≤ d then all player-2 states wC with the same valuation v over V belong to

the winning layer W−i .

Lemma 4.2. Let W0,W1, · · · ,Wd for d ≥ 0 be a sequence of sets of states obtained during

the fixed-point computation for reachability objectives such that Wd is the fixed point, and

characterizes the set of winning states, i.e., WC =Wd. Let W−i =Wi\
⋃i−1
j=0Wj be the set

of winning states that are discovered for the first time at i-th step, for 0 ≤ i ≤ d. There

exists a player-2 state vC ∈ Σ2
VC with vC|V = v ∈ ΣV such that vC ∈ W−i for some 0 ≤ i ≤ d

if and only if for all wC ∈ Σ2
VC with wC|V = v, wC ∈ W−i for some 0 ≤ i ≤ d.

Proof. We prove the lemma for a reachability objective Φ where the fixed-point computation

starts from the set W0 = ∅. We prove it for one direction. The other direction is trivial. We

show by induction that for any i ≥ 0, if for a player-2 state vC ∈ Σ2
VC with vC|V = v ∈ ΣV we

have vC ∈ W−i , then for all wC ∈ Σ2
VC with wC|V = v, wC ∈ Wi. It holds trivially for W0 = ∅.

Consider Wi for 0 < i < d (note that for any i > d, Wi = Wd and therefore, W−i = ∅).

Let vC ∈ Σ2
VC with vC|V = v ∈ ΣV be a player-2 state with valuation v over the variables V

such that vC ∈ win−i+1. Then by definition of winning states, there must exist an action

` = (p∗, c∗) ∈ ΣP ′ × Σγ′C
such that all successor states v′C ∈ Succ(vC , `) are winning, i.e.,
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v′C ∈
⋃i−1
j=0Wj . It follows that for any v′C ∈ Succ(vC , `), we have (vC , `, v′C) |= τ

Cc∗
s . Note

that there exists a outgoing transition from a player-2 state in the control game structure if

and only if there exist a truth assignment to the variables VC and their primed copies such that

tCis is satisfied for some 1 ≤ i ≤ n. Furthermore, note that the predicate τCis does not depend

on the current value of the variables te, γC , and P . Thus, for all (l, c, p2) ∈ Σte×ΣγC×ΣP and

for any state wC = (v, 2, l, c, p2) ∈ Σ2
VC and all v′C ∈ Succ(vC , `), we have (wC , `, v′C) |= τ

Cc∗
s

and it follows that wC is also a winning state, i.e., wC ∈ win−i+1.

We construct a Υ-independent strategy SΦ with a corresponding partial function fC :

ΣV → ΛC from the winning strategy SΦ
#. Let (t∗e, γ

∗
C , p
∗) ∈ Σte × ΣγC × ΣP be arbitrarily

chosen values for variables te, γC , and P . For any vC = (v, 2, i, j, p) ∈ Σ2
VC such that SC#(vC)

is defined, we let fC(v) = SC#((v, 2, t∗e, γ
∗
C , p
∗)) and SΦ(vC) = fC(vC|V). It is easy to see that

SΦ is Υ-independent. By Lemma 4.2 and since SΦ
# is winning, it follows that SΦ is also a

winning strategy.

Note that the predicates τCis in the transition relation τC of GC do not depend on the

variables te, γC or parameters (though depending on their primed copies,) and the value

of tc = 2 is fixed. Intuitively, it means the composer can select the next controller and

parameter valuations only based on the current valuation over V and regardless of current

values of parameters, te and γC. A control strategy SC : ΣV → ΣP × ΓC is extracted

from SΦ using the function fC as follows. For any v ∈ ΣV such that fC(v) is defined and

fC(v) = (p′, i) ∈ ΣP ′ × Σγ′C
, we let SC(v) = (p, Ci) where p is obtained by replacing primed

copies of parameters in p′ by their unprimed versions. Algorithm 4.2 summarizes the steps

for computing SC . The following theorem establishes the correctness and the complexity of

Algorithm 4.2.

Theorem 4.3. Algorithm 4.2 is sound. For reachability and safety objectives, it performs

O(|ΣV |) symbolic steps in the worst case.

Proof. Let SC be a control strategy obtained from Υ-independent winning strategy SΦ. We

show that the strategy S induced by SC is winning in the game (G,Φinit,Φ). Intuitively, we

show that any run π in the game structure G when controllers and parameters are chosen

according to the control strategy SC corresponds to a set ΠC of runs in the control game

structure that are all winning for the safety and/or reachability objective Φ, and since the
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Algorithm 4.2: Control Strategy Synthesis

Input: A predicate φinit specifying a set of initial states, a non-parametric safety and
reachability objective Φ, a set ΓIC of controller interfaces

Output: A control strategy SC s.t. its induced strategy is winning in the game
(G, φinit,Φ)

1 Obtain the control game structure GC using ΓIC ;
2 φCinit := tc = 2 ∧ φinit;
3 Synthesize a VC\V-independent winning strategy SΦ by solving the game

(GC , φCinit,Φ);
4 Extract and return a control strategy SC from SΦ;

run π can be obtained by “merging” the runs in ΠC , it follows that any run π in the game

structure G also satisfies Φ, and is therefore winning. Let G[S] be a restriction of the game

structure G where actions of player-2 are restricted to the actions allowed by the strategy S.

Similarly, let GC [SΦ] be a restriction of the control game structure where actions of player-2

are chosen according to the strategy SΦ. Note that since SΦ is a winning strategy in the

control game (GC , φCinit,Φ), any run of GC[SC] starting from an initial state vC |= φCinit is

winning, i.e., it satisfies the objective Φ. Let π = vf0v01v02 · · · v0d0
vf1v11 · · · v1d1

vf2 · · · be

any run of the restricted game G[S] where vf0 |= φinit, i.e., π is a run in the game structure G

starting from a valid initial state where player-2 chooses its actions according to the strategy

S. Let (p, C) = SC(vfi) be the controller and parameter valuation chosen by the control

strategy at states vfi for i ≥ 0. Let C#
i = C↓p be the corresponding instantiated controller.

As the instantiated controller C#
i realizes its corresponding controller interface, it follows

that for i ≥ 0 we have vfi |= φinit
C#
i

, vi1 · · · vidi ∈ Σa
V and for 1 ≤ j ≤ di, vij |= φinv

C#
i

, and

vfk |= φf
C#
i

for k ≥ 1. Intuitively, states vfi ∈ ΣV for i ≥ 0 are states where a controller and

a parameter valuation is chosen by the composer. The selected controller and parameter

valuation must be such that vfi is a valid initial state for the controller. Besides, vfi for

i > 0 is also a final state for the controller that relinquishes control, and thus vfi must also

be a final state for the relinquishing controller. The intermediate states vi1 · · · vidi ∈ Σa
V for

i ≥ 0 correspond to set of states that belong to invariant set of the controller and can be

visited while the controller guides the execution of the game. Note that the intermediate

states may be empty, for example when there is a transition between an initial state and

a final state of the selected controller. The run π in the game structure G[S] corresponds

to a set of runs ΠC = {vCf00
vCf01

vC01
vCf10

vCf11
vC11
vCf20
· · · | vCfi0 |V = vfi , v

C
fi1 |V

= vfi , v
C
ik|V
∈ V i =
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{vfi} ∪
⋃di
j=1 vij ∪

{
vfi+1

}
}. Let ΠC|V be a set obtained by projecting the runs in ΠC into

the set of variables V. Let πC be any run in the set ΠC. Let πC|V be the projection of πC

into variables V. It is easy to see that πC|V is of the form vf0vf0w0vf1vf1w1vf2 · · · where

wi ∈ V i = {vfi} ∪
⋃di
j=1 vij ∪

{
vfi+1

}
. Note that since SΦ is a winning strategy, any run

πC ∈ ΠC satisfies the objective Φ. Also since Φ is a predicate over ΣV , the projection of πC

into V also satisfies Φ, i.e., πC|V |= Φ. Note that if a sequence σ = s0s1 · · · of states si ∈ ΣV

satisfies a safety objective �(φ�) and/or a reachability objective ♦(φ♦), where φ� and φ♦

are predicates over ΣV , then any state v ∈ ΣV that is safe, i.e., v |= φ� can be placed

at any position in σ and the resulting sequence σ′ = s0s1 · · · sivsi+1 · · · still satisfies the

safety and reachability objectives. Also if there exists i, j ≥ 0, i 6= j such that si = sj , then

the sequence σ′ = s0s1 · · · si · · · sj−1sj+1 · · · obtained by removing the repetitive state still

satisfies the safety and reachability objective. The run π in the game structure G can be

obtained by choosing a sequence σ ∈ ΠC|V and adding states from other sequences in ΠC|V

and removing repetitive states, and since all sequences σ ∈ ΠC|V satisfies the safety and/or

reachability objective Φ, it follows that π also satisfies Φ. Thus any run in the game G[S] is

winning and S is a winning strategy in the game (G,Φinit,Φ).

Complexity. First note that the state space of the control game structure is of size

|ΣVC |, and a winning strategy for safety and reachability objectives can be computed in

linear time in size of the control game structure, that is, in O(|ΣCV |). However, the control

game structure has a special form that lead to a tighter bound O(|ΣV |) on the number

of symbolic steps required to compute the set of winning states for safety or reachability

objectives. Intuitively, any infinite run in the control game structure starting from a player-2

state, moves to a player-1 state (an initial state where te = 1), then moves to another

player-1 state (an intermediate state where te = 2), and finally moves to a player-2 state

where the next controller and parameter valuation is chosen and this pattern repeats. That

is, along any infinite run in the control game structure starting from a player-2 state, player-1

states are “sandwiched” between player-2 states. Another observation is that during the

fixed point computation of the set of winning states, if a player-2 state vC ∈ Σ2
VC with

valuation v over variables V is added (or removed) from the current approximation of the set

of winning states, then all player-2 states with the same valuation over variables V is added

(or removed, respectively) from the set of winning states. This is shown in Lemma 4.2 in

proof of Theorem 4.2 for reachability objectives (the proof for safety objectives is similar)
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and is due to the fact that τCis in the transition relation τC of the control game structure

does not depend on the current value of variables te, γC , and P . Finally, let vC be a player-2

state that belongs to the current set Wi ⊆ ΣVC during the fixed point computation of the

set of winning states. Recall that in any infinite run of the control game structure any

player-2 state is followed by two player-1 state, which is then followed by a player-2 state.

Therefore, with at most three symbolic steps from the current approximation of the set of

winning state, either a player-2 state wC with valuation w ∈ ΣV over variables V is added to

(or removed from) the current approximation, or a fixed point has already reached. In other

words, in every three symbolic steps, either a player-2 state is added to (or removed from)

the set of the winning states, or a fixed point is reached. Formally,

Lemma 4.3. Let W0,W1, · · · be the sequence of approximations of the set of winning states

in the control game structure GC with respect to a reachability objective Φ computed by the

fixed point algorithm. Assume d ≥ 0 is the position where the algorithms has reached a

fixed point, i.e., Wd is the set of winning states and for all j ≥ d, Wj = Wd. For any

i ≥ 0, either there exists a player-2 state vC ∈ Σ2
VC such that vC 6∈ Wi and vC ∈ Wi+3, or

Wi+3 =Wi+2 is a fixpoint.

Proof. Consider the sets Wi,Wi+1,Wi+2,Wi+3 for any i ≥ 0. Assume for the sake of

contradiction that for all player-2 states vC ∈ Σ2
VC , if vC ∈ Wi+3 then vC ∈ Wi and

Wi+2 6=Wi+3. Therefore, there must exist a player-1 state wC ∈ Σ1
VC such that wC ∈ Wi+1

but wC 6∈ Wi, since otherwise Wi = Wi+1 = Wi+2 = Wi+3 and we have reached a fixed

point. Let V te=j
i+1 ⊆ Wi+1\Wi be the set of player-1 states with valuation j ∈ {1, 2} over the

variable te such that they belong to the set Wi+1 but not to Wi. Note that at least one of

the sets V te=1
i+1 or V te=2

i+1 must be non-empty since otherwise Wi+1 is a fixpoint. Consider

the set CPre(V te=1
i+1 ) of controllable predecessors of the player-1 states vC ∈ V te=1

i+1 with

vC|te = 1. Since all predecessors of player-1 states with te = 1 in the control game structure

must be a player-2 state, by our assumption it follows that W−i+2 ∩ CPre(V
te=1
i+1 ) = ∅ where

W−i+2 = Wi+2\Wi+1, i.e., there is no winning predecessor in Wi+2 for any of the states

in V te=1
i+1 . Now consider the set CPre(V te=2

i+1 ) of predecessors of the player-1 states V te=2
i+1 .

Since all predecessors of player-1 states with te = 2 in the control game structure must be a

player-1 state with te = 1, by our assumption it follows that W−i+2 ∩ Pre(V
te=2
i+1 ) = V te=2

i+2 ,

where V te=2
i+2 ⊆ Σ1

VC is a (possibly empty) set of player-1 states with te = 1. If V te=2
i+2 is empty,
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then no new state is added to Wi+2, i.e., Wi+1 =Wi+2 and we have Wi+3 =Wi+2. Assume

V te=2
i+2 is not empty. Then all the predecessors CPre(V te=1

i+2 ) of the set V te=1
i+2 are player-2

states, and by our assumption it follows that W−i+3 ∩Pre(V
te=1
i+2 ) = ∅. That is, no new state

is added to Wi+3 and therefore Wi+3 =Wi+2 is a fixed point which is a contradiction.

The proof for safety objectives is very similar, except that the states are removed from

the sets W0, · · · ,Wd during the symbolic algorithm instead of being added. Since every

time a player-2 state is added to (or removed from) the set of winning states, all the player-2

states with the same valuation over the variables V are added to (or removed from) the set

of winning states, and there is only |ΣV | player-2 states with different valuations over the

variables V, it follows that the symbolic algorithm for computing the set of winning states

will terminate with at most O(3|ΣV |) = O(|ΣV |) number of symbolic steps.

Note that the upper-bound on the number of symbolic steps in Algorithm 4.2 is inde-

pendent from the variables VC\V. This is partly because transitions from player-2 states in

the control game structure do not depend on the current valuation over variables te, γC , and

P. Thus, if a player-2 state with the valuation v ∈ ΣV over variables V is winning, then

all player-2 states with the same valuation v over V are winning. Roughly speaking, the

symbolic algorithm for computing the set of winning states manipulates the set of player-2

states based on their valuations over V. Note that there are only |ΣV | player-2 states with

different valuations over V in GC. Besides, any infinite run in GC starting from a player-2

state has a special form where every player-2 state is followed by two player-1 states and

then a player-2 state is visited, and this pattern repeats infinitely. Due to this special form,

with every three symbolic steps, either the symbolic algorithm terminates by reaching a

fix point that characterize the set of winning states, or a new set of player-2 states with

some valuation v over V are discovered to be winning (or losing) by the symbolic algorithm.

Hence, the number of symbolic steps is bounded by O(3|ΣV |) = O(|ΣV |).

Example 4.3. Consider the setting in Example 4.2. Let φinit = (x = 0) be a set of initial

states, and Φ = �(x 6= 2) ∧ ♦(x = 1) be the objective. A control strategy enforcing the

objective Φ is shown in Figure 4.5 by solid edges at player-2 states. Initially, at q11, the

composer chooses controller C1 with parameter value p = 0. Once C1↓0 reaches a final state,

the control is returned to the composer, and based on the current valuation over x, x = 1 in

this example, the next controller, C2, and the next parameter valuation, p = 1, are chosen by
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x = 1

x = 2

x = 3

x = 4

(a)

x = 1

x = 1, te = 1

x = 1, te = 2

x = 2, te = 2

x = 3, te = 2

x = 4, te = 2

x = 4

(b)

Figure 4.6: (a) Part of a run in a game structure where the controller takes the control at a
state with x = 1 and increments x by 3. (b) Part of a control game structure capturing
execution of the controller from a state with x = 1.

the composer. Intuitively, at states with x = 0, the composer increments x by selecting C1

and at states with x = 1, it decrements x by choosing C2.

Completeness. Note that Algorithm 4.2 is not complete as the interfaces provide an

abstraction of the controllers and they might lack some information on the sequence of states

that will be visited during the execution of the controller. As an example consider a game

structure G with an integer variable x. Consider a controller C that starting from a state

x = p where p is a parameter, increments x by three, i.e., eventually x = p+ 3. Assume that

the controller does this by incrementing x one by one in three consecutive steps. Figure 4.6a

shows a part of a run of G starting from a state where x = 1 and applying the controller

C↓p=1. For simplicity, we assume that all states in G are player-2 states (represented by

boxes). The interface IC of the controller C is defined as IC = (φinitC , φinvC , φfC) where

φinitC = (x = p), φinvC =
∨p+3
i=p x = i, and φfC = (x = p + 3). That is, starting from a

parametric state x = p and using the controller C, any state x ∈ [p..p+ 3] can be visited,

and eventually x is incremented by 3. Note that here we removed the constraints concerning

the set of admissible parameter values from the interface to keep the example simple. Figure

4.6b shows part of a control game structure obtained from IC from any state with x = 1.

To keep the figure simple, we removed the parameters and variables corresponding to the

controllers, and similar to Example 4.2, player-2 states are grouped together based on their

valuations over x. Let φinit = (x = 1) and Φ = ♦(x = 3) specify the initial state and the

objective of the system, respectively. It is easy to see that using controller C guarantees
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visiting the state x = 3 on its path to the final state x = 4. However, there is no control

strategy over the control game structure that guarantees visiting x = 3 as player-1 can

avoid the state with x = 3 in the control game structure. Intuitively, the sequence of

states (x = 1)(x = 2)(x = 3)(x = 4) is “lost” in the control game structure. This loss of

information is the cost paid for having a simpler control game structure.

For a given objective Φ, completeness of the framework can be achieved by analyzing

the controllers and enriching the interfaces, or in the extreme case by having interfaces

that exactly capture the possible outcomes of applying corresponding controllers. However,

our main emphasis is on simplicity and separating the two design layers, the parametric

controller synthesis and synthesis from a library of parametric controllers. Controllers in

our framework can be viewed as black-boxes where their input-output behavior is provided

through their simple interfaces. An alternative view is to see the controllers as white-boxes

and extract more information from them. The trade-off is that the former approach is

simpler and more computationally efficient as the control game structure is simpler and

requires less number of symbolic steps, while the latter guarantees completeness.

4.5 Case Study

In this section we apply the methods developed in Sections 4.3 and 4.4 to an autonomous

vehicle case study. Consider a network of one-way streets connected via intersections as

shown in Figure 4.1. Assume there is a controlled autonomous vehicle V1 initially positioned

in the grid marked with s0. Also assume there is an uncontrolled vehicle V2 initially at the

grid-cell s∗. Each vehicle has actions move-forward, back-up, turn-left, turn-right, and stop

that moves it one step forward, backward, to the left, to the right, and leaves its position

unchanged, respectively. The goal is to synthesize a controller for V1 that can guide it from

the initial position s to the final destination d while obeying the traffic laws (e.g., moving

in the specified directions of streets, no stopping inside an intersection, etc.) and avoiding

collision with V2 and static obstacles. We assume that the uncontrolled vehicle respects

traffic laws by always moving in the specified directions for the streets. We implement our

algorithms symbolically in Java and using BDD package JDD [Vah]. We first specify and

synthesize a set of parametric reactive controllers that guarantee advancing the vehicle in

north, south, west, and east directions while avoiding collision with static obstacles and the

other vehicle. We then synthesize a control strategy that instantiates and composes these
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controllers to navigate V1 safely from initial position to the destination.

Synthesis of Parametric Controllers. We denote the location of the vehicle Vi at

any time-step with (xi, yi) for i = 1, 2. We specify four parametric controllers that can move

the car in different directions: Controller C1 (C2) with specified controller interface I1 (I2)

that moves the car three steps toward east (west, respectively), and controller C3 (C4) with

specified controller interface I3 (I4) that advance the car one step toward north (south,

respectively.) More specifically, let a, b be two parameters. Let φinit = (x1 = a ∧ y1 = b) be

the parametric initial state. Let φinv = (x1 6= x2 ∨ y1 6= y2), i.e., no collision between vehicles.

Finally, let φf1 = (x = a+ 3, y = b), φf2 = (x = a− 3, y = b), φf3 = (x = a, y = b+ 1), and

φf4 = (x = a, y = b − 1) specify moving in different directions. Controllers are specified

by interfaces ICi = (φinit, φinv , φfi). Algorithm 4.1 is then used to synthesize parametric

controllers, their corresponding interfaces and the set of admissible parameter values.

Synthesis of Control Strategy. Once a library of parametric reactive controllers

ΓC and their corresponding interfaces ΓIC are formed, we use Algorithm 4.2 to synthesize

a control strategy for the controlled vehicle. A synthesized control strategy instantiates

and applies the controller C1 consecutively to advance the vehicle toward east and finally

bring it to the position marked by s6, from which controller C3 is instantiated and employed

consecutively to take the vehicle to its destination. More specifically, at any position marked

by si for i = 0, · · · , 5, controller C1 is instantiated and becomes active, and it guarantees

to eventually advance the controlled vehicle to the next position si+1. Similarly, at any

position marked by si for i = 6, · · · , 9, controller C3 is instantiated and becomes active, and

it eventually navigates the controlled vehicle to the next position si+1 where s10 = d is the

final destination. The control strategy sets the parameters a and b according to the current

state of the vehicle, i.e., if the current position of V1 is (x1 = i, y1 = j), the control strategy

instantiates the controllers C1 and C3 by parameter valuation (a, b) = (i, j).
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5

Compositional Synthesis of Reactive Controllers

for Decoupled Multi-Agent Systems

One of the main challenges in automated synthesis of systems is the scalability problem. This

issue becomes more evident for multi-agent systems, as adding each agent can often increase

the size of the state space exponentially. The pioneering work by Pnueli et. al [PR89]

showed that reactive synthesis from LTL specifications is intractable which prohibited the

practitioners from utilizing synthesis algorithms. Distributed reactive synthesis [PR90] and

multi-player games of incomplete information [PRA01] are undecidable in general. Despite

these discouraging results, recent advances in this growing research area have enabled

automatic synthesis of interesting real-world systems [BJP+12], indicating the potential of

the synthesis algorithms for solving realistic problems. The key insight is to consider more

restricted yet practically useful subclasses of the general problem.

In this chapter, we consider a special class of multi-agent systems that are referred to as

decoupled and are inspired by robot motion planning, decentralized control [KBB06, DM06],

and swarm robotics [ŞGBT08, STZ+12] literature. Intuitively, in a decoupled multi-agent

system the transition relations (or dynamics) of the agents are decoupled, i.e., at any

time-step, agents can make decisions on what action to take based on their own local state.

For example, an autonomous vehicle can decide to slow down or speed up based on its

position, velocity, etc. However, decoupled agents are coupled through objectives, i.e., an

agent may need to cooperate with other agents or react to their actions to fulfill a given

objective (e.g., it would not be a wise decision for an autonomous vehicle to speed up when

the front vehicle pushes the break if collision avoidance is an objective.) In our framework,

multi-agent systems consist of a set of controlled and uncontrolled agents. Controlled agents
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may need to cooperate with each other and react to the actions of uncontrolled agents in

order to fulfill their objectives. Besides, controlled agents may be imperfect in the sense

that they can only partially observe their environment, for example due to the limitations

in their sensors. The goal is to synthesize controllers for each controlled agent such that the

objectives are enforced in the resulting system.

To solve the controller synthesis problem for multi-agent systems one can directly

construct the model of the system by composing those of the agents, and solve the problem

centrally for the given objectives. However, the centralized method lack flexibility, since any

change in one of the components requires the repetition of the synthesis process for the whole

system. Besides the resulting system might be exponentially larger than the individual parts,

making this approach infeasible in practice. Compositional reactive synthesis aims to exploit

the structure of the system by breaking the problem into smaller and more manageable

pieces and solving them separately. Then solutions to subproblems are merged and analyzed

to find a solution for the whole problem. The existing structure in multi-agent systems

makes them a potential application area for compositional synthesis techniques.

To this end, we propose a compositional framework for decoupled multi-agent systems

based on automatic decomposition of objectives and compositional reactive synthesis using

maximally permissive strategies [FJR11]. We assume that the objective of the system is

given in conjunctive form. We make an observation that in many cases each conjunct of the

global objective only refers to a small subset of agents in the system. We take advantage of

this structure to decompose the synthesis problem: for each conjunct of the global objective,

we only consider the agents that are involved, and compute the maximally permissive

strategies for those agents with respect to the considered conjunct. We then intersect the

strategies to remove potential conflicts between them, and project back the constraints to

subproblems, solve them again with updated constraints, and repeat this process until the

strategies become fixed.

We implement the algorithms symbolically using BDDs and apply them to a robot

motion planning case study where multiple robots are placed on a grid-world with static

obstacles and other dynamic, uncontrolled and potentially adversarial robots. We consider

different objectives such as collision avoidance, keeping a formation and bounded reachability.

We show that by taking advantage of the structure of the system, the proposed compositional

synthesis algorithm can significantly outperform the centralized synthesis approach, both
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from time and memory perspective, and can solve problems where the centralized algorithm

is infeasible. Furthermore, using compositional algorithms we managed to solve synthesis

problems for systems with multiple agents, more complex objectives and for grid-worlds of

sizes that are much larger than the cases considered in similar works. Our findings show the

potential of symbolic and compositional reactive synthesis methods as planning algorithms

in presence of dynamically changing and possibly adversarial environment.

5.1 Decoupled Multi-Agent Systems

In this section we describe how we model decoupled multi-agent systems and formally

state the problem that is considered in this chapter. Typically game structures arise from

description of open systems in a particular language [AHK02]. In our framework, we use

agents to specify a system in a modular manner. An agent a = (type, I,O,Λ, τ,OBS , γ) is a

tuple where type ∈ {controlled, uncontrolled} indicates whether the agent can be controlled

or not, O (I) is a set of output (input) variables that the agent can (cannot, respectively)

control by assigning values to them, Λ is a set of actions for the agent, and τ is a predicate

over I ∪O∪Λ∪O′ that specifies the possible transitions of the agent where O′ is the primed

copies of the variables O, OBS is a set of observable variables, and γ : ΣOBS → 2ΣI∪O is

the observation function that maps agent’s observations to its corresponding set of states.

Intuitively, τ defines what actions an agent can choose at any state s ∈ ΣI × ΣO and what

are the possible next valuations over agent’s output variables for the chosen action. That

is, (i, o, `, o′) |= τ for i ∈ ΣI , o ∈ ΣO, ` ∈ Λ, and o′ ∈ ΣO′ means that at any state s of the

system with s|I = i and s|O = o, the agent can take action `, and a state with component

o′ is a possible successor. A perfect agent is an agent with OBS = I ∪ O and γ(s) = {s}

for all s ∈ ΣI × ΣO. We omit (OBS, γ) in the description of perfect agents. An agent a is

called local if and only if its transition relation τ is a predicate over O ∪ Λ ∪O′, i.e., it does

not depend on any uncontrolled variable v ∈ I.

A multi-agent system M = {a1, a2, · · · , an} is defined as a set of agents ai =

(typei, Ii,Oi,Λi, τi,OBSi, γi) for 1 ≤ i ≤ n. Let V =
⋃n
i=1Oi be the set of agents’

output variables. We assume that the set of output variables of agents are pairwise disjoint,

i.e., ∀1 ≤ i ≤ n. Oi ∩ Oj = ∅, and the set of input variables Ii for each agent ai ∈ M is

a subset of variables controlled by other agents, i.e., Ii ⊆ V\Oi. We further make some

simplifying assumptions. First, we assume that all uncontrolled agents are perfect, i.e.,
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uncontrolled agent has perfect information about the state of the system at any time-step.

Second, we assume that all controlled agents are cooperative while uncontrolled ones can

play adversarially, i.e., the controlled agents cooperate with each other and make joint

decisions to enforce the global objective. Finally, we assume that the observation variables

for controlled agents are pairwise disjoint, i.e., ∀1 ≤ i ≤ n. OBSi ∩ OBSj = ∅, and that

each controlled agent has perfect knowledge about other controlled agents’ observations.

That is, controlled agents share their observations with each other. Intuitively, it is as if the

communication between controlled agents is instantaneous and error-free, i.e., they have

perfect communication and tell each other what they observe. This assumption helps us

preserve the two-player game setting and to stay in a decidable subclass of the more general

problem of multi-player games with partial information. Note that multi-player games of

incomplete information are undecidable in general [PRA01].

In this chapter we focus on a special setting where all agents are local. A multi-agent

system M = {a1, a2, · · · , an} is dynamically decoupled (or decoupled in short) iff all agents

a ∈ M are local. Intuitively, agents in a decoupled multi-agent system can choose their

action based on their own local state and regardless of the local states of other agents in the

system. That is, the availability of actions for each agent in any state of the system is only

a function of the agent’s local state. Such setting arises in many applications, e.g., robot

motion planning, where possible transitions of agents are independent from each other. For

example, how a robot moves around a room is usually based on its own characteristics and

motion primitives [SRK+14]. Note that this does not mean that the controlled agents are

completely decoupled, as the objectives might concern different agents in the system, e.g.,

collision avoidance objective for a system consisting of multiple controlled robots, which

requires cooperation between agents.

In our framework, the user describes the agents and specifies the objective as a conjunctive

LTL formula. From description of the agents, a game structure is obtained that encodes

how the state of the system evolves. Formally, given a decoupled multi-agent system

M =Mu
⊎
Mc partitioned into a set Mu = {u1, · · · , um} of uncontrolled agents and a set

Mc = {c1, · · · , cn} of controlled agents, the turn-based game structure GM induced by M

is defined as GM = (V ,Λ, τ ,OBS , γ) where V = {t} ∪
⋃

a∈MOa is the set of all variables in

M with t as a turn variable, Λ =
⋃

a∈M Λa is the set of actions, OBS =
⋃

c∈Mc OBSc is the

set of all observation variables of controlled agents (note that we assume all uncontrolled
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Figure 5.1: Grid-world with static obstacles

agents are perfect,) and τ and γ are defined as follows:

τ = τe ∨ τs,

τe = t = 1 ∧ t′ = 2 ∧
∧

u∈Mu

τu ∧
∧

c∈Mc

Same(Oc,O′c),

τs = t = 2 ∧ t′ = 1 ∧
∧

c∈Mc

τc ∧
∧

u∈Mu

Same(Ou,O′u), and

γ =
∧

c∈Mc

γc

Intuitively, at each step, uncontrolled agents take actions consistent with their transi-

tion relations, and their variables get updated while the controlled agents’ variables stay

unchanged. Then the controlled agents react concurrently and simultaneously by taking

actions according to their transition relations, and their corresponding variables get updated

while the uncontrolled agents’ variables stay unchanged.

Example 5.1. Let R1 and R2 be two robots in an n×n grid-world similar to the one shown

in Figure 5.1. Assume R1 is an uncontrolled robot, whereas R2 can be controlled. In the

sequel, let i range over {1, 2}. At each time any robot Ri can move to one of its neighboring

cells by taking an action from the set Λi = {upi, downi, righti, lefti}. Furthermore, assume

that R2 has imperfect sensors and can only observe R1 when R1 is in one of its adjacent

cells. Let (xi, yi) represent the position of robot Ri in the grid-world at any time5. We

define Oi = {xi, yi} and Ii = O3−i as the output and input variables, respectively. Note that

the controlled variables by one agent are the input variables of the other agent. Transition

relation τi =
∧
`∈Λi

τ` is defined as conjunction of four parts corresponding to robot’s action

5Note that variables xi and yi are defined over a bounded domain and can be encoded by a set of Boolean
variables. To keep the example simple, we use their bounded integer representation here.
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where

τupi = (yi > 1) ∧ upi ∧ (y′i ↔ yi − 1) ∧ Same(xi, x′i)

τdowni = (yi < n) ∧ downi ∧ (y′i ↔ yi + 1) ∧ Same(xi, x′i)

τlefti = (xi > 1) ∧ lefti ∧ (x′i ↔ xi − 1) ∧ Same(yi, y′i)

τrighti = (xi < n) ∧ righti ∧ (x′i ↔ xi − 1) ∧ Same(yi, y′i)

Intuitively, each τ` for ` ∈ Λi specifies whether the action is available in the current state

and what is its possible successors. For example, τupi indicates that if Ri is not at the top

row (yi > 1), then the action upi is available and if applied, in the next state the value of yi

is decremented by one and the value of xi does not change. Next we define the observation

function γ2 for R2. It is easier and more intuitive to define γ−1
2 , and since observations

partition the state space γ2 = (γ−1
2 )−1 is defined. Formally,

γ−1
2 (a, b, c, d) =

(a, b, c, d) if a− 1 ≤ c ≤ a+ 1 ∧ b− 1 ≤ d ≤ b+ 1

(⊥,⊥, c, d) otherwise

Let OBS2 = {xo1, yo1, xo2, yo2} where xo1, y
o
1 ∈ {⊥, 1, 2, · · · , n} and xo2, y

o
2 ∈ {1, · · · , n}. In-

tuitively, R2 observes its own local state perfectly. Furthermore, if R1 is in one of its

adjacent cells, its position is observed perfectly, otherwise, R1 is away and its location

cannot be observed. γ2 can be symbolically encoded as
∨
o∈ΣOBS

(o ∧ φγ(o)) where φγ(o) is

the predicate specifying the set γ(o). Finally, we let R1 = (uncontrolled, I1,O1,Λ1, τ1) and

R2 = (controlled, I2,O2,Λ2,OBS2, γ2). Note that R1 (R2) is modeled as a perfect (imperfect,

respectively) local agent.

The game structure GM of imperfect information corresponding to multi-agent system

M = {R1, R2} is a tuple GM = (V ,Λ, τ ,OBS , γ) where V = {t} ∪ O1 ∪ O2, Λ = Λ1 ∪ Λ2,

τ = τe ∨ τs, τe = t = 1∧ t′ = 2∧ τ1 ∧Same(O2,O′2), τs = t = 2∧ t′ = 1∧ τ2∧Same(O1,O′1),

OBS = OBS2, and γ = γ2.

We now formally define the problem we consider in this chapter.

Problem 5.1. Given a decoupled multi-agent system M = Mu
⊎
Mc partitioned into

uncontrolled Mu = {u1, · · · , um} and controlled agents Mc = {c1, · · · , cn}, a predicate

φinit specifying an initial state, and an objective Φ = Φ1 ∧ · · · ∧ Φk as conjunction of
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k ≥ 1 LTL formulas Φi, compute strategies S1, · · · , Sn for controlled agents such that the

strategy S = S1 ⊗ · · · ⊗ Sn defined as composition of the strategies is winning for the game

(GM, φinit,Φ), where GM is the game structure induced by M.

5.2 Compositional Controller Synthesis

We now explain our solution approach for Problem 5.1 stated in Section 5.1. Algorithm

5.1 summarizes the steps for compositional synthesis of strategies for controlled agents in a

multi-agent system. It has three main parts. First the synthesis problem is automatically

decomposed into subproblems by taking advantage of the structure in the multi-agent system

and given objective. Then the subproblems are solved separately and their solutions are

composed. Composition may restrict the possible actions that are available for agents at some

states. The composition is then projected back to each subproblem and the subproblems are

solved again with new restrictions. This process is repeated until either a subgame becomes

unrealizable, or computed solutions for subproblems reach a fixed point. Finally, a set of

strategies, one for each controlled agent, is extracted by decomposing the strategy obtained

in the previous step. Next, we explain Algorithm 5.1 in more detail.

5.2.1 Decomposition of the Synthesis Problem

The synthesis problem is decomposed into subproblems in lines 2 − 9 of Algorithm 5.1.

The main idea behind this decomposition is that, in many cases, each conjunct Φi of the

objective Φ only refers to a small subset of agents. This observation is utilized to obtain a

game structure from description of those agents that are involved in Φi, i.e., only agents

are considered to form and solve a game with respect to Φi that are relevant. In other

words, each subproblem corresponds to a conjunct Φi of the global objective Φ and the

game structure obtained from agents involved in Φi.

For each conjunct Φi, 1 ≤ i ≤ k, Algorithm 5.1 first obtains the set INV i of involved

agents using the procedure Involved. Formally, let VΦi ⊆ V be the set of variables appearing

in Φi’s formula. The set of involved agents are those agents whose controlled variables

appear in the conjunt’s formula, i.e., Involved(Φi) = {a ∈M | Oa ∩ VΦi 6= ∅}.

A game structure Gi is then obtained from the description of the agents INV i using the

procedure CreateGameStructure as explained in Section 5.1. The projection φiinit of the

predicate φinit with respect to the involved agents is computed next. The procedure Project
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Algorithm 5.1: Compositional Controller Synthesis

Input: A decoupled multi-agent system M = {u1, · · · , um, c1, · · · , cn}, φinit
specifying initial state, and an objective Φ = Φ1 ∧ · · · ∧ Φk

Output: A set of strategies (S1, · · · ,Sn) one for each controlled agent, if one exists
1 /* Decompose the problem based on agents’ involvement in conjuncts*/
2 for all Φi, 1 ≤ i ≤ k do
3 INV i := Involved(Φi);
4 Gi := CreateGameStructure(INV i);
5 Xi :=

⋃
a∈INVi Oa; /* the set of variables controlled by involved agents */

6 φiinit := Project(φinit,Xi);
7 GKi := CreateKnowledgeGameStructure(Gi);
8 (Gdi , φiinit) := ToSafetyGame(GKi , φiinit,Φi);

9 /*Compositional synthesis*/
10 while true do
11 for i = 1 · · · k do
12 Sdi := SolveSafetyGame(Gdi , φiinit);
13 S :=

⊗m
i=1 Sdi ; /* compose the strategies */

14 for i = 1 · · · k do
15 Let Yi = Vdi ∪ Λdi be the set of variables and actions in Gdi ;
16 Ci := Project(S,Yi); /* project the strategies */

17 if ∀1 ≤ i ≤ k,Sdi = Ci then
18 break; /* a fixed point is reached over strategies */

19 for i = 1 · · · k do
20 Gdi := Gdi [Ci]; /* Restrict the subgames for the next iteration */

21 (S1, · · · , Sn) :=Extract(S);
22 return (S1, · · · , Sn);

takes a predicate φ over variables Vφ and a subset X ⊆ Vφ of variables as input, and projects

the predicate with respect to the given subset. Formally, Project(φ,X ) =
{
s|X | s ∈ ΣVφ

}
.

The knowledge game structure GKi corresponding to Gi is obtained at line 7. Note that this

step is not required if the system only includes agents that can observe the state of the game

perfectly at any time-step. Finally, the objective Φi is transformed into a game structure

using the algorithms in [FJR11, Ehl12] and composed with GKi to obtain a safety game

(Gdi , φiinit). The result of decomposition phase is k safety games
{

(Gd1 , φ1
init), · · · , (Gdk , φkinit)

}
that form the subproblems for the compositional synthesis phase.

Example 5.2. Let Ri for i = 1, · · · , 4 be four robots in an n × n grid-world, where R4

is uncontrolled and other robots are controlled. For simplicity, assume that all agents are
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perfect. At each time-step any robot Ri can move to one of its neighboring cells by taking

an action from the set {upi, downi, righti, lefti} with their obvious meanings. Consider the

following objective Φ = Φ1∧Φ2∧Φ3∧Φ12∧Φ23 where Φi for i = 1, 2, 3 specifies that Ri must

not collide with R4, and Φ12 (Φ23) specifies that R1 and R2 (R2 and R3, respectively) must

avoid collision with each other. Sub-formulas Φi, i = 1, 2, 3, only involve agents Ri and R4,

i.e., INV(Φi) = {Ri, R4}. Therefore, the game structures Gi induced by agents Ri and R4

are composed with the game structure computed for Φi to form a subproblem as a safety game.

Similarly, we obtain safety games for objectives Φ12 and Φ23 with INV(Φ12) = {R1, R2}

and INV(Φ23) = {R2, R3}, respectively.

Remark 5.1. The decomposition method used here is neither the only way to decompose

the problem, nor necessarily optimal. More efficient decomposition techniques can be used to

obtain quicker convergence in Algorithm 5.1 for example by different grouping of conjuncts.

Nevertheless, the decomposition technique explained above is simple and proved effective in

our experiments.

5.2.2 Compositional Synthesis

The safety games obtained in the decomposition phase are compositionally solved in lines

9 − 21 of Algorithm 5.1. At each iteration of the main loop, the subproblems (Gdi , φiinit)

are solved, and a maximally permissive strategy Sdi is computed for them, if one exists.

Computed strategies are then composed in line 11 of Algorithm 5.1 to obtain a strategy

S for the whole system. The strategy S is then projected back to sub-games, and it is

checked whether all the projected strategies are equivalent to the strategies computed for

the subproblems. If that is the case, the main loop terminates and S is winning for the

game (Gd, φinit) where (Gd, φinit) is the safety game associated with the multi-agent system

M and objective Φ. Otherwise, at least one of the subproblems needs to be restricted. Each

sub-game is restricted by the computed projection, and the process is repeated. The loop

terminates either if a subproblem becomes unrealizable at some iteration, or if permissive

strategies S1, · · · ,Sk reach a fixed point. In the latter case, a set of strategies, one for each

controlled agent is extracted from S as explained below.
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5.2.3 Computing Strategies for the Agents

Let V⊗ =
⋃k
i=1 VGdi be the set of all variables used to encode the game structures Gdi , and

Λc = Λc1 × · · · × Λcn be the set of actions of the controlled agents. Once a permissive

strategy S : ΣV⊗ → 2Λc is computed, a winning strategy Sd : ΣV⊗ → Λc is obtained from S

by restricting the non-deterministic action choices of the controlled agents to a single action.

The strategy Sd is then decomposed into strategies S1 : ΣV⊗ → Λc1 , · · · , Sn : ΣV⊗ → Λcn for

the agents simply by projecting the actions over system transitions to their corresponding

agents. Formally, for any s ∈ ΣV⊗ such that S(s) is defined, let Sd(s) = σ ∈ S(s) where

σ = (σ1, · · · , σn) ∈ Λc is an arbitrary action chosen from possible actions permitted by S in

the state s. Agents’ strategies are defined as Si(s) = σi for i = 1, · · · , n. Note that we assume

each controlled agent has perfect knowledge about other controlled agents’ observations.

The following theorem establishes the correctness of Algorithm 5.1.

Theorem 5.1. Algorithm 5.1 is sound.

Proof. Note that Algorithm 5.1 always terminates, that is because either eventually a fixed

point over strategies is reached, or a sub-game becomes unrealizable which indicates that the

objective cannot be enforced. Consider the permissive strategies Sdi and their projections

Ci. We have Ci(s) ⊆ Sdi (s) for any s ∈ ΣV , and as a result of composing and projecting

intermediate strategies, we will obtain more restricted sub-games. As the state space and

available actions in any state is finite, at some point, either a sub-game becomes unrealizable

because the system player becomes too restricted and cannot win the game, or all strategies

reach a fixed point. Therefore, the algorithm always terminates.

We now show that Algorithm 5.1 is sound, i.e., if it computes strategies (S1, · · · , Sn),

then the strategy S =
⊗n

i=1 Si is a winning strategy in the game (GM, φinit,Φ), where

GM is the game structure induced by M. Let S∗ =
⊗k

i=1 Sdi be the fixed point reached

over the strategies. First note that any run in Gdi [Sdi ] starting from a state s |= φiinit for

1 ≤ i ≤ k satisfies the conjunct Φi since Sdi is winning in the corresponding safety game.

That is, the restriction of the game structure Gdi to the strategy Sdi satisfies Φi. Consider

any run π = s0s1s2 · · · in the restricted game structure Gd[S∗] starting from the initial state

s0 |= φinit where Gd =
⊗k

i=1 Gdi . Let πi = si0s
i
1s
i
2 · · · for 1 ≤ i ≤ k be the projection of

π with respect to variables Vdi of the game structure Gdi , i.e., sij = sj|Vd
i

for j ≥ 0. Since

si0 |= φiinit and Sdi is equivalent to the projection of S∗ with respect to variables and actions
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in the game structure Gdi , it follows that πi is a winning run in the safety game (Gdi [Sdi ],Φi),

i.e., πi |= Φi. As πi |= Φi for 1 ≤ i ≤ k, we have π |= Φ =
∧k
i=1 Φi. It follows that S∗ is

winning in the safety game (Gd, φinit). Moreover, S∗ is also winning with respect to the

original game as (Gd, φinit) is the safety game associated with (GM, φinit,Φ) [FJR11]. It

is easy to see that the set (S1, · · · , Sn) of strategies extracted from S∗ by Algorithm 5.1 is

winning for the game (GM, φinit,Φ).

Remark 5.2. In [FJR11] it is shown that bounded synthesis is complete by proving the

existence of a sufficiently large bound. Following their result, it can be shown that Algorithm

5.1 is also complete. However, in practice, the required bound is rather high and instead an

incremental approach is used for synthesis.

Remark 5.3. Algorithm 5.1 is different from another compositional algorithm proposed

in [FJR11] in two ways. First, it composes maximally permissive strategies in contrast to

composing game structures as proposed in [FJR11]. The advantage is that strategies usually

have more compact symbolic representations compared to game structures.6 Second, in the

compositional algorithm in [FJR11], sub-games are composed and a symbolic step, i.e., a

post- or pre-image computation, is performed over the composite game. In our experiments,

performing a symbolic step over composite game resulted in a poor performance, often worse

than the centralized algorithm. Algorithm 5.1 removes this bottleneck as it is not required

in our setting. This leads to a significant improvement in performance since image and

pre-image computations are typically the most expensive operations performed by symbolic

algorithms [BGS06].

5.3 Case Study

We now demonstrate the techniques on a robot motion planning case study similar to

those that can be found in the related literature (e.g., [KGFP09, SRK+14, AKK11]).

Consider a square grid-world with some static obstacles similar to the one depicted in Figure

5.1. We consider a multi-agent system M = {u1, · · · , um, c1, · · · , cn} with uncontrolled

robots Mu = {u1, · · · , um} and controlled ones Mc = {c1, · · · , cn}. At any time-step, any

controlled robot ci for 1 ≤ i ≤ n can move to one of its neighboring cells by taking actions

upi, downi, lefti, and righti, or it can stay put by taking the action stop. Any uncontrolled

6Strategies are mappings from states to actions while game structures include more variables and typically
have more complex BDD representation as they refer to states, actions, and next states.
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(a) Time (b) Memory

Figure 5.2: Comparison of centralized and compositional approaches on a robot motion
planning case study with perfect agents

robot uj for 1 ≤ j ≤ m stays on the same row where they are initially positioned, and at any

time-step can move to their left or right neighboring cells by taking actions leftj and rightj ,

respectively. We consider the following objectives for the systems, (Φ1) collision avoidance,

i.e., controlled robots must avoid collision with static obstacles and other robots, (Φ2)

formation maintenance, i.e., each controlled robot ci must keep a linear formation (same

horizontal or vertical coordinate) at all times with the subsequent controlled robot ci+1 for

1 ≤ i < n, (Φ3) bounded reachability, i.e., controlled robots must reach the bottom row in

a pre-specified number of steps. We consider two settings. First we assume all agents are

perfect, i.e., all agents have full-knowledge of the state of the system at any time-step. Then

we assume controlled agents are imperfect and can observe uncontrolled robots only if they

are nearby and occupying an adjacent cell, similar to Example 5.1.

We apply two different methods to synthesize strategies for the agents. In the Centralized

method, a game structure for the whole system is obtained first, and then a winning strategy

is computed with respect to the considered objective. In the Compositional approach, the

strategy is computed compositionally using Algorithm 5.1. We implemented the algorithms

in Java using the BDD package JDD [Vah]. The experiments are performed on an Intel

core i7 3.40 GHz machine with 16GB memory. In our experiments, we vary the number of

uncontrolled and controlled agents, size of the grid-world, and the objective of the system as

shown in Tables 5.1 and 5.2. The columns show the number of uncontrolled and controlled

robots, considered objective, size of the grid-world, number of variables in the system, and

the time and memory usage for different approaches, respectively. Furthermore, we define

Φ12 = Φ1 ∧ Φ2, Φ13 = Φ1 ∧ Φ3, and Φ = Φ1 ∧ Φ2 ∧ Φ3.

Multi-agent systems with perfect agents. Table 5.1 shows some of our experimental
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(a) Time (b) Memory

Figure 5.3: Comparison of centralized and compositional approaches on a robot motion
planning case study with imperfect agents

Table 5.1: Experimental results for systems with perfect agents

Centralized Compositional
|Mu| |Mc| Obj. size |V| time mem (MB) time mem (MB)

1 1 Φ1 64× 64 52 72 ms 6.6 105 ms 6.6
1 1 Φ1 128× 128 60 93 ms 6.6 101 ms 6.6
1 2 Φ13 16× 16 79 14.9 min 365.5 4.2 s 19.3
1 2 Φ13 32× 32 95 mem out mem out 34.4 s 50.8
1 2 Φ 16× 16 79 400.3 s 239.7 5.1 s 19.4
1 2 Φ 32× 32 95 155.8 min 1209 33.1 s 38.3
1 3 Φ13 4× 4 66 22 s 50.8 0.8 s 6.8
1 3 Φ13 8× 8 88 mem out mem out 98.4 s 101.2
2 1 Φ 8× 8 51 106.4 s 322 33 ms 6.6
2 1 Φ 128× 128 107 mem out mem out 3.5s 6.7
2 2 Φ 4× 4 56 3.2 s 19.4 201 ms 6.6
2 2 Φ 8× 8 76 10.6 min 460 14.4 s 19.4
2 3 Φ13 4× 4 75 19.1 min 497.8 8.4 s 25.9
2 3 Φ13 8× 8 101 mem out mem out 30.2 min 800.2
2 3 Φ 8× 8 101 mem out mem out 12.7 min 302.6

results for the setting where all agents are perfect. Note that the compositional algorithm

does not always perform better than the centralized alternative. Indeed, if the conjuncts

of objectives involve a large subset of agents, compositional algorithm comes closer to

the centralized algorithm. Intuitively, if the agents are “strongly” coupled, the overhead

introduced by compositional algorithm is not helpful, and the centralized algorithm performs

better. For example, when the system consists of a controlled robot and an uncontrolled one

along with a single safety objective, compositional algorithm coincides with the centralized

one, and centralized algorithm performs slightly better. However, if the subproblems are

“loosely” coupled, which is the case in many practical problems, the compositional algorithm

significantly outperforms the centralized one, both from time and memory perspective, as
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Table 5.2: Experimental results for systems with imperfect agents

Centralized Compositional
|Mu| |Mc| Obj. size |V| time mem (MB) time mem (MB)

1 2 Φ12 4× 4 127 1.7 s 6.7 0.6 s 6.7
1 2 Φ12 6× 6 235 28.6 s 31.9 10.2 s 19.3
1 2 Φ12 8× 8 235 229.7 s 126.6 95 s 57.1
1 2 Φ12 9× 9 375 time out time out 306 s 94.9
1 2 Φ12 10× 10 375 time out time out 9.7 min 176.7
1 2 Φ13 4× 4 143 1.4 s 6.7 303 ms 6.7
1 2 Φ13 6× 6 255 38.2 s 57.1 5 s 13
1 2 Φ13 8× 8 255 8.9 min 252.2 38.3 s 51
1 2 Φ13 9× 9 395 time out time out 114.9 s 88.6
1 2 Φ13 10× 10 395 time out time out 279.9 s 157.8
1 2 Φ 4× 4 143 2.3 s 6.7 0.7 s 6.7
1 2 Φ 6× 6 255 46.2 s 50.8 10 s 19.3
1 2 Φ 8× 8 255 344.5 s 202.1 129.9 s 57.1
1 2 Φ 9× 9 395 time out time out 309.9 s 101.2
1 2 Φ 10× 10 395 time out time out 9.6 min 176.7
1 3 Φ1 4× 4 186 144.3 s 69.7 0.9 s 6.7
1 3 Φ1 6× 6 346 time out time out 17.7 s 38.2
1 3 Φ1 8× 8 346 time out time out 190.9 s 176.7
1 3 Φ1 10× 10 554 time out time out 24.6 min 730.6
1 3 Φ13 4× 4 210 265.8 s 214.5 0.9 s 6.7
1 3 Φ13 6× 6 376 time out time out 49.2 s 57.1
1 3 Φ13 8× 8 376 time out time out 483.9 s 214.5
1 3 Φ13 9× 9 584 time out time out 31.7 min 441.1
1 3 Φ 6× 6 376 time out time out 36 s 50.8
1 3 Φ 8× 8 376 time out time out 343.4 s 201.9
1 3 Φ 10× 10 584 time out time out 39.6 min 774.7

we increase the number of agents and make the objectives more complex, and it can solve

problems where the centralized algorithm is infeasible. Figure 5.2 shows the computation

time and memory usage in some of our experiments where both centralized and compositional

algorithms successfully computed strategies. Tables 5.3 and 5.4 show a more detailed version

of our experimental results for multi-agent systems with perfect agents.

Multi-agent systems with imperfect controlled agents. Not surprisingly, scala-

bility is a bigger issue when it comes to games with imperfect information due to the subset

construction procedure, which leads to yet another reason for compositional algorithm to

perform better than the centralized alternative. Table 5.2 shows some of our experimental

results for the setting where controlled agents are imperfect. While the centralized approach

fails to compute the knowledge game structure due to the state explosion problem, the

compositional algorithm performs significantly better by decomposing the problem and per-
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forming subset construction on smaller and more manageable game structures of imperfect

information. Figure 5.3 shows the computation time and memory usage in some of our

experiments where both centralized and compositional algorithms successfully computed

strategies. Tables 5.5 and 5.6 show a more detailed version of our experimental results for

multi-agent systems with imperfect agents.
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Table 5.3: Evaluation of approaches on a robot motion planning case study with perfect
agents

Centralized Compositional
Ex. # |Mu| |Mc| objective size |V| time mem (MB) time mem (MB)

1 1 1 Φ1 4× 4 20 36 ms 0.3 44 ms 0.3
2 1 1 Φ1 8× 8 28 6 ms 0.3 20 ms 0.3
3 1 1 Φ1 16× 16 36 24 ms 0.3 36 ms 0.3
4 1 1 Φ1 32× 32 44 65 ms 6.6 76 ms 6.6
5 1 1 Φ1 64× 64 52 72 ms 6.6 105 ms 6.6
6 1 1 Φ1 128× 128 60 93 ms 6.6 101 ms 6.6
7 1 1 Φ12 4× 4 20 0 ms 0.3 1 ms 0.3
8 1 1 Φ12 8× 8 28 5 ms 0.3 6 ms 0.3
9 1 1 Φ12 16× 16 36 12 ms 0.3 13 ms 0.3
10 1 1 Φ12 32× 32 44 30 ms 6.6 21 ms 6.6
11 1 1 Φ12 64× 64 52 53 ms 6.6 28 ms 6.6
12 1 1 Φ12 128× 128 60 70 ms 6.6 40 ms 6.6
13 1 1 Φ13 4× 4 28 4 ms 0.3 1 ms 0.3
14 1 1 Φ13 8× 8 38 73 ms 6.8 4 ms 0.3
15 1 1 Φ13 16× 16 48 492 ms 6.8 19 ms 6.6
16 1 1 Φ13 32× 32 58 4 s 13.1 53 ms 6.6
17 1 1 Φ13 64× 64 68 36.2 s 19.4 303 ms 6.6
18 1 1 Φ13 128× 128 78 330.8 s 50.9 1.9 s 6.6
19 1 1 Φ 4× 4 28 2 ms 0.3 0 ms 0.3
20 1 1 Φ 8× 8 38 44 ms 6.8 5 ms 0.3
21 1 1 Φ 16× 16 48 292 ms 6.8 17 ms 6.6
22 1 1 Φ 32× 32 58 2.5 s 13.1 46 ms 6.6
23 1 1 Φ 64× 64 68 22.4 s 19.4 182 ms 6.6
24 1 1 Φ 128× 128 78 242.3 s 50.9 1.3 s 6.6
25 1 2 Φ1 4× 4 31 17 ms 6.6 11 ms 6.6
26 1 2 Φ1 8× 8 43 347 ms 6.6 248 ms 6.6
27 1 2 Φ1 16× 16 55 1.7 s 19.4 1.8 s 12.9
28 1 2 Φ1 32× 32 67 9.1 s 38.3 7.6 s 19.3
29 1 2 Φ1 64× 64 79 27.3 s 63.5 28.7 s 38.2
30 1 2 Φ1 128× 128 91 74.1 s 88.6 75.6 s 44.6
31 1 2 Φ12 4× 4 31 11 ms 6.6 19 ms 6.6
32 1 2 Φ12 8× 8 43 186 ms 6.6 398 ms 6.6
33 1 2 Φ12 16× 16 55 1.1 s 19.4 3.9 s 13
34 1 2 Φ12 32× 32 67 5.6 s 25.7 14.8 s 19.4
35 1 2 Φ12 64× 64 79 17.3 s 44.6 49.5 s 32
36 1 2 Φ12 128× 128 91 53.8 s 57.2 104.2 s 45
37 1 2 Φ13 4× 4 47 117 ms 6.6 14 ms 6.6
38 1 2 Φ13 8× 8 63 15 s 38.3 401 ms 6.6
39 1 2 Φ13 16× 16 79 14.9m 365.5 4.2 s 19.3
40 1 2 Φ13 32× 32 95 mem out mem out 34.4 s 50.8
41 1 2 Φ 4× 4 47 205 ms 6.8 40 ms 6.6
42 1 2 Φ 8× 8 63 9.8 s 31.9 0.9 s 6.6
43 1 2 Φ 16× 16 79 400.3 s 239.7 5.1 s 19.4
44 1 2 Φ 32× 32 95 155.8 min 1209 33.1 s 38.3
45 1 3 Φ1 4× 4 42 488 ms 6.6 182 ms 6.6
46 1 3 Φ1 8× 8 58 108.7 s 176.7 17.5 s 31.9
47 1 3 Φ1 16× 16 74 38.6 min 1391.5 181.9 s 201.8
48 1 3 Φ1 32× 32 90 mem out mem out 15 min 485.1
49 1 3 Φ12 4× 4 42 417 ms 6.6 301 ms 6.6
50 1 3 Φ12 8× 8 58 25.8 s 82.2 13.6 s 31.8
51 1 3 Φ12 16× 16 74 9.6 min 648.7 168.1 s 271
52 1 3 Φ12 32× 32 90 mem out mem out 14.9 min 711.8
53 1 3 Φ13 4× 4 66 22 s 50.8 0.8 s 6.8
54 1 3 Φ13 8× 8 88 mem out mem out 98.4 s 101.2
55 1 3 Φ 4× 4 66 35.1 s 50.8 1.1 s 6.7
56 1 3 Φ 8× 8 88 88.9 min 1227.8 28.4 s 44.5
57 1 4 Φ1 4× 4 53 65.5 s 107.5 15.8 s 25.8
58 1 4 Φ1 8× 8 73 mem out mem out 91.8 min 1252.9
59 1 4 Φ12 4× 4 53 28.1 s 69.6 14.1 s 31.9
60 1 4 Φ12 8× 8 73 mem out mem out 42.2 min 1278.1
61 1 4 Φ13 4× 4 85 181.1 min 1303.4 119.2 s 107.6
62 1 4 Φ 4× 4 85 83.2 min 806.1 40.4 s 38.3
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Table 5.4: Evaluation of approaches on a robot motion planning case study with perfect
agents

Centralized Compositional
Ex. # |Mu| |Mc| objective size |V| time mem (MB) time mem (MB)

63 2 1 Φ1 4× 4 29 34 ms 0.3 1 ms 0.3
64 2 1 Φ1 8× 8 41 73 ms 6.8 33 ms 6.6
65 2 1 Φ1 16× 16 53 147 ms 6.7 143 ms 6.6
66 2 1 Φ1 32× 32 65 254 ms 6.6 0.7 s 6.6
67 2 1 Φ1 64× 64 77 353 ms 6.6 1.2 s 6.6
68 2 1 Φ1 128× 128 89 1.1 s 6.6 2.2 s 6.7
69 2 1 Φ12 4× 4 29 1 ms 0.3 1 ms 0.3
70 2 1 Φ12 8× 8 41 18 ms 6.8 29 ms 6.6
71 2 1 Φ12 16× 16 53 76 ms 6.7 142 ms 6.6
72 2 1 Φ12 32× 32 65 140 ms 6.6 378 ms 6.6
73 2 1 Φ12 64× 64 77 0.6 s 6.6 1.1 s 6.6
74 2 1 Φ12 128× 128 89 0.7 s 6.6 2.2 s 6.7
75 2 1 Φ13 4× 4 37 46 ms 6.8 1 ms 0.3
76 2 1 Φ13 8× 8 51 112 s 322 31 ms 6.6
77 2 1 Φ13 16× 16 65 mem out mem out 155 ms 6.6
78 2 1 Φ13 32× 32 79 mem out mem out 429 ms 6.6
79 2 1 Φ13 64× 64 93 mem out mem out 1.4 s 6.6
80 2 1 Φ13 128× 128 107 mem out mem out 3.7 s 6.7
81 2 1 Φ 4× 4 37 217 ms 6.8 2 ms 0.3
82 2 1 Φ 8× 8 51 106.4 s 322 33 ms 6.6
83 2 1 Φ 16× 16 65 mem out mem out 155 ms 6.6
84 2 1 Φ 32× 32 79 mem out mem out 424 ms 6.6
85 2 1 Φ 64× 64 93 mem out mem out 1.4 s 6.6
86 2 1 Φ 128× 128 107 mem out mem out 3.5 s 6.7
87 2 2 Φ1 4× 4 40 97 ms 6.7 68 ms 6.6
88 2 2 Φ1 8× 8 56 5.4 s 25.7 4.4 s 19.2
89 2 2 Φ12 4× 4 40 84 ms 6.7 195 ms 6.6
90 2 2 Φ12 8× 8 56 4.5 s 19.4 13.5 s 19.4
91 2 2 Φ13 4× 4 56 3.2 s 25.7 113 ms 6.6
92 2 2 Φ13 8× 8 76 18.7 min 629.9 6.2 s 25.6
93 2 2 Φ 4× 4 56 3.2 s 19.4 201 ms 6.6
94 2 2 Φ 8× 8 76 10.6 min 460 14.4 s 19.4
95 2 3 Φ1 4× 4 51 9.7 s 32 3.3 s 12.9
96 2 3 Φ1 8× 8 71 53.8 min 1423 421.4 s 264.8
97 2 3 Φ12 4× 4 51 5.8 s 25.6 3.2 s 13.1
98 2 3 Φ12 8× 8 71 14.2 min 642.4 481.3 s 277.4
99 2 3 Φ13 4× 4 75 19.1 min 497.8 8.4 s 25.9
100 2 3 Φ13 8× 8 101 mem out mem out 30.2 min 800.2
101 2 3 Φ 4× 4 75 time out time out 5 s 13.3
102 2 3 Φ 8× 8 101 mem out mem out 12.7 min 302.6
103 2 4 Φ1 4× 4 62 mem out mem out 385.7 s 158
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Table 5.5: Evaluation of approaches on a robot motion planning case study with imperfect
agents

Centralized Compositional
Ex. # |Mu| |Mc| objective size |V| time mem (MB) time mem (MB)
|Mu| |Mc| objective size |V| time mem (MB) time mem (MB)
104 1 1 Φ1 4× 4 68 115 ms 0.3 142 ms 0.3
105 1 1 Φ1 5× 5 124 153 ms 6.7 210 ms 6.7
106 1 1 Φ1 6× 6 124 186 ms 6.7 201 ms 6.7
107 1 1 Φ1 7× 7 124 314 ms 6.7 248 ms 6.7
108 1 1 Φ1 8× 8 124 363 ms 7 336 ms 7
109 1 1 Φ12 4× 4 68 17 ms 0.3 16 ms 0.3
110 1 1 Φ12 5× 5 124 61 ms 6.7 50 ms 6.7
111 1 1 Φ12 6× 6 124 110 ms 6.7 115 ms 6.7
112 1 1 Φ12 7× 7 124 173 ms 6.7 241 ms 6.7
113 1 1 Φ12 8× 8 124 215 ms 7 239 ms 7
114 1 1 Φ13 4× 4 76 15 ms 0.4 26 ms 0.4
115 1 1 Φ13 5× 5 134 54 ms 6.7 57 ms 6.7
116 1 1 Φ13 6× 6 134 101 ms 6.7 116 ms 6.7
117 1 1 Φ13 7× 7 134 173 ms 6.7 206 ms 6.7
118 1 1 Φ13 8× 8 134 246 ms 7 381 ms 7
119 1 1 Φ 4× 4 76 14 ms 0.4 14 ms 0.4
120 1 1 Φ 5× 5 134 76 ms 6.7 57 ms 6.7
121 1 1 Φ 6× 6 134 150 ms 6.7 114 ms 6.7
122 1 1 Φ 7× 7 134 180 ms 6.7 253 ms 6.7
123 1 1 Φ 8× 8 134 299 ms 7 428 ms 7
124 1 1 Φ1 9× 9 196 1.2 s 6.7 1.3 s 6.7
125 1 1 Φ1 10× 10 196 1.2 s 6.7 1.1 s 6.7
126 1 1 Φ12 9× 9 196 0.6 s 6.7 0.9 s 6.7
127 1 1 Φ12 10× 10 196 0.9 s 6.7 1.1 s 6.7
128 1 1 Φ13 9× 9 206 0.8 s 6.7 1.1 s 6.7
129 1 1 Φ13 10× 10 206 1.5 s 6.7 1.3 s 6.7
130 1 1 Φ 9× 9 206 0.9 s 6.7 1.1 s 6.7
131 1 1 Φ 10× 10 206 1.1 s 6.7 1.2 s 6.7
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Table 5.6: Evaluation of approaches on a robot motion planning case study with imperfect
agents

Centralized Compositional
Ex. # |Mu| |Mc| objective size |V| time mem (MB) time mem (MB)
|Mu| |Mc| objective size |V| time mem (MB) time mem (MB)
132 1 2 Φ1 4× 4 127 1.3 s 6.7 189 ms 6.7
133 1 2 Φ1 5× 5 235 7.7 s 13 1.3 s 6.7
134 1 2 Φ1 6× 6 235 25.2 s 31.9 4.9 s 13
135 1 2 Φ1 7× 7 235 84.2 s 69.7 16.4 s 25.6
136 1 2 Φ1 8× 8 235 242.6 s 126.3 37 s 44.7
137 1 2 Φ12 4× 4 127 1.7 s 6.7 0.6 s 6.7
138 1 2 Φ12 5× 5 235 8.4 s 13 2.3 s 6.7
139 1 2 Φ12 6× 6 235 28.6 s 31.9 10.2 s 19.3
140 1 2 Φ12 7× 7 235 83.5 s 69.7 35 s 31.9
141 1 2 Φ12 8× 8 235 229.7 s 126.6 95 s 57.1
142 1 2 Φ13 4× 4 143 1.4 s 6.7 303 ms 6.7
143 1 2 Φ13 5× 5 255 10 s 25.6 1.3 s 6.7
144 1 2 Φ13 6× 6 255 38.2 s 57.1 5 s 13
145 1 2 Φ13 7× 7 255 159.5 s 132.6 16.7 s 25.6
146 1 2 Φ13 8× 8 255 8.9 min 252.2 38.3 s 51
147 1 2 Φ 4× 4 143 2.3 s 6.7 0.7 s 6.7
148 1 2 Φ 5× 5 255 10.9 s 25.6 2.5 s 13
149 1 2 Φ 6× 6 255 46.2 s 50.8 10 s 19.3
150 1 2 Φ 7× 7 255 123.7 s 107.4 54.4 s 31.9
151 1 2 Φ 8× 8 255 344.5 s 202.1 129.9 s 57.1
152 1 2 Φ1 9× 9 375 27.8 min 390.7 113.2 s 82.3
153 1 2 Φ1 10× 10 375 time out time out 256.2 s 151.5
154 1 2 Φ12 9× 9 375 time out time out 306 s 94.9
155 1 2 Φ12 10× 10 375 time out time out 9.7 min 176.7
156 1 2 Φ13 9× 9 395 time out time out 114.9 s 88.6
157 1 2 Φ13 10× 10 395 time out time out 279.9 s 157.8
158 1 2 Φ 9× 9 395 time out time out 309.9 s 101.2
159 1 2 Φ 10× 10 395 time out time out 9.6 min 176.7
160 1 3 Φ1 4× 4 186 144.3 s 69.7 0.9 s 6.7
161 1 3 Φ1 5× 5 346 time out time out 4.5 s 19.3
162 1 3 Φ1 6× 6 346 time out time out 17.7 s 38.2
163 1 3 Φ1 7× 7 346 time out time out 65 s 82.3
164 1 3 Φ1 8× 8 346 time out time out 190.9 s 176.7
165 1 3 Φ1 9× 9 554 time out time out 9.3 min 346.7
166 1 3 Φ1 10× 10 554 time out time out 24.6 min 730.6
167 1 3 Φ12 4× 4 186 145.3 s 63.4 1 s 6.7
168 1 3 Φ12 5× 5 346 time out time out 5.8 s 19.3
169 1 3 Φ12 6× 6 346 time out time out 24.5 s 44.5
170 1 3 Φ12 7× 7 346 time out time out 89.5 s 94.9
171 1 3 Φ12 8× 8 346 time out time out 280.5 s 195.6
172 1 3 Φ12 9× 9 554 time out time out 13.2 min 378.1
173 1 3 Φ12 10× 10 554 time out time out 31.4 min 768.4
174 1 3 Φ13 4× 4 210 265.8 s 214.5 0.9 s 6.7
175 1 3 Φ13 5× 5 376 time out time out 8.3 s 19.4
176 1 3 Φ13 6× 6 376 time out time out 49.2 s 57.1
177 1 3 Φ13 7× 7 376 time out time out 260.4 s 132.7
178 1 3 Φ13 8× 8 376 time out time out 483.9 s 214.5
179 1 3 Φ13 9× 9 584 time out time out 31.7 min 441.1
180 1 3 Φ 5× 5 376 time out time out 8 s 25.7
181 1 3 Φ 6× 6 376 time out time out 36 s 50.8
182 1 3 Φ 7× 7 376 time out time out 129.5 s 101.2
183 1 3 Φ 8× 8 376 time out time out 343.4 s 201.9
184 1 3 Φ 9× 9 584 time out time out 16.5 min 378.2
185 1 3 Φ 10× 10 584 time out time out 39.6 min 774.7
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6

Related Work

The synthesis problem was first recognized by Church [Chu62]. The problem of synthesizing

reactive systems from a specification given in linear temporal logic was considered by

Pnueli et al. [PR89], where they propose a synthesis algorithm that first transforms the

LTL specification into a Büchi automaton, which is then translated into a deterministic

Rabin automaton using Safra’s determinization procedure [Saf88]. This double translation

causes a doubly exponential time complexity which is unavoidable [Ros92]. The high

complexity of the synthesis process was discouraging, however, it was shown later that

there are several interesting cases where the synthesis problem can be solved in polynomial

time [ALT04, PAMS98]. Bloem et al. [BJP+12] present polynomial time algorithms for

the realizability and synthesis problems for a more general fragment of LTL known as

Generalized Reactivity (1) (GR(1)). They show the efficiency and expressivity of GR(1) by

applying their algorithms to a realistic industrial hardware case study of a medium size. We

also consider GR(1) specifications in Chapter 3 and show how they can be automatially

refined by synthesizing additional assumptions-guarantees using patterns.

Compositional reactive synthesis has been considered in some recent works. Kupferman

et al. [KV05] propose a Safraless approach that reduces the LTL realizability problem to

Büchi games. Their approach is then extended to treat specifications that are conjunction

of LTL properties compositionally [KPV06]. There is no notion of maximally permissive

strategy for büchi games, and to our best knowledge their algorithms are not implemented.

Baier et al. [BKK11] give a compositional framework for treating multiple linear-time

objectives inductively. To this end, they introduce the concept of most general strategies

which generate all decision functions that guarantee the objective under consideration.

Sohail et al. [SS09] propose an algorithm to compositionally construct a parity game from
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conjunctive LTL specifications. Filiot et al. [FJR11] present monolithic and compositional

algorithms to solve the LTL realizability problem. They reduce the LTL realizability problem

to solving safety games, and show that for LTL specifications written as conjunction of

smaller LTL formulas, the problem can be solved compositionally by first computing winning

strategies for each conjunct. Moreover, they show that compositional algorithms can handle

fairly large LTL specifications.

Two-player games of imperfect information are studied in [Rei84, CH05, DWDR06,

CDHR06], and it is shown that they are often more complicated than games of perfect

information. The algorithmic difference is exponential, due to a subset construction that

turns a game of imperfect information into an equivalent game of perfect information.

In Chapter 5, we build on the results of [FJR11, CDHR06] and extend and adapt their

methods to treat multi-agent systems with imperfect agents. To the best of our knowledge,

compositional reactive synthesis is not studied in the context of multi-agent systems and

robot motion planning.

The setting considered in Chapter 4 is different from the ones in [KV05, BKK11, SS09,

FJR11] as we are interested in synthesizing from a library of controllers that can be reused.

The problem of LTL synthesis from a library of reusable components is also considered in

[LV13]. Sequential composition of controllers considered in Chapter 4 is similar to control-

flow composition in [LV13] and is inspired by software systems. Although by enumerating

the parameter values and instantiating parametric controllers to obtain a library of non-

parametric controllers our problem can be reduced to the one considered in [LV13], such naive

enumeration may lead to an exponentially larger number of controllers in the library, making

the method infeasible in practice. Our algorithms symbolically explore the parametric space,

thus avoiding the excessive explicit enumeration. To the best of our knowledge, there is no

implementation of the methods proposed in [LV13].

The synthesis problem for distributed reactive was first considered by Pnueli et al.

[PR90]. They showed that distributed synthesis problem is undecidable in general and

has non-elementary complexity for pipeline architectures. Kupferman et al. [KV01] pro-

pose a automata-based synthesis algorithm for pipeline and ring architectures in which

information flows in either one or both directions. Mohalik et al. [MW03] provide an

alternative game-theoretical approach. Madhusudan et al. [MT01] consider the special

case of synthesizing distributed controllers for reactive systems against local specifications
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(each property only refers to the variables of one of the processes), and show that a larger

class of architectures become decidable in comparison to the analogous problem for global

specifications. Finkbeiner et al. [FS05] show that the distributed synthesis problem is

decidable if and only if the architecture does not contain an information fork. Madhusudan

et al. [MT02] consider the problem of synthesizing controllers for distributed asynchronous

systems and show that under some severe restrictions the problem is decidable. Schewe et

al. [SF07b] show that the synthesis of asynchronous distributed systems is decidable if and

only if at most one process implementation is unknown. Finkbeiner et al. [FS13] introduce

the bounded synthesis approach where a bound on a system parameter such as the number

of states is fixed a priori, and only those implementations that fall below the bound are

considered. The main idea behind their solution is a translation from linear temporal logic

specifications to sequences of safety tree automata which underapproximate the specification

and eventually become empty-equivalent. They show that bounded synthesis is applicable to

variations of synthesis problem including synchronous and asynchronous distributed systems.

Bounded synthesis approach is implemented symbolically using binary decision diagrams in

[Ehl12, Ehl11] and using anti-chains in [FJR09].

The problem of correcting an unrealizable LTL specification by constructing an additional

environment assumption is also studied by [CHJ08]. They give an algorithm for computing

the assumption which only constrains the environment and is as weak as possible. Their

approach is more general than the counter-strategy-guided refinement approach proposed in

Chapter 3 as they consider general LTL specifications. However, the synthesized assumption

is a Büchi automaton that might not translate to an LTL formula and can be difficult for

the user to understand. Moreover, the resulting specification is not necessarily compatible

with the design intent. The closest work to ours is the work by Li et al. [LDS11] where they

propose a template-based specification mining approach to find additional assumptions on

the environment that can be used to rule out the counter-strategy. A template is an LTL

formula with at least one placeholder, ?b, that can be instantiated by the Boolean variable b

or its negation. Templates are used to impose a particular structure on the form of generated

candidates and are engineered by the user based on her knowledge of the environment. A

set of candidate assumptions is generated by enumerating all possible instantiations of the

defined templates. For a given counter-strategy, their method finds an assumption from

the set of candidate assumptions which is satisfied by the counter-strategy. By adding the
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negation of such an assumption to the specification, they remove the behavior described

by the counter-strategy from the environment. This process is repeated until either the

resulting specification becomes realizable or there is no candidate that is satisfied by the

counter-strategy. Similar to their work, we consider unrealizable GR(1) specifications and

achieve realizability by adding environment assumptions to the specification. But, unlike

them, we directly work on the counter-strategies to synthesize a set of candidate assumptions

that can be used to rule out the counter-strategy. Similar to templates, patterns impose

structure on the assumptions. However, our method synthesizes the patterns based on

the counter-strategy and the user does not need to manipulate them. We only require the

user to specify a subset of variables to be used in the search for missing assumptions. The

user can specify a subset that she thinks leads to the unrealizability. In our method, the

maximum number of generated assumptions for a given counter-strategy is independent

from what subset of variables is considered, whereas increasing the size of the chosen subset

of variables in [LDS11] will result in exponential growth in the number of candidates, while

only a small number of them might hold over all runs of the counter-strategy (unlike our

method). Moreover, we compute the weakest environment assumptions for the considered

structure and given subset of variables. Our work takes an initial step toward bridging the

gap between [CHJ08] and [LDS11]. Our method synthesizes environment assumptions that

are simple formulas, making them easy to understand and practical, and they also constrain

the environment as weakly as possible within their structure.

Chatterjee et al. [CH07] consider assume-guarantee synthesis problem and show that it

can be solved by computing secure-equilibrium strategies. The main idea is that processes

are adversarial, but will not compete with each other at the price of violating their own

specification. Bloem et al. [BCJK15] extend the assume-guarantee synthesis approach

proposed in [CH07] for simultaneous synthesis of multiple processes with partial information

restrictions. In Chapter 3, we use a different approach for assume-guarantee synthesis that

is based on specification refinement through inferring LTL formulas from strategies and

counter-strategies.

The controller synthesis problem for systems with multiple controllable agents from

a high-level temporal logic specification is also considered in many recent works (e.g.,

[KGFP09, WTM12, KgWT11]). A common theme is based on first computing a discrete

controller satisfying the LTL specification over a discrete abstraction of the system, which is
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then used to synthesize continues controllers guaranteed to fulfill the high-level specification.

In many of these works (e.g., [WUB+13, KB10]) the agents’ models are composed (either

from the beginning or incrementally) to obtain a central model. The product of the central

model with the specification automaton is then constructed and analyzed to compute

a strategy. In [SRK+14], authors present a compositional motion planning framework

for multi-robot systems based on a reduction to satisfiability modulo theories. However,

their model cannot handle uncertain or dynamic environment. In [KGFP09, OTM11] it is

proposed that systems with multiple components can be treated in a decentralized manner

by considering one component as a part of the environment of another component. However,

these reactive approaches cannot address the need for joint decision making and cooperative

objectives. In Chapter 5 we consider compositional and symbolic algorithms for solving

games in presence of a dynamic and possibly adversarial environment. Note that within

the scope of this dissertation, we assumed that a finite-state abstraction of the system is

given and we presented compositional algorithms for synthesizing discrete controllers. The

computed controllers can then be refined to controllers enforcing the specification over the

original system using the techniques in the literature [Tab09].
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7

Conclusions and Future Work

This chapter concludes the dissertation by providing a brief summary of the proposed

methods followed by some directions toward which they can be improved and extended. We

considered the problem of automated synthesis of controllers for multi-agent systems from

high-level temporal logic specifications. The key insight was to consider more restricted

yet practically useful subclasses of the general problem. The overall theme of the solution

approaches was to take advantage of the existing structure in systems in order to decompose

the synthesis problem into smaller and more manageable subproblems, and to achieve more

efficient synthesis algorithms through compositional synthesis techniques. We explored three

different frameworks for compositional synthesis:

• We showed how automated refinement of specifications can be used to revise the spec-

ifications of the components in the context of compositional synthesis. We proposed

three different approaches for compositional refinement of specifications. The choice of

the appropriate approach depends on the size of the problem (e.g., number of states in

strategies and counter-strategies) and the level of acceptable coupling between compo-

nents. Supplying more information about the strategies of the components with realizable

local specifications to unrealizable specification under refinement, reduces the number

of scenarios the game solver needs to consider, and facilitates the synthesis procedure,

while increasing the coupling between components. Overall, patterns provide a tool for

the designer to refine and complete temporal logic specifications.

• We presented a framework for compositional and symbolic synthesis from a library

of parametric and reactive controllers. We also showed how these controllers can be

synthesized from parametric objectives specified by the user.

• We proposed a framework for controller synthesis for dynamically decoupled multi-
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agent systems. We showed that, by taking advantage of the structure in the system to

compositionally synthesize the controllers, and by representing and exploring the state

space symbolically, we can achieve better scalability and solve more realistic problems.

Our preliminary results show the potential of reactive synthesis as planning algorithms in

the presence of dynamically changing and adversarial environment.

There are several directions in which the work described in this dissertation can be

extended and improved upon. We summarize what we consider to be the most promissing

directions next.

Refining specifications using counter-strategies. Counter-strategies provide useful

information for explaining reasons for unrealizability. However, there can be multiple ways to

rule out a counter-strategy. It remains to investigate how the multiplicity of the candidates

generated by the methods proposed in Chapter 3 can be used to synthesize better refinements.

Furthermore, the proposed methods ask the user for subsets of variables to be used in

generating candidates. The choice of the subsets can significantly impact how fast the

algorithms can find a refinement. Automatically finding good subsets of variables that

contribute to the unrealizability problem is another future direction.

Computing patterns for LTL specifications. The problem of inferring formulas

from transition systems has a close relationship with model checking. In model checking,

given a transition system and a specification in a formal language such as LTL, the goal is

to decide whether the specification is satisfied over all possible executions of the transition

system. On the other hand, given a transition system and a temporal template, the goal of

pattern synthesis is to compute formulas with the given temporal template that hold over

all executions of the transition system. Intuitively, temporal templates are LTL formulas

where some of the propositional parts are left-out for synthesis (similar to sketching [SL09]

in program synthesis). We illustrate the problem with an example.

Consider the transition system shown in Figure 7.1 where a and b are two Boolean

variables and states are labeled by propositional formulas which hold in them. Assume

the user gives �((¬a ∧ b) → ♦?a,b) as a temporal template. Intuitively, the user wants

to know what is guaranteed to happen eventually after any visit to a state satisfying the

propositional formula ¬a ∧ b. Unknown propositional formula ?a,b is to be synthesized and

replaced by a propositional formula over a and b. For example, the synthesis process may

compute ?a,b = (a ∧ ¬b) ∨ (a ∧ b) = a, leading to the LTL formula �((¬a ∧ b)→ ♦a) which
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¬a ∧ bstart

a ∧ ¬b

a ∧ b

Figure 7.1: Example of a transition system

is satisfied over all runs of the given transition system.

In the framework proposed in Chapter 3, we only consider temporal templates with forms

allowed in GR(1) fragment of the linear temporal logic. However, LTL has more expressive

power and hence some properties are easier to express as LTL formulas. Extending the

algorithms to be able to infer LTL formulas from strategies and counter-strategies and refine

LTL specifications is one of the possible future directions.

Cooperation and competition between agents. In multi-agent systems we consider

within the scope of this dissertation, the agents are either cooperative or adversarial. An

interesting future direction is to extend this model and allow the user to specify which

agents can cooperate to fulfill a specific objective. For example, consider a system with two

controllable agents a1 and a2, and assume that the objectives of the system are for a1 and a2

to avoid collision while maintaining a maximum distance (e.g., for communication purposes).

Assume agent a1 can cooperate with a2 to avoid collision, while it cannot trust a2 with

respect to maximum distance objective, i.e., in order for the system to satisfy the distance

objective, a1 must react to possible actions of agent a2. Such specifications can also be

expressed in alternating temporal logic [AHK02], however, their application to multi-agent

systems and robot motion planning is not investigated. We are particularly interested in

how methods presented in this dissertation can be extended to handle such objectives.

Robot motion planning case study. Another future direction is to integrate and

apply the methods proposed in this dissertation to a more realistic robot motion planning

case study with multiple controlled robots in presence of uncertain and dynamic environment,

e.g., uncontrolled dynamic obstacles. The goal is to automatically synthesize controllers

for the controlled agents from a high-level specification that can be deployed on a robotic

platform or be simulated in a robotic simulation environment (e.g., Gazebo [KH04]). For
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example, we can consider a case study similar to that of [SRK+14] where a group of controlled

quadrotors are required to navigate through the room while avoiding collision with each

other, maintaining formation and satisfy proximity constraints. Furthermore, in this case

study there may exist uncontrolled and dynamic obstacles (e.g., uncontrolled quadrotors)

and the synthesis process must take the uncertainty in the environment into account. The

user specifies a high-level specification and the output will be low-level controllers that can

be deployed on the quadrotors or simulated in a simulation environment. Such a case study,

in addition to demonstrating the potential application of reactive synthesis in controller

synthesis for multi-agent systems, can reveal possible challenges in interfacing between

different layers of controller design, and provide some insight into more efficient solution

approaches.

Modeling uncertainty about the environment. In the compositional synthesis

framework proposed in Chapter 4, we assumed that the controllers have perfect information

about the state of the system at any time-step. However, in practice, this assumption might

be unrealistic, e.g., due to the imperfection and limitations of the sensors of the system. In

future, we plan to investigate how our approach can be generalized to synthesize strategies

for systems from a library of controllers with partial information.

Game structures of imperfect information provide a natural way for modeling systems

that interact with partially observable and dynamic environment. Unfortunately, the

scalability becomes a bigger issue due to the subset construction procedure that can lead

to an exponentially larger perfect information game structure. In our implementation of

the framework proposed in Chapter 5, we performed the subset construction procedure

symbolically and we only constructed the part of it that is reachable from the initial state.

One of our observations was that, by considering more structured observation functions for

game structures of imperfect information, such as the ones considered in our case study

where the robots show a “local” observation behavior, the worst case exponential blow-up

in the constructed knowledge game structure does not occur in practice. In future, we plan

to investigate how considering more restricted yet practical observation functions can enable

us to handle systems with imperfect agents of larger size.
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