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ABSTRACT

PROGRAMMING USING AUTOMATA AND TRANSDUCERS

Loris D’Antoni

Dr. Rajeev Alur

Automata, the simplest model of computation, have proven to be an effective tool in

reasoning about programs that operate over strings. Transducers augment automata

to produce outputs and have been used to model string and tree transformations such

as natural language translations. The success of these models is primarily due to their

closure properties and decidable procedures, but good properties come at the price of

limited expressiveness. Concretely, most models only support finite alphabets and can

only represent small classes of languages and transformations.

We focus on addressing these limitations and bridge the gap between the theory of au-

tomata and transducers and complex real-world applications: Can we extend automata

and transducer models to operate over structured and infinite alphabets? Can we design lan-

guages that hide the complexity of these formalisms? Can we define executable models that can

process the input efficiently?

First, we introduce succinct models of transducers that can operate over large alpha-

bets and design BEX, a language for analysing string coders. We use BEX to prove the

correctness of UTF and BASE64 encoders and decoders. Next, we develop a theory

of tree transducers over infinite alphabets and design FAST, a language for analysing

tree-manipulating programs. We use FAST to detect vulnerabilities in HTML sanitizers,

check whether augmented reality taggers conflict, and optimize and analyze functional

programs that operate over lists and trees. Finally, we focus on laying the foundations

of stream processing of hierarchical data such as XML files and program traces. We

introduce two new efficient and executable models that can process the input in a left-

to-right linear pass: symbolic visibly pushdown automata and streaming tree trans-

ducers. Symbolic visibly pushdown automata are closed under Boolean operations

and can specify and efficiently monitor complex properties for hierarchical structures

over infinite alphabets. Streaming tree transducers can express and efficiently process

complex XML transformations while enjoying decidable procedures.
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Chapter 1

Introduction

“We forget old stories, but those stories remain the

same.”
— Dejan Stojanovic, The Sun Watches the Sun

1.1 Preamble

How do we build reliable software? How do we increase programmers’ productivity? With

more than 18 million software developers worldwide, answering these questions is

becoming increasingly important.1 Although there has been huge progress in this area,

reasoning about general purpose programs remains a hard task.

Programmers and end-users often need to solve tricky domain-specific tasks, such as

writing text and XML transformations, that do not require the full power of general

purpose programming languages. In fact, despite their complexity, these tasks of-

ten only require a few specialized programming constructs. This aspect opens the

opportunity for creating simpler domain-specific tools that do not require the power

of general-purpose programming. The ultimate goal of designing programming lan-

guages and techniques that make the programming of domain-specific tasks simpler,

less error-prone, and more efficient is the main inspiration behind this dissertation.

In this dissertation we focus on programs that operate over strings, lists, and trees,

and leverage the fact that finite state machines offer a suitable theoretical foundation

for reasoning about these programs. Many variants of these finite state machines have

been proposed and applied to different domains, such as program monitoring [LG07],

natural language processing [MGHK09, Moh97, MK08], and XML processing [HP03,

1http://www.infoq.com/news/2014/01/IDC-software-developers

http://www.infoq.com/news/2014/01/IDC-software-developers
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q0 

T 

G 

q0 

A 

C 

all_TG all_AC 

FIGURE 1.1: Examples of finite automata.

IH08, MSV00, BDM+06, Bec03, MBPS05]. We build on these models and identify novel

ones that can be used to analyze many real-world programs.

1.2 Automata, languages, and program properties

Finite automata define sets of strings, also called languages. They are used in many

applications, most notably in analysis of regular expressions and program monitor-

ing [LG07]. Intuitively a finite automaton is a labeled graph with initial and final states

(nodes). The labels of the edges are symbols over an input alphabet and each path

through the graph corresponds to a string. The language defined by a particular au-

tomaton is the set of all strings for which there is a path from an initial to a final state.

For example, the automaton all_TG in Figure 1.1 accepts the language of all strings

containing only the symbols T and G.

Automata can capture computations. In particular, they can be seen as programs that

map lists to Boolean values. Examples of such programs can be seen in Figure 1.2.

In particular, the programs all_TG and all_AC (lines 11–20) can be modeled using the

automata depicted in Fig. 1.1 that accept strings over the alphabet base = {A, T, G,

C}. Similarly, the programs is_dna and is_empty (lines 4–10) can be captured by two

automata accepting all strings and only the empty string respectively.

What is the advantage of representing programs as automata? Unlike general purpose

programs, finite automata enjoy many properties that can enable forms of program

analysis. Automata can be complemented, intersected, determinized, and minimized,

and it is decidable whether two automata accept the same languages. This opens a

door of opportunities on what type of properties we can check for our programs in
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Figure 1.2. For example, we can prove that the programs all_TG and all_AC accept

disjoint languages by checking that the intersection of their corresponding automata is

equivalent to the empty language.

1.3 Transducers, transformations, and programs

Although automata enjoy many useful properties, they can only model very limited

classes of programs. Finite transducers extend finite automata to model partial func-

tions from strings to strings, also called string transformations. This is done by adding

an output component to transitions. A finite state transducer is a labeled graph with

initial and final states (nodes), where each edge carries an input symbol and a sequence

of output symbols. Each path corresponding to an input string also produces an out-

put string by outputting sequences of characters at each transition. The concatenation

of such sequences is the output corresponding to the traversed path. The transforma-

tion defined by a transducer is the set of all input/output string pairs for which there

is a path from an initial to a final state. For example, the transducer map_base in Fig-

ure 1.3 defines the transformation that outputs the DNA sequence matching the input

one (maps each base to the matching one, e.g. A to T).

Transducers can be seen as programs that map lists into lists. Examples of such pro-

grams can be seen in Figure 1.2. The programs map_base and filter_AC (lines 21–35)

can be modeled using the transducers depicted in Figure 1.3.

Again, what is the advantage of modeling programs using transducers? Finite trans-

ducers also enjoy a variety of properties that enable powerful analysis. In particular,

transducers are closed under sequential composition, and it is decidable whether two

transducers define the same transformations. Also, given a transducer T , and two au-

tomata I and O, it is decidable whether for every string accepted by the automaton I,

the transducer T produces an output accepted by O. This problem is called regular

type-checking. Consider the programs in Fig. 1.2. We can use the transducers’ clo-

sure under sequential composition to automatically generate a transducer m_f_DNA

that processes the input in a single pass without producing intermediate results (on the

right Fig. 1.3). Similarly, we can build a transducer for the transformation f_m_f_DNA.

We can then use type-checking to statically prove that for every list for which dnaseq

returns true, the function f_m_f_DNA outputs a list in the language is_empty (i.e. the

empty list).
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1 (∗ Types f o r DNA bases and sequences ∗ )
2 type base = A | T | G | C
3 type dnaseq = l i s t base
4 (∗ True f o r any DNA sequence l ∗ )
5 l e t is_dna ( l : dnaseq ) : bool = true
6 (∗ True f o r empty sequence ∗ )
7 l e t is_empty ( l : dnaseq ) : bool =
8 match l with
9 [ ] −> true

10 | _ −> f a l s e
11 (∗ True i f a l l the elements of the l i s t l are T or A ∗ )
12 l e t rec all_TG ( l : dnaseq ) : bool =
13 match l with
14 [ ] −> true
15 | h : : t −> ( h = T || h = G) && ( all_TG t )
16 (∗ True i f a l l the elements of the l i s t l are even ∗ )
17 l e t rec all_AC ( l : dnaseq ) : bool =
18 match l with
19 [ ] −> true
20 | h : : t −> ( h = A || h = C) && ( all_AC t )
21 (∗ Replaces each base with the matching one ∗ )
22 l e t rec map_base ( l : dnaseq ) : dnaseq =
23 match l with
24 [ ] −> [ ]
25 | A : : t −> T : : ( map_base t )
26 | T : : t −> A : : ( map_base t )
27 | G : : t −> C : : ( map_base t )
28 | C : : t −> G : : ( map_base t )
29 (∗ Removes a l l the T and G elements from a l i s t l ∗ )
30 l e t rec f i l t e r _ A C ( l : dnaseq ) : dnaseq = match l with
31 [ ] −> [ ]
32 | A : : t −> A : : ( f i l t e r _ A C t )
33 | C : : t −> C : : ( f i l t e r _ A C t )
34 | T : : t −> f i l t e r _ A C t
35 | G : : t −> f i l t e r _ A C t
36 (∗ Applies map_base then f i l t e r _ A C to l ∗ )
37 l e t m_f_DNA ( l : dnaseq ) : dnaseq = f i l t e r _ A C ( map_base l )
38 (∗ Applies f i l t e r _ A C then map_base then f i l t e r _ A C to l ∗ )
39 l e t f_m_f_DNA ( l : dnaseq ) : dnaseq = m_f_DNA ( f i l t e r _ A C l )
40 (∗ Reverses a l i s t ∗ )
41 l e t rec reverse ( l : dnaseq ) : dnaseq =
42 match l with
43 [ ] −> [ ]
44 | h : : t −> ( reverse t ) @ [ h ]

FIGURE 1.2: Functional programs that can be modeled using transducers.
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q0 

A/T 

map_base 

T/A 

G/C C/G 

q0 

A/A T/ε 

G/ε C/C 

filter_AC 

q0 

A/ε T/ A 

G/C C/ε 

m_f_DNA 

FIGURE 1.3: Examples of finite state transducers.

1.4 Limitations of existing models

Interesting programs can be modeled using finite automata and transducers. However,

the capabilities of these formalisms are limited: they only operate over strings, they can

only capture limited classes of languages and transformations (e.g. reverse in Fig. 1.2

cannot be modeled as a finite state transducer), and they are limited to finite alphabets.

Many models and techniques have been proposed to attenuate these limitations. Au-

tomata and transducers have been extended to trees [Eng75, Eng77, CDG+07], richer

transducer models have been presented to handle more complex functions [AC10,

AC11, EH01], there have been extensions to support infinite and structured alpha-

bets [VHL+12, KF94], and a few programming languages were implemented to sim-

plify programming in these models [PS12, MK08]. Although all these extensions have

progressed towards addressing many of the limitations, there are simple domains that

could potentially benefit from transducer-based analysis that cannot be modeled using

existing models.

The following limitations still exist:

Alphabet expressiveness: Although several extensions have been proposed, many tree

and string transformations and XML languages over infinite domains cannot be

expressed using existing models;

Executable models: Most models proposed to capture larger classes of functions are not

efficiently executable. In particular, they typically require multiple passes over

the input.

Usability: Automata and transducers are complex to use for an average user and the

integration between programming languages and these models is still limited.
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1.5 Contributions

The goal of this dissertation is to bridge part of the gap between practical applications

and the theory of automata and transducers. Its contributions are divided between the

following areas:

Foundational results: We define novel automata and transducer models that can express

large classes of languages and transformations. For many of these models we

provide strong theoretical guarantees and exactly characterize their expressive-

ness.

Implementation: We implement two programming languages, FAST and BEX, that have

their semantics given in terms of automata and transducers. Using these seman-

tics, programs written in FAST and BEX can be statically analyzed. We also de-

velop the open-source automata library SVPAlib, for coding automata over infi-

nite alphabets.

Applications: We show how transducer-based languages are beneficial in proving prop-

erties of real-world programs. We use BEX to prove the correctness of BASE64

and UTF8 coders, and FAST to prove the absence of malicious outputs in HTML

sanitizers, to check interference of augmented reality applications, to optimize

functional language compilation, and to analyze functional programs over trees.

The rest of this chapter expands on each of these contributions in detail.

1.5.1 Foundational results

Automata are the pillars of computability and they are used in many domains thanks

to their decidable procedures and closure properties. Our first contribution is to ex-

tend existing automata and transducer models to capture richer classes of languages

and transformations. For these extended versions we prove closure properties and

provide upper bounds for several decision procedures. Chapter 2 introduces symbolic

extended finite automata and transducers, which extend finite automata and trans-

ducer with predicates to support infinite alphabets and the ability to process multiple

adjacent symbols in a single transition. We prove negative properties for these models

and show that for a restricted version, called Cartesian, checking equivalence is de-

cidable. Chapter 3 defines symbolic tree transducers with regular look-ahead, which

extend their classic counterpart with predicates to support infinite alphabets. We show

that this model is closed under composition under the same assumptions that are nec-

essary in the non-symbolic setting. Chapter 4 presents symbolic visibly pushdown
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automata, which extend visibly pushdown automata predicates to support infinite al-

phabets. We show that this expressive model is closed under Boolean operations, can be

determinized, and enjoys decidable emptiness. Chapter 5 defines streaming tree trans-

ducers together with many equivalent variants. We show how streaming tree trans-

ducers capture the class of monadic-second-order-definable tree transformations, are

closed under compositions and regular look-ahead, and enjoy decidable equivalence.

For this last problem we provide a NEXPTIME upper bound, the first elementary upper

bound for this class of transductions.

1.5.2 Language design and implementation

Automata and transducers are elegant models but are hard to program with. Our sec-

ond contribution is the design and implementation of two programming languages,

BEX and FAST, that act as frontend for automata and transducer models. BEX is a

rule-based language described in Chapter 2, and it is a frontend for extended sym-

bolic finite transducers over the theory of bit-vectors. This language allows the user

to naturally program complex string encoders such as UTF8 and BASE64 encoders

and decoders using less than 50 lines of code. BEX supports regular-expression-based

pattern matching, bit-vector operations such as bit-shift, bit-or, and bit-extract, and

transducer operations such as equivalence and composition. BEX is also available

as a runnable web interface at http://rise4fun.com/Bex/. FAST is a functional

language described in Chapter 3, and it is a frontend for symbolic tree transducers

with regular look-ahead over the theories supported by the satisfiability module theory

(SMT) solver Z3 [DMB08]. These include theories over bit-vectors, integers, reals, and

data-types. FAST also supports Boolean operations over languages, language equiva-

lence, transducer composition, and regular type-checking. FAST is also available as a

runnable interface at http://rise4fun.com/fast/. Finally, we implemented SV-

PAlib, an open-source symbolic automata library that supports typical automata opera-

tions for automata over infinite alphabets (Chapter 4). The SVPAlib library is available

at https://github.com/lorisdanto/symbolicautomata.

1.5.3 Applications

Although elegant automata and transducer models are already rewarding by them-

selves, applying them to solve problems gives them new life. My third contribution is

the use of automata and transducer models to solve real-world problems. In Chapter 2

we use BEX to program efficient versions of BASE64 and UTF8 encoders and decoders

that make heavy use of bit-level manipulations. Using BEX we prove the correctness

http://rise4fun.com/Bex/
http://rise4fun.com/fast/
https://github.com/lorisdanto/symbolicautomata
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of these encoders. These efficient implementations, thanks to their transducer-based

semantics, have been used to generate efficient data-parallel code [VMML15]. In Chap-

ter 3 we use FAST to 1) prove safety properties for HTML sanitizers in the context

of web security; 2) analyze whether two augmented reality taggers ever try to anno-

tate the same node of an input tree; 3) efficiently compose functional programs using

transducer composition as a deforestation technique; and 4) prove pre-post condition

properties of functional programs that transform lists and trees over complex domains.

Finally, in Chapter 4 we show how to efficiently monitor complex properties on XML

documents and structured program traces using the library SVPAlib.

1.6 Acknowledgements

This dissertation describes work performed in cooperation with many different col-

leagues and portions of it are based on papers written in collaboration with them. In

particular, the presentation of the language BEX described in Chapter 2 is a revised

version of two papers by D’Antoni and Veanes [DV13b, DV13a, DV15]. The language

FAST was designed in collaboration with Margus Veanes and the description presented

in Chapter 3 is an extended version of a paper by D’Antoni, Veanes, Livshits, and Mol-

nar [DVLM14]. Chapter 4 is a revised version of a paper by D’Antoni and Alur [DA14].

Chapter 5 is an extended version of a paper by Alur and D’Antoni [AD12].
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Part I

Transducer-based programming

languages
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Chapter 2

BEX: a language for verifying string

coders

“Words are the source of misunderstandings.”

— Antoine de Saint-Exupéry, The Little Prince

2.1 Introduction

String coders enable communication across different applications by translating be-

tween different string formats. String coders are ubiquitous: emails sent through SMTP

are encoded using BASE64, text entered inside HTML forms is encoded using URL en-

code, and Unicode text files are converted from UTF8 to UTF16 when stored in memory.

Despite the wide adoption of these encodings, their analysis is difficult, and care-

fully crafted invalid UTF8 sequences have been used to bypass security validations.

Several attacks have been demonstrated based on over-encoding the characters ‘.’

and ‘/’ in malformed URLs.1 For example, the invalid sequence [C016, AF16] (that de-

codes to ‘/’) has been used to bypass a literal check in the Microsoft IIS server (in un-

patched Windows 2000 SP1) to determine if a URL contains “../../” by encoding it

as “..%C0%AF../”. Similar vulnerabilities exists in Apache Tomcat (≤ 6.0.18), where

“%C0%AE” has been used for encoding ‘.’.2 Further attacks have used double-encoding,

where the input string is encoded twice to violate some of the decoder assumptions.3

1http://www.sans.org/security-resources/malwarefaq/wnt-unicode.php
2http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-2938
3https://www.owasp.org/index.php/Double_Encoding

http://www.sans.org/security-resources/malwarefaq/wnt-unicode.php
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-2938
https://www.owasp.org/index.php/Double_Encoding
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Input format Output format

Encoder

Decoder

FIGURE 2.1: Role of string encoders and decoders.

2.1.1 Challenges in verifying real-world coders

To verify string coders we need to check whether the encoder (E) and decoder (D)

invert each other:

E ◦ D ≡ I ∧ D ◦ E ≡ I

Here I denotes the identity function. This property guarantees that there exists a bijec-

tion between the input and the output format. This implies that there is only one way

to encode each string, preventing attacks such as the one used in Apache Tomcat, in

which the same symbol can be encoded in two different ways. Checking this property

requires the use of sequential composition and functional equivalence. Luckily, finite

state transducers are closed under composition and enjoy decidable equivalence.

Unfortunately the problem is not so simple. Despite their small sizes, string coders are

hard to verify using finite state transducers due to the following reasons:

Large alphabets: coders operate over large alphabets containing up to 232 characters;

Bit-vectors: coder implementations perform complex bit-vector operations to achieve

efficiency;

Look-ahead: each output symbol can depend on multiple adjacent input symbols.

These challenges can already be observed in the simple case of BASE64 encoding (Fig-

ure 2.2). A BASE64 encoder transforms sequences of bytes into sequences of 6-bit char-

acters. This is done by reading 3 characters at a time, splitting the resulting sequence of

24 bits into groups of 6 bits, and applying a character mapping to the each 6-bit num-

ber. Even in this simple setting the input alphabet contains 256 characters, the output is

computed using bit-vector operation to isolate particular bits, and each output symbol

may depend on different input symbols. For example in Figure 2.2 the output letter ‘W’

depends on the last two bits of the letter ‘M’ and the first four bits of the letter ‘a’.

Modeling this encoder with a finite state transducer requires storing part of the input

symbols in the state component. For example, after reading the letter ‘a’ in the exam-

ple of Figure 2.2, the transducer will have to remember in its state the last four bits
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of ’a’ and use them in the next step to build the corresponding output symbol. For

large alphabets, this would cause an explosion in the number of states and transitions.

Thus, finite state transducers are not a good candidate for verifying string coders as

they cannot naturally represent bit-vector semantics, and they would face a state-space

explosion in the case of large alphabets.

Text content M a n
ASCII 77 (4D16) 97 (6116) 110 (6E16)

Bit pattern 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0
Index 19 22 5 46

BASE64 T W F u

FIGURE 2.2: BASE64 encoding

2.1.2 Contributions

We introduce Symbolic Extended Finite Transducers (S-EFT) as a model for verifying

string coders. S-EFTs differ from finite state transducers in the following aspects:

Symbolic alphabets: transitions operate over the alphabet symbolically via predicates

and functions;

Finite look-ahead: transitions can read more than one input symbol at a time.

These aspects address the limitations of finite state transducers and allow us to natu-

rally model coders like the one shown in Figure 2.2.

Unfortunately, we show that S-EFTs are not closed under composition and the equiva-

lence problem is undecidable. We therefore introduce a subclass of S-EFTs called Carte-

sian for which we provide a practical composition algorithm and show equivalence to

be decidable. In a Cartesian S-EFT, the predicates appearing in each transition are only

allowed to contain conjunctions of unary predicates. We demonstrate how this restric-

tion is enough to model string coders.

Finally, we design BEX, an S-EFT-based language for verifying string coders, and we

use it to prove verify efficient implementations of BASE16, BASE32, BASE64, and UTF8

encoders and decoders.

This chapter is structured as follows:

• in Section 2.2 we give an overview of BEX and present a small case-study;

• in Section 2.3 we define Symbolic Extended Finite Automata (S-EFAs), Symbolic

Extended Finite Transducers (S-EFTs), and their subclasses;
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• in Section 2.4 we study of the closure and decidability properties of S-EFAs;

• in Section 2.5 we study the equivalence problem for S-EFTs and we show that:

– the equivalence of single-valued S-EFTs is undecidable;

– the equivalence of single-valued Cartesian S-EFTs is decidable;

• in Section 2.6 we show that S-EFTs are not closed under composition and provide

a sound but incomplete composition algorithm;

• in Section 2.7 we show how BEX can be used to program real-world coders;

• in Section 2.8 we discuss related work.

2.2 Verifying BASE64 in BEX

We give an overview of the language BEX and illustrate how we can use it to verify

an implementation of a BASE64 encoder and a decoder (Figure 2.3). BASE64 is used to

transfer binary data in textual format, e.g., in emails via the protocol MIME. The digits

of the encoding are chosen in the safe ASCII range of characters that remain unmodified

during transport over textual media.

Figure 2.3 contains BEX implementations of base64encode and base64decode. The en-

coder reads characters (bytes) in the range 0 and 255 and produces characters in the set

[a–zA–Z0–9+/]. The decoder does the opposite.

The program ‘base64encode’ reads 3 characters at a time and applies the operation we

illustrated in Figure 2.2. Each 6 bit character obtained after the split is transformed

using the function ‘em’. If the string has a length that is not divisible by 3, one or two

‘=’ symbols are added at the end of the output (in the figure the character ’$’ stands for

end of string). We explain the syntax of BEX using the rule in lines 12–14. The rule can

be read as: if the first two symbols of the input are two bytes (characters between 0 and

FF), then output the four comma-separated characters appearing on the right-hand side

of the rule. The symbols #0 and #1 respectively represent the first and second character

being read. In the figure ‘bits(i, j, s)’ is the function that, given a bit-vector s, extracts

the bit-vector starting at index i (from right to left) and ending at index j. For example

‘bits(2, 1, 0110)=11’. The function ‘ite(b, s1, s2)’ stands for ‘if b then s1 else s2’. After

applying a rule that reads n symbols of a string c1 . . . cncn+1 . . . ck, BEX produces the

rule’s output and then calls the same function again on the suffix cn+1 . . . ck.

The program ‘base64decode’ inverts the transformation by reading 4 characters at a

time. Notice how the rules in lines 23–25 take care of the case in which the encoder
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// Character maps
function em(x) := ite(x <= 25, x + 65, ite(x <= 51, x + 71,

ite(x <= 61, x− 4, ite(x == 62, ‘ + ’, ‘/’))))
function dm(x) := ite(x == ‘/’, 63, ite(x == ‘ + ’, 62,

ite(x <= ‘9’, x + 4, ite(x <= ‘Z’, x− 65, x− 71))))
// Base64 encoder
program base64encode := repeat {

[\0–\xFF]{3} ⇒ [em(bits(7, 2, #0)),
em((bits(1, 0, #0) << 4)|bits(7, 4, #1)),

em((bits(3, 0, #1) << 2)|bits(7, 6, #2)),
em(bits(5, 0, #2))];

[\0–\xFF]{2}$ ⇒ [em(bits(7, 2, #0)),
em((bits(1, 0, #0) << 4)|bits(7, 4, #1)),

em(bits(3, 0, #1) << 2), ‘ = ’];
[\0–\xFF]{1}$ ⇒ [em(bits(7, 2, #0)),

em((bits(1, 0, #0) << 4)|bits(7, 4, #1)), ‘ = ’, ‘ = ’];
}
// Base64 decoder
program base64decode := repeat {

[a–zA–Z0–9+/]{4} ⇒ [(dm(#0) << 2)|bits(5, 4, dm(#1)),
(bits(3, 0, dm(#1)) << 4)|bits(5, 2, dm(#2)),
(bits(1, 0, dm(#2)) << 6)|dm(#3)];

[a–zA–Z0–9+/]{3}=$ ⇒ [(dm(#0) << 2)|bits(5, 4, dm(#1)),
(bits(3, 0, dm(#1)) << 4)|bits(5, 2, dm(#2))];

[a–zA–Z0–9+/]{2}==$ ⇒ [(dm(#0) << 2)|bits(5, 4, dm(#1))];
}
// Identity
program identity { [\0–\xFF]⇒ [#0];}
// Check correctness
assert-true (comp(base64encode, base64decode), eq(identity));

FIGURE 2.3: BASE64 analysis in BEX.

added equal (‘=’) symbols at the end of the string. The program ‘identity’ applies the

identity function to strings over characters in the range 0 and 255.

Using BEX we can check whether our implementation of the BASE64 decoder correctly

inverts the encoder. This is done by writing the assertion on line 30 which BEX can

automatically verify. The assertion says that the composition of the encoder with the

decoder is functionally equivalent to the identity. Verifying this property requires the

ability to compose programs and check their equivalence.

2.3 Symbolic extended finite automata and transducers

In this section we formally define the automata and transducer models that provide the

semantics of BEX.
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2.3.1 Preliminaries

We assume a recursively enumerable (r.e.) background universe U with function and

relation symbols. Definitions below are given with U as an implicit parameter. We

use λ-terms to represent anonymous functions. A Boolean λ-term λx.ϕ(x), where x is

a variable of type σ is called a σ-predicate. Our notational conventions are consistent

with the definition of symbolic transducers [VHL+12]. The universe is multi-typed

with U τ denoting the sub-universe of elements of type τ. We write Σ for U σ and Γ for

Uγ.

A label theory is given by a recursively enumerable set Ψ of formulas that is closed

under Boolean operations, substitution, equality and if-then-else terms. A label theory

Ψ is decidable when satisfiability for ϕ ∈ Ψ, IsSat(ϕ), is decidable.

For σ-predicates ϕ, we assume an effective witness function W such that, if IsSat(ϕ)

then W(ϕ) ∈ [[ϕ]], where [[ϕ]] ⊆ Uσ is the set of all values that satisfy ϕ; ϕ is valid,

IsValid(ϕ), when [[ϕ]] = U σ.

2.3.2 Model definitions

In this chapter we present an extension of S-FTs where transitions are allowed to con-

sume more than one symbol, called extended S-FTs or S-EFTs.

Definition 2.1. A Symbolic Extended Finite Transducer (S-EFT) with input type σ and out-

put type γ is a tuple A = (Q, q0, R),

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• R is a finite set of rules, R = ∆ ∪ F, where

– ∆ is a set of transitions r = (p, `, ϕ, f , q), denoted p
ϕ/ f−−→̀ q, where

p ∈ Q is the start state of r;

` ≥ 1 is the look-ahead of r;

ϕ, the guard of r, is a σ`-predicate;

f , the output of r, is a λ-terms from σ` to sequences of γ;

q ∈ Q is the continuation state of r;

– F is a set of finalizers r = (p, `, ϕ, f ), denoted p
ϕ/ f−−→̀ •, with components as

above and where ` may be 0.
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The look-ahead of A is the maximum of all look-aheads of rules in R. An S-EFT where

all the rules have output ε is a Symbolic Extended Finite Automaton (S-EFA).

A finalizer is a rule without a continuation state. A finalizer with look-ahead ` is used

when the end of the input sequence has been reached with exactly ` input elements

remaining. A finalizer is a generalization of a final state. In the non-symbolic setting,

finalizers can be avoided by adding a new symbol to the alphabet that is only used to

mark the end of the input. In the presence of arbitrary input types, this is not always

possible without affecting the theory, e.g., when the input type is Int then that symbol

would have to be outside Int.

In the remainder of the section let A = (Q, q0, R), R = ∆ ∪ F, be a fixed S-EFT with

input type σ and output type γ. The semantics of rules in R is as follows:

[[p
ϕ/ f−−→̀ q]] def

= {p
[a0,...,a`−1]/[[ f ]](a0,...,a`−1)−−−−−−−−−−−−−−→

`
q | (a0, . . . , a`−1) ∈ [[ϕ]]}.

The notation p
[a0,...,a`−1]/[[ f ]](a0,...,a`−1)−−−−−−−−−−−−−−→

`
q is a shorthand for a tuple

(p, `, (a0, . . . , a`−1), [[ f ]](a0, . . . , a`−1), q). Intuitively, a rule with look-ahead ` reads `

adjacent input symbols s = [a0, . . . , a`−1] and produces a sequence of output symbols

that is a function of the consumed input f (s).

Let [[R]] def
=

⋃
r∈R[[r]]. We write s1 · s2 for the concatenation of sequences s1 and s2.

Definition 2.2. For u ∈ Σ∗, v ∈ Γ∗, q ∈ Q, q′ ∈ Q ∪ {•}, define q u/v−−→→A q′ as follows:

there exists n ≥ 0 and {pi
ui/vi−−→ pi+1 | i ≤ n} ⊆ [[R]] such that

u = u0 · u1 · · · un, v = v0 · v1 · · · vn, q = p0, q′ = pn+1.

Let also q ε/ε−→→A q for all q ∈ Q.

Definition 2.3. The transduction relation of A is defined as TA(u)
def
= {v | q0 u/v−−→→ •}.

The following example illustrates typical (realistic) S-EFTs over a label theory of linear

modular arithmetic. We use the following abbreviated notation for rules, by omitting

explicit λ’s. We write

p
ϕ(x̄)/[ f1(x̄),..., fk(x̄)]−−−−−−−−−−−→

`
q for p

λx̄.ϕ(x̄)/λx̄.[ f1(x̄),..., fk(x̄)]−−−−−−−−−−−−−−→
`

q,

where ϕ and fi are terms whose free variables are among x̄ = (x0, . . . , x`−1).

Example 2.4. This example illustrates the S-EFTs Base64encode and Base64decode correspond-

ing to the BEX programs ‘base64encode’ and ‘base64decode’ presented in Figure 2.3.
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Base64encode is an S-EFT with one state and four rules:

p
true/[pb7

2(x0)q, p(b1
0(x0)�4)|b7

4(x1)q, p(b3
0(x1)�2)|b7

6(x2)q, pb5
0(x2)q]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

3
p

p
true/[]−−−→

0
• p

true/[pb7
2(x0)q, pb1

0(x0)�4q, ‘=’, ‘=’]−−−−−−−−−−−−−−−−−−−−→
1

•

p
true/[pb7

2(x0)q, p(b1
0(x0)�4)|b7

4(x1)q, pb3
0(x1)�2q, ‘=’]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2
•

where bm
n (x) extracts bits m through n from x, e.g., b3

2(13) = 3, x|y is bitwise OR of x and y,

x�k is x shifted left by k bits, and pxq is the mapping

pxq
def
= (x≤25 ? x+65 : (x≤51 ? x+71 : (x≤61 ? x−4 : (x=62 ?‘+’ :‘/’))))

of values between 0 and 63 into a standardized sequence of safe ASCII character codes (‘en’ in

Figure 2.3). The last two finalizers correspond to the cases when the length of the input sequence

is not a multiple of three. Observe that the length of the output sequence is always a multiple of

four. The character ‘=’ (61 in ASCII) is used as a padding character and it is not a BASE64

digit. i.e., ‘=’ is not in the range of pxq.

Base64decode is an S-EFT that decodes a BASE64 encoded sequence back into the original byte

sequence. Base64decode has also one state and four rules:

q
∧3

i=0 β64(xi)/[(xx0y�2)|b5
4(xx1y), (b3

0(xx1y)�4)|b5
2(xx2y), (b1

0(xx2y)�6)|xx3y]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
4

q

q
true/[]−−−→

0
• q

β64(x0)∧β′64(x1)∧x2=‘=’∧x3=‘=’/[(xx0y�2)|b5
4(xx1y)]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4
•

q
β64(x0)∧β64(x1)∧β′′64(x2)∧x3=‘=’/[(xx0y�2)|b5

4(xx1y), (b3
0(xx1y)�4)|b5

2(xx2y)]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
4

•

The function xyy is the inverse of pxq, i.e., xpxqy = x, for 0 ≤ x ≤ 63. The predicate β64(y)

is true iff y is a valid BASE64 digit, i.e., y = pxq for some x, 0 ≤ x ≤ 63. The predicates

β′64(y) and β′′64(y) are restricted versions of β64(y). Unlike Base64encode, Base64decode does

not accept all input sequences of bytes, and sequences that do not correspond to any encoding

are rejected.4

The following subclass of S-EFTs captures transductions that behave as partial func-

tions from Σ∗ to Γ∗.

Definition 2.5. A function f : X → 2Y is single-valued if |f(x)| ≤ 1 for all x ∈ X. An

S-EFT A is single-valued if TA is single-valued.

A sufficient condition for single-valuedness is determinism. We define ϕf ψ, where ϕ

is a σm-predicate and ψ a σn-predicate, as the σmax(m,n)-predicate

4For more information see http://www.rise4fun.com/Bek/tutorial/base64.
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λ(x1, . . . , xmax(m,n)).ϕ(x1, . . . , xm) ∧ ψ(x1, . . . , xn). We define equivalence of f and g with

respect to ϕ, f ≡ϕ g, as: IsValid(λx̄.(ϕ(x̄)⇒ f (x̄) = g(x̄))).

Definition 2.6. A is deterministic if for all p
ϕ/ f−−→̀ q, p

ϕ′/ f ′−−−→
`′

q′ ∈ R:

(a) Assume q, q′ ∈ Q. If IsSat(ϕf ϕ′) then q = q′, ` = `′ and f ≡ϕfϕ′ f ′.

(b) Assume q = q′ = •. If IsSat(ϕf ϕ′) and ` = `′ then f ≡ϕfϕ′ f ′.

(c) Assume q ∈ Q and q′ = •. If IsSat(ϕf ϕ′) then ` > `′.

Intuitively, determinism means that no two rules may overlap. It follows from the

definitions that if A is deterministic then A is single-valued. Both S-EFTs in Example 2.4

are deterministic.

The domain of a function f : X → 2Y is D(f) def
= {x ∈ X | f(x) 6= ∅} and for an S-EFT

A, D(A)
def
= D(TA). When A is single-valued and u ∈ D(A), we treat A as a partial

function from Σ∗ to Γ∗ and write A(u) for the value v such that TA(u) = {v}. For

example, Base64encode("Foo") = "Rm9v" and Base64decode("QmFy") = "Bar".

2.3.3 From BEX to S-EFTs

We describe how BEX programs are compiled into S-EFTs. The syntaxes of S-EFTs and

BEX are very similar and BEX provides a simple way to represent the rules of an S-EFT.

In BEX the state component is maintained by an integer variable q, which is initialized

to a value v0.

program name := [q = v0] repeat {body}

The program base64encode in Figure 2.2 has only one state and this component does

not appear. Rules are of the two different forms. The first form is

guard, q = v1 ⇒ update[q = v2]

where guard is a regular expression that accepts only strings with some finite length l

and does not contain the symbol $ denoting the end of string, and update is a sequence

of bit-vector-arithmetic expressions over the free variables {#0, . . . , #{l− 1}}. This rule

is translated into an S-EFT rule

v1
λx1,...,xl .(x1···xl)∈L(guard)/λ#0,...,#{l−1}.update−−−−−−−−−−−−−−−−−−−−−−−−−−→

l
v2

where L(guard) is the set of strings accepted by the regular expression guard. The pro-

grams in Figure 2.2 only have one state and the state component is therefore implicit.
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The second form is

guard$, q = v1 ⇒ update

where guard is a regular expression that accepts only strings with some finite length

l and does not contain the symbol $, and update is a sequence of bit-vector-arithmetic

expressions over the free variables {#0, . . . , #{l − 1}}. This rule is translated into an

S-EFT rule

v1
λx1,...,xl .(x1···xl)∈L(guard)/λ#0,...,#{l−1}.update−−−−−−−−−−−−−−−−−−−−−−−−−−→

l
•

2.3.4 Cartesian S-EFAs and S-EFTs

We introduce a subclass of S-EFTs that plays an important role in this chapter. A binary

relation R over X is Cartesian over X if R is the Cartesian product R1 × R2 of some

R1, R2 ⊆ X. The definition is lifted to n-ary relations and σn-predicates for n ≥ 2 in the

obvious way. In order to decide if a satisfiable σn-predicate ϕ is Cartesian over σ, let

(a0, . . . , an−1) = W(ϕ) and perform the following validity check:

IsCartesian(ϕ)
def
= ∀x̄ (ϕ(x̄)⇔

∧

i<n

ϕ(a0, . . . , ai−1, xi, ai+1, . . . , an−1)).

In other words, a σn-predicate ϕ is Cartesian over σ if ϕ can be rewritten equivalently

as a conjunction of n independent σ-predicates.

Definition 2.7. An S-EFT (S-EFA) is Cartesian if all its guards are Cartesian.

Both S-EFTs in Example 2.4 are Cartesian. Base64encode is trivially so, while the guards

of all rules of Base64decode are conjunctions of independent unary predicates. In con-

trast, a predicate such as λ(x0, x1).x0 = x1 is not Cartesian.

Note that IsCartesian(ϕ) is decidable by using the decision procedure of the label theory.

Namely, decide unsatisfiability of ¬IsCartesian(ϕ).

Cartesian S-EFAs capture exactly the class of S-FA definable languages. An S-FA is an

S-EFA with final states and in which all transitions have lookahead 1.

Theorem 2.8 (Cartesian S-EFA = S-FA). Cartesian S-EFAs and S-FAs are equivalent in ex-

pressiveness.

Proof. The⇐ direction is immediate. We prove the⇒ direction. Given a Cartesian S-

EFA A = (Q, q0, (∆, F)) we construct an equivalent S-FA A′. Without loss of generality

we assume that every rule r in ∆ has look-ahead 2 and every finalizer has look-ahead

0. For every rule r = p
ϕ(x1)∧ψ(x2)−−−−−−→

2
q, the S-FA A′ has a 3 states q, p, qr and two rules
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p
ϕ(x1)−−−→ r, r

ψ(x2)−−−→ q. Finally, if A has a finalizer q true−−→
0
•, the state q will be final in

A′.

As a consequence Cartesian S-EFAs enjoy all the properties of S-FAs (regular languages)

such as boolean closures and decidability of equivalence.

2.3.5 Monadic S-EFAs and S-EFTs

We say that a (quantifier free) formula is in monadic normal form or MNF if it is a Boolean

combination of unary formulas, where a unary formula is a formula with at most one

free variable. A formula is monadic if it has an equivalent MNF. A natural problem that

arises is deciding whether a formula is monadic and, if so, constructing its MNF. For

example, the formula x < y over integers does not have an MNF while the formula

x < y mod 2 has an MNF (x < 0 ∧ y mod 2 = 0) ∨ (x < 1 ∧ y mod 2 = 1) that is also a

DNF. Another MNF of x < y mod 2 is x < 0 ∨ (x < 1 ∧ y mod 2 = 1), which is also a

DNF but with semantically overlapping disjuncts.

Definition 2.9. An S-EFT (S-EFA) is monadic if all its guards are monadic.

Veanes et al. [VBNB14] showed that if the label theory is decidable and a formula is

monadic then its MNF can be constructed effectively.

Theorem 2.10. Monadic S-EFTs and Cartesian S-EFTs are effectively equivalent. Moreover,

this holds also for the deterministic case.

Proof. The ⇐ direction is immediate because Cartesian S-EFTs are a special case of

monadic S-EFTs. For the direction⇒, we first apply the procedure mondec from Veanes

et al. [VBNB14] to each guard φ of the monadic S-EFT to obtain an equivalent MNF

of the guard, which we then rewrite into an equivalent DNF
∨

i<n φi. Finally, we can

replace each rule p
φ/ f−−→̀ q by the rules p

φi/ f−−→
`

q, for i < n, where all φi are Cartesian.

Determinism is clearly preserved, because all the new rules have identical outputs so

the conditions (a) and (b) of Definition 2.6 are trivially fulfilled.

2.4 Properties of symbolic extended finite automata

In this section we prove some basic properties of Symbolic Extended Finite Automata

and show how they drastically differ from S-FAs and have properties similar to those

of context free grammars rather than regular languages.
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First, we show how checking the emptiness of the intersection of two S-EFA definable

languages is an undecidable problem.

Theorem 2.11 (Domain Intersection). Given two S-EFAs A and B with look-ahead 2 over

quantifier-free successor arithmetic and tuples, checking whether there exists an input accepted

by both A and B is undecidable.

Proof. Recall that a Minsky machine has two registers r1 and r2 that can hold natural

numbers and a program that is a finite sequence of instructions. Each instruction is

one of the following: INCi (increment ri and continue with the next instruction); DECi

(decrement ri if ri > 0 and continue with the next instruction); JZi(j) (if ri = 0 then

jump to the j’th instruction else continue with the next instruction). The machine halts

when the end of the program is reached. Let M be a Minsky machine with program P.

Let σ = N3 represent the type of the snapshot or configuration (program counter, r1, r2)

of M.

Suppose πj : σ→N projects the j’th element of a k-tuple where 0 ≤ j < k. Construct

S-EFAs A and B over σ as follows. Let ϕini be the σ-predicate λx.(x = (0, 0, 0)) stating

that the program counter and both registers are 0. Let ϕfin be the final σ-predicate

λx.(π0(x) = |P| ∧ π1(x) 6= 0).

Let ϕstep be the σ2-predicate λ(x, x′).
∨

i<|P| ϕ
step
i where ϕ

step
i is the formula for the i’th

instruction. If the i’th instruction is INC1 then ϕ
step
i is

π0(x) = i ∧ π0(x′) = i + 1∧ π1(x′) = π1(x) + 1∧ π2(x′) = π2(x).

If the i’th instruction is JZ1(j) then ϕ
step
i is

π0(x) = i ∧ π0(x′) = Ite(π1(x) = 0, j, i + 1) ∧ π1(x′) = π1(x) ∧ π2(x′) = π2(x).

Similarly for the other cases. Thus, ϕstep encodes the valid step relation of M from

current configuration x to the next configuration x′. Let

A = ({p0}, p0, {p0
ϕstep

−−→
2

p0, p0
true−−→

0
•}) and

B = ({q0, q1}, q0, {q0
ϕini

−→
1

q1, q1
ϕstep

−−→
2

q1, q1
ϕfin

−−→
1
•}).

So α ∈ D(A) ∩D(B) iff α is a valid computation of M, i.e., α[0] is the initial configura-

tion, α[i + 1] is a valid successor configuration of α[i] (this follows from A for all odd

i < |α| and from B for all even i < |α|), and α[|α| − 1] is a halting configuration.

It follows that D(A) ∩D(B) 6= ∅ iff M halts on input (0, 0) with a non-zero output in

r1. The latter is an undecidable problem as an instance of Rice’s theorem.
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Theorem 2.12 (Emptiness). Given an S-EFA A it is decidable to determine whether it accepts

any input.

Given A, we first remove all the transitions with unsatisfiable guards. Let’s call the

new S-EFA A′. If A′ has a path from the initial state to •, then A is not empty.

Theorem 2.13 (Boolean Properties). S-EFAs are closed under union but not closed under

intersection and complement.

Proof. Given two S-EFAs A1 = (Q1, q1
0, R1) and A2 = (Q2, q2

0, R2) over a sort σ we

construct an S-EFA B over σ such that D(C) = D(A) ∪D(B). C will have states Q =

Q1 ∪ Q2 ∪ {q0} and initial state q0. The transition relation R of C is then defined as

follows:

R = R1∪ R2∪ {q0
ϕ−→
k

q | q1
0

ϕ−→
k

q ∈ R1 ∨ q2
0

ϕ−→
k

q ∈ R2}.

As a consequence of Theorems 2.11, and 2.12 we have that S-EFA are not closed under

intersection; if they were using Theorem 2.12 one could decide intersection emptiness.

Since S-EFAs are closed under union, S-EFAs cannot be closed under complement; if

they were we could use Boolean operations to show closure under intersection.

While checking the emptiness of an S-EFA is a decidable problem, it is not possible to

decide whether an S-EFA accepts every possible input. It follows that equivalence is

also undecidable.

Theorem 2.14 (Universality and Equivalence). Given an S-EFA A over σ it is undecid-

able to check whether A accepts all the sequences in σ∗, and given two S-EFAs A and B it is

undecidable to check whether A and B accept the same language.

Proof. Let M be a Minsky machine with program P. Let σ = N3 represent the type of

the snapshot or configuration (program counter, r1, r2) of M. Let ϕini, ϕfin and ϕstep be as

in Theorem 2.11.

We construct an S-EFA AM that does not accept all the strings in σ∗ iff M halts on input

(0, 0) with a non-zero output in r1. The latter is an undecidable problem as an instance

of Rice’s theorem.
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Let

A = ({p0, p1}, p0, {p0
true−−→

1
p0, p0

¬ϕstep

−−−→
2

p1, p1
true−−→

1
p1, p1

true−−→
0
•}),

B = ({q0, q1}, q0, {q0
¬ϕini

−−→
1

q1, q1
true−−→

1
q1, q1

true−−→
0
•}),

C = ({r0}, r0, {r0
true−−→

1
r0, r0

¬ϕfin

−−→
1
•}),

D = ({s0}, s0, {s0
true−−→

0
•}).

A accepts all the M configuration sequences in which at least one step is wrong, B all

those that start with the wrong initial state, C all those that end in the wrong configura-

tion, and D the empty sequence. We define AM = A ∪ B ∪ C ∪ D using Theorem 2.13.

AM does not accept all the inputs in σ∗ iff M halts on input (0, 0) with a non-zero out-

put in r1 (i.e. such sequence of configuration wouldn’t be accepted by AM). Since one

can trivially construct an S-EFA All that accepts all strings we have that being able to

check the equivalence of All and AM would solve an undecidable problem. The unde-

cidability of equivalence follows.

We finally show that longer a look-ahead adds expressiveness.

Theorem 2.15. For every k there exists an S-EFA with look-ahead k + 1 that cannot be repre-

sented by any S-EFA with look-ahead k.

Proof. Consider the S-EFA A over the theory of integers with one initial state q0 and

one final state q1. The S-EFA A has only one transition between q0 and q1 of look-ahead

k + 1 with the following predicate ψ(x1, . . . , xk+1) = x1 = x2 = . . . = xk+1. There does

not exist an S-EFA B with look-ahead k equivalent to A. Let’s assume B exists by way

of contradiction. Since A only accepts strings of length k + 1, B can only have finitely

many paths from its initial state to any final state. Let’s assume that every path has

length 2 and it has guards of the form ϕ1(x1 . . . xl) and ϕ2(xl+1 . . . xk+1). We now must

have that ψ(x1, . . . , xk+1) ≡
∨

ϕ1(x1 . . . xl)∧ ϕ2(xl+1 . . . xk+1). However the predicate ψ

does not admit such a representation as the variables and xl and xl+1 do not belong to

any binary relation and cannot be compared for equality.

2.5 Equivalence of symbolic extended finite transducers

While the general equivalence problem of TA = TB is already undecidable for very

restricted classes of finite state transducers [Gri68], the problem is decidable for S-FTs

in the single-valued case. More generally, one-equality of transductions (defined next)



BEX: a language for verifying string coders 24

is decidable for S-FTs (over decidable label theories). In this section we show that

equivalence of S-EFTs is in general undecidable, but decidable for Cartesian S-EFTs.

Definition 2.16. Functions f, g : X → 2Y are one-equal, f 1
= g, if for all x ∈ X, if

x ∈ D(f) ∩D(g) then |f(x) ∪ g(x)| = 1. Let

f ] g(x) def
=

{
f(x) ∪ g(x), if x ∈ D(f) ∩D(g);

∅, otherwise.

Proposition 2.17. f 1
= g iff f ] g is single-valued.

Note that f 1
= f iff f is single-valued. Thus, one-equality is a more refined notion than

single-valuedness, because an effective construction of A] B such that TA]B = TA ]TB

may not always be feasible or even possible for some classes of transducers.

Definition 2.18. Functions f, g : X → 2Y are domain-equivalent if D(f) = D(g).

Definitions 2.16 and 2.18 are lifted to transducers. For domain-equivalent single-valued

transducers A and B, A 1
= B implies equivalence of A and B (TA = TB).

2.5.1 Equivalence of S-EFTs is undecidable

We now show that one-equality of S-EFTs over decidable label theories is undecidable

in general.

Theorem 2.19 (One-equality). One-equality of S-EFTs with look-ahead 2 over quantifier-free

successor arithmetic and tuples is undecidable.

Proof. We give a reduction from the Domain Intersection problem of Theorem 2.11. Let

A1 and A2 be S-EFAs with look-ahead 2 over quantifier-free successor arithmetic and

tuples. We construct S-EFTs A′i, for i ∈ {1, 2}, as follows:

A′i = (QAi , q0
Ai

, ∆Ai ∪ {p
ϕ/[i]−−→

k
• | p

ϕ−→
k
• ∈ FAi}).

So TA′i
(t) = {[i]} if t ∈ D(Ai) and TA′i

(t) = ∅ otherwise. Let f = TA′1
]TA′2

. So

• |f(t)| = 0 iff t 6∈ D(A1) ∪D(A2);

• |f(t)| = 1 iff t ∈ D(A1) ∪D(A2) and t 6∈ D(A1) ∩D(A2);

• |f(t)| = 2 iff t ∈ D(A1) ∩D(A2).

It follows that A′1
1
= A′2 iff (by Proposition 2.17) f is single-valued iff D(A1) ∩D(A2) =

∅. Now use Theorem 2.11.
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Equivalence of symbolic finite transducers with look-back In this section we briefly

describe a model that is tightly related to S-EFTs and for which equivalence is also un-

decidable. Symbolic finite transducers with look-back k (k-SLTs) [BB13] have a sliding

window of size k that allows, in addition to the current input character, references of

up to k − 1 previous characters (using predicates of arity k). All the states of an SLTs

are final and are associated with a constant output. Botinčan et al. [BB13] incorrectly

claimed that equivalence of SLTs is decidable. We can prove using the same technique

shown in the proof of Theorem 2.19 that equivalence is also undecidable for SLTs. We

do not formally define SLTs here, but we briefly explain why the proof of Theorem 2.19

extends to this model. We let σ = N3 be the input sort and represent configurations

of a Minsky machine in the same way we discussed in the proof of Theorem 2.11. Un-

like S-EFTs, SLTs do not consume k symbols at a time and can therefore read the same

input character multiple times using look-back. We can construct an SLT A that when

reading each character in the input uses the predicate ϕstep defined in Theorem 2.19 to

check whether the current configuration of the Minsky machine follows from the pre-

vious one. Finally, the state following the accepting configuration outputs the constant

a (every other state outputs ε). The SLT A outputs ε on every run that is not an accept-

ing one for the Minsky machine and a on the accepting run (if it exists). We can now

construct a simple SLT B with look-back 1 with one transition defined on the predicate

true that always outputs ε. The two SLTs A and B are one-equal iff the Minsky machine

does not halt (i.e. the first SLT never outputs a). The incorrect proof of decidability

presented by Botinčan et al. [BB13] relies on intersecting the transitions of the two SLTs

and then checking emptiness. Unfortunately, this does not work because the activation

of a transition may depend on what transition was triggered in the previous step and

simple cross-product construction does not take this into account.

2.5.2 Equivalence of Cartesian S-EFTs is Decidable

This is the main decidability result of the chapter and it extends the corresponding

result for S-FTs presented by Veanes et al. [VHL+12, Theorem 1]. We use the following

definitions. A transition, p
ϕ/ f−−→̀ q where ` > 1, ϕ is Cartesian and W(ϕ) = (a1, . . . , a`),

is represented, given ϕi = λx.ϕ(a1, . . . , ai−1, x, ai+1, . . . , a`), by the following path of

split transitions,

p
ϕ1/ f−−→

1
p1

ϕ2/⊥−−−→
1

p2 · · · p`−1
ϕ`/⊥−−−→

1
q

where pi for 1 ≤ i < ` are new temporary states. Let ∆s
A denote such split view of

∆A. Here we assume that all finalizers have look-ahead zero, since we do not assume

S-EFTs here to be deterministic.
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Example 2.20. It is trivial to transform any S-EFT into an equivalent (possibly nondeterminis-

tic) form where all finalizers have zero look-ahead. Consider the S-EFT

Base64encode in Example 2.4. In the last two finalizers, replace • with a new state p1 and

add the new finalizer p1
true/ε−−−→

0
•.

Definition 2.21. Let A and B be Cartesian S-EFTs with same input and output types

and zero-look-ahead finalizers. The product of A and B is the following product S-EFT

A×B. The initial state q0
A×B of A×B is (q0

A, q0
B). The states and transitions of A×B are

obtained as the least fixed point of

(p, q) ∈ QA×B

p
ϕ/ f−−→

1
p′ ∈ ∆s

A

q
ψ/g−−→

1
q′ ∈ ∆s

B





IsSat(ϕ∧ψ)
=⇒ (p′, q′) ∈ QA×B, (p, q)

ϕ∧ψ/( f ,g)−−−−−→
1

(p′, q′) ∈ ∆A×B.

Let FA×B be the set of all rules (p, q)
true/(v,w)−−−−−→

0
• such that p true/v−−−→

0
• ∈ FA, q true/w−−−→

0

• ∈ FB, and (p, q) ∈ QA×B. Finally, remove from QA×B (and ∆A×B) all dead ends

(non-initial states from which • is not reachable).5

We lift the definition of transductions to product S-EFTs. A pair-state (p, q) ∈ QA×B is

aligned if all transitions from (p, q) have outputs ( f , g) such that f 6= ⊥ and g 6= ⊥. The

relation /−→→A×B is defined analogously to S-EFTs.

Lemma 2.22 (Product). For all aligned (p, q) ∈ QA×B, u ∈ Σ∗, v, w ∈ Γ∗:

(p, q)
u/(v,w)−−−−→→A×B • ⇔ p u/v−−→→A • ∧ q u/w−−→→B •

Proof. This follows by induction on the input string u. The base case u = ε is trivial

as the product machine A×B outputs (ε, ε) and A and B both output ε, or all outputs

are undefined. The inductive case is u = a1 · · · alu′ where l ≥ 1 and by induction

hypothesis, for all p′, q′, u′, v′, w′,

(p′, q′)
u′/(v′,w′)−−−−−→→A×B • ⇔ p′ u′/v′−−→→A • ∧ q′ u′/w′−−−→→B •

If they exists, let p
ϕ/ f−−→

l
p1 and q

ψ/g−−→
l

q1 be the A and B transitions out of p and q that are

defined on a1 . . . al . The outputs of A and B on a1 · · · al are f (a1, . . . , al) and g(a1, . . . , al)

respectively. The corresponding transition in A×B is (p, q)
ϕ∧ψ/( f ,g)−−−−−→

l
(p1, q1). Since

a1 . . . al is a model of both ϕ and ψ, it is also a model of ϕ ∧ ψ. Therefore, the output of

A×B on a1 · · · al is ( f (a1, . . . , al), g(a1, . . . , al)). Since by I.H. the outputs on the suffix

u′ also match this concludes the proof.
5 In our constructions we always remove unnecessary states to improve the efficiency of our algo-

rithms.
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We define also, for all u ∈ Σ∗, TA×B(u)
def
= {(v, w) | q0

A×B
u/(v,w)−−−−→→ •} and D(A×B) def

=

D(TA×B). Lemma 2.22 implies that D(A×B) = D(A)∩D(B) and A 6 1= B iff there exists

u and v 6= w such that (v, w) ∈ TA×B(u).

Next we prove an alignment lemma that allows us either to effectively eliminate all

non-aligned pair-states from A×B without affecting TA×B or to establish that A 6 1= B.

A product S-EFT is aligned if all pair-states in it are aligned.

Lemma 2.23 (Alignment). If A 1
= B then there exists an aligned product S-EFT that is

equivalent to A×B. Moreover, there is an effective procedure that either constructs it or else

proves that A 6 1= B, if the label theory is decidable.

Proof. The product A×B is incrementally transformed by eliminating non-aligned pair-

states from it. Each iteration preserves equivalence. Initialize the search frontier to be

{q0
A×B}. Pick (and remove) a state (p, q) from the frontier and consider all transitions

starting from it. We also keep a set of visited states initialized to ∅. The main two cases

are the following:

1. For all the transitions from (p, q) where both the A-output f and the B-output g

have equal look-ahead (say ` = 2),

(p, q)
ϕ/( f ,g)−−−−→

1
(p1, q1)

ψ/(⊥,⊥)−−−−→
1

(p2, q2),

replace the path with the following combined transition with look-ahead 2

(p, q)
λ(x0,x1).ϕ(x0)∧ψ(x1)/( f ,g)−−−−−−−−−−−−−−−→

2
(p2, q2)

and add (p2, q2) to the frontier unless (p2, q2) has already been visited. Note that

(p2, q2) ∈ QA ×QB and thus (p2, q2) is aligned.

2. Assume there are transitions where the A-output f is a σk/γ-sequence and the

B-output g is a σ`/γ-sequence (k 6= `, say k = 2 and ` = 1):

(p, q)
ϕ/( f ,g)−−−−→ (p1, q1)

ψ/(⊥,g1)−−−−−→ (p2, q2).

So p1 is temporary while q1 is not.

Decide if f can be split into two independent σ/γ-sequences f1 and f2 such that

for all a1 ∈ [[ϕ]] and a2 ∈ [[ψ]], [[ f ]](a1, a2) = [[ f1]](a1) · [[ f2]](a2). To do so, choose

h1 and h2 such that f = λ(x, y).h1(x, y) · h2(x, y) (note that the total number of

such choices is | f | + 1 where | f | is the length of the output sequence), let f1 =
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λx.h1(x, W(ψ)), f2 = λx.h2(W(ϕ), x) and check validity of the split predicate

∀x y ((ϕ(x) ∧ ψ(y))⇒ f (x, y) = f1(x) · f2(y)).

If there exists a valid split predicate then pick such f1 and f2, and replace the

above path with

(p, q)
ϕ/( f1,g)−−−−→ (p′1, q′1)

ψ/( f2,g1)−−−−−→ (p2, q2)

where (p′1, q′1) is a new aligned pair-state added to the frontier.

Suppose that splitting fails. We show that A 6 1= B, by contradiction. Assume

A 1
= B.

Since splitting fails, the following dependency predicates are satisfiable:

D1 = λ(x, x′, y).(ϕ(x) ∧ ϕ(x′) ∧ ψ(y) ∧ f (x, y) 6= f (x′, y)),

D2 = λ(x, y, y′).(ϕ(x) ∧ ψ(y) ∧ ψ(y′) ∧ f (x, y) 6= f (x, y′)).

Let (a1, a′1, a2) = W(D1) and (e1, e2, e′2) = W(D2). We proceed by case analysis

over | f |. We know that | f | ≥ 1, or else splitting is trivial.

(a) Assume first that | f | = 1. Let

[b] = [[ f ]](a1, a2), [b′] = [[ f ]](a′1, a2), [d] = [[ f ]](e1, e2), [d′] = [[ f ]](e1, e′2).

Thus b 6= b′ and d 6= d′. Since (p, q) is aligned, and (p1, q1) is reachable

and alive (by construction of A×B, • is reachable from (p1, q1)), there exists

α, β ∈ Σ∗, u1, u2, v1, v2, v3, v4 ∈ Γ∗, such that, by IsSat(D1),

p0
α/u1−−→→ p

[a1,a2]/[b]−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[a1]/[[g]](a1)−−−−−−→ q1
[a2]·β/v2−−−−→→B •



 =⇒ u1 · [b] · u2 =

v1 · [[g]](a1) · v2

p0
α/u1−−→→ p

[a′1,a2]/[b′]−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[a′1]/[[g]](a′1)−−−−−−→ q1
[a2]·β/v2−−−−→→B •





=⇒ u1 · [b′] · u2 =

v1 · [[g]](a′1) · v2

By b 6= b′, |v1| ≤ |u1| < |v1 · [[g]](a1)| = |v1|+ |g|. Also, by IsSat(D2),

p0
α/u1−−→→ p

[e1,e2]/[d]−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[e1]/[[g]](e1)−−−−−−→ q1
[e2]·β/v3−−−−→→B •



 =⇒ u1 · [d] · u2 =

v1 · [[g]](e1) · v3

p0
α/u1−−→→ p

[e1,e′2]/[d
′]−−−−−→→ p2

β/u2−−→→A •
q0

α/v1−−→→ q
[e1]/[[g]](e1)−−−−−−→ q1

[e′2]·β/v4−−−−→→B •



 =⇒ u1 · [d′] · u2 =

v1 · [[g]](e1) · v4
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By d 6= d′, |v1 · [[g]](e1)| = |v1|+ |g| ≤ |u1|. But |u1| < |v1|+ |g|, which is a

contradiction.

(b) Assume that f = λ(x, y).[ f1(x, y), f2(x, y)] (the case for | f | > 2 is similar).

Since f cannot be split, either f1(x, y) depends on y or f2(x, y) depends on x.

i. Suppose f1(x, y) does not depend on y. Then f2(x, y) must depend on

both x and y or else f can be split. We can then choose values a1, a′1, e1 ∈
[[ϕ]] and a2, e2, e′2 ∈ [[ψ]] such that [[ f2]](a1, a2) 6= [[ f2]](a′1, a2) and

[[ f2]](e1, e2) 6= [[ f2]](e1, e′2). A contradiction is reached similarly to the

case of | f | = 1.

ii. The case when f2(x, y) does not depend on x is symmetrical to (i).

iii. Suppose f1(x, y) depends on y and f2(x, y) depends on x. Choose e1, a1, a′1 ∈
[[ϕ]] and e2, e′2, a2 ∈ [[ψ]] such that [[ f1]](e1, e2) 6= [[ f1]](e1, e′2) and

[[ f2]](a1, a2) 6= [[ f2]](a′1, a2). Let

b1 = [[ f1]](e1, e2), b′1 = [[ f1]](e1, e′2), b2 = [[ f2]](a1, a2), b′2 = [[ f2]](a′1, a2)

Since (p, q) is input-synchronized, and (p1, q1) is reachable and alive,

there exists α, β ∈ Σ∗, u1, u2, v1, v2, v3, v4 ∈ Γ∗, such that:

p0
α/u1−−→→ p

[a1,a2]/[_,b2]−−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[a1]/[[g]](a1)−−−−−−→ q1
[a2]·β/v2−−−−→→B •



 =⇒ u1 · [_, b2] · u2 =

v1 · [[g]](a1) · v2

p0
α/u1−−→→ p

[a′1,a2]/[_,b′2]−−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[a′1]/[[g]](a′1)−−−−−−→ q1
[a2]·β/v2−−−−→→B •





=⇒ u1 · [_, b′2] · u2 =

v1 · [[g]](a′1) · v2

Since b2 6= b′2 it must be that |u1|+ 1 < |v1 · [[g]](a1)| = |v1|+ |g| Also,

p0
α/u1−−→→ p

[e1,e2]/[b1,_]−−−−−−→→ p2
β/u2−−→→A •

q0
α/v1−−→→ q

[e1]/[[g]](e1)−−−−−−→ q1
[e2]·β/v3−−−−→→B •



 =⇒ u1 · [b1, _] · u2 =

v1 · [[g]](e1) · v3

p0
α/u1−−→→ p

[e1,e′2]/[b
′
1,_]−−−−−−→→ p2

β/u2−−→→A •
q0

α/v1−−→→ q
[e1]/[[g]](e1)−−−−−−→ q1

[e′2]·β/v4−−−−→→B •





=⇒ u1 · [b′1, _] · u2 =

v1 · [[g]](e1) · v4

Thus, since b1 6= b′1, we have |v1 · [[g]](e1)| = |v1| + |g| ≤ |u1|. But

|u1| < |v1|+ |g|.

The remaining cases are similar and effectively eliminate all non-aligned pair-states

from A×B or else establish that A 6 1= B.
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Assume A×B is aligned and let dA×Be be the following product S-FT (product S-

EFT all of whose transitions have look-ahead 1) over the input type σ∗. For each

p
λx̄.ϕ(x0,x1,...,x`−1)/( f ,g)−−−−−−−−−−−−−→

`
q in ∆A×B let y be a variable of sort σ∗ and let ϕ1 be the σ∗-

predicate

λy.ϕ(y[0], y[1], . . . , y[`− 1]) ∧ tail`(y) = ε
∧

i<`

taili(y) 6= ε

where y[i] is the term that accesses the i’th head of y and taili(y) is the term that accesses

the i’th tail of y. Lift f to the σ∗/γ-sequence f1 = λy. f (y[0], y[1], . . . , y[`− 1]) and lift g

similarly to g1. Add the rule p
ϕ1/( f1,g1)−−−−−→

1
q as a rule of dA×Be. Thus, the domain type

of TdA×Be is (Σ∗)∗ while the range type is 2Γ∗×Γ∗ . For u = [u0, u1, . . . , un] ∈ (Σ∗)∗, let

buc def
= u0 · u1 · · · un in Σ∗.

Lemma 2.24 (Grouping). Assume A×B is aligned. For all u ∈ Σ∗ and v, w ∈ Γ∗: (v, w) ∈
TA×B(u) iff ∃z(u = bzc ∧ (v, w) ∈ TdA×Be(z)).

Proof. The type lifting does not affect the semantics of the label-theory specific trans-

formations.

Note that, [[a1, a2], [a3]] and [[a1], [a2, a3]] may be distinct inputs of the lifted product,

while both correspond to the same flattened input [a1, a2, a3] of the original product.

Intuitively, the internal subsequences correspond to input alignment boundaries of the

two S-EFTs A and B.

So, in particular, grouping preserves the property: there exists an input u and outputs

v 6= w such that (v, w) ∈ TA×B(u). We use the following lemma that is extracted from

the main result from Veanes et al. [VHL+12, Proof of Theorem 1].

Lemma 2.25 (S-FT One-Equality [VHL+12]). Let C be a product S-FT over a decidable label

theory. The problem of deciding if there exist u and v 6= w such that (v, w) ∈ TC(u) is

decidable.

We can now prove the main decidability result of this chapter.

Theorem 2.26 (Cartesian S-EFT one-equality). One-equality of Cartesian S-EFTs over de-

cidable label theories is decidable.

Proof. Let A and B be Cartesian S-EFTs. Construct A×B. By the Product lemma 2.22,

D(A×B) = D(A) ∩ D(B) and A 6 1= B iff there exist u and v 6= w such that (v, w) ∈
TA×B(u). By using the Alignment lemma 2.23, construct aligned product S-FT C such

that TC = TA×B or else determine that A 6 1= B. Now lift C to dCe, and by using the

Grouping lemma 2.24, A 6 1= B iff there exist u and v 6= w such that (v, w) ∈ TdCe(u).
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Finally, observe that adding the sequence operations for accessing the head and the tail

of sequences in the lifting construction do not affect, by themselves, decidability of the

label theory. We can therefore apply Lemma 2.25.

Since a Monadic S-EFT can be effectively transformed into an equivalent Cartesian S-

EFT (Theorem 2.26) we get the following result.

Corollary 2.27 (Monadic S-EFT One-Equality). One-equality of monadic S-EFTs over de-

cidable label theories is decidable.

2.6 Composition of symbolic extended finite transducers

In this section we show few preliminary results on the problem of composing S-EFTs.

We first show that S-EFTs and Cartesian S-EFTs are not closed under composition.

Moreover, even if the composition of two S-EFTs is definable by another S-EFT, it is

undecidable to compute such an S-EFT. Last, we give an incomplete algorithm for com-

posing S-EFTs.

2.6.1 S-EFTs are not closed under composition

Given a functionf : X→ 2Y and a set of inputs x ⊆ X, the lifting of function f to a set

of inputs x is defined as f(x) def
=

⋃
x∈x f(x). Given two lifted functions f : X→ 2Y and

g : Y→ 2Z, we define their composition f ◦ g(x) def
= g(f(x)). This definition follows the

convention from Fülöp et al. [FV98], i.e., ◦ applies first f, then g, contrary to how ◦
is used for standard function composition. The intuition is that f corresponds to the

relation Rf : X × Y, Rf
def
= {(x, y) | y ∈ f(x)}, so that f ◦ g corresponds to the binary

relation composition Rf ◦ Rg
def
= {(x, z) | ∃y(Rf(x, y) ∧ Rg(y, z))}.

Definition 2.28. A class of transducers C is closed under composition iff for every T1

and T2 that are C-definable T1 ◦T2 is also C-definable.

Theorem 2.29. The composition of two Cartesian S-EFTs is not S-EFT-definable.

Proof. We show two Cartesian S-EFTs whose composition cannot be expressed by any

S-EFT. Let A be following S-EFT over Int→ Int

A = ({q}, q, {q true/[x1,x0]−−−−−−→
2

q, q
true/[]−−−→

0
•})
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and B be following S-EFT over Int→ Int

B = ({q0, q1}, q0, {q0
true/[x0]−−−−→

1
q1, q1

true/[x1,x0]−−−−−−→
2

q1, q1
true/[x0]−−−−→

1
•}).

The two transformations behave as in the following examples:

TA([a0, a1, a2, a3, a4, a5, a6, . . .]) = [a1, a0, a3, a2, a5, a4, a7, . . .],

TB([b0, b1, b2, b3, b4, b5, . . .]) = [b0, b2, b1, b4, b3, b6, b5, . . .].

When we compose TA and TB we get the following transformation:

TA◦B([a0, a1, a2, a3, a4, a5, a6, . . .]) = [a1, a3, a0, a5, a2, a7, a4, a9, a6, a8, . . .].

Intuitively, looking at TA◦B we can see that no finite look-ahead seems to suffice for this

function. Formally, for each ai such that i ≥ 0, TA◦B is the following function:

• if i = 1, ai is output at position 0;

• if i is even and greater than 1, ai is output at position i− 2;

• if i is equal to k− 2 where k is the length of the input, ai is output at position k− 1;

• if i is odd and different from k− 2, ai is output at position i + 2.

It is easy to see that the above transformation cannot be computed by any S-EFT. Let’s

assume by contradiction that there exists an S-EFT that computes TA◦B. We consider

the S-EFT C with minimal look-ahead (let’s say n) that computes TA◦B.

We now show that on an input of length greater than n + 2, C will misbehave. The first

transition of C that will apply to the input will have a look-ahead of size l ≤ n. We

now have three possibilities (the case n = k− 2 does not apply due to the length of the

input):

l = 1: before outputting a0 (at position 2) we need to output a1 and a3 which we have

not read yet; this is a contradiction;

l is odd: position l + 1 is receiving al−1 therefore C must output also the elements at

position l; position l should receive al+2 which is not reachable with a look-ahead

of just l; this is a contradiction;

l is even and greater than 1: since l > 1, position l is receiving al−2. This means C is also

outputting position l− 1; position l− 1 should receive al+1 which is not reachable

with a look-ahead of just l; this is a contradiction.
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Thus, we have shown that n cannot be the minimal look-ahead which contradicts our

initial hypothesis. Therefore TA◦B is not S-EFT-definable.

Corollary 2.30. S-EFT are not closed under composition.

We now show that in general the composition of two S-EFTs cannot be effectively con-

structed.

Theorem 2.31 (Composition is not constructible). Given two S-EFTs with look-ahead 2

over quantifier free successor arithmetic and tuples, A and B, such that composition f = TA◦B
is S-EFT definable, we cannot effectively construct an S-EFT that defines the transformation f .

Proof. Given a Minsky machine M, we construct two S-EFTs A and B such that their

composition A ◦ B is definable by an S-EFT C such that:

• if M halts on input (0, 0) with a non-zero output in r1, C is defined exactly on the

run of M, and

• otherwise C is the empty transducer that is undefined on any input.

The proof is analogous to that of Theorem 2.11 and we use the composition of S-EFTs

to simulate the intersection of two S-EFAs. Consider the predicates defined in the proof

of Theorem 2.11. Let

A = ({p0}, p0, {p0
ϕstep/[x0,x1]−−−−−−→

2
p0, p0

true/•−−−→
0
}),

B = ({q0, q1}, q0, {q0
ϕini/[x0]−−−−→

1
q1, q1

ϕstep/[x0,x1]−−−−−−→
2

q1, q1
ϕfin/[x0]−−−−→

1
•}).

This construction ensures that α ∈ D(A ◦ B) iff α is a valid run of M, i.e., α[0] is the

initial configuration, α[i + 1] is a valid successor configuration of α[i] (this follows from

A for all odd i < |α| and from B for all even i < |α|), and α[|α| − 1] is a halting con-

figuration. Since M is deterministic and we fix the initial configuration, we have that

D(A ◦ B) = {α} iff there exists α, such that M halts on α or D(A ◦ B) = ∅ otherwise. In

the first case we will have TA◦B(α) = α and undefined on any input different from α. In

the second case TA◦B is always undefined. In both cases TA◦B is S-EFT definable. Let’s

call C the S-EFT that implements TA◦B. Since emptiness of S-EFT is a decidable prob-

lem, we can decide if M halts on input (0, 0) with a non-zero output in r1. Since, the

latter is an undecidable problem we have a contradiction and therefore the composition

of two S-EFTs cannot be computed.
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Composition of symbolic finite transducers with look-back In this section we dis-

cuss how SLTs compare to S-EFTs regarding composition. Recall that symbolic finite

transducers with look-back k (k-SLTs) [BB13] have a sliding window of size k that al-

lows, in addition to the current input character, references of up to k− 1 previous char-

acters (using predicates of arity k). All the states of an SLT are final and are associated

with a constant output. Botinčan et al. [BB13] incorrectly claimed that SLTs are closed

under composition. We briefly explain SLTs are not closed under composition using

two SLTs over the sort σ = N. Consider an SLT A that echoes the first element of the

input, then deletes all the subsequent elements that are smaller or equal than 5, and

finally outputs the first element that is greater than 5. For example on the input se-

quence [1, 2, 4, 2, 5, 6], the SLT A outputs the sequence [1, 6]. We observe that on any

input sequence of the form a1 . . . an such that for every 1 < i ≤ n, ai ≤ 5, and an > 5,

the SLT A outputs the sequence a1an. Next consider the SLT B that given a sequence

a1a2 outputs the sequence a2a1 (this can be implemented by an SLT with look-back 2).

On any input sequence of the form a1 . . . an such that for every 1 < i ≤ n, ai ≤ 5, and

an > 5, the function resulting by composing A with B should output the sequence ana1.

But this function can’t be implemented using finite look-back. In particular, in order to

output the symbol a1 to the right of an, the symbol a1 must be read by a transition that

also reads the symbol an. Since n can be arbitrarily large, no finite look-back k would

suffice.

2.6.2 A practical algorithm for composing S-EFTs

In this section we present a sound algorithm for composing S-EFTs that is not guar-

anteed to work in all cases, but works for many practical purposes [DV13b]. Given

two S-EFTs, the algorithm first transforms them into Symbolic Transducers with regis-

ters [VHL+12] (S-Ts), and by using the fact that S-Ts are closed under composition, it

computes their composition. The next step is a register elimination algorithm that tries

to build an S-EFT that is equivalent to the composed S-T. This second step is sound but

incomplete, and this is due to the fact that S-EFTs are not closed under composition.

Recall that the closure fails already for restricted classes of S-EFTs (Corollary 2.30).

2.6.2.1 Symbolic transducers with registers

Registers provide a practical generalization of S-FTs. S-FTs with registers are called S-

Ts, since their state space (reachable by registers) may no longer be finite. An S-T uses

a register as a symbolic representation of states in addition to explicit (control) states.
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The rules of an S-T are guarded commands with a symbolic input and output compo-

nent that may use the register. By using Cartesian product types, multiple registers are

represented with a single (compound) register. Equivalence of S-Ts is undecidable but

S-Ts are closed under composition [VHL+12].

Definition 2.32. A Symbolic Transducer or S-T over σ→ γ and register type τ is a tuple

A = (Q, q0, ρ0, R), where

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• ρ0 ∈ U τ is the initial register value;

• R is a finite set of rules R = ∆ ∪ F;

• ∆ is a set of transitions r = (p, ϕ, o, u, q), also denoted p
ϕ/o;u−−−→ q, where

– p ∈ Q is the start state of r;

– ϕ, the guard of r, is a (σ× τ)-predicate;

– o, the output of r, is a finite sequence of (σ× τ)/γ-terms;

– u, the update of r, is a (σ× τ)/τ-term;

– q ∈ Q is the end state of r;

• F is a set of final rules r = (p, ϕ, o), also denoted p
ϕ/o−−→ •, where

– p ∈ Q is the start state of r;

– ϕ, the guard of r, is a τ-predicate;

– o, the output of r, is a finite sequence of τ/γ-terms.

All S-T rules in R have look-ahead 1 and all final rules have look-ahead 0. Longer look-

aheads are not needed because registers can be used to record history, in particular they

may be used to record previous input characters. A canonical way to do so is to let τ

be σ∗ that records previously seen characters, where initially ρ0 = [], indicating that no

input characters have been seen yet.

An S-EFT transition

p
λ(x0,x1,x2).ϕ(x0,x1,x2)/λ(x0,x1,x2).o(x0,x1,x2)−−−−−−−−−−−−−−−−−−−−−−−−→

3
q

can be encoded as the following set of S-T rules where p1 and p2 are new states

p
(λ(x,y).true)/ε;λ(x,y).cons(x,[])−−−−−−−−−−−−−−−−→ p1 p1

(λ(x,y).true)/ε;λ(x,y).cons(x,y)−−−−−−−−−−−−−−−−→ p2

p2
(λ(x,y).ϕ(y[1],y[0],x))/λ(x,y).o(y[1],y[0],x);λ(x,y).[]−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q
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Final rules are encoded similarly. The only difference is that q above is • and the register

update is not used in the third rule. An S-T rule (p, ϕ, o, u, q) ∈ R denotes the following

set of concrete transitions:

[[(p, ϕ, o, u, q)]] def
= {(p, s)

a/[[o]](a,s)−−−−−→ (q, [[u]](a, s)) | (a, s) ∈ [[ϕ]]}.

A final S-T rule (p, ϕ, o) ∈ F denotes the following set of concrete transitions:

[[(p, ϕ, o)]] def
= {(p, s)

ε/[[o]](s)−−−−→ • | s ∈ [[ϕ]]}.

The reachability relation p a/b−−→→A q for a ∈ Σ∗, b ∈ Γ∗, p ∈ (Q×U τ), q ∈ (Q×U τ)∪{•}
is defined analogously to S-EFTs and TA(a) def

= {b | (q0, ρ0)
a/b−−→ •}.

The following example illustrates a simplified case when an S-EFT is turned into an

S-T by saving a single character in a register, thus τ = σ in this case. The resulting

S-T is then composed with itself. We abbreviate an S-EFT rule p
λx̄.ϕ(x̄)/λx̄.o(x̄)−−−−−−−−→

k
q,

where |x̄| = k, by p
ϕ(x̄)/o(x̄)−−−−−→

k
q, and an S-T rule p

λ(x,y).ϕ(x,y)/λ(x,y).o(x,y);λ(x,y).u(x,y)−−−−−−−−−−−−−−−−−−−−−→ q

by p
ϕ(x,y)/o(x,y);u(x,y)−−−−−−−−−−−→ q.

Example 2.33. Let A be an S-EFT with the single state q and the rules

q
true/[x1,x0,x0]−−−−−−−→

2
q, q

true/[]−−−→
0
•

For example, A transforms the input [0, 1, 2, 3] into the output [1, 0, 0, 3, 2, 2]. The correspond-

ing S-T of A, Ast, has the following transitions

q
true/[]; x−−−−→ p, p

true/[x,y,y]; 0−−−−−−−→ q, q
true/[]−−−→ •

where y refers to the register, x refers to the current input, p is a new state, and the initial register

value is assumed to be 0. The first transition outputs nothing, and saves the current character

in the register. The second transition outputs the current character followed by outputting the

register twice in a row, and resets the register back to its initial value. Let us consider the self-

composition Ast ◦ Ast. The register of Ast ◦ Ast has the type σ× σ whose first component y0 is

the register of first instance of A and whose second component y1 is the register of the second

instance of A. The composed transitions are

q0
true/[];(x,y1)−−−−−−−→ q1, q1

true/[y0,x,x];(0,y0)−−−−−−−−−−→ q2,

q2
true/[];(x,y1)−−−−−−−→ q3, q3

true/[x,y1,y1,y0,y0,y0];(0,0)−−−−−−−−−−−−−−→ q0, q0
true/[]−−−→ •
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where q0 is the initial state and initially register y = (0, 0), i.e., y0 = y1 = 0. Only q0 is a

final state (has a finalizer with the empty output).

2.6.2.2 A register elimination algorithm

In this section we describe an algorithm for transforming a class of S-Ts into S-EFTs.

The core idea that underlies the register elimination algorithm is a symbolic generaliza-

tion of the state elimination algorithm for converting an NFA into a regular expression

(see e.g. [Yu97, Section 3.3]), which uses the notion of extended automata whose transi-

tions are labelled by regular expressions. We present the algorithm and then an exam-

ple of how it works. Here the labels of the S-T are predicates over sequences of elements

of fixed look-ahead. Essentially the intermediate data structure of the algorithm is an

“Extended S-T”. We often abbreviate a transition p
λ(x,y).ϕ(x,y)/λ(x,y).o(x,y);λ(x,y).u(x,y)−−−−−−−−−−−−−−−−−−−−−→ q

by p
ϕ(x,y)/o(x,y);u(x,y)−−−−−−−−−−−→ q.

Input: S-T Aσ/γ;τ.

Output: ⊥ or an S-EFT over σ→ γ that is equivalent to A.

1: Lift A to the input type σ∗. Replace each transition p
ϕ(x,y)/o(x,y);u(x,y)−−−−−−−−−−−→ q with the

following transition where [] is the empty list of type σ∗:

p
x 6=[]∧ϕ(head(x),y)/o(head(x),y);(head(x),y)−−−−−−−−−−−−−−−−−−−−−−−→

(1)
q.

Intuitively, x must be a non-empty list, i.e., input [] is not allowed. In the rules we

indicate, for clarity, that x is a list of length at least k by annotating the transition

with subscript (k). Apply similar transformation to final rules.

2: Repeat the steps 2.a-2.c while there exists a state that does not have a self loop (a self

loop is a transition whose start and end states are equal).

2.a: Choose a state p that is not the state of any self loop and is not the initial state.

2.b: For all transitions p1
ϕ1/o1;u1−−−−→

(k)
p

ϕ2/o2 :u2−−−−→
(`)

p2 in R:

• let ϕ = λ(x, y).ϕ1(x, y) ∧ ϕ2(tailk(x), u1(x, y)),

• let o = λ(x, y).o1(x, y) · o2(tailk(x), u1(x, y)),

• let u = λ(x, y).u2(tailk(x), u1(x, y)),

• if IsSat(ϕ) then add p1
ϕ/o;u−−−→
(k + `)

p2 as a new rule.

2.c: Delete the state p.
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3: If all guards and outputs do not depend on the register, remove the register from all

the rules in the S-T and return the resulting S-EFT. Otherwise return ⊥.

After the first step, the original S-T accepts an input [a0, a1, a2] and produces output

v iff the transformed S-T accepts [cons(a0, _), cons(a1, _), cons(a2, _)] and produces out-

put v, where the tails _ are unconstrained and irrelevant. Step 2 further groups the

inputs characters, e.g., to [cons(a0, cons(a1, _)), cons(a2, _)], etc, while maintaining this

input/output property with respect to the original S-T. Finally, in step 3, turning the

S-T into an S-EFT, leads to elimination of the register as well as lowering of the charac-

ter sort back to σ, and replacing each occurrence of head(tailk(x)) with corresponding

individual tuple element variable xk. Soundness of the algorithm follows.

The algorithm omits several implementation aspects that have considerable effect on

performance. One important choice is the order in which states are removed. In our

implementation the states with lowest total number of incoming and outgoing rules

are eliminated first. It is also important to perform the choices in an order that avoids

unreachable state spaces. For example, the elimination of a state p in step 2 may imply

that ϕ is unsatisfiable and consequently that p2 is unreachable if the transition from p

is the only transition leading to p2. In this case, if p is reachable from the initial state,

choosing p2 before p in step 2 would be wasteful.

For the class of S-Ts in which no register value is passed through a loop the algorithm

always succeeds. Intuitively this capture the cases in which there are no symbolic de-

pendencies between separate loop iterations. In other words, the register is only used

through a fixed number of states, and reset after that. The following example illustrates

a case for which the register elimination succeeds.

Example 2.34. Consider the S-T Ast ◦ Ast from Example 2.33. We follow the steps of the

algorithm and show how the composed S-T can be transformed into an equivalent S-EFT.

Step 1: We lift the input type to σ∗ so that a lifted character is a list (sequence of type σ∗). We

let |x| > k abbreviate the formula
∧k

i=0 tailk(x) 6= []. When |x| > i, we write xi for the i’th

element head(taili(x)) of x. Recall that y0 is the first component of the register and y1 is the

second component. The lifted transitions of Ast ◦ Ast are:

q0
x 6=[]/[];(x0,y1)−−−−−−−→

(1)
q1, q1

x 6=[]/[y0,x0,x0];(0,x0)−−−−−−−−−−−→
(1)

q2,

q2
x 6=[]/[];(x0,y1)−−−−−−−→

(1)
q3, q3

x 6=[]/[x0,y1,y1,y0,y0,y0];(0,0)−−−−−−−−−−−−−−−→
(1)

q0, q0
true/[]−−−→ •

Repeat Step 2: Choose p = q1. Eliminate q1 by merging the first two transitions. Here

k = ` = 1. Observe that x0 in the second rule becomes x0+k = x1 and y0 refers to the first
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sub-register update of the first transition, that is x0. The merged transition is:

q0
|x|>1/[x0,x1,x1];(0,x1)−−−−−−−−−−−−→

(2)
q2.

Next, choose p = q2. Eliminate q2 similarly by replacing the new transition to q2 and the

original transition from q2 by:

q0
|x|>2/[x0,x1,x1];(x2,x1)−−−−−−−−−−−−→

(3)
q3.

Finally, choose p = q3. Eliminate q3 similarly by replacing the new transition to q3 and the

original transition from q3 by:

q0
|x|>3/[x0,x1,x1,x3,x0,x0,x2,x2,x2];(0,0)−−−−−−−−−−−−−−−−−−−−→

(4)
q0.

Step 3: It is now safe to remove the register because it is not being used any more in any guard

or update. So the final S-EFT, say AA, has the rules

q0
true/[x0,x1,x1,x3,x0,x0,x2,x2,x2]−−−−−−−−−−−−−−−−→

4
q0, q0

true/[]−−−→
0
•

where the lifting has been undone and here each variable xi is of type σ. For example

AA([0, 1, 2, 3]) = [0, 1, 1, 3, 0, 0, 2, 2, 2].

We now discuss the cases when the algorithm fails. We first discuss the cases when it

should fail, or else the algorithm would be unsound, and then identify two cases when

it fails due to incompleteness (w.r.t. the class of S-Ts that have an equivalent S-EFT).

We know from Theorem 2.29 that already Cartesian S-EFTs are not closed under com-

position. For example, if we take the S-EFTs A and B from the proof of Theorem 2.29,

first transform them into equivalent S-Ts and then compose the S-Ts, then the resulting

S-T cannot be transformed back into an S-EFT. Although we know the algorithm will

fail, it is nevertheless useful to see how this happens in the following example.

Example 2.35. Consider S-EFTs A and B from the proof of Theorem 2.29. Modify B so that

it is deterministic, by letting the guard on the self-loop on q1 be x0 6= 0 and the guard on the

finalizer from q1 be x0 = 0. The composition Bst ◦ Ast, after lifting the input type, is then the

following S-T (recall that Bst ◦ Ast(w) = Ast(Bst(w))):

If we apply the register elimination algorithm to this S-T, it may first eliminate the state q2, by

creating the transition q1
|x|>1∧x0 6=0/[x1,y1];(0,x0)−−−−−−−−−−−−−−→

(2)
q1. After this step the algorithm stops and

returns ⊥.
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q0 q1

(x 6= nil ∧ x0 6= 0)/[]; (x0, y1)

(0, 0) q3

q2

(x 6= nil)/[x0, y1]; (0, y0)

(x 6= nil)/[]; (0, x0) (x 6= nil ∧ x0 = 0)/[x0, y1]; (0, 0)

Another reason why the algorithm fails for some inputs is due to Theorem 2.31, which

states there are cases in which S-EFTs can be composed, but their composition cannot

be effectively constructed. In particular composing the two S-EFTs of Theorem 2.31 re-

quires loop unrolling in order to construct an equivalent S-EFT. In this case the algorithm

fails, as shown by the following example.

Example 2.36. Consider again the S-EFTs A and B from the proof of Theorem 2.29. This time

modify B so that the guard on the self-loop on q1 is x0 = 0 and the guard on the finalizer from

q1 is x0 6= 0. The composition Bst ◦ Ast, after lifting the input type, is then the following S-T,

which is very similar to the one in Example 2.35:

q0 q1

(x 6= nil ∧ x0 = 0)/[]; (x0, y1)

(0, 0) q3

q2

(x 6= nil)/[x0, y1]; (0, y0)

(x 6= nil)/[]; (0, x0) (x 6= nil ∧ x0 6= 0)/[x0, y1]; (0, 0)

If we apply the register elimination algorithm to this S-T, it may, again, first eliminate the state

q2, by creating the transition q1
|x|>1∧x0=0/[x1,y1];(0,0)−−−−−−−−−−−−−→

(2)
q1. The algorithm is not able to detect

that unrolling the loop once will remove the dependency on y1 from the output (because y1 will

be fixed to 0 in all remaining iterations). The algorithm stops and returns ⊥.

The register elimination algorithm also returns undefined when the register is used in

a way that does not affect the transducer’s semantics. For example, if there is an output

element r− r where r is an integer valued register, then the value will always be 0. But

the algorithm does not perform any theory specific reasoning and will therefore not

detect such cases.

2.6.2.3 A practical composition algorithm

We now have all the ingredients necessary to try to compose S-EFTs. The algorithm

proceeds as follows. Given two S-EFTs A and B:
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1. Compute two S-Ts A′ and B′ equivalent to A and B respectively;

2. Compute a S-T C′ = A′ ◦ B′;

3. Run the register elimination algorithm on the S-T C′ and if it terminates output

the S-EFT C equivalent to A ◦ B.

2.7 Experiments and applications

In this section we show how BEX can be used to verify real-world string coders and

how S-EFTs can be used model problems in networking and functional programming.

2.7.1 Analysis of string encoders

We first discuss how BEX can prove the correctness of several real-world coders, and

then present some scalability results.

2.7.1.1 Functional correctness

A string encoder E transforms input strings in a given format into output strings in

a different format. A decoder D inverts such a transformation. For coders E and D to

invert each-other, the following equalities should hold: E ◦D 1
= I and D ◦ E 1

= I (where

I is the identity transducer).

We illustrated in Example 2.4 how the BASE64 encoder and decoder can be modeled us-

ing Cartesian S-EFTs. Similarly, we can model BASE32, BASE16, and UTF8 coders. Us-

ing the equivalence and composition procedures presented in this chapter we proved

that the equality presented above hold for all these coders. Table 2.1 shows the cor-

responding running times. The letters E, D, and I stand for encoder, decoder, and

the identity transducer respectively. The first half of Table 2.1 shows the look-ahead

sizes of both encoders and decoders, while the second half shows the running times for

checking correctness. Composition times (typically 1-2 ms) are included in the mea-

surements.

2.7.1.2 Running time analysis

In this section we analyze the cost of running our composition and equivalence algo-

rithms on larger S-EFTs. Most of the compositions performed in this section will take

more than 1 hour when trying to model the programs using finite state transducers.
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Look-ahead Analysis (ms)
E D E◦D 1

=I D◦E 1
=I

UTF8: 2 4 16 24
BASE64: 3 5 53 19
BASE32: 5 8 8 12
BASE16: 1 2 2 1

TABLE 2.1: Analysed coders with corresponding look-aheads and running times.

We consider consecutive compositions of encoders and decoders and analyze their cor-

rectness using 1-equality for S-EFTs. We define the following notation for consecutive

composition of S-EFTs. Given an S-EFT P we define P1 ≡ P and Pi+1 ≡ P ◦ Pi. We fix

E/D to be UTF8 encoder/decoder respectively, and verify analyze the running times

of the following checks.

Equivalence for Enc/Dec: : Ei ◦ Di 1
= I for 1 ≤ i ≤ 9, Figure 2.4(a);

Inequivalence for Enc/Dec: : Ei+1 ◦ Di 6 1= I for 1 ≤ i ≤ 9, Figure 2.4(a);

Equivalence for Dec/Enc: : Di ◦ Ei 1
= I for 1 ≤ i ≤ 3, Figure 2.4(b);

Inequivalence for Dec/Enc: : Di ◦ Ei+1 6 1= I for 1 ≤ i ≤ 3, Figure 2.4(b).

The top of Figure 2.4 shows the running times for the case in which we first encode and

then decode. The figure plots the following measures where i varies between 1 and 9:

Composition: : cost of computing Ei+1 ◦Di (we omit the cost of computing Ei ◦Di since

it is almost equivalent);

Equivalence: : cost of checking Ei ◦ Di 1
= I;

Inequivalence: : cost of checking Ei+1 ◦ Di 6 1= I.

In this case the algorithm scales pretty well with the number of S-Ts. It is worth notic-

ing that at every i we are analyzing the composition of 2i transducers in the case of

equivalence and 2i + 1 transducers in the case of inequivalence.

The bottom of Figure 2.4 shows the running times for the case in which we first decode

and then encode. The plot has the same meaning as before, but in this case the running

time increases at a faster pace. This happens because both the state space and the look-

ahead become larger than for the case in which encode first. In the case in which we first

encode, the number of states and transitions does not grow when i increases. However,

when we first decode, we already reach a large number of states (3645) and transitions

(6791) for i = 3. Moreover, while the size of the look-ahead remains 2 in the case of

encode/decode, it grows exponentially with i when we first decode.
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FIGURE 2.4: Running times for equivalence/inequivalence checking.

2.7.2 Deep packet inspection

Fast identification of network traffic patterns is of vital importance in network routing,

firewall filtering, and intrusion detection. This task is addressed with the name “deep

packet inspection” (DPI) [SEJK08]. Due to performance constraints, DPI must be per-

formed in a single pass over the input. The simplest approach is to use DFAs and NFAs

to identify patterns. These representations are either not succinct or not streamable. Ex-

tended Finite Automata (XFA) [SEJK08] make use of registers to reduce the state space

while preserving determinism and therefore deterministic S-EFAs can be seen as a sub-

class of XFAs that are able to deal with finite look-ahead. Deterministic S-EFA can also

represent the alphabet symbolically, which enables a new level of succinctness. We be-

lieve that deterministic S-EFAs can help achieve further succinctness. To support this

hypothesis we observe that examples shown described by Smith et al. [SEJK08, Fig-

ure 2,3] can be represented as deterministic S-EFAs with few transitions. For example

the language ^/\ncmd[^\n]{200}$, which accepts all strings of the form ‘\ncmds’

such that s has 200 symbols, can be succinctly modeled as a deterministic S-EFA with

one transition! Moreover, the ability to compile S-EFA to Symbolic Automata with reg-

isters 2.6.2.1 makes this model appealing for efficient deterministic left-to-right DPI.
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2.7.3 Verification of list manipulating programs

In our previous work [DVLM14] we showed how S-FTs can be used to verify pre and

post conditions of list manipulating programs. However, S-FTs can only model pro-

grams in which each node in the output list depends on at most one node in the input

list. S-EFTs can be used to mitigate this problem as they can be used to model sequen-

tial pattern matching. For example, the CAML guards

x1::x2::xs -> (x1+x2)::(f2 xs) and

x1::x2::x3::xs -> (x1+x2+x3)::(f3 xs)

can be naturally expressed as S-EFT transitions. Let’s consider two functions f2 and

f3, both of type list int → list int, that respectively contain the two guards defined

above. These functions can be modeled as S-EFTs. Using the one-equality algorithm of

Section 2.5 and the composition algorithm of Section 2.6.2.3 we were able to prove that

∀l. f3( f2 l) 1
= f2( f3 l) in less than 1 millisecond.

2.8 Related work

2.8.1 From S-FA/S-FT to S-EFA/S-EFT

The concept of automata with predicates instead of concrete symbols was first men-

tioned by Watson [Wat99] and was first discussed by Noord et al. [vNG01] in the con-

text of natural language processing. Symbolic finite automata have been further stud-

ied in in the context of automata minimization [DV14].

Symbolic finite transducers (S-FTs) were originally introduced by

Hooimeijer et al. [HLM+11] with a focus on security analysis of sanitizers. The for-

mal foundations and the theoretical analysis of the underlying S-FT algorithms, in par-

ticular, an algorithm for one-equality of S-FTs, modulo a decidable background the-

ory is studied by Veanes et al. [VHL+12]. The same work defined Symbolic Trans-

ducers (S-Ts). Full equivalence of finite state transducers is undecidable [Gri68], and

already so for very restricted fragments [Iba78]. Equivalence of single-valued finite

state transducers is decidable [Sch75] and the result has been extended to the finite-

valued case [CK86, Web93]. Symbolic finite transducers have been extended to tree

structures [DVLM14]. When reasoning about string coders, the use of symbolic alpha-

bets is only beneficial when adding look-ahead, and S-EFTs are strictly more succinct

than S-FTs.
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An algorithm for checking whether a predicate is monadic (finite disjunction of Carte-

sian predicates) has been proposed by Veanes et al. [VBNB14]. This algorithm can be

used to improve the expressiveness of BEX. The register elimination algorithm pre-

sented in Section 2.6.2.2 has also been extended to larger classes of S-Ts [VMML15]. In

the future, we plan to extend BEX to support such an algorithm in order to support

richer analysis.

2.8.2 Models that allow binary predicates

In recent years there has been considerable interest in automata that accept words over

infinite alphabets [Seg06, KF94]. In this line of work, symbols can only be compared

using equality and arbitrary predicates are not allowed, making the proposed models

incomparable to those analyzed in this chapter. Here, we focus on proving negative and

positive properties of S-EFAs and S-EFTs over arbitrary decidable Boolean algebras.

While we do not investigate specific theories, it would be interesting to understand

whether the properties we discussed hold when considering an alphabet theory that

only supports equality.

Symbolic finite transducers with look-back k (k-SLTs) have a sliding window of size k

that allows to refer to the k − 1 previous characters [BB13] . We showed how k-SLTs

are more expressive than S-EFTs, and contrary to the claim by Botinčan et al. [BB13],

k-SLTs are not closed under composition, and equivalence of k-SLTs is undecidable.

Streaming string transducers [AC11] provide another recent symbolic extension of fi-

nite transducers where the label theories are restricted to be total orders in order to

maintain decidability of equivalence [AC11]. Streaming transducers are largely orthog-

onal to S-FTs or the extension of S-EFTs. For example, streaming transducers do not

allow arithmetic, but can reverse the input, which is not possible with S-EFTs.

2.8.3 Models over finite alphabets

Extended Finite Automata (XFA) are introduced in [SEJK08] for network packet in-

spection. XFAs are a succinct representation of DFAs that uses registers to store and

inspect values. History-based finite automata [KCTV07] are another extension of DFAs

introduced in the context of network intrusion detection, that uses a single register

(bit-vector) to keep track of the symbols read so far. In both models the register is used

together with the input character to determine when a transition is enabled. Both these

models focus on succinctness and the differ from S-EFAs in two ways: 1) they only

support finite alphabets; and 2) they can relate symbols at arbitrary positions, while
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S-EFAs can only relate adjacent positions. We have not investigated the application of

S-EFAs to network packet inspection and network intrusion detection, but we think

that S-EFAs can help achieving a further level of succinctness in these domains.

Extended Top-Down Tree Transducers [MGHK09] (ETTTs) are commonly used in nat-

ural language processing. ETTTs also allow finite look-ahead on transformation from

trees to trees, but only support finite alphabets. The special case in which the input is

a string (unary tree) is equivalent to S-EFTs over finite alphabets. This chapter focuses

on S-EFTs over any decidable theory. We leave as future work extending S-EFTs to tree

transformations.
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Chapter 3

FAST: a transducer-based language

for manipulating trees

“but most of all, samy is my hero”

— Samy Kamkar, The Samy Worm

3.1 Introduction

Trees are ubiquitous data structures and are used in a variety of applications in soft-

ware engineering. For example, XML, HTML, and JSON are tree formats, compilers

operate over an abstract syntax tree, and in natural language processing sentences are

structured as trees. Providing better support for manipulating trees is clearly benefi-

cial. In this chapter we focus on using variants of tree automata and tree transducers to

design a language, FAST, that can analyze practical tree-manipulating programs.

3.1.1 Limitations of current models

Tree automata are used in variety of applications in software engineering, from anal-

ysis of XML programs [HP03] to type-checking [Sei94]. Tree transducers extend tree

automata to model functions from trees to trees, and appear in fields such as natu-

ral language processing [MGHK09, PS12, MK08] and XML transformations [MBPS05].

While these formalisms are of immense practical use, they suffer from a major draw-

back: in the most common forms they can only handle finite alphabets. Moreover, in

practice existing models do not scale well even for finite but large alphabets.
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In order to overcome this limitation, symbolic tree automata (S-TAs) and symbolic tree

transducers (S-TTs) [VB12b, FV14] support complex alphabets by allowing transitions to

be labeled with formulas in a specified alphabet theory. While the concept is straight-

forward, traditional algorithms for deciding composition, equivalence, and other prop-

erties of finite automata and transducers do not immediately generalize. A notable ex-

ample is the one we discussed in Chapter 2, where we showed that, while allowing fi-

nite state automata transitions to read subsequent inputs does not add expressiveness,

in the symbolic case this extension makes most problems, such as checking equivalence,

undecidable.

Symbolic tree automata still enjoy the closure and decidability properties of tree au-

tomata [VB12b] under the assumption that the alphabet theory forms a decidable

Boolean algebra (i.e., closed under Boolean operations). In particular S-TAs are closed

under Boolean operations, and enjoy decidable emptiness and equivalence.

A symbolic tree transducer (S-TT) traverses the input tree in a top-down fashion, pro-

cesses one node at a time, and produces an output tree. This simple model can capture

several natural language transformations and simple recursive programs that operate

over trees. However, in most useful cases S-TTs are not closed under sequential com-

position [FV14]. This is a practical limitation when verifying even simple program

properties.

3.1.2 Contributions

To overcome the limitations we just discussed, we introduce symbolic tree transducers

with regular look-ahead (S-TTRs), which extend S-TTs with regular look-ahead [Eng77]

— the capability of checking whether the subtrees of each processed node belong to

some regular tree languages. S-TTRs support complex, potentially infinite alphabets,

and we show that S-TTRs are closed under composition in most practical scenarios: two

S-TTRs A and B can be composed into a single S-TTR A ◦ B if either A is single-valued

(for every input it produces at most one output), or B is linear (it traverses each node

in the tree at most once). Remarkably, the algorithm works for any decidable alphabet

theory that forms an effective Boolean algebra.

We present FAST, a frontend programming language for S-TAs and S-TTRs. FAST

(Functional abstraction of symbolic transducers) is a functional language that integrates

symbolic tree automata and transducers with Z3 [DMB08], a state-of-the-art solver ca-

pable of supporting complex theories that range from data-types to non-linear real

arithmetic.
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We use FAST to model several real-world scenarios and analysis problems: we demon-

strate applications to HTML sanitization, interference checking of augmented reality

applications submitted to an app store, deforestation in functional language compila-

tion, and analysis of functional programs over trees. We also sketch how FAST can

capture simple CSS analysis tasks. All these problems require the use of symbolic al-

phabets.

This chapter is structured as follows:

• Section 3.2 introduces the language FAST using an example in the context of

HTML sanitization;

• Section 3.3 presents a theory of symbolic tree transducers with regular look-ahead (S-

TTR) and FAST, a transducer-based language founded on the theory of S-TTRs;

• Section 3.4 discusses a new algorithm for composing S-TTRs, along with a proof

of correctness;

• Section 3.5 presents five concrete applications of FAST and shows how the closure

under composition of S-TTR can be beneficial in practical settings;

• Section 3.6 compares FAST with previous domain specific languages for tree ma-

nipulation.

3.2 Overview of FAST

We use a simple scenario to illustrate the main features of the language FAST and the

analysis enabled by the use of symbolic transducers. Here, we choose to model a ba-

sic HTML sanitizer. An HTML sanitizer is a program that traverses an input HTML

document and removes or modifies nodes, attributes, and values that can cause ma-

licious code to be executed on a server. Every HTML sanitizer works in a different

way, but the general structure is as follows: 1) the input HTML is parsed into a DOM

(Document Object Model) tree, 2) the DOM is modified by a sequence of sanitization

functions f1, . . . , fn, and 3) the modified DOM tree is transformed back into an HTML

document1. In the following paragraphs we use FAST to describe some of the func-

tions used during step 2. Each function fi takes as input a DOM tree received from the

browser’s parser and transforms it into an updated DOM tree. As an example, the FAST

program sani (Figure 3.1, line 30) traverses the input DOM and outputs a copy where

1Some sanitizers process the input HTML as a string, often causing the output not to be standards
compliant.
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// Datatype definition for HTML encoding
type HtmlE[tag : String]{nil(0), val(1), attr(2), node(3)}
// Language of well-formed HTML trees
lang nodeTree:HtmlE {

node(x1, x2, x3) given (attrTree x1) (nodeTree x2) (nodeTree x3)
| nil() where (tag = "") }

lang attrTree:HtmlE {
attr(x1, x2) given (valTree x1) (attrTree x2)

| nil() where (tag = "") }
lang valTree:HtmlE {

val(x1) where (tag 6= "") given (valTree x1)
| nil() where (tag = "") }

// Sanitization functions
trans remScript:HtmlE→ HtmlE {

node(x1, x2, x3) where (tag 6= "script") to
(node [tag] x1 (remScript x2) (remScript x3))

| node(x1, x2, x3) where (tag = "script") to x3
| nil() to (nil [tag]) }

trans esc:HtmlE→ HtmlE {
node(x1, x2, x3) to (node [tag] (esc x1) (esc x2) (esc x3))

| attr(x1, x2) to (attr [tag] (esc x1) (esc x2))
| val(x1) where (tag = "’"∨ tag = """) to (val ["\"](val [tag] (esc x1)))
| val(x1) where (tag 6= "’"∧ tag 6= """) to (val [tag] (esc x1))
| nil() to (nil [tag]) }

// Compose remScript and esc, restrict to well-formed trees
def rem_esc:HtmlE→ HtmlE := (compose remScript esc)
def sani:HtmlE→ HtmlE := (restrict rem_esc nodeTree)
// Language of bad outputs that contain a "script" node
lang badOutput:HtmlE {

node(x1, x2, x3) where (tag = "script")
| node(x1, x2, x3) given (badOutput x2)
| node(x1, x2, x3) given (badOutput x3) }

// Check that no input produces a bad output
def bad_inputs:HtmlE := (pre-image sani badOutput)
assert-true (is-empty bad_inputs)

FIGURE 3.1: Implementation and analysis of an HTML sanitizer in FAST.

all subtrees in which the root is labeled with the string "script" have been removed,

and all the characters "’" and """ have been escaped with a "\".

The following informally describes each component of Figure 3.1. Line 2 defines the

data-type HtmlE of “raw” trees. Each node of type HtmlE contains an attribute tag

of type string and is built using one of the constructors nil, val, attr, or node. Each

constructor has a number of children associated with it (2 for attr) and all such children

are HtmlE nodes. We use the type HtmlE to model DOM trees. Since DOM trees are

unranked (each node can have an arbitrary number of children), we will first encode

them as ranked trees.
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FIGURE 3.2: Encoding of <div id=‘e"’><script>a</script></div><br />.

We adopt a slight variation of a common binary encoding of unranked trees (Fig-

ure 3.2). We first informally describe the encoding and then show how it can be for-

malized in FAST. Each HTML node n is encoded as an HtmlE element node(x1, x2, x3)

with three children x1, x2, x3 where: 1) x1 encodes the list of attributes of n, 2) x2 encodes

the first child of n in the DOM, 3) x3 encodes the next sibling of n, and 4) tag contains

the node type of n (div, etc.). Each HTML attribute a with value s is encoded as an

HtmlE element attr(x1, x2) with two children x1, x2 where: 1) x1 encodes the value s

(nil if s is the empty string), 2) x2 encodes the list of attributes following a (nil if a is

the last attribute), and 3) tag contains the name of a (id, etc.). Each non-empty string

w = s1 . . . sn is encoded as an HtmlE element val(x1) where tag contains the string

“s1”, and x1 encodes the suffix s2 . . . sn. Each element nil has tag "", and can be seen

as a termination operator for lists, strings, and trees. This encoding can be expressed

in FAST (lines 4-12). For example, nodeTree (lines 4-6) is the language of correct HTML

encodings (nodes): 1) the tree node(x1, x2, x3) is in the language nodeTree if x1 is in the

language attrTree, x2 is in the language nodeTree, and x3 is in the language nodeTree;

2) the tree nil is in nodeTree if its tag contains the empty string. The other language

definitions are similar.

We now describe the sanitization functions. The transformation remScript (lines 14-18)

takes an input tree t of type HtmlE and produces an output tree of type HtmlE: 1) if

t = node(x1, x2, x3) and its tag is different from "script", remScript outputs a copy

of t in which x2 and x3 are replaced by the results of invoking remScript on x2 and

x3 respectively; 2) if t = node(x1, x2, x3) and its tag is equal to "script", remScript

outputs a copy of x3, 3) if t = nil, remScript outputs a copy t. The transformation esc

(lines 19-24) of type HtmlE → HtmlE escapes the characters ’ and ", and it outputs a

copy of the input tree in which each node val with tag "’" or """ is pre-pended a node

val with tag "\". The transformations remScript and esc are then composed into a single

transformation rem_esc (line 26). This is done using transducer composition. The square

bracket syntax is used to represent the assignments to the attribute tag. One might

notice that rem_esc also accepts input trees that are not in the language nodeTree and do

not correspond to correct encodings. Therefore, we compute the transformation sani
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FIGURE 3.3: Result of applying sani to the tree in Figure 3.2.

(line 27), which is same as rem_esc, but restricted to only accept inputs in the language

nodeTree. Sanitizing the tree of Figure 3.2 with the function sani yields the HtmlE tree

corresponding to <div id=‘e\"’></div><br /> (see Figure 3.3).

We can now use FAST to analyze the program sani. First, we define the language

bad_output (lines 29-32), which accepts all the trees containing at least one node with

tag "script".2 Next, using pre-image computation, we compute the language

bad_inputs (line 34) of inputs that produce a bad output. Finally, if bad_inputs is the

empty language, sani never produces bad outputs. When running this program in FAST

this checking (line 35) fails, and FAST provides the following counterexample:

node ["script"] nil nil (node ["script"] nil nil nil)

where we omit the attribute for the nil nodes. This is due to a bug in line 17, where

the rule does not recursively invoke the transformation remScript on x3. After fixing

this bug the assertion becomes valid. In this example, we showed how in FAST simple

sanitization functions can be first coded independently and then composed without

worrying about efficiency. Finally, the resulting transformation can be analyzed using

transducer based techniques.

3.3 Symbolic tree transducers and FAST

The concrete syntax of FAST is shown in Figure 3.4. We describe it in detail in the rest

of the section. Nonterminals and meta-symbols are in italic. Constant expressions for

strings and numbers use C# syntax [HWG03]. Additional well-formedness conditions

(such as well-typed terms) are assumed to hold. FAST is designed for describing trees,

tree languages, and functions from trees to trees. These are supported using symbolic

2This definition illustrates the nondeterministic semantics of FAST: a tree t belongs to bad_output if at
least one of the three rules applies.
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Indentifiers ID : (a..z|A..Z|_)(a..z|A..Z|_|.|0..9)∗

Basic types σ : String | Int | R | B . . .
Built-in operators op : < | > | = | + | and | or | . . .

Constructors c : ID Natural numbers k : N

Tree types τ : ID Language states p : ID
Transformation states q : ID Attribute fields x : ID
Subtree variables y : ID

Main de f initions :
Fast ::= type τ [(x:σ)∗] {(c(k))+} | tree t : τ := TR

| lang p : τ { Lrule+ } | trans q : τ → τ { Trule+ }
| def p : τ := L | def q : τ → τ := T
| assert-true A | assert-false A

Lrule ::= c(y1, . . . , yn) (where Aexp)? (given (( p y ))+)?
Trule ::= Lrule to Tout
Tout ::= y | ( q y ) | ( c[ Aexp+] Tout∗)

Aexp ::= ID | Const | (op Aexp+)

Operations over languages, transductions, and trees :
L ::= (intersect L L) | (union L L) | (complement L) |

(difference L L) | (L) | (domain T)
| (pre-image T L) | p

T ::= (compose T T) | (restrict T L) | (restrict-out T L) | q
TR ::= t | ( c[ Aexp∗] TR∗) | (apply T TR) | (get-witness L)

A ::= L == L | (is-empty L) | (is-empty T) | TR ∈ T
| (type-check L T L)

FIGURE 3.4: Syntax of FAST.

tree automata (S-TAs) and symbolic tree transducers with regular look-ahead (S-TTRs). This

section covers these objects and how they describe the semantics of FAST.

3.3.1 Background

All definitions are parametric with respect to a given background theory, called a la-

bel theory, over a fixed background structure with a recursively enumerable universe

of elements. Such a theory is allowed to support arbitrary operations (such as addi-

tion, etc.), however all the results in the following only require it to be 1) closed under

Boolean operations and equality, and 2) decidable (quantifier free formulas with free

variables can be checked for satisfiability).

We use λ-expressions for defining anonymous functions called λ-terms without having

to name them explicitly. In general, we use the standard first-order logic and follow the

notational used by Veanes et al. [VHL+12]. We write f (v) for the functional application

of the λ-term f to the term v, σ for a type, and U σ for the universe of elements of type
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σ. A σ-predicate is a λ-term λx.ϕ(x) where x has type σ and ϕ is a formula for which

the free variables FV(ϕ) are contained in {x}. Given a σ-predicate ϕ, [[ϕ]] denotes the

set of all a ∈ Uσ such that ϕ(a). The set of σ-predicates is denoted by Ψ(σ). Given a

type σ (such as int), we extend the universe with σ-labeled finite trees as an algebraic

datatype T σ
Σ where Σ is a finite set of tree constructors f with rank R( f ) ≥ 0; f has type

σ × (T σ
Σ )R( f ) → T σ

Σ .3 Let Σ(k) def
= { f ∈ Σ | R( f ) = k}. We call T σ

Σ a tree type. We

require that Σ(0) is non-empty so that UT σ
Σ is non-empty. We write f [a](ū) for f (a, ū)

and abbreviate f [a]() by f [a].

Example 3.1. The FAST program in Figure 3.1, declares HtmlE = T String
Σ over

Σ = {nil, val, attr, node}, where R(nil) = 0, R(val) = 1, R(attr) = 2, and R(node) = 3.

For example attr["a"](nil["b"], nil["c"]) is in UT String
Σ .

We write ē for a tuple (sequence) of length k ≥ 0 and denote the i’th element of ē by ei

for 1 ≤ i ≤ k. We also write (ei)
k
i=1 for ē. The empty tuple is () and (ei)

1
i=1 = e1. We

use the following operations over k-tuples of sets. If X̄ and Ȳ are k-tuples of sets then

X̄ ] Ȳ def
= (Xi ∪Yi)

k
i=1. If X̄ is a k-tuple of sets, j ∈ {1, . . . , k} and Y is a set then (X̄ ]j Y)

is the k-tuple (if i=j then Xi∪Y else Xi)
k
i=1.

3.3.2 Alternating symbolic tree automata

We introduce and develop the basic theory of alternating symbolic tree automata, which

adds a form of alternation to the basic definition originally presented by Veanes et

al. [VB12b]. We decide to use alternating S-TAs instead of their non-alternating coun-

terpart because they are succinct and arise naturally when composing tree transducers.

Definition 3.2. An Alternating Symbolic Tree Automaton (Alternating S-TA) A is a tuple

(Q, T σ
Σ , δ), where Q is a finite set of states, T σ

Σ is a tree type, and δ ⊆ ⋃
k≥0(Q× Σ(k)×

Ψ(σ)× (2Q)k) is a finite set of rules (q, f , ϕ, ¯̀), where q is the source state, f the symbol,

ϕ the guard, and ¯̀ the look-ahead.

For q ∈ Q, δ(q) def
= {r ∈ δ | the source state of r is q}. In FAST δ(q) is

lang q : τ {c(ȳ) where ϕ(x̄) given ¯̀(ȳ) | . . .}.

Next, we define the semantics of an S-TA A = (Q, T σ
Σ , δ).

3If R( f ) = 0 then f has type σ→ T σ
Σ .
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type BT[i : Int]{L(0), N(2)}
lang p:BT {

L() where (i > 0)
| N(x, y) given (p x) (p y)

}
lang o:BT {

L() where (odd i)
| N(x, y) given (o x) (o y)

}
lang q:BT { N(x, y) given (p y) (o y) }

FIGURE 3.5: Tree languages in FAST.

Definition 3.3. For every state q ∈ Q the language of A at q, is the set

Lq
A

def
= { f [a](t̄) ∈ UT σ

Σ | (q, f , ϕ, ¯̀)∈δ, a∈[[ϕ]],
R( f )∧

i=1

∧

p∈`i

ti∈Lp
A}.

Each look-ahead set `i is treated as a conjunction of conditions. If `i is empty then there

are no restrictions on the i’th subtree ti. We extend the definition to all q ⊆ Q:

Lq
A

def
=





⋂
q∈q Lq

A, if q 6= ∅;

UT σ
Σ , otherwise.

Example 3.4. Consider the FAST program in Figure 3.5 An equivalent S-TA A over T Int
BT has

states {o, p, q} and rules

{ (p,L, λx.x > 0, ()), (p,N, λx.true, ({p}, {p})),
(o,L, λx.odd(x), ()), (o,N, λx.true, ({o}, {o})),

(q,N, λx.true, (∅, {p, o})) }.

Since the first subtree in the definition of q is unconstrained, the corresponding component in

the last rule is empty. The definition for q has no case for L, so there is no rule.

In the following we say S-TA for alternating S-TA.4

Definition 3.5. A is normalized if, for all (p, f , ϕ, ¯̀) ∈ δ and all i with 1 ≤ i ≤ R( f ), `i is

a singleton set.

For example, the S-TA in Example 3.4 is not normalized because of the rule with source

q.

4When compared to the model in in the TATA book [CDG+07], the S-TAs defined above are “almost”
alternating, in the sense that they only allow disjunctions of conjunctions, rather than arbitrary positive
Boolean combinations. Concretely, the look-ahead of a rule r corresponds to a conjunction of states, while
several rules from the same source state provide a disjunction of cases.
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Normalization. The normalization procedure is a subset construction that removes

the sources of alternation from an S-TA and makes sure that each lookahead component

is a singleton set. Intuitively, alternating rules are merged by taking the conjunction of

their predicates and the union of their activation states.

Let A = (Q, T σ
Σ , δ) be an S-TA. We compute merged rules (q, f , ϕ, ρ̄) over merged states

q ∈ 2Q, where ρ̄ ∈ (2Q)R( f ). For f ∈ Σ, let δ f =
⋃

p⊆Q δ f (p), where

δ f (∅) = {(∅, f , ∅, (∅)
R( f )
i=1 )},

δ f (p ∪ q) = {r ! s | r ∈ δ f (p), s ∈ δ f (q)},
δ f ({p}) = {({p}, f , {ϕ}, ρ̄) | (p, f , ϕ, ρ̄) ∈ δ},

and where merge operation ! over merged rules is defined as follows:

(p, f ,ϕ, p̄)! (q, f , ψ, q̄) def
= (p ∪ q, f ,ϕ∪ψ, p̄ ] q̄).

Definition 3.6. The normalized form of A is the S-TA

N (A)
def
= (2Q, T σ

Σ , {(p, f ,
∧

ϕ, ({qi})
R( f )
i=1 ) | f ∈ Σ, (p, f ,ϕ, q̄) ∈ δ f }).

The original rules of the normalized form are precisely the ones for which the states

are singleton sets in 2Q. In practice, merged rules are computed lazily starting from

the initial state. Merged rules with unsatisfiable guards ϕ are eliminated eagerly. New

concrete states are created for all the reachable merged states. Finally, the normalized

S-TA is cleaned by eliminating states that accept no trees, e.g., by using elimination of

useless symbols from a context-free grammar [HU79, p. 88–89].

As expected, normalization preserves the language semantics of S-TAs.

Theorem 3.7. For all q ⊆ Q, Lq
A = Lq

N (A)
.

Proof. The case when q = ∅ is clear because the state ∅ in N (A) has the same seman-

tics as L∅
A. Assume q 6= ∅. We show (3.1) for all t ∈ T σ

Σ :

t ∈ Lq
A ⇔ t ∈ Lq

N (A)
(3.1)
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The proof is by induction over the height of t. As the base case assume t = f [a] where

R( f ) = 0. Then

f [a] ∈ Lq
A ⇔ ∀q ∈ q( f [a] ∈ Lq

A)

⇔ ∀q ∈ q(∃ϕ((q, f , ϕ, ()) ∈ δ, a ∈ [[ϕ]]))

⇔ ∀q ∈ q(∃ϕ(({q}, f , {ϕ}, ()) ∈ δ f ({q}), a ∈ [[ϕ]]))
def of !⇔ ∃ϕ((q, f ,ϕ, ()) ∈ δ f (q), a ∈ [[

∧
ϕ]])

⇔ f [a] ∈ Lq
N (A)

.

We prove the induction case next. For ease of presentation assume f is binary and

q = {q1, q2}. As the induction case consider t = f [a](t1, t2).

t ∈ Lq
A ⇔

2∧

i=1

t ∈ Lqi
A

⇔
2∧

i=1

∃ϕi, pi
1, pi

2 : (qi, f , ϕi, (pi
1, pi

2)) ∈ δA, a ∈ [[ϕi]], t1 ∈ Lpi
1

A , t2 ∈ Lpi
2

A

⇔
2∧

i=1

∃ϕi, pi
1, pi

2 : ({qi}, f , {ϕi}, (pi
1, pi

2)) ∈ δ f , a ∈ [[ϕi]], t1 ∈ Lpi
1

A , t2 ∈ Lpi
2

A

def of !⇔ ∃ϕ1, p1
1, p1

2, ϕ2, p2
1, p2

2 : t1 ∈ Lp1
1

A ∩ Lp2
1

A , t2 ∈ Lp1
2

A ∩ Lp2
2

A

(q, f , {ϕ1, ϕ2}, (p1
1 ∪ p2

1, p1
2 ∪ p2

2)) ∈ δ f , a ∈ [[ϕ1 ∧ ϕ2]]

⇔ ∃ϕ, p1, p2 : t1 ∈ Lp1
A , t2 ∈ Lp2

A , (q, f , ϕ, ({p1}, {p2})) ∈ δN (A), a ∈ [[ϕ]]

IH⇔ ∃ϕ, p1, p2 : t1 ∈ Lp1
N (A)

, t2 ∈ Lp2
N (A)

(q, f , ϕ, ({p1}, {p2})) ∈ δN (A), a ∈ [[ϕ]]

⇔ t ∈ Lq
N (A)

.

The theorem follows by the induction principle.

Checking whether Lq
A 6= ∅ can be done by first normalizing A, then removing unsat-

isfiable guards using the decision procedure of the theory Ψ(σ), and finally using that

emptiness for classic tree automata is decidable.

Proposition 3.8. The non-emptiness problem of S-TAs is decidable if the label theory is decid-

able.

While normalization is always possible, an S-TA may be exponentially more succinct

than the equivalent normalized S-TA. This is true already for the classic case, i.e., when

U σ = {()}.

Proposition 3.9. The non-emptiness problem of alternating S-TAs without attributes is

EXPTIME-complete.
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Proof. We prove this results using the fact that non-emptiness of alternating tree au-

tomata over finite alphabets is EXPTIME [CDG+07, Theorem 7.5.1]. An alternating tree

automaton is a tuple A = (Q, Σ, ϕ, ∆) such that Q is a finite set of states, Σ is ranked

alphabet, ϕ is a propositional formula with variables in Q (e.g., q1 ∨ ¬q2), and ∆ is a

transition function that maps pairs (q, f ) ∈ Q × Σ of states and symbols to proposi-

tional formula with variables in Q× {1, . . . , R( f )} (e.g., (q1, 2) ∧ (q2, 1)). In particular,

for each symbol f of arity 0 and for every state q, ∆(q, f ) is either true or false. A tree t

is accepted by A at state q ∈ Q, t ∈ Lq, if

t = f (t1, . . . , tn) and ∆(q, f )[(p, i)/(ti ∈ Lp)], where [(p, i)/(ti ∈ Lp)] denotes the sub-

stitution of each pair (p, i) in the propositional formula ∆(q, f ) with the Boolean value

ti ∈ Lp.

For inclusion in EXPTIME, consider an S-TA A = (Q, TΣ, δ) and q ∈ Q. Here U σ = {()},
i.e. there are no attributes. Construct an alternating tree automaton A = (Q, Σ, {q}, ∆)

over Σ with state set Q, initial state q, and mapping ∆ such that for (q, f ) ∈ Q× Σ,

∆(q, f ) def
=

∨

(q, f , ϕ, ¯̀) ∈ δ(q)

R( f )∧

i=1

∧

p∈`i

(p, i).

Then L(A) is non-empty iff U Lq
A is non-empty. For inclusion in EXPTIME we use Theo-

rem 7.5.1 from the TATA book [CDG+07].

For EXPTIME-hardness a converse reduction is not as simple because alternating tree

automata allow general (positive) Boolean combinations of Q × Σ in the mapping ∆.

Instead, let Ai = (Qi, TΣ, δi) be top-down tree automata with initial states qi ∈ Qi

for 1 ≤ i ≤ n [CDG+07]. Consider all these automata as S-TAs without attributes

and with pairwise disjoint Qi. In particular, all Ai are normalized. Expand Σ to Σ′ =

Σ ∪ { f } where f is a fresh symbol of rank 1. Let A be the S-TA ({q} ∪⋃
i Qi, TΣ′ ,

⋃
i δi ∪

{(q, f , λx.true, ({qi}1≤i≤n))}) where q is a new state. It follows from the definitions

that U Lq
A 6= ∅ iff

⋂
i U L

qi
Ai 6= ∅. EXPTIME-hardness follows now from the intersection

non-emptiness problem of tree automata [FSVY91] (already restricted to the top-down-

deterministic case [Sei94]).

3.3.3 Symbolic tree transducers with regular look-ahead

Symbolic tree transducers (S-TTs) augment S-TAs with outputs. Symbolic tree trans-

ducers with regular look-ahead further augment S-TTs by allowing rules to be guarded
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by symbolic tree automata. Intuitively, a rule is applied to a node if and only if its chil-

dren are accepted by some symbolic tree automata. We first define terms that are used

below as output components of transformation rules. We assume that we have a given

tree type T σ
Σ for both the input trees as well as the output trees. In the case that the in-

put tree type and the output tree type are intended to be different, we assume that T σ
Σ

is a combined tree type that covers both. This assumption avoids a lot of cumbersome

overhead of type annotations and can be made without loss of generality. The guards

and the look-aheads can be used to restrict the types as needed.

The set of extended tree terms is the set of tree terms of type T σ
Σ∪{State} where State /∈ Σ is

a new fixed symbol of rank 1. A term State[q](t) is always used with a concrete value q

and State[q] is also written as q̃.

Definition 3.10. Given a tree type T σ
Σ , a finite set Q of states, and k ≥ 0, the set

Λ(T σ
Σ , Q, k) is defined as the least set S of λ-terms called k-rank tree transformers that

satisfies the following conditions. Let ȳ be a k-tuple of variables of type T σ
Σ∪{State} and

let x be a variable of type σ:

• for all q ∈ Q, and all i, 1 ≤ i ≤ k, λ(x, ȳ).q̃(yi) ∈ S;

• for all f ∈ Σ, all e : σ→ σ and, all t1, . . . , tR( f ) ∈ S,

λ(x, ȳ). f [e(x)](t1(x, ȳ), . . . , tR( f )(x, ȳ)) ∈ S.

Definition 3.11. A Symbolic Tree Transducer with Regular look-ahead (S-TTR) T is a tuple

(Q, q0, T σ
Σ , ∆), where Q is a finite set of states, q0 ∈ Q is the initial state, T σ

Σ is the tree

type, ∆ ⊆ ⋃
k≥0(Q×Σ(k)×Ψσ × (2Q)k ×Λ(T σ

Σ , Q, k)) is a finite set of rules (q, f , ϕ, ¯̀, t),

where t is the output. For k = 0 we assume that (2Q)k = {()}, i.e., a rule for c ∈ Σ(0)

has the form (q, c, ϕ, (), λx.t(x)) where t(x) is a tree term.

A rule is linear if its output is λ(x, ȳ).u where each yi occurs at most once in u. T is

linear when all rules of T are linear.

A rule (q, f , ϕ, ¯̀, t) is also denoted by q
f ,ϕ, ¯̀−−→ t. The open view of a rule q

f ,ϕ, ¯̀−−→ t is

denoted by q̃( f [x](ȳ))
ϕ(x), ¯̀−−−→ t(x, ȳ). The open view treats the state as a function symbol

that takes a tree as input; this view is similar to the syntax of FAST and is technically

more convenient for term rewriting. The look-ahead, when omitted, is ∅̄ by default.

Figure 3.6 illustrates an open view of a linear rule over the tree type T Int
Σ1

over Σ1 =

{ f , g, h}, where R( f ) = 2, R(g) = 3, and R(h) = 0.

Let T be an S-TTR (Q, q0, T σ
Σ , ∆). The following construction is used to extract an S-

TA from T that accepts all input trees for which T is defined. Let t be a k-rank tree
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q̃(g[x])

y1 y2 y3

x<4−−→

f [x+1]

f [x−2]

q̃(y2) p̃(y1)

p̃(y3)

FIGURE 3.6: Depiction of an S-TT linear rule of rank 3.

transformer. For 1 ≤ i ≤ k let St(i, t) denote the set of all states q such that q̃(yi) occurs

in t.

Definition 3.12. The domain automaton of T, d(T), is the S-TA (Q, T σ
Σ , {(q, f , ϕ, (`i ∪

St(i, t))R( f )
i=1 ) | q

f ,ϕ, ¯̀−−→ t ∈ ∆}).

The rules of the domain automaton also take into account the states that occur in the

outputs in addition to the look-ahead states. For example, the rule in Figure 3.6 yields

the domain automaton rule (q, g, λx.x < 4, ({p}, {q}, {p})).

We recall that given a lambda term u = λ(x, ȳ).v, the term u(a, s̄) is the function appli-

cation of u to (a, s̄), where a and s̄ substitute x and ȳ respectively. In the following let T

be the S-TTR, and for ` ⊆ Q, let L`
T

def
= L`

d(T).

Definition 3.13. For all q ∈ QT, the transduction of T at q is the function Tq
T from UT σ

Σ to

2U
T σ

Σ such that, for all t = f [a](s̄) ∈ UT σ
Σ ,

Tq
T(t)

def
= ⇓T(q̃(t)),

⇓T(q̃(t))
def
=
⋃{⇓T(u(a, s̄)) | (q, f , ϕ, ¯̀, u)∈∆T, a∈[[ϕ]],

R( f )∧

i=1

si∈L`i
T},

⇓T(t)
def
= { f [a](v̄) |

R( f )∧

i=1

vi ∈ ⇓T(si)}.

The transduction of T is TT
def
= Tq0

T . The definitions are lifted to sets using set union.

We omit T from Tq
T and ⇓T when T is clear from the context.

Example 3.14. Recall the transformation remScript in Figure 3.1. These are the corresponding

rules. We use q for the state of remScript, and ı for a state that outputs the identity transfor-

mation. The “safe” case is

q̃(node[x](y1, y2, y3))
x 6="script"−−−−−−−→ node[x](̃ı(y1), q̃(y2), q̃(y3)),

the “unsafe” case is q̃(node[x](y1, y2, y3))
x="script"−−−−−−−→ ı̃(y3), and the “harmless” case is

q̃(nil[x]()) true−−→ nil[x]().
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1
2
3
4
5
6
7
8
9
10
11

type BT[x : Int]{L(0), N(2)}
lang oddRoot:BT {

N(t1, t2) where (odd x)
| L() where (odd x)

}
def evenRoot:BT := (complement oddRoot)
trans h:BT → BT {

N(t1, t2) given (oddRoot t1) to (N [−x] (h t1) (h t2))
| N(t1, t2) given (evenRoot t1) to (N [x] (h t1) (h t2))
| L() to (L [x])

}

FIGURE 3.7: Conditional flip.

In FAST, a transformation Tq is defined by the statement

trans q :τ → τ { f (ȳ) where ϕ(x) given `(ȳ) to t(x, ȳ)︸ ︷︷ ︸
a rule with source state q and input f [x](ȳ)

| . . .}

where `(ȳ) denotes the look-ahead ({r | (r yi) ∈ `(ȳ)})R( f )
i=1 . The semantics of a FAST

transformation is given by the induced S-TTR.

Example 3.15. The S-TTR h in Figure 3.8 negates a node value when the value in its left child

is odd, leaves it unchanged otherwise, and is then invoked recursively on the children.

The following property of S-TTRs will be used in Section 3.4.

Definition 3.16. T is single-valued if ∀(t ∈ UT σ
Σ , q ∈ QT) : |Tq

T(t)| ≤ 1.

Determinism, as defined next, implies single-valuedness, and determinism is easy to

decide. Intuitively, determinism means that there are no two distinct transformation

rules that are enabled for the same node of any input tree. Although single-valuedness

can be decided in the classic case [Ési80], decidability of single-valuedness of S-TTRs is

an open problem.

Definition 3.17. T is deterministic when, for all q ∈ Q, f ∈ Σ, and rules q
f ,ϕ,¯̀−−→ t and

q
f ,ψ,r̄−−→ u in ∆T, if [[ϕ]] ∩ [[ψ]] 6= ∅ and, for all i ∈ {1, . . . , R( f )}, L`i ∩ Lri 6= ∅, then t = u.

3.3.4 The role of regular look-ahead

In this section we briefly describe what motivated our choice of considering S-TTRs in

place of S-TTs. The main drawback of S-TTs is that they are not closed under compo-

sition, even for very restricted classes. As shown in the next example, when S-TTs are

allowed to delete subtrees, the domain is not preserved by composition.
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type BBT [b : B]{L(0), N(2)}
trans s1:BBT → BBT {

L() where b to (L[b])
| N(x, y) where b to (N [b] (s1 x) (s1 y))

}
trans s2:BBT → BBT {

L() to (L [true])
| N(x, y) to (L [true])

}

FIGURE 3.8: S-TTs for which the composition is naturally expressible by an S-TTR

Example 3.18. Consider the FAST program in Figure 3.7.

Given an input t, s1 outputs the same tree t iff all the nodes in t have attribute true. Given an

input t, s2 always outputs L[true]. Both transductions are definable using S-TTs since they do

not use look-ahead. Now consider the composed transduction s = s1 ◦ s2 that outputs L[true]

iff all the nodes in t have attribute value true. This function cannot be computed by an S-TT:

when reading a node N[b](x, y), if the S-TT does not produce any output, it can only continue

reading one of the two subtrees. This means that the S-TT cannot check whether the other

subtree contains any node with attribute value f alse. However, s can be computed using an

S-TTR that checks that both x and y contain only nodes with attribute true.

Example 3.15 shows that STTRs are sometimes more convenient to use than STTs.

Although the transformation h can be expressed using a nondeterministic STT that

guesses if the attribute of the left child is odd or even, using a deterministic STTR is a

more natural solution.

3.3.5 Operations on automata and transducers

In FAST one can define new languages and new transformations in terms of previously

defined ones. FAST also supports an assertion language for checking simple program

properties such as assert-true (is-empty a).

• Operations that compute new languages:

intersect A1 A2, complement A, etc.: operations over S-TAs [VB15];

domain T: computes the domain of the S-TTR T using the operation from Defi-

nition 3.12;

pre-image T A: computes an S-TA accepting all the inputs for which T produces

an output belonging to A.
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• Operations that compute new transformations:

restrict T A: constructs a new S-TTR that behaves like T but is only defined on

the inputs that belong to A;

restrict-out T A: constructs a new S-TTR that behaves like T but is only defined

on the inputs for which T produces an output that belongs to A;

compose T1 T2: constructs a new S-TTR that computes the functional composi-

tion T1 ◦ T2 of T1 and T2 (algorithm described in Section 3.4).

• Assertions:

a ∈ A, A1 = A2, is-empty A: decision procedures for S-TAs; in the order, mem-

bership, language equivalence, and emptiness (Proposition 3.8 and [VB15]);

type-check A1 T A2: true iff, for every input in A1, T only produces outputs in

A2.

Finally, we show how the transducer operations we described are special applications

of composition.

Proposition 3.19.

restrict T A = compose IA T

restrict-out T A ≡ compose T IA

pre-image T A ≡ domain (restrict-out T A)

type-check A1 T A2 ≡ is-empty (intersect A1 (pre-image T (complement A2)))

where I is the identity S-TTR and IA is the identity S-TTR that is defined only on the set of

trees accepted by A.

3.4 Composition of S-TTRs

Closure under composition is a fundamental property for transducers. Composition

is needed as a building block for many operations, such as pre-image computation

and output restriction. Unfortunately, as shown in Example 3.18 and by Fülöp and

Vogler [FV14], S-TTs are not closed under composition. Particularly, when tree rules

may delete and/or duplicate input subtrees, the composition of two S-TT transductions

might not be expressible as an S-TT transduction. This is already known for top-down

tree transducers and can be avoided either by considering restricted fragments, or by

instead adding regular look-ahead [Eng75, Bak79, Eng80]. Here, we consider the latter

option. Intuitively, regular look-ahead acts as an additional child-guard that is carried
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trans f:BT → BT {
L() to (L [i])

| L() to (L [5])
| N (x, y) to (N [i] ( f x) ( f y))

}
trans g:BT → BT {

L() to (N [0] (L [i]) (L [i]))
| N(x, y) to (N [0] (N [i] x y) (N [i] x y))

}

FIGURE 3.9: Non-composable S-TTR-definable transformations.

over in the composition so that even when a subtree is deleted, the child-guard remains

in the composed transducer and is not “forgotten”. While deletion can be handled by

S-TTRs, duplication is a much more difficult feature to support. When duplication is

combined with nondeterminism, as shown in the next example, it is still not possible

to compose S-TTRs. In practice this case is unusual, and it can only appear when pro-

grams produce more than one output for a given input.

Example 3.20. Let f be the function that, given a tree of type BT (see Example 3.4) transforms

it by nondeterministically replacing some leaves with the value 5. Let g be the function that

given any tree t always outputs N[0](t, t). The FAST programs corresponding to f and g are

shown in Figure 3.9.

The composed function g( f (L[1])) produces the trees N[0](L[1], L[1]) and N[0](L[5], L[5]),

where the two leaves contain the same value since they are “synchronized” on the same run.

The function f ◦ g cannot be expressed by an S-TTR.

3.4.1 Composition algorithm

Algorithms for composing transducers with regular look-ahead have been studied ex-

tensively [FV88]. However, as shown by Fülöp and Vogler [FV14], extending existing

transducers results to the symbolic setting is a far from trivial task. The key property

that makes symbolic transducers semantically different and much more challenging

than classic tree transducers, apart from the complexity of the label theory itself, is the

output computation. In symbolic transducers the output attributes depend symbolically

on the input attribute. Effectively, this breaks the application of some well-established

techniques that no longer carry over to the symbolic setting. For example, while for

top-down tree transducers the output language is always regular, this is not the case

for symbolic tree transducers. This anomaly is caused by the fact that the input attribute

can appear more than once in the output of a rule.
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Let S and T be two S-TTRs with disjoint sets of states QS and QT respectively. We

want to construct a composed S-TTR S◦T such that TS◦T = TS◦TT. The composition

TS◦TT is defined as (TS◦TT)(x) =
⋃

y∈TS(x) TT(y), following the convention Fülöp and

Vogler [FV98].

For p ∈ QS and q ∈ QT, assume that ‘.’ is an injective pairing function that constructs

a new pair state p.q /∈ QS ∪ QT. In a nutshell, we use a least fixed point construction

starting with the initial state q0
S.q0

T. Given a reached (unexplored) pair state p.q and

symbol f ∈ Σ, the rules from p.q and f are constructed by considering all possible

constrained rewrite reductions of the form

(true, (∅)
R( f )
i=1 , q̃( p̃( f [x](ȳ)))) −→

S
(_, _, q̃(_)) ∗−→

T
(ϕ, ¯̀, t)

where t is irreducible. There are finitely many such reductions. Each such reduction is

done modulo attribute and look-ahead constraints and returns a rule p.q
f ,ϕ, ¯̀−−→ t.

Example 3.21. Suppose p̃( f [x](y1, y2))
x>0−−→

S
p̃(y2). Assume also that q ∈ QT and that p.q

has been reached. Then

(true, ∅̄, q̃( p̃( f [x](y1, y2)))) −→
S

(x>0, ∅, q̃( p̃(y2)))

where q̃( p̃(y2)) is irreducible. The resulting rule (in open form) is p̃.q( f [x](y1, y2))
x>0−−→

p̃.q(y2).

The rewriting steps are done modulo attribute constraints. To this end, a k-configuration

is a triple (γ, L, u) where γ is a formula with FV(γ) ⊆ {x}, L is a k-tuple of sets of pair

states p.q where p ∈ QS and q ∈ QT, and u is an extended tree term. We use configura-

tions to describe reductions of T. Formally, given two S-TTRs S = (QS, q0
S, T σ

Σ , ∆S) and

T = (QT, q0
T, T σ

Σ , ∆T), the composition of S and T is defined as follows

S◦T def
= (QS ∪ {p.q | p ∈ QS, q ∈ QT}, q0

S.q0
T, T σ

Σ ,

∆S ∪
⋃

p∈QS,q∈QT , f∈Σ

Compose(p, q, f )).

For p ∈ QS, q ∈ QT and f ∈ Σ, the procedure for creating all composed rules from p.q

and symbol f is as follows.

Compose(p, q, f ) def
=

1. choose (p, f , ϕ, ¯̀, u) from ∆S;

2. choose (ψ, P̄, t) from Reduce(ϕ, (∅)
R( f )
i=1 , q̃(u));
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3. return (p.q, f , ψ, ¯̀ ] P̄, t).

The procedure Reduce uses a procedure Look(ϕ, L, q, t) that, given an attribute formula

ϕ with FV(ϕ) ⊆ {x}, a composed look-ahead L of rank k, a state q ∈ QT, and an

extended tree term t including states from QS, returns all possible extended contexts

and look-aheads (i.e. those containing pair states). Assume, without loss of generality,

that d(T) is normalized. We define a function sin, such that sin({e}) def
= e for any

singleton set {e}, and undefined otherwise. This function extracts the only element in

a singleton set. Notice that since we operate over normalized transducers, sin is always

defined.

Look(ϕ, L, q, t) def
=

1. if t = p̃(yi) where p ∈ QS then return (ϕ, L ]i {p.q});

2. if t = g[u0](ū) where g ∈ Σ then

(a) choose (q, g, ψ, ¯̀) from δd(T) where IsSat(ϕ ∧ ψ(u0));

(b) L0 := L, ϕ0 := ϕ ∧ ψ(u0);

(c) for (i = 1; i ≤ R(g); i++)

choose (ϕi, Li) from Look(ϕi−1, Li−1, sin(`i), ui);

(d) return (ϕR(g), LR(g)).

The function Look(ϕ, L, q, t) returns a finite (possibly empty) set of pairs because there

are only finitely many choices in 2(a), and in 2(c) the term ui is strictly smaller than t.

Moreover, the satisfiability check in 2(a) ensures that ϕR(g) is satisfiable. The combined

conditions allow cross-level dependencies between attributes, which are not express-

ible using classic tree transducers.

Example 3.22. Consider the instance Look(x>0, ∅̄, q, t) for t = g[x+1](g[x−2]( p̃1(y2)))

where g ∈ Σ(1). Suppose there is a rule (q, g, λx.odd(x), {q}) ∈ δd(T) that requires that all

attributes of g are odd and assume that there is no other rule for g from q. The term t itself

may arise as an output of a rule p̃( f [x](y1, y2)) → g[x+1](g[x−2]( p̃1(y2))) of S. Clearly,

this means that t is not a valid input of T at q because of the cross-level dependency between

attributes due to x, implying that both attributes cannot be odd at the same time. Let us examine

how this is handled by the Look procedure.

In Look(x>0, ∅̄, q, t) line 2(c) we have the recursive call

Look(x>0 ∧ odd(x+1), ∅̄, q, g[x−2]( p̃1(y2))). Inside the recursive call we have the fail-

ing satisfiability check of IsSat(x>0 ∧ odd(x+1) ∧ odd(x−2)) in line 2(a). So that there

exists no choice for which 2(d) is reached in the original call so the set of return values of

Look(x>0, ∅̄, q, t) is empty.



FAST: a transducer-based language for manipulating trees 67

In the following we pretend, without loss of generality, that for each rule

τ = (q, f , ϕ, ¯̀, t) there is a state qτ that uniquely identifies the rule (qτ, f , ϕ, ¯̀, t); qτ

is used to refer to the guard and the look-ahead of τ chosen in line 2(a) in the call to

Look in 2(b) below, qτ is not used elsewhere.

Reduce(γ, L, v) def
=

1. if v = q̃( p̃(yi)) where q ∈ QT and p ∈ QS then return (γ, L, p̃.q(yi))

2. if v = q̃(g[u0](ū)) where q ∈ QT and g ∈ Σ then

(a) choose τ = (q, g, _, _, t) from ∆T;

(b) choose (γ1, L1) from Look(γ, L, qτ, g[u0](ū));

(c) choose χ from Reduce(γ1, L1, t(u0, ū)) return χ;

3. if v = g[t0](t̄) where g ∈ Σ then

(a) γ0 := γ, L0 := L;

(b) for (i = 1; i ≤ R(g); i++)

choose (γi, Li, ui) from Reduce(γi−1, Li−1, ti);

(c) return (γR(g), LR(g), g[t0](ū)).

There is a close relationship between Reduce and Definition 3.13. We include the case

Tq
T( p̃(t)) def

= Tq
T(T

p
S(t)) for p ∈ QS and t ∈ UT σ

Σ , (3.2)

that allows states of S to occur in the input trees to Tq
T in a non-nested manner. Intu-

itively this means that rewrite steps of T are carried out first while rewrite steps of S

are being postponed (called by name).

3.4.2 Proof of correctness

We start by proving a lemma that justifies the extension 3.2..

Lemma 3.23. For all t ∈ Λ(T σ
Σ , QS, k), a ∈ U σ, and ui ∈ UT σ

Σ :

1. Tq
T(⇓S(t(a, ū))) ⊆ Tq

T(t(a, ū)), and

2. Tq
T(⇓S(t(a, ū))) = Tq

T(t(a, ū)) when S is single-valued or T is linear.
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Proof. We prove statements 1 and 2 by induction over t. The base case is

t = λ(x, ȳ).p̃(yi) for some p ∈ QS and some i, 1 ≤ i ≤ k. We have

T
q

T (⇓S( p̃(ui))) = T
q

T (T
p

S (ui)) = T
q

T ( p̃(ui))

where the last equality holds by using equation (3.2). The induction case is as follows.

Let t = λ(x, ȳ). f [t0(x)](ti(x, ȳ)R( f )
i=1 ). Suppose R( f ) = 1, the proof of the general case is

analogous.

T
q

T (⇓S( f [t0(a)](t1(a, ū))))
Def ⇓S= T

q
T { f [t0(a)](v) | v ∈ ⇓S(t1(a, ū))}

Def T
q

T= {w(t0(a), (wi)
m
i=1) | (∃ ϕ, ¯̀, q̄) t0(a) ∈ [[ϕ]] ∧

q
f ,ϕ,¯̀−−→ λ(x, y).w(x, (q̃i(y))m

i=1) ∈ ∆T(∃ v) v ∈ ⇓S(t1(a, ū)) ∧
m∧

i=1

wi ∈ T
qi

T (v)}

(?)

⊆ {w(t0(a), (wi)
m
i=1)) | (∃ ϕ, ¯̀, q̄) t0(a) ∈ [[ϕ]] ∧

q
f ,ϕ,¯̀−−→ λ(x, y).w(x, (q̃i(y))m

i=1) ∈ ∆T ∧
m∧

i=1

wi ∈ T
qi

T (⇓S(t1(a, ū)))}

IH
⊆ {w(t0(a), (wi)

m
i=1)) | (∃ ϕ, ¯̀, q̄) t0(a) ∈ [[ϕ]] ∧

q
f ,ϕ,¯̀−−→ λ(x, y).w(x, (q̃i(y))m

i=1) ∈ ∆T ∧
m∧

i=1

wi ∈ T
qi

T (t1(a, ū))}

Def T
q

T= T
q

T ( f [t0(a)](t1(a, ū))).

The step (?) becomes ‘=’ when either |⇓S(t1(a, ū))| ≤ 1 or when m ≤ 1. The first

case holds if S is single-valued. The second case holds if T is linear in which case also

the induction step becomes ‘=’. Both statements of the lemma follow by using the

induction principle.

Example 3.24. The example shows a case when

Tq
T(⇓S(t(a, ū))) 6= Tq

T(t(a, ū)).

Suppose p c,>−→
S
N, p c,>−→

S
4, and q

g,>−−→T λxy. f [x](q̃(y), q̃(y)). Let f = f [0], c = c[0],

g = g[0]. Then

q̃(g( p̃(c))) −→T f(q̃( p̃(c)), q̃( p̃(c)))
∗−→
S
{f(q̃(N), q̃(N)), f(q̃(4), q̃(4))} ∪ {f(q̃(N), q̃(4)), f(q̃(4), q̃(N))}
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but
q̃(g( p̃(c))) −→

S
{q̃(g(N)), q̃(g(4))}

∗−→T {f(q̃(N), q̃(N)), f(q̃(4), q̃(4))}

where, for example, f(q̃(N), q̃(4)) is not possible.

The assumptions on S and T given in Lemma 3.23 are the same as in the non-symbolic

setting. However the proof of Lemma 3.23 does not directly follow from existing results

because the concrete alphabet Σ×U σ can be infinite. Theorem 3.25 generalizes to sym-

bolic alphabets the composition result proven in by Engelfriet [Eng77, Theorem 2.11].

Theorem 3.25 uses Lemma 3.23. It implies that, in general, TS◦T is an overapproxima-

tion of TS◦TT and that TS◦T captures TS◦TT precisely either when S behaves as a partial

function or when T does not duplicate its tree arguments.

Theorem 3.25. For all p ∈ QS, q ∈ QT and t ∈ UT σ
Σ , T

p.q
S◦T (t) ⊇ T

q
T (T

p
S (t)), and if S is

single-valued or if T is linear then T
p.q

S◦T (t) ⊆ T
q

T (T
p

S (t)).

Proof. We start by introducing auxiliary definitions and by proving additional proper-

ties that help us to formalize our arguments precisely. For p ∈ QS and q ∈ QT, given

that Lp.q is the language accepted at the pair state p.q, we have the following relation-

ship that is used below

Lp.q def
= {t | T q

T (T
p

S (t)) 6= ∅}
= {t | ∃u(u ∈ T

p
S (t) ∧T

q
T (u) 6= ∅)}

= {t | ∃u(u ∈ T
p

S (t) ∧ u ∈ Lq
T)}

= {t | T p
S (t) ∩ Lq

T 6= ∅}.

The symbolic (or procedural) semantics of Look(ϕ, P̄, q, t) is the set of all pairs returned

in line 1 and line 2(d) after some nondeterministic choices made in line 2(a) and the

elements of recursive calls made in line 2(c). For a set P of pair states, and for a k tuple

P̄,

LP def
=

⋂

p.q∈P

Lp.q,

LP̄ def
= {ū |

k∧

i=1

ui ∈ LPi}.
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The concrete semantics of Look(ϕ, P̄, q, t) is defined as follows. We assume that t implic-

itly stands for λ(x, ȳ).t(x, ȳ) and ϕ stands for λx.ϕ(x).

[[Look(ϕ, P̄, q, t)]] def
=

{(a, ū)|a ∈ [[ϕ]], ū ∈ LP̄,⇓S(t(a, ū)) ∩ Lq
T 6= ∅}

(3.3)

The concrete semantics of a single pair (ϕ, P̄) is

[[(ϕ, P̄)]] def
= {(a, ū) | a ∈ [[ϕ]], ū ∈ LP̄}.

We now prove (3.4). It is the link between the symbolic and the concrete semantics of

Look and Definition 3.3.

⋃{[[χ]]|Look(ϕ, P̄, q, t) returns χ}=[[Look(ϕ, P̄, q, t)]] (3.4)

We prove (3.4) by induction over t. The base case is when t = p̃(yi) for some p ∈ QS

and yi for some i ∈ {1, . . . , k}:

⋃{[[χ]]|Look(ϕ, P̄, q, p̃(yi)) returns χ}

= [[(ϕ, P̄ ]i p.q)]]

= {(a, ū) | a ∈ [[ϕ]], ū ∈ LP̄, ui ∈ Lp.q}

= {(a, ū) | a ∈ [[ϕ]], ū ∈ LP̄, T p
S (ui) ∩ Lq

T 6= ∅}

= {(a, ū) | a ∈ [[ϕ]], ū ∈ LP̄,⇓S( p̃(ui)) ∩ Lq
T 6= ∅}

= [[Look(ϕ, P̄, q, p̃(ui))]].

The induction case is when t = f [t0](t̄). Assume R( f ) = 2. IH is that (3.4) holds for

t1 and t2. Assume, without loss of generality, that d(T) is normalized. We have for all

a ∈ U σ and ū ∈ (UT σ
Σ )k,

(a, ū) ∈
⋃
{[[χ]] | Look(ϕ, P̄, q, f [t0](t̄)) returns χ}

(Def Look)⇔ (∃ψ, q1, q2) (q, f , ψ, ({q1}, {q2})) ∈ δd(T), IsSat(ϕ ∧ ψ(t0)),

(∃ϕ′, P̄′, ϕ′′, P̄′′) Look(ϕ ∧ ψ(t0), P̄, q1, t1) returns (ϕ′, P̄′),

Look(ϕ′, P̄′, q2, t2) returns (ϕ′′, P̄′′), (a, ū) ∈ [[(ϕ′′, P̄′′)]]
(IH)⇔ (∃ψ, q1, q2) (q, f , ψ, ({q1}, {q2})) ∈ δd(T), IsSat(ϕ ∧ ψ(t0)),

(∃ϕ′, P̄′) Look(ϕ ∧ ψ(t0), P̄, q1, t1) returns (ϕ′, P̄′),

(a, ū) ∈ [[Look(ϕ′, P̄′, q2, t2)]]
(Eq (3.3))⇔ (∃ψ, q1, q2) (q, f , ψ, ({q1}, {q2})) ∈ δd(T), IsSat(ϕ ∧ ψ(t0)),
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(∃ϕ′, P̄′) Look(ϕ ∧ ψ(t0), P̄, q1, t1) returns (ϕ′, P̄′),

a ∈ [[ϕ′]], ū ∈ LP̄′ ,⇓S(t2(a, ū)) ∩ Lq2
T 6= ∅

(IH)⇔ (∃ψ, q1, q2) (q, f , ψ, ({q1}, {q2})) ∈ δd(T), IsSat(ϕ ∧ ψ(t0)),

(a, ū) ∈ [[Look(ϕ ∧ ψ(t0), P̄, q1, t1)]],⇓S(t2(a, ū)) ∩ Lq2
T 6= ∅

(Eq (3.3))⇔ (∃ψ, q1, q2) (q, f , ψ, ({q1}, {q2})) ∈ δd(T), IsSat(ϕ ∧ ψ(t0)),

a ∈ [[ϕ]] ∩ [[ψ(t0)]], ū ∈ LP̄,⇓S(t1(a, ū)) ∩ Lq1
T 6= ∅,⇓S(t2(a, ū)) ∩ Lq2

T 6= ∅
(Def 3.3)⇔ a ∈ [[ϕ]], ū ∈ LP̄,⇓S( f [t0(a)](t1(a, ū), t2(a, ū))) ∩ Lq

T 6= ∅

⇔ a ∈ [[ϕ]], ū ∈ LP̄,⇓S(t(a, ū)) ∩ Lq
T 6= ∅

(Eq (3.3))⇔ (a, ū) ∈ [[Look(ϕ, P̄, q, t)]].

Equation (3.4) follows by the induction principle. Observe that, so far, no assumptions

on S or T were needed.

A triple (ϕ, P̄, t) of valid arguments of Reduce denotes the function ∂(ϕ,P̄,t) such that,

for all a ∈ U σ and ui ∈ UT σ
Σ ,

∂(ϕ,P̄,t)(a, ū) def
=

{
⇓T(t(a, ū)), if (a, ū) ∈ [[(ϕ, P̄)]];

∅, otherwise.
(3.5)

Next, we prove (3.6) under the assumption that S is single-valued or T is linear. For all

a ∈ U σ, ui ∈ UT σ
Σ and v ∈ UT σ

Σ ,

∃α, v ∈ ∂α(a, ū) ∧Reduce(ϕ, P̄, t) returns α⇔ v ∈ ∂(ϕ,P̄,t)(a, ū). (3.6)

The proof is by induction over t wrt the following term order: u ≺ t if either u is a

proper subterm of t or if the largest State-subterm has strictly smaller height in u than

in t.

The base case is t = q̃( p̃(yi)) where q ∈ QT, p ∈ QS, and (3.6) follows because

Reduce(ϕ, P̄, q̃( p̃(yi))) returns (ϕ, P̄, p̃.q(yi)) and λy.p̃.q(y) denotes, by definition, the

composition λy.q̃( p̃(y)).

We use the extended case (3.7) of Definition 3.13 that allows states of S to occur in t̄.

This extension is justified by Lemma 3.23. For q ∈ QT:

⇓T(q̃( f [a](t̄))) def
=

⋃
{⇓T(u(a, t̄)) | (q, f , ϕ, ¯̀, u)∈∆T, a∈[[ϕ]],

R( f )∧

i=1

⇓S(ti) ∩ L`i
T 6= ∅}.

(3.7)
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Observe that when ti does not contain any states of S then ⇓S(ti) = {ti} and thus

the condition ⇓S(ti) ∩ L`i
T 6= ∅ simplifies to the condition ti ∈ L`i

T used in the original

version of Definition 3.13.

There are two induction cases. The first induction case is t = q̃( f [t0](t̄)) where q ∈ QT

and f ∈ Σ. Let t′ = f [t0](t̄). For all a ∈ U σ, ui ∈ UT σ
Σ and v ∈ UT σ

Σ ,

(∃α) v ∈ ∂α(a, ū), Reduce(ϕ, P̄, q̃(t′)) returns α

Def Reduce⇔ (∃τ, u, γ, ¯̀) τ = q
f ,γ, ¯̀−−→ u ∈ ∆T, (∃ψ, R̄) Look(ϕ, P̄, qτ, t′) returns (ψ, R̄),

(∃β) Reduce(ψ, R̄, u(t0, t̄)) returns β, v ∈ ∂β(a, ū)

IH⇔ (∃τ, u, γ, ¯̀) τ = q
f ,γ, ¯̀−−→ u ∈ ∆T, (∃ψ, R̄) Look(ϕ, P̄, qτ, t′) returns (ψ, R̄),

v ∈ ∂(ψ,R̄,u(t0,t̄))(a, ū)

Eq (3.5)⇔ (∃τ, u, γ, ¯̀) τ = q
f ,γ, ¯̀−−→ u ∈ ∆T, (∃ψ, R̄) Look(ϕ, P̄, qτ, t′) returns (ψ, R̄),

v ∈ ⇓T(u(t0(a), t̄(a, ū))), (a, ū) ∈ [[(ψ, R̄)]]
Eq (3.4)⇔ (∃τ, u, γ, ¯̀) τ = q

f ,γ, ¯̀−−→ u ∈ ∆T, (a, ū) ∈ [[Look(ϕ, P̄, qτ, t′)]],

v ∈ ⇓T(u(t0(a), t̄(a, ū)))
Eq (3.3)⇔ (∃τ, u, γ, ¯̀) τ = q

f ,γ, ¯̀−−→ u ∈ ∆T, a ∈ [[ϕ]], ū ∈ LP̄,⇓S(t′(a, ū)),∩Lqτ

T 6= ∅,

v ∈ ⇓T(u(t0(a), t̄(a, ū)))
Def qτ⇔ a ∈ [[ϕ]], ū ∈ LP̄, (∃u, γ, ¯̀) q

f ,γ, ¯̀−−→ u ∈ ∆T, t0(a) ∈ [[γ]],

R( f )∧

i=1

⇓S(ti(a, ū)) ∩ L`i
T 6= ∅, v ∈ ⇓T(u(t0(a), t̄(a, ū)))

Eq (3.7)⇔ a ∈ [[ϕ]], ū ∈ LP̄, v ∈ ⇓T(t(a, ū))
Def ∂⇔ v ∈ ∂(ϕ,P̄,t)(a, ū).

The second induction case is t = f [t0](t̄). Assume R( f ) = 2. Generalization to arbitrary

ranks is straightforward by repeating IH steps below R( f ) times. For all a ∈ U σ, ui ∈
UT σ

Σ , and v ∈ UT σ
Σ ,

(∃α) v ∈ ∂α(a, ū), Reduce(ϕ, P̄, f [t0](t1, t2)) returns α

Def Reduce⇔ (∃ ϕ′, P̄′, v1, ϕ′′, P̄′′, v2), Reduce(ϕ, P̄, t1) returns (ϕ′, P̄′, v1),

Reduce(ϕ′, P̄′, t2) returns (ϕ′′, P̄′′, v2), v ∈ ∂(ϕ′′,P̄′′, f [t0](v1,v2))(a, ū)
Def ∂⇔ (∃ ϕ′, P̄′, w1, ϕ′′, P̄′′, w2), Reduce(ϕ, P̄, t1) returns (ϕ′, P̄′, w1),

Reduce(ϕ′, P̄′, t2) returns (ϕ′′, P̄′′, w2), v ∈ ⇓T( f [t0(a)](w1(a, ū), w2(a, ū))),

a ∈ [[ϕ′′]], ū ∈ LP̄′′

Def ⇓T⇔ (∃ ϕ′, P̄′, w1, ϕ′′, P̄′′, w2), Reduce(ϕ, P̄, t1) returns (ϕ′, P̄′, w1)
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Reduce(ϕ′, P̄′, t2) returns (ϕ′′, P̄′′, w2),

(∃ v1, v2), v = f [t0(a)](v1, v2), v1 ∈ ⇓T(w1(a, ū)), v2 ∈ ⇓T(w2(a, ū))

a ∈ [[ϕ′′]], ū ∈ LP̄′′

IH⇔ (∃ ϕ′, P̄′, w1), Reduce(ϕ, P̄, t1) returns (ϕ′, P̄′, w1)

(∃ v1, v2), v = f [t0(a)](v1, v2), v1 ∈ ⇓T(w1(a, ū)), v2 ∈ ∂(ϕ′,P̄′,t2)(a, ū)
Def ∂⇔ (∃ ϕ′, P̄′, w1), Reduce(ϕ, P̄, t1) returns (ϕ′, P̄′, w1)

(∃ v1, v2), v = f [t0(a)](v1, v2), v1 ∈ ⇓T(w1(a, ū))

a ∈ [[ϕ′]], ū ∈ LP̄′ , v2 ∈ ⇓T(t2(a, ū))
IH⇔ (∃ v1, v2), v = f [t0(a)](v1, v2), v1 ∈ ∂(ϕ,P̄,t1)

(a, ū), v2 ∈ ⇓T(t2(a, ū))
Def ∂⇔ (∃ v1, v2), v = f [t0(a)](v1, v2), a ∈ [[ϕ]], ū ∈ LP̄,

v1 ∈ ⇓T(t1(a, ū)), v2 ∈ ⇓T(t2(a, ū))
Def ⇓T⇔ a ∈ [[ϕ]], ū ∈ LP̄, v ∈ ⇓T( f [t0(a)](t1(a, ū), t2(a, ū)))
Def ∂⇔ v ∈ ∂(ϕ,P̄, f [t0](t1,t2)).

Equation (3.6) follows by the induction principle.

Finally, we prove T
p.q

S◦T = T
p

S ◦T
q

T . Let p ∈ QS, q ∈ QT and f [a](ū), w ∈ UT σ
Σ be fixed.

w ∈ T
p.q

S◦T ( f [a](ū))
Def Compose⇔ (∃ ϕ, ¯̀, t), (p, f , ϕ, ¯̀, t) ∈ ∆S, (∃ α), Reduce(ϕ, ∅̄, q̃(t)) returns α,

w ∈ ∂α(a, ū), ū ∈ L ¯̀
S

Eq (3.6)⇔ (∃ ϕ, ¯̀, t), (p, f , ϕ, ¯̀, t) ∈ ∆S, w ∈ ∂(ϕ,∅̄,q̃(t))(a, ū), ū ∈ L ¯̀
S

Def ∂⇔ (∃ ϕ, ¯̀, t), (p, f , ϕ, ¯̀, t) ∈ ∆S, a ∈ [[ϕ]], ū ∈ L∅̄, w ∈ ⇓T(q̃(t(a, ū))), ū ∈ L ¯̀
S

Def T
q

T⇔ (∃ ϕ, ¯̀, t), (p, f , ϕ, ¯̀, t) ∈ ∆S, a ∈ [[ϕ]], ū ∈ L ¯̀
S, w ∈ T

q
T (t(a, ū))

(?)⇔ (∃ ϕ, ¯̀, t), (p, f , ϕ, ¯̀, t) ∈ ∆S, a ∈ [[ϕ]], ū ∈ L ¯̀
S, w ∈ T

q
T (⇓S(t(a, ū)))

Def ⇓S⇔ w ∈ T
q

T (⇓S( p̃( f [a](ū))))
Def T

p
S⇔ w ∈ T

q
T (T

p
S ( f [a](ū))).

Step (?) uses Lemma 3.23.2. It holds only when S is single-valued or T is linear. Other-

wise, only ‘⇐’ holds.

3.5 Evaluation

FAST can be used in multiple different applications. We first consider HTML input san-

itization for security. Then we show how augmented reality (AR) applications can be
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checked for conflicts. Next, we show how FAST can perform deforestation and verifica-

tion for functional programs. Finally, we sketch how CSS analysis can be captured in

FAST.

3.5.1 HTML sanitization

A central concern for secure web applications is untrusted user inputs. These may

lead to a cross-site scripting (XSS) attack, which, in its simplest form, is echoing un-

trusted input verbatim back to the browser. Consider bulletin boards that want to al-

low partial markup such as <b> and <i> tags or HTML email messages, where the

email provider wants rich email content with formatting and images but wants to

prevent active content such as JavaScript from propagating through. In these cases,

a technique called sanitization is used to allow rich markup, while removing active (ex-

ecutable) content. However, proper sanitization is far from trivial: unfortunately, for

both of these scenarios above, there have been high-profile vulnerabilities stemming

from careless sanitization of specially crafted HTML input leading to the creation of

the infamous Samy worm for MySpace (http://namb.la/popular/) and the Ya-

manner worm for the Yahoo Mail system. In fact, MySpace has repeatedly failed to

properly sanitize their HTML inputs, leading to the Month of MySpace Bugs initiative

(http://momby.livejournal.com/586.html).

This caused the emergence of a range of libraries attempting to do HTML sanitization,

including PHP Input Filter, HTML_Safe, kses, htmLawed, Safe HTML Checker, HTML

Purifier. Among these, the last one, HTML Purifier (http://htmlpurifier.org)

is believed to be most robust, so we choose it as a comparison point for our experi-

ments. Note that HTML Purifier is a tree-based rewriter written in PHP, which uses the

HTMLTidy library to parse the input.

We show how FAST is expressive enough to model HTML sanitizers, and we argue

that writing such programs is easier with FAST than with current tools. Our version of

an HTML sanitizer written in FAST and automatically translated by the FAST compiler

into C# is partially described in Section 3.2. Although we can’t argue for the correct-

ness of our compilation into C#, we are able to show, using type-checking, that some

types of XSS attacks are prevented. Moreover, sanitizers are much simpler to write in

Fast thanks to composition. In all the libraries mentioned above HTML sanitization is

implemented as a monolithic function in order to achieve reasonable performance. In

the case of FAST each sanitization routine can be written as a single function and all the

routines can be composed preserving the property of traversing the input HTML only

once.
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FIGURE 3.10: Augmented reality: running times for operations on transducers.

Evaluation. To compare different sanitization strategies in terms of performance, we

chose 10 web sites and picked an HTML page from each of them, ranging from 20 KB

(Bing) to 409 KB in size (Facebook). For speed, the FAST-based sanitizer is compara-

ble to HTML Purify. In terms of maintainability, FAST wins on two counts. First, un-

like sanitizers written in PHP, FAST programs can be analyzed statically. Second, our

sanitizer is only 200 lines of FAST code instead of 10000 lines of PHP. While these are

different languages, we argue that our approach is more maintainable because FAST

captures the high level semantics of HTML sanitization, as well as being fewer lines

of code to understand. We manually spot-checked the outputs to determine that both

produce reasonable sanitizations.

3.5.2 Conflicting augmented reality applications

In augmented reality the view of the physical world is enriched with computer-generated

information. For example, applications on the Layar AR platform provide up-to-date

information such as data about crime incidents near the user’s location, information

about historical places and landmarks, real estate, and other points of interest.

We call a tagger an AR application that labels elements of a given set with a piece of

information based on the properties of such elements. As an example, consider a tag-

ger that assigns to every city a set of tags representing the monuments in such a city.

A large class of shipping mobile phone AR applications are taggers, including Layar,
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Nokia City Lens, Nokia Job Lens, and Junaio. We assume that the physical world is

represented as a list of elements, and each element is associated with a list of tags (i.e. a

tree). This representation is a common one and is simple to reason about. Users should

be warned if not prevented from installing applications that conflict with others they

have already installed. We say that two taggers conflict if they both tag the same node of

some input tree. In order to detect conflicts we perform the following four-step check

for each pair of taggers 〈p1, p2〉:

Composition: we compute p, composition of p1 and p2.

Input restriction: we compute p′, a restriction of p that is only defined on trees where

each node contains no tags.

Output restriction: we compute p′′, a restriction of p′ that only outputs trees in which

some node contains two tags.

Check: we check if p′′ is the empty transducer: if it is not the case, p1 and p2 conflict on

every input accepted by p′′.

Evaluation. Figure 3.10 shows the timing results for conflict analysis. The x-axis repre-

sents time intervals in ms. The y-axis shows how many cases run in a time belonging to

an interval. For example about 1,600 compositions were completed between 8 and 16

ms. To collect this data, we randomly generated 100 taggers in FAST and checked

whether they conflicted with each other. Each element in the input of a tagger con-

tained a name of type string, two attributes of type real, and an attribute of type int. In

our encoding the left-child of each element was the list of tags, while the right child was

the next element. Each tagger we generated conforms to the following properties: 1) it

is non-empty; 2) it tags on average 3 nodes; and 3) it tags each node at most once.

The sizes of our taggers varied from 1 to 95 states. The language we used for the input

restriction has 3 states, the one for the output 5 states. We analyzed 4,950 possible

conflicts and 222 will be actual conflicts (i.e. FAST provided an example tree on which

the two taggers tagged the same node). The three plots show the time distribution for

the steps of a) composition, b) input restriction, and c) output restriction respectively.

All the compositions are computed in less than 250 ms, and the average time is 15 ms.

All the input restrictions are computed in less than 150 ms. The average time is 3.5 ms.

All the output restrictions are computed in less than 33,000 ms. The average time

is 175 ms. The output restriction takes longer to compute in some cases, due to the fol-

lowing two factors: 1) the input sizes are always bigger: the size of the composed trans-

ducers after the input restriction (p′ in the list before) vary from 5 to 300 states and 10
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FIGURE 3.11: Deforestation advantage for a list of 4,096 integers.

to 4,000 rules. This causes the restricted output to have up to 5,000 states and 100,000

rules; and 2) since the conditions in the example are randomly generated, some of them

may be complex causing the satisfiability modulo theory (SMT) solver to slow down

the computation. The 33,000 ms example contains non-linear (cubic) constraints over

reals. The average time of 193 ms per pairwise conflict check is quite acceptable: in-

deed, adding a new app to a store already containing 10,000 apps will incur an average

checking overhead of about 35 minutes.

3.5.3 Deforestation

Next we explore the idea of deforestation. First introduced by Wadler in 1988 [Wad88],

deforestation aims at eliminating intermediate computation trees when evaluating func-

tional programs. For example, to compute the sum of the squares of the integers be-

tween 1 and n, the following small program might be used:

sum (map square (upto 1 n)). Intermediate lists created as a result of evalua-

tion are a source of inefficiency. However, it has been observed that transducer compo-

sition can be used to eliminate intermediate results. This can be done as long as individ-

ual functions are representable as transducers. The technique proposed by Wadler only

considers transformations over finite alphabets. Here we consider transformations that

use infinite alphabets and can therefore be represented only in FAST. We analyzed the

performance gain obtained by deforestation in FAST on these transformations.

Evaluation. We considered the function map_caesar from Figure 3.12 that replaces each

value x of a integer list with (x + 5)%26. We composed the function map_caesar with

itself several times to see how the performance changed when using FAST. Let’s call

mapn the composition of map_caesar with itself n times. We run the experiments on
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type IList[i : Int]{nil(0), cons(1)}
trans map_caesar:IList→ IList {

nil() to (nil[0])
| cons(y) to (cons [(x + 5)%26] (map_caesar y))

}
trans f ilter_ev:IList→ IList {

nil() to (nil[0])
| cons(y) where (i%2 = 0) to (cons [i] ( f ilter_ev y))
| cons(y) where ¬(i%2 = 0) to ( f ilter_ev y)

}
lang not_emp_list : IList { cons(x) }
def comp:IList → IList := (compose map_caesar f ilter_ev)
def comp2:IList → IList := (compose comp comp)
def restr:IList → IList := (restrict-out comp2 not_emp_list)
assert-true (is-empty restr)

FIGURE 3.12: Analysis of functional programs in FAST.

lists containing randomly generated elements and we consider up to 512 composed

functions. Figure 3.11 shows the running time of FAST with and without deforestation

for a list of 4,096 integers used as the input. The running time of the version that

uses transducer composition is almost unchanged, even for 512 compositions, while

the running time of the naïvely composed functions degrades linearly in the number

of composed functions. This is due to the fact that the composed version results into a

single function that processes the input list in a single left-to-right pass, while the naïve

composition causes the input list to be read multiple times.

3.5.4 Analysis of functional programs

FAST can also be used to perform static analysis of simple functional programs over

lists and trees. Consider again the functions from Figure 3.12. As we described in the

previous experiment the function map_caesar replaces each value x of a integer list with

(x + 5) mod 26. The function filter_ev removes all the odd elements from a list.

One might wonder what happens when such functions are composed. Consider the

case in which we execute the map followed by the filter, followed by the map, and

again by the filter. This transformation is equivalent to deleting all the elements in

the list! This property can be statically checked in FAST. We first compute comp2 as

the composition described above. As show in Figure 3.12, the language of non-empty

lists can be expressed using the construct not_emp_list. We can then use the output

restriction to restrict comp2 to only output non-empty lists. The final assertion shows

that comp2 never outputs a non-empty list. In this example the whole analysis can be

done in less than 10 ms.
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3.5.5 CSS analysis

Cascading style-sheets (CSS) is a language for stylizing and formatting HTML doc-

uments. A CSS program is a sequence of CSS rules, where each rule contains a se-

lector and an assignment. The selector decides which nodes are affected by the rule

and the assignment is responsible for updating the selected nodes. The following is

a typical CSS rule: div p { word-spacing:30px; }. In this case div p is the

selector while word-spacing:30px is the assignment. This rule sets the attribute

word-spacing to 30px for every p node inside a div node. We call C(H) be the up-

dated HTML resulting from applying a CSS program C to an HTML document H. CSS

programs have been analyzed using tree logic [GLQ12]. For example one can check

whether given a CSS program C, there does not exist an HTML document H such that

C(H) contains a node n for which the attributes color and background-color both

have value black. This property ensures that black text is never written on a black

background, causing the text not to be readable. Ideally one would want to check

that color and background-color never have the same value, but, since tree logic

explicitly models the alphabet, the corresponding formula would be too large. By mod-

eling CSS programs as symbolic tree transducers we can overcome this limitation. This

analysis relies on the alphabet being symbolic, and we plan on extending FAST with

primitives for simplifying CSS modelling.

3.6 Related work

3.6.1 Tree transducers

Tree transducers have long been studied and surveys and books are available on the

topic [FV98, CDG+07, Rao92]. The first models were top-down and bottom-up tree

transducers [Eng75, Bak79], later extended to top-down transducers with regular look-

ahead in order to achieve closure under composition [Eng77, FV88, Eng80]. Extended

top-down tree transducers [MGHK09] (XTOP) were introduced in the context of pro-

gram inversion and allow rules to read more than one node at a time, as long as

such nodes are adjacent. When adding look-ahead, such a model is equivalent to top-

down tree transducers with regular look-ahead. More complex models, such as macro

tree transducers [EV85], have been introduced to improve expressiveness at the cost of

higher complexity. Due to their high complexities we do not consider extending these

models to handle symbolic alphabets.
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3.6.2 Symbolic transducers

Symbolic finite transducers (S-FTs) over lists, together with a front-end language BEK,

were originally introduced by Hooimeijer et al. [HLM+11] with a focus on security

analysis of string sanitizers. Symbolic tree transducers were originally introduced by

Veanes and Bjørner [VB12b], where it was incorrectly claimed that S-TTs are closed

under composition by referring to a generalization of a proof of the non-symbolic

case from Fülöp and Vogler [FV98] that is only stated for total deterministic finite tree

transducers. Fülöp and Vogler discovered this error and proved other properties of

S-TTs [FV14] . Here we provide the first formal treatment of S-TTRs and we prove

their closure under composition. We have not investigated the problem of checking

equivalence of single-valued S-TTRs.

3.6.3 DSLs for tree manipulation

Domain specific languages for tree transformation have been studied in many differ-

ent contexts. TTT [PS12] and Tiburon [MK08] are transducer-based languages used in

natural language processing. TTT allows complex forms of pattern matching, but does

not enable any form of analysis. Tiburon supports probabilistic transitions and sev-

eral weighted tree transducer algorithms. Although they support weighted transitions,

both the languages are limited to finite input and output alphabets.

ASF+SDF [vdBHKO02] is a term-rewriting language for manipulating parsing trees.

ASF+SDF is simple and efficient, but does not support any analysis. In the context

of XML processing, numerous languages have been proposed for querying (XPath,

XQuery [Wal07]), stream processing (STX [Bec03]), and manipulating (XSLT,

XDuce [HP03]) XML trees. While being very expressive, these languages support very

limited forms of analysis. Emptiness has been shown decidable for restricted fragments

of XPath [BDM+06]. XDuce [HP03] can be used to define basic XML transformations

and supports a tree automata based type-checking that is limited to finite alphabets.

We plan to extend FAST to better handle XML processing and to identify a fragment

of XPath expressible in FAST. However, to the best of our knowledge, FAST is the first

language for tree manipulation that supports infinite input and output alphabets while

preserving decidable analysis. Table 3.1 summarizes the relations between FAST and

the other domain-specific languages for tree transformations. The column σ indicates

whether the language supports finite (ff) or infinite (∞) alphabets.
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Language σ Analysis Domain

FAST ∞ composition, typechecking, pre-image,
language equivalence, determinization,
complement, intersection

Tree-
manipulating
programs

Tiburon ff composition; type-checking; training;
weights; language equivalence, deter-
minization, complement, intersection

NLP

TTT ff - NLP

ASF+SDF ∞ - Parsing

XPath ∞ emptiness for a fragment XML query (only
selection)

XDuce ∞ type-checking for navigational part (fi-
nite alphabet)

XML query

XQuery, XSLT,
STX

∞ - XML transforma-
tions

TABLE 3.1: Summary of domain specific languages for manipulating trees.

3.6.4 Applications

The connection between tree transducers and deforestation was first studied by

Wadler [Wad88], and then further investigated by Kühnemann et al. [KV01]. In this

setting deforestation is done via Macro Tree Transducers (MTT) [EV85]. While being

more expressive than Top Down Transducers with regular look-ahead, MTTs only sup-

port finite alphabets and their composition algorithm has very high complexity. We

are not aware of an actual implementation of the techniques presented by Kühnemann

et al. [KV01]. Many models of tree transducers have been introduced to analyze and

execute XML transformations. Most notably, K-pebble transducers [MSV00] enjoy de-

cidable type-checking and can capture fairly complex XSLT and XML transformations.

Macro forest transducer [PS04] extend MTT to operate over unranked trees and there-

fore naturally capture XML transformations. Recently this model has been used to effi-

ciently execute XQuery transformations [HMNI14]. The models we just discussed only

operate over finite alphabets. Many models of automata and transducers have been

applied to verifying functional programs. The equivalence problem has been shown

to be decidable for some fragments of ML using Class Memory Automata [CHMO15].

This model allows values over infinite alphabets to be compared using equality, but

does not support predicates arbitrary label theories. This restriction is common in the

so-called data languages and makes other models operating in this setting orthogo-

nal to symbolic automata and transducers. Higher-Order Multi-Parameter Tree Trans-

ducers (HMTT) [KTU10] are used for type-checking higher-order functional programs.
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HMTTs enable sound but incomplete analysis of programs which take multiple trees as

input, but only support finite alphabets. Extending our theory to multiple input trees

and higher-order functions is an open research direction.

3.6.5 Open problems

Several complexity-related questions for S-TAs and S-TTRs are open and depend on

the complexity of the label theory, but some lower bounds can be established using

known results for finite tree automata and transducers. For example, an S-TA may

be exponentially more succinct than the equivalent normalized S-TA because one can

directly express the intersection non-emptiness problem of a set of normalized S-TAs

as the emptiness of a single un-normalized S-TA. In the non-symbolic case, the non-

emptiness problem of tree automata is P-CO, while the intersection non-emptiness

problem is EXPTIME-CO [CDG+07, Thm 1.7.5]. Recently, new techniques based on

anti-chains have been proposed to check universality and inclusion for nondetermin-

istic tree automata [BHH+08]. Whether such techniques translate to our setting is an

open research direction. Concrete open problems are decidability of: single-valuedness of

S-TTRs, equivalence of single-valued S-TTRs, and finite-valuedness of S-TTRs. These prob-

lems are decidable when the alphabets are finite, but some proofs are quite challeng-

ing [Sei94].
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Part II

Executable models for hierarchical

data
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Chapter 4

Symbolic visibly pushdown

automata

“Like all magnificent things, it’s very simple.”

— Natalie Babbit, Tuck Everlasting

4.1 Introduction

The goal of designing streaming algorithms that can process an XML document in a

single pass has resulted in streaming models for checking membership in a regular

tree language and for querying [NSV04, MSV00, MGHK09]. In fact, XML documents

are not the only form of hierarchical data that needs to be processed and queried effi-

ciently: other examples are traces of structured programs, JSON files, and CSS files. In

this chapter we introduce an executable single-pass model for expressing properties of

hierarchical documents over complex domains.

4.1.1 Existing models

Visibly pushdown automata (VPAs) can describe languages and properties of hierar-

chical documents expressed as nested words. Nested words are a formalism that can

model data with both linear and hierarchical structure, such as XML documents and

program traces. It can be shown that VPAs are closed under Boolean operations and

enjoy decidable equivalence. VPAs have been proven to be beneficial for many compu-

tational tasks, from streaming XML processing [DGN+13, GN11, MZDZ13] to verifica-

tion of recursive programs [CA07, DTR12]. Like many other classic models, VPAs only
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operate over finite alphabets, and this can be a limitation in applications such as XML

processing and program trace analysis.

Symbolic Finite Automata (S-FAs) [DV14, Vea13], which we discussed in Chapter 2, are

finite state automata in which the alphabet is given by a decidable Boolean algebra that

may have an infinite domain, and transitions are labeled with predicates over such an

algebra. S-FAs therefore accept languages of strings over a potentially infinite domain.

Although strictly more expressive than finite automata, symbolic finite automata are

closed under Boolean operations and admit decidable equivalence. Unfortunately S-

FAs only operate over words and cannot describe properties of nested words. S-FAs

are therefore not a good model to define properties over hierarchical data.

4.1.2 Contributions

We introduce Symbolic Visibly Pushdown Automata (S-VPA) as an executable model

for nested words over infinite alphabets. In S-VPAs transitions are labeled with predi-

cates over the input alphabet, analogous to symbolic finite automata that operate over

strings. A key novelty of S-VPAs is the use of binary predicates to model relations be-

tween open and close tags in a nested word. Even though S-VPAs completely subsume

VPAs, we show how S-VPAs still enjoy the decidable procedures and closure proper-

ties of VPAs. This result is quite surprising given that previous attempts to add binary

predicates to symbolic automata caused equivalence to become undecidable and clo-

sure properties to stop holding (Section 2.4).

We finally investigate potential applications of S-VPAs in the context of analysis of XML

documents and monitoring of recursive programs over infinite domains. We show

how S-VPAs can model XML validation policies and program properties that are not

naturally expressible with previous formalisms and provide experimental results on

the performance of our implementation. For example S-VPAs can naturally express

the following properties: an XML document is well-matched (every close tag is the

same as the corresponding open tag), every person has age greater than 5, and every

person’s name starts with a capital letter. Using the closure properties of S-VPAs, all

these properties can be expressed as a single deterministic S-VPA that can be efficiently

executed.

This chapter is structured as follows:

• Section 4.2 illustrates how symbolic visibly pushdown automata differ from ex-

isting models;
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Model Bool. Closure and
Decidable Equiv. Determinizability Hierarchical

Inputs
Infinite

Alphabets
Binary

Predicates
FA 3 3 7 7 —

S-FA 3 3 7 3 —
S-EFA 7 7 7 3 Adjacent Positions

DA, RA some variants 7 trees 3 Only Equality
VPA 3 3 3 7 —

S-VPA 3 3 3 3 Calls/Returns

TABLE 4.1: Properties of different automata models.

• Section 4.3 defines the new model of symbolic visibly pushdown automata;

• Section 4.4 presents new algorithms for intersecting, complementing, and deter-

minizing S-VPAs, and for checking emptiness of S-VPAs;

• Section 4.5 discusses SVPAlib, a prototype implementation of S-VPAs, and its

evaluation using XML processing and program monitoring as case-studies.

4.2 Motivating example

In dynamic analysis, program properties are monitored at runtime. Automata theory

has been used for specifying monitors. Let x be a global variable of a program P. We can

use Finite-state Automata (FA) to describe “correct” values of x during the execution

of P. For example, if x has type bool, an FA can specify that x is true throughout the

execution of P.

Infinite domains. In the previous example, x has type bool. In practice, one would

want to express properties about variables of any type. If x is of type int and has

infinitely many possible values, FAs do not suffice any more. For example, no FA can

express the property ϕev stating that x remains even throughout the whole execution of

P. One solution to this problem is to use predicate abstraction and create an alphabet of

two symbols even(x) and ¬even(x). However, this solution causes the input alphabet

to be different from the original one ({even(x),¬even(x)} instead of the set of integers),

and requires choosing a priori which abstraction to use.

Symbolic Finite Automata (S-FA) [DV14, Vea13] solve this problem by allowing tran-

sitions to be labeled with predicates over a decidable theory, and enjoy all the closure

and decidability properties of finite state automata. The S-FA Aev for the property

ϕev has one state looping on an edge labeled with the predicate even(x) expressible

in Presburger arithmetic. Unlike predicate abstraction, S-FAs do not change the un-

derlying alphabet and allow predicates to be combined. For example, let Apos be the



Symbolic visibly pushdown automata 87

S-FA accepting all the sequences of positive integers. When intersecting Apos and Aev

the transition predicates will be combined, and we will obtain an S-FA accepting all

the sequences containing only integers that are both even and positive. An important

restriction is that the underlying theory of the predicates needs to be decidable. For

example, the property ϕpr, which states that x is a prime number at some point in P,

cannot be expressed by an S-FA.

S-FAs allow only unary predicates and cannot relate values at different positions. Sym-

bolic Extended Finite Automata (S-EFA) (Section 2.3) allow binary predicates for com-

paring adjacent positions, but this extension causes the model to lose closure and de-

cidability properties (Section 2.4). Other models for comparing values over infinite

alphabets at different positions are Data Automata (DA) [BDM+11] and Register Au-

tomata (RA) [KT08], where one can check that all the symbols in an input sequence are

equal for example. This property is not expressible by an S-FA or an S-EFA, but Data

Automata can only use equality and cannot specify properties such as even(x).

Procedure calls. Let x be of type bool and assume that the program P contains a

procedure q. The following property ϕ= can be specified by neither an FA nor an S-

FA: every time q is called, the value of x at the call is the same as the value of x when

q returns. The problem is that none of the previous models are able to “remember”

which call corresponds to which return. Visibly Pushdown Automata (VPA) [AM09]

solve this problem by storing the value of x on a stack at a call and then retrieve it at

the corresponding return. Unlike pushdown automata, this model still enjoys closure

under Boolean operations and decidable equivalence. This is achieved by making calls

and returns visible in the input, and allowing the stack to push only at calls and to pop

only at returns.

Procedure calls and infinite domains. Let x be of type int and let’s assume that

the program P contains a procedure q. No VPA can express the property ψ< requiring

that, whenever q is called, the value of x at the call is smaller than the value of x at the

corresponding return. Expressing this kind of property in a decidable automata model

is the topic of this chapter.

We introduce Symbolic Visibly Pushdown Automata (S-VPA), which combine the fea-

tures of S-FAs and VPAs by allowing transitions to be labeled with predicates over any

decidable theory and values to be stored on a stack at calls and retrieved at the corre-

sponding returns. The property ψ< can then be expressed by an S-VPA A< as follows:

at a procedure call of q, A< will store the value c of x on the stack. When reading the

value r of x at a procedure return of q, the value c of x at the corresponding call will be
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on top of the stack. Using the predicate c < r, the transition assures that the property

ψ< is met. S-VPAs still enjoy closure under Boolean operations, determinizability, and

decidable equivalence; the key to decidability is that binary predicates can only be used

to compare values at matching calls and returns (unlike S-EFAs).

4.3 Model definition

Nested words. Data with both linear and hierarchical structure can be encoded using

nested words [AM09]. Given a set Σ of symbols, the tagged alphabet Σ̂ consists of the

symbols a, 〈a, and a〉, for each a ∈ Σ. A nested word over Σ is a finite sequence over

Σ̂. For a nested word a1 · · · ak, a position j, for 1 ≤ j ≤ k, is said to be a call position if

the symbol aj is of the form 〈a, a return position if the symbol aj is of the form a〉, and

an internal position otherwise. The tags induce a matching relation between call and

return positions. Nested words can naturally encode strings and ordered trees.

Symbolic visibly pushdown automata. Symbolic Visibly Pushdown Automata (S-

VPA) are an executable model for nested words over infinite alphabets. In S-VPAs

transitions are labeled with predicates over the input alphabet, analogous to symbolic

automata for strings over infinite alphabets. A key novelty of S-VPAs is the use of

binary predicates to model relations between open and close tags in a nested word.

We use Px(Ψ) and Px,y(Ψ) to denote the set of unary and binary predicates in Ψ re-

spectively. We assume that every unary predicate in Px(Ψ) contains x as the only free

variable (similarly Px,y(Ψ) with x and y).

Definition 4.1 (S-VPA). A (nondeterministic) symbolic visibly pushdown automaton

over an alphabet Σ is a tuple A = (Q, Q0, P, δi, δc, δr, δb, F), where

• Q is a finite set of states;

• Q0 ⊆ Q is a set of initial states;

• P is a finite set of stack symbols;

• δi ⊆ Q×Px ×Q is a finite set of internal transitions;

• δc ⊆ Q×Px ×Q× P is a finite set of call transitions;

• δr ⊆ Q×Px,y × P×Q is a finite set of return transitions;

• δb ⊆ Q×Px ×Q is a finite set of empty-stack return transitions;
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• F ⊆ Q is a set of final states.

A transition (q, ϕ, q′) ∈ δi, where ϕ ∈ Px, when reading a symbol a such that a ∈ [[ϕ]],

starting in state q, updates the state to q′. A transition (q, ϕ, q′, p) ∈ δc, where ϕ ∈ Px,

and p ∈ P, when reading a symbol 〈a such that a ∈ [[ϕ]], starting in state q, pushes

the symbol p on the stack along with the symbol a, and updates the state to q′. A

transition (q, ϕ, p, q′) ∈ δr, where ϕ ∈ Px,y, is triggered when reading an input b〉,
starting in state q, and with (p, a) ∈ P× Σ on top of the stack such that (a, b) ∈ [[ϕ]];

the transition pops the element on the top of the stack and updates the state to q′. A

transition (q, ϕ, q′) ∈ δb, where ϕ ∈ Px, is triggered when reading a tagged input a〉
such that a ∈ [[ϕ]], starting in state q, and with the current stack being empty; the

transition updates the state to q′.

A stack is a finite sequence over P × Σ. We denote by Γ the set of all stacks. Given

a nested word w = a1 . . . ak in Σ∗, a run of M on w starting in state q is a sequence

ρq(w) = (q1, θ1), . . . , (qk+1, θk+1), where q = q1, each qi ∈ Q, each θi ∈ Γ, the initial

stack θ1 is the empty sequence ε, and for every 1 ≤ i ≤ k the following holds:

Internal: if ai is internal, there exists (q, ϕ, q′) ∈ δi, such that q = qi, q′ = qi+1, ai ∈ [[ϕ]],

and θi+1 = θi;

Call: if ai = 〈a, for some a, there exists (q, ϕ, q′, p) ∈ δc, such that q = qi, q′ = qi+1,

a ∈ [[ϕ]], and θi+1 = θi(p, a);

Return: if ai = a〉, for some a, there exists (q, ϕ, p, q′) ∈ δr, b ∈ Σ, and θ′ ∈ Γ, such that

q = qi, q′ = qi+1, θi = θ′(p, b), θi+1 = θ′, and (b, a) ∈ [[ϕ]];

Bottom: if ai = a〉, for some a, there exists (q, ϕ, q′) ∈ δb, such that q = qi, q′ = qi+1,

θi = θi+1 = ε, and a ∈ [[ϕ]].

A run is accepting if q1 is an initial state in Q0 and qk+1 is a final state in F. A nested

word w is accepted by A if there exists an accepting run of A on w. The language [[A]]

accepted by A is the set of nested words accepted by A.

Definition 4.2 (Deterministic S-VPA). A symbolic visibly pushdown automaton A is

deterministic iff |Q0| = 1 and

• for each two transitions t1 = (q1, ϕ1, q′1), t2 = (q2, ϕ2, q′2) ∈ δi, if q1 = q2 and

IsSat(ϕ1 ∧ ϕ2), then q′1 = q′2;

• for each two transitions t1 = (q1, ϕ1, q′1, p1), t2 = (q2, ϕ2, q′2, p2) ∈ δc, if q1 = q2

and IsSat(ϕ1 ∧ ϕ2), then q′1 = q′2 and p1 = p2;
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q0 

I:true 
C:true/p1 

R:true,p1 

q3 

C:true/p2 
q1 q2 

I:true 
C:true/p1 

R:true,p1 

I:x>5 

I:true 
C:true/p1 

R:true,p1 

I:true 
C:true/p1 

R:true,p1 

R:x<y/p2 

FIGURE 4.1: Example of S-VPA over the theory of integers.

• for each two transitions t1 = (q1, ϕ1, p1, q′1), t2 = (q2, ϕ2, p2, q′2) ∈ δr, if q1 = q2,

p1 = p2, and IsSat(ϕ1 ∧ ϕ2), then q′1 = q′2;

• for each two transitions t1 = (q1, ϕ1, q′1), t2 = (q2, ϕ2, q′2) ∈ δb, if q1 = q2, and

IsSat(ϕ1 ∧ ϕ2), then q′1 = q′2.

Example 4.3. Consider the following property of a program trace over the integers: there exists

a well-matched sub-trace w = 〈x w1 y w2 z〉 such that z < x and y < 5 and both w1 and w2 are

well-matched nested words. This property can easily be expressed using the nondeterministic

S-VPA shown in Fig. 4.1. In the figure the transitions are labeled with I, C, and R for Internal,

Call and Return respectively. In the return transition the values x and y respectively refer to

the symbols at the return and call respectively.

For a deterministic S-VPA A we use q0 to denote the only initial state of A.

We now define complete S-VPAs, which we will use to prove that S-VPAs are closed

under complement.

Definition 4.4 (Complete S-VPA). A deterministic symbolic visibly pushdown automa-

ton A is complete iff for each q ∈ Q, a, b ∈ Σ, and p ∈ P, there exist

• a transition (q, ϕ, q′) ∈ δi, such that a ∈ [[ϕ]];

• a transition (q, ϕ, q′, p′) ∈ δc, such that a ∈ [[ϕ]];

• a transition (q, ϕ, p, q′) ∈ δr, such that (a, b) ∈ [[ϕ]];

• a transition (q, ϕ, q′) ∈ δb, such that a ∈ [[ϕ]].

4.4 Closure Properties and Decision Procedures

In this section we describe the closure and decidability properties of S-VPAs. We first

introduce few preliminary concepts and then show how S-VPAs are equivalent in ex-

pressiveness to deterministic S-VPAs, and complete S-VPAs. We then prove that S-

VPAs are closed under Boolean operations. Last, we provide an algorithm for checking
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emptiness of S-VPAs over decidable label theories and use it to prove the decidability

of S-VPA language equivalence. For each construction we provide a complexity pa-

rameterized by the underlying theory, and we assume that transitions are only added

to a construction when satisfiable.

4.4.1 Closure Properties

Before describing the determinization algorithm we introduce the concept of a minterm.

The notion of a minterm is fundamental for determinizing symbolic automata, and it

captures the set of equivalence classes of the input alphabet for a given symbolic au-

tomaton. Intuitively, for every state q of the symbolic automaton, a minterm is a set of

input symbols that q will always treat in the same manner. Given a set of predicates

Φ a minterm is a minimal satisfiable Boolean combination of all predicates that occur

in Φ. We use the notation Mt(Φ) to denote the set of minterms of Φ. For example

the set of predicates Φ = {x > 2, x < 5} over the theory of linear integer arithmetic

has minterms Mt(Φ) = {x > 2 ∧ x < 5, ¬x > 2 ∧ x < 5, x > 2 ∧ ¬x < 5}. While

in the case of symbolic finite automata this definition is simpler (see [DV14]), in our

setting we need to pay extra attention to the presence of binary predicates. We need

therefore to define two types of minterms, one for unary predicates and one for binary

predicates. Given an S-VPA A we define

• the set ΦA
1 of unary predicates of A as the set {ϕ | ∃q, q′, p.(q, ϕ, q′) ∈ δi ∨

(q, ϕ, q′, p) ∈ δc ∨ (q, ϕ, q′) ∈ δb};

• the set ΦA
2 of binary predicates of A as the set {ϕ | ∃q, q′, p.(q, ϕ, p, q′) ∈ δr};

• the set MtA
1 as the set Mt(ΦA

1 ) of unary predicate minterms of A;

• the set MtA
2 as the set Mt(ΦA

2 ) of binary predicate minterms of A.

The goal of minterms is that of capturing the equivalence classes of the label theory in

the current S-VPA. Let Φ be the set of minterms of an S-VPA A. Consider two nested

words s = a1 . . . an and t = b1 . . . bn of equal length and such that for every i, ai has

the same tag as bi (both internals, etc.). Now assume the following is true: for every

1 ≤ i ≤ n, if ai is internal there exists a minterm ϕ ∈ MtA
1 such that both ai and bi are

models of ϕ, and, if ai is a call with corresponding return aj, then there exists a minterm

ψ ∈ MtA
2 such that both (ai, aj) and (bi, bj) are models of ψ. If the previous condition

holds, the two nested words will be indistinguishable in the S-VPA A, meaning that

they will have exactly the same set of runs. Following, this intuition we have that even

though the alphabet might be infinite, only a finite number of predicates is interesting.

We can now discuss the determinization construction.
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Theorem 4.5 (Determinization). For every S-VPA A there exists a deterministic S-VPA B

accepting the same language.

Proof. The main difference between the determinization algorithm from Alur et

al. [AM09] and the symbolic version is in the use of minterms. Similarly to the ap-

proach used to minimize symbolic automata [DV14], we use the minterm computation

to generate a finite set of relevant predicates. After we have done so, we can generalize

the determinization construction shown by Alur et al. [AM09].

We now describe the intuition behind the construction. Given a nested word n, A can

have multiple runs over n. Thus, at any position, the state of B needs to keep track

of all possible states of A, as in the case of the subset construction for determinizing

nondeterministic word automata. However, keeping only a set of states of A is not

enough: at a return position, B needs to use the information on the top of the stack and

in the state to figure out which pairs of states (starting in state q you can reach state

q′) belong to the same run. The main idea behind the construction is to do a subset

construction over summaries (pairs of states) but postpone handling the call-transitions

by storing the set of summaries before the call, along with the minterm containing the

call symbol, in the stack, and simulate the effect of the corresponding call-transition at

the time of the matching return for every possible minterm.

Consider a nested word with k pending calls. Such a word can be represented as

n = n1〈a1n2〈a2 · · · nk〈aknk+1, where each nj , for 1 ≤ j ≤ k + 1, is a nested word with

no pending calls (the initial nested word n1 can have pending returns, and the nested

words n2, . . . , nk+1 are well-matched). Then after processing n, the determinized au-

tomaton B we construct will be in state Sk+1, with the pair (Sk, ϕk) on top of the stack,

where ϕk is the minterm predicate containing the symbol ak. Here Sk contains all the

pairs (q, q′) of states of A such that the nondeterministic automaton A can process the

nested word nk starting in state q and end up in state q′. Note that the execution of the

automaton A while processing the nested word nk depends solely on the state at the

beginning of the word nk, and not on the states labeling the pending nesting edges. The

construction ensures that only “reachable” summaries are being tracked: if a pair (q, q′)

belongs to Sk , it is guaranteed that there is a run of A on the nested word n in which

the state at the beginning of processing of the subword nk is q and at the end is q′. Due

to this property, in order to check whether A accepts n or not, corresponds to checking

if the current state Sk+1 contains a pair (q0, q′) such that q′ is a final state.

The components of the deterministic automaton B equivalent to

A = (Q, Q0, P, δc, δi, δr, δb, QF) are the following.

• The states of B are Q′ = 2Q×Q.
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• The initial state is the set Q0 ×Q0 of pairs of initial states.

• A state S ∈ Q′ is accepting iff it contains a pair of the form (q, q′) with q′ ∈ Q f .

• The stack symbols of B are P′ = Q′ ×MtA
1 .

• The internal transition function δ′i is given by: for S ∈ Q′, and ϕ ∈ MtA
1 , δ′i(S, ϕ)

consists of pairs (q, q′′) such that there exists (q, q′) ∈ S and an internal transition

(q′, ϕ′, q′′) ∈ δi such that IsSat(ϕ ∧ ϕ′).

• The call transition function δ′c is given by: for S ∈ Q′ and ϕ ∈ MtA
1 , δ′c(S, ϕ) =

(S′, (S, ϕ)), where S′ consists of pairs (q′′, q′′) such that there exists (q, q′) ∈ S, a

stack symbol p ∈ P, and a call transition (q′, ϕ′, q′′, p) ∈ δc such that IsSat(ϕ∧ ϕ′).

• The return transition function δ′r is given by: for S, S′ ∈ Q′ and ϕ1 ∈ MtA
1 , ϕ2 ∈

MtA
2 , the state δ′r(S, (S′, ϕ1), ϕ2) consists of pairs (q, q′′) such that there exists

(q, q′) ∈ S′, (q1, q2) ∈ S, a stack symbol p ∈ P, a call transition (q′, ϕ′1, q1, p) ∈ δc,

and a return transition (q2, p, ϕ′2, q′′) ∈ δr such that IsSat(ϕ1 ∧ ϕ′1) and IsSat(ϕ2 ∧
ϕ′2).

• The empty-stack return transition function δ′b is given by: for S ∈ Q′ and ϕ ∈ MtA
1 ,

the state δ′b(S, ϕ) consists of pairs (q, q′′) such that there exists (q, q′) ∈ S and a

return transition (q′, ϕ′, q′′) ∈ δb such that IsSat(ϕ ∧ ϕ′).

Our construction differs from the one by Alur et al. [AM09] in two aspects.

• In the case of finite alphabets, each stack symbol contains an element from Σ.

This technique cannot be used in our setting and in our construction each stack

symbol contains a predicate from the set of unary minterms.

• The construction by Alur et al. [AM09] builds on the notion of reachability and

looks for matching pairs of calls and returns. In our construction, this operation

has to be performed symbolically, by checking whether the unary predicate stored

by the call on the stack and the binary predicate at the return are not disjoint.

We finally discuss the complexity of the determinization procedure. Assume A has n

states, m stack symbols, and p different predicates of size at most `. We first observe

that the number of minterms is at most 2p and each minterm has size O(p`). Notice that

if the alphabet is finite the number of minterms is bounded by min(2p, |Σ|). If f (a) is the

cost of checking the satisfiability of a predicate of size a, then the minterm computation

has complexity O(2p f (`p)). The resulting automaton B has O(2n2
) states, and O(2p2n2

)

stack symbols. The determinization procedure has complexity O(2p2n2
m + 2p f (p`)).
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Theorem 4.6 (Completeness). For every S-VPA A there exists a complete S-VPA B accepting

the same language.

Proof. An S-VPA can be completed by adding a sink state qsink and adding a new tran-

sition from each state q to qsink covering the inputs for which q has no transition. Fi-

nally qsink has a loop transition on the predicate true. Given an S-VPA A we use The-

orem 4.5 to build an equivalent deterministic S-VPA A′ = (Q, q0, P, δi, δc, δr, δb, QF).

Next we construct a complete S-VPA B = (Q ∪ {qsink}, q0, P, δ′i , δ′c, δ′r, δ′b, QF) equiva-

lent to A′. The new state qsink is used as a sink for the missing transitions. We now

define the new transition relation. We only show δ′i , since the other transition func-

tions are analogous. Intuitively, for every state, all the symbols for which no internal

transition exists are directed to the sink state. Let Iq = {ϕ | (q, ϕ, q′) ∈ δi}. Then

δ′i = δi ∪ {(q,¬ψ, qsink) | ψ =
∨

ϕ∈Iq
ϕ} ∪ {(qsink, true, qsink)}. The fact that A′ is equiva-

lent to B follows from the definitions of acceptance and run.

Assume A has n states, m stack symbols, and p different predicates of size at most `.

Let f (a) be the cost of checking the satisfiability of a predicate of size a. The procedure

has complexity O(nm f (`p)).

Theorem 4.7 (Boolean Closure). S-VPAs are closed under Boolean operations.

Proof. We prove that S-VPAs are closed under complement and intersection. We first

prove that S-VPAs are closed under complement. Given an S-VPA A we construct

a complete S-VPA C such that C accepts a nested word n iff n is not accepted by

A. First, we use Theorem 4.6 to construct an equivalent deterministic S-VPA B =

(Q, q0, P, δi, δc, δr, δb, QF). We can now construct the S-VPA C = (Q, q0, P, δi, δc, δr, δb, Q \
QF) in which the set of accepting states is complemented.

We next prove that S-VPAs are closed under intersection. Given two deterministic S-

VPAs A1 = (Q1, q1
0, P1, δ1

i , δ1
c , δ1

r , δ1
b , Q1

F) and A2 = (Q2, q2
0, P2, δ2

i , δ2
c , δ2

r , δ2
b , Q2

F) (using

Theorem 4.5) we construct an S-VPA B such that B accepts a nested word n iff n is

accepted by both A1 and A2. The construction of B is a product construction. The S-

VPA B will have state set Q′ = Q1 × Q2, initial state q′0 = (q1
0, q2

0), stack symbol set

P′ = P1 × P2, and final state set Q′F = Q1
F × Q2

F, The transition function will simulate

both A1 and A2 at the same time.

• for each (q1, ϕ1, q′1) ∈ δ1
i , and (q2, ϕ2, q′2) ∈ δ2

i , δ′i will contain the transition

((q1, q2), ϕ1 ∧ ϕ2, (q′1, q′2));

• for each (q1, ϕ1, q′1, p1) ∈ δ1
c , and (q2, ϕ2, q′2, p2) ∈ δ2

c , and δ′c will contain the tran-

sition ((q1, q2), ϕ1 ∧ ϕ2, (q′1, q′2), (p1, p2));
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• for each (q1, ϕ1, p1, q′1) ∈ δ1
r , and (q2, ϕ2, p2, q′2) ∈ δ2

r , δ′r will contain the transition

((q1, q2), ϕ1 ∧ ϕ2, (p1, p2), (q′1, q′2));

• for each (q1, ϕ1, q′1) ∈ δ1
b , and (q2, ϕ2, q′2) ∈ δ2

b , δ′b will contain the transition

((q1, q2), ϕ1 ∧ ϕ2, (q′1, q′2)).

Assume each S-VPA Ai has ni states, mi stack symbols, and pi different predicates of

size at most `i. Let f (a) be the cost of checking the satisfiability of a predicate of size a.

The intersection procedure has complexity O(n1n2m1m2 + p1 p2 f (`1 + `2)).

4.4.2 Decision Procedures

We conclude this section with an algorithm for checking emptiness of S-VPAs over

decidable label theories, which we finally use to prove the decidability of S-VPA equiv-

alence.

Theorem 4.8 (Emptiness). Given an S-VPA A over a decidable label theory it is decidable

whether L(A) = ∅.

Proof. The algorithm for checking emptiness is a symbolic variant of the algorithm for

checking emptiness of a pushdown automaton. We are given an S-VPA

A = (Q, q0, P, δi, δc, δr, δb, QF) over a decidable theory Ψ. First, for every two states

q, q′ ∈ Q we compute the reachability relation Rwm ⊆ Q × Q such that (q, q′) ∈ Rwm

iff there exists a run ρq(w) that, starting in state q, after reading a well matched nested

word w, ends in state q′. We define Rwm as follows:

• for all q ∈ Q, (q, q) ∈ Rwm;

• if (q1, q2) ∈ Rwm, and there exists q, q′ ∈ Q, p ∈ P, ϕ1 ∈ Px(Ψ), ϕ2 ∈ Px,y(Ψ), such

that (q, ϕ1, q1, p) ∈ δc, (q2, ϕ2, p, q′) ∈ δr, and IsSat(ϕ1 ∧ ϕ2), then (q, q′) ∈ Rwm.

Observe that unary and binary predicates unify on the first variable x;

• if (q1, q2) ∈ Rwm, and there exists q ∈ Q, ϕ ∈ Px(Ψ), such that (q, ϕ, q1) ∈ δi, and

IsSat(ϕ), then (q, q2) ∈ Rwm;

• if (q1, q2) ∈ Rwm and (q2, q3) ∈ Rwm, then (q1, q3) ∈ Rwm.

The above reachability relation captures all the runs over well-matched nested words.

Unmatched calls and returns can be handled using a similar set of rules: we can define

the relation Rc ⊆ Q × Q such that (q, q′) ∈ Rc iff there exists a run ρq(n) that ends

in state q′ after reading a nested word n with zero or more unmatched calls and no

unmatched returns.
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• if (q1, q2) ∈ Rwm, then (q1, q2) ∈ Rc;

• if (q1, q2) ∈ Rc, and there exists q ∈ Q, p ∈ P, ϕ ∈ Px(Ψ), such that (q, ϕ, p, q1) ∈
δc, and IsSat(ϕ), then (q, q2) ∈ Rc;

• if (q1, q2) ∈ Rc and (q2, q3) ∈ Rc, then (q1, q3) ∈ Rc.

Next, we handle unmatched returns, and define the relation Rr ⊆ Q × Q such that

(q, q′) ∈ Rr iff there exists a run ρq(n) that ends in state q′ after reading a nested word

n with zero or more unmatched returns and no unmatched calls.

• if (q1, q2) ∈ Rwm, then (q1, q2) ∈ Rr;

• if (q1, q2) ∈ Rr, and there exists q ∈ Q, ϕ ∈ Px(Ψ), such that (q, ϕ, q1) ∈ δb, and

IsSat(ϕ), then (q, q2) ∈ Rr;

• if (q1, q2) ∈ Rr and (q2, q3) ∈ Rr, then (q1, q3) ∈ Rr.

Finally we can combine Rc and Rr into a final reachability relation R ⊆ Q × Q such

that (q, q′) ∈ R iff there exists a run ρq(w) that ends in state q′ after reading a nested

word w: if (q1, q2) ∈ Rr, and (q2, q3) ∈ Rc, then (q1, q3) ∈ R. The S-VPA A is empty iff

(Q0 ×QF) ∩ R = ∅.

Assume A has n states, m stack symbols, t transitions, and p predicates of size at most `.

Let f (a) be the cost of checking the satisfiability of a predicate of size a. The emptiness

procedure has complexity O(n3mt + p2 f (`)).

We can now combine the closure under Boolean operations and the decidability of

emptiness to show that equivalence of S-VPAs is decidable.

Corollary 4.9 (Equivalence). Given two S-VPAs A and B over a decidable label theory it is

decidable whether L(A) ⊆ L(B) and whether L(A) = L(B).

VPA universality, inclusion, and equivalence problems are EXPTIME-hard [AM09]. If

the function IsSat can be computed in polynomial time the same complexity bounds

hold for S-VPAs.

4.5 Applications and Evaluation

In this section we present potential applications of S-VPAs together with experimental

results. First, we illustrate how the presence of symbolic alphabets and closure prop-

erties enables complex XML validation, HTML sanitization, and runtime monitoring
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<xs:schema>
<xs:element name="people" type="PeopleType"/>
<xs:complexType name="PeopleType"><xs:sequence>
<xs:element name="person" minOccurs="0">
<xs:complexType><xs:sequence>
<xs:element name="firstname">
<xs:simpleType><xs:restriction base="xs:string">
<xs:pattern value="[A-Z]([a-z])*"/>
</xs:restriction></xs:simpleType>
</xs:element>
<xs:element name="lastname">
<xs:simpleType><xs:restriction base="xs:string">
<xs:pattern value="[A-Z]([a-z])*"/>
</xs:restriction></xs:simpleType>
</xs:element>
</xs:sequence></xs:complexType>
</xs:element>
</xs:sequence></xs:complexType>
</xs:schema>

(1) XML schema S

<people>
<person>
<firstname>

Mark
</firstname>
<lastname>

Red
</lastname>
</person>
<person>
<firstname>

Mario
</firstname>
<lastname>

Rossi
</lastname>
</person>
</people>

(2) Document example

9 

I: x∈ [A-Z][a-z]* 

9 0 

C: x=“people”, p 

1 

C: x=“person”, p 

2 

C: x=“firstname”, p 

3 4 

5 

6 

I: x∈ [A-Z][a-z]* 

7 

R: x=“firstname”, p C: x=“lastname”, p 
8 

R: x=“people”, p 

R: x=“person”, p 

R: x=“lastname”, p 

(3) S-VPA As

FIGURE 4.2: Example XML Schema with an equivalent S-VPA.

of recursive programs. Finally, we present some experimental results on executing S-

VPA and their algorithms. All the experiments were run on a 4 Cores Intel i7-2600 CPU

3.40GHz, with 8GB of RAM. and with the SVPAlib library configured for 32 bits ar-

chitecture. The SVPAlib library is available at https://github.com/lorisdanto/

symbolicautomata.

4.5.1 XML Validation

XML and HTML documents are ubiquitous. Validating an XML document is the task

of checking whether such a document meets a given specification. XML Schema is the

most common language for writing XML specifications and their properties have been

studied in depth [MNS09, DZL03]. The XML schema S shown in Figure 4.2 describes

the format of XML documents containing first and last names. In words the document

should start with the tag people and then contain a sequence of person each of which

https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata
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0

I:"true"
R:"true,"p"

C:"x!=“script”,"p"

0" 1" 2"

I:"true"
R:"true,"p"
C:"true,"p"

C:"x=“img”,p" I:"x"�".*javascript.*"

I:"true"
R:"true,"p"
C:"true,"p"

2

I:"true"

SVPA"B"SVPA"A"
FIGURE 4.3: S-VPAs for HTML filtering.

has a first and last name. First and last name should be both strings belonging to the

regular expression [A-Z]([a-z])*.

Dealing with infinite alphabets. Although the XML Schema in Figure 4.2 only uses

a finite set of possible nodes (people, firstname, etc.), it allows the content of the

leaves to be any string accepted by the regular expression [A-Z]([a-z])*. This kind

of constraints can be easily captured using an S-VPA over the theory of strings. Such a

S-VPA AS is depicted in Figure 4.2.3. We encode each XML document as a nested word

over the theory of strings. For each open tag, close tag, attribute, attribute value, and

text node the nested word contains one input symbol with the corresponding value.

The letters I, C, and R on each transition respectively stand for internal, call, and return

transitions.

Although in this particular setting the alphabet could be made finite by linearizing each

string, such an encoding would not be natural and would cause the corresponding VPA

to be very complex. Moreover previous models that use such an encoding require the

parser to further split each node value into separate characters [KCTV07, MNS09]. In

the case of S-VPAs, as can be observed in Figure 4.2, there is a clear separation between

the constraints on the tree structure (captured by the states) and the constraints on

the leaves (captured by the predicates). This natural representation makes the model

succinct and easy to operate on, since it reflects the typical representation of XML via

events (SAX parser, etc.).

4.5.2 HTML Filters

A central concern for secure web applications is untrusted user inputs. These lead to

cross-site scripting (XSS) attacks, which may echo an untrusted input verbatim back

to the browser. HTML filters aim at blocking potentially malicious user HTML code

from being executed on the server. For example, a security-sensitive application might
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FIGURE 4.4: S-VPA W accepting well-formed HTML documents.

want to discard all documents containing script nodes which might contain mali-

cious JavaScript code (this is commonly done in HTML sanitization). Since HTML5

lets the users define custom tags, the set of possible node names is infinite and cannot

be known a priori. In this particular setting, an HTML schema would not be able to

characterize such an HTML filter. This simple property can be checked using an S-VPA

over the theory of strings. Such an S-VPA A is depicted on the left of Figure 4.3. The

S-VPA A only accepts nested words that do not contain script nodes. Notice that

the call transition is triggered by any string different from script and the alphabet is

therefore infinite.

Since S-VPAs can be intersected, complemented, and determinized, we can take ad-

vantage of these properties to make the design of HTML filters modular. We now con-

sider an example for which it is much simpler to specify what it means for a document

to be malicious rather than to be safe. On the right of Figure 4.3 it is shown a non-

deterministic S-VPA B for checking whether a img tag may call JavaScript code in one

of its attributes. To compute our filter (the set of safe inputs) we can now compute the

complement B′ of B that only accepts HTML documents that do not contain malicious

img tags.

We can now combine A and B′ into a single filter. This can be easily done by computing

the intersection F = A ∩ B′. If necessary, the S-VPA F can then be determinized, ob-

taining an executable filter that can efficiently process HTML documents with a single

left-to-right pass.

The power of binary predicates. The previous HTML filter is meant to process only

well-formed HTML documents. A well-formed HTML document is one in which all

the open tags are correctly matched (every open tag is closed by a close tag containing

the same symbol). In practice the input document goes first through a well-formedness

checker and then through a filter. This causes the input HTML to be processed multi-

ple times and in performance-critical applications this is not feasible. This check can

however be performed by the S-VPA W in Figure 4.4.
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Algorithm 1 Recursive implementation of Fibonacci.

function Fib(int x)
if x < 2 then return x
return Fib(x− 1) + Fib(x− 2)

4.5.3 Runtime Program Monitors

We already discussed in Section 4.2 how S-VPAs are useful for defining monitors for

dynamic analysis of programs. In this section we present an example of how S-VPAs

can be used to express complex properties about programs over infinite domains such

as integers. Consider the recursive implementation of Fibonacci shown in Algorithm 1.

Let’s assume we are interested into monitoring the values of x at every call of Fib, and

the values returned by Fib. For example for the input 5, our monitored nested word

will be 〈2 〈1 1〉 〈0 0〉 1〉. The following properties can all be expressed using S-VPAs:

1. if the input of Fib is greater or equal than 0, then the same holds for all the subse-

quent inputs of Fib;

2. if the output of Fib is negative, than Fib was called exactly once in the whole

execution and with a negative input;

3. the output of Fib is greater or equal than the corresponding input.

We can then intersect the S-VPAs corresponding to each property and generate a single

pass linear time monitor for Fib. As we discussed in Section 4.2, S-VPAs cannot express

properties that relate all the values in the computation such as: the value of a variable x

increases monotonically throughout the computation. However, thanks to the presence

of binary predicates at returns, S-VPAs provide a model for describing pre and post

conditions of programs over decidable theories (see property 3). In particular, S-VPAs

can describe post conditions that relate the values of the inputs and the outputs of a

function.

4.5.4 Experimental results

Execution performance. We implemented the filter F = A ∩ B̄ ∩W and analyzed

the performance of filtering HTML documents with size between 8 and 1293 KB, depth

between 3 and 11, number of tokens between 1305 and 84242, and average token length

between 11 and 14 characters. To solve the underlying theory of equality plus regular

constraints, we implemented a solver on top of the Microsoft Automata library [VB12a].
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FIGURE 4.5: Time to filter an HTML file.

We decided not to use a full blown solver such as Hampi [KGG+09], since it only sup-

ports strings of fixed length. Constructing the S-VPA F took 435 milliseconds. The

running times per number of tokens (in seconds) are shown in the figure on the right.

We observed that the depth of the input does not affect the running time, while the

length affects it linearly. Surprisingly, the running time is also not affected by the av-

erage length of the tokens. This is due to the fact that most tokens can be rejected by

partially reading them.

Algorithms performance: data. We evaluated the determinization and equivalence

algorithms on a representative set of S-VPAs over three different alphabet theories:

strings, integers, and bitvectors (characters). The characters and strings solver are im-

plemented on top of the Automata library [VB12a] which is based on BDDs, while the

integer solver is Z3 [DMB08]. For each theory t we generated an initial set of S-VPAs

St
1 containing 5 nondeterministic S-VPAs for properties of the following form:

1. the input contains a call and matching return with different symbols;

2. the input contains an internal symbol satisfying a predicate ϕ0;

3. the input contains a subword 〈a b c〉 such that a ∈ [[ϕ1]], b ∈ [[ϕ2]], and a = c;

4. the input contains a subword 〈a 〈b such that a ∈ [[ϕ3]], b ∈ [[ϕ4]];

5. for every internal symbol a in the input, a ∈ [[ϕ4]], or a ∈ [[ϕ5]].

The predicates Φ = {ϕ0, . . . , ϕ5} vary for each theory and are all different. For each

theory we then computed the set St
2 = {A ∩ B | A, B ∈ St

1} ∪ {A ∩ B ∩ C | A, B, C ∈
St

1}, since S-VPAs generated through Boolean operations are representative of S-VPAs

appearing in applications such as program monitoring. We used the sets St
2 to evaluate
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the determinization algorithm, and computed the corresponding set of deterministic

S-VPAs Dt
2. Finally we checked equivalence of any two S-VPAs A and B in Dt

2.

The results of our experiments are shown in Figure 4.6: the left column shows the

size of each test set and the number of instances for which the algorithms timed out

(5 minutes). The right column shows the running time for the instances in which the

algorithms did not time out. For both algorithms we plot against number of states

and number of transitions. For the determinization, the sizes refer to the automaton

before determinization, while in the case of equivalence, the sizes refer to the sum of

the corresponding metrics of the two input S-VPAs. The distribution of the sizes of the

S-VPAs differed slightly when varying the theories, but since the differences are very

small we show the average sizes. For each theory we determinized a total of 65 S-VPAs

and checked for equivalence 241 pairs of S-VPAs. For both operation, on average, 96%

of the time is spent in the theory solver. For the theory of characters we also compared

our tool to the VPALib library, a Java implementation of VPAs.1 The application timed

out for all the inputs considered in our experiments.

Algorithms performance: data analysis. Except for few instances involving the the-

ory of integers, our implementation was able to determinize all the considered S-VPAs

in less than 5 minutes. The situation was different in the case of equivalence, where

most of the input pairs with more than 250 transitions or 13 states timed out. Most of

such pairs were required to check satisfiability of more than 15000 predicates that were

generated when building the intersected S-VPAs necessary to check equivalence. We

could observe that the theory of characters is on average 6 times faster than the theory

of strings and 10 times faster than the theory of integers. However, we did observe

that the theory of integers timed out less often in the case of equivalence. We believe

that this is due to the different choices of predicates in Φ and to the fact that Z3 uses a

caching mechanism that avoids checking for satisfiability of the same predicate twice.

While during determinization such a technique is not very beneficial due to the limited

number of different minterms, in the case of equivalence, especially for bigger inputs,

many of the predicates are repeated, making caching useful in practice.

When comparing against an existing implementation of VPAs, we observed that the

benefit of using S-VPA is immense: due to the large size of the alphabet (216 characters),

VPALib timed out for each input we considered.

1Available http://www.emn.fr/z-info/hnguyen/vpa/
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FIGURE 4.6: Running times for S-VPA equivalence and determinization.
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Chapter 5

Streaming tree transducers

“I will go anywhere, provided it be forward.”

— David Livingstone

5.1 Introduction

As we discussed in Chapter 3, tree structures are ubiquitous. While we showed that

FAST can be used to answer many verification questions, due to the use of regular

look-ahead, S-TTRs require two passes to process an input tree. In Chapter 4, on the

other hand, we argued about the importance of processing XML documents in a single

pass [NSV04, MSV00, MGHK09]. In this chapter, we present streaming tree transducers,

an expressive and analyzable single-pass transducer model for tree transformations.

5.1.1 Existing models of tree transducers

An ideal tree transducer model should:

• capture a large class of transformations;

• enjoy decidable equivalence and type-checking;

• be closed under composition and regular look-ahead;

• operate over strings, ranked trees, and unranked trees;

• compute the output in a single linear-time pass over the input.
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The first three requirements ask us to strike the right balance between expressive-

ness and decidability: What is the largest class of tree transformations that enjoys decidable

procedures and good closure properties? The most widely accepted answer to this ques-

tion is the notion of monadic-second-order-logic-definable tree transductions [Cou94].

This formalism represents tree transductions as graph transformations expressed using

monadic second-order (MSO) logic formulas over nodes and edges. The class of MSO-

definable transductions enjoys decidable equivalence and type-checking, and is closed

under sequential composition and regular look-ahead. Moreover, strings, ranked trees,

and unranked trees are naturally expressible in this formalism. MSO-definable trans-

formations include complex ones such as swapping subtrees and reversing the order of

children in an unranked tree. However, due to the declarative nature, transformations

expressed using MSO are hard to execute efficiently on a given input.

Several transducer models have been proposed to address this limitation, but these

models typically sacrificed other properties. Executable models for tree transducers

include bottom-up tree transducers, visibly pushdown transducers [RS09], and multi

bottom-up tree transducers [ELM08]. Each of these models computes the output in a

single left-to-right pass in linear time. However, none of these models can compute all

MSO-definable transductions.

Finite copying Macro Tree Transducers (MTTs) with regular look-ahead [EM99] can

compute all MSO-definable ranked-tree-to-ranked-tree transductions. MTTs are top-

down transducers enriched with parameters that can store intermediate computations.

In this model, regular look-ahead cannot be eliminated without sacrificing expressive-

ness and the executing the model requires multiple passes [Man02].

Finally, most models of tree transducers do not naturally generalize to unranked trees.

Exceptions include visibly pushdown transducers [RS09] and macro forest

transducers [PS04], but these suffer the other limitations we just discussed.

5.1.2 Contributions

We propose the model of streaming tree transducers (STT), which has many desirable

properties.

Expressiveness: STTs capture exactly the class of MSO-definable tree transductions.

Analyzability: Decision problems such as type-checking and checking whether two STTs

are functionally equivalent are decidable.

Closure properties: STTs are closed under composition and regular look-ahead.
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Flexibility: STTs can operate over strings, ranked trees, and unranked trees.

Single-pass linear-time processing: An STT is a deterministic machine that computes the

output using a single left-to-right pass through the linear encoding of the input

tree, processing each symbol in constant time.

The transducer model integrates features of visibly pushdown automata, equivalently

nested word automata [AM09], and streaming string transducers [AC10, AC11]. In our

model, the input tree is encoded as a nested word, which is a string over alphabet sym-

bols, tagged with open/close brackets (or equivalently, call/return types) to indicate

the hierarchical structure. For example, the tree a(b, c(d, d)) is encoded by the nested

word

〈a 〈b b〉 〈c 〈d d〉 〈d d〉 c〉 a〉.

The streaming tree transducer reads the input nested word left-to-right in a single pass.

It uses finitely many states, together with a stack, but the type of operation applied to

the stack at each step is determined by the hierarchical structure of the tags in the in-

put. The output is computed using a finite set of variables with values ranging over

output nested words, possibly with holes that are used as place-holders for inserting

subtrees. At each step, the transducer reads the next symbol of the input. If the symbol

is an internal symbol, then the transducer updates its state and the output variables.

If the symbol is a call symbol, then the transducer pushes a stack symbol along with

updated values of variables, updates the state, and reinitializes the variables. While

processing a return symbol, the stack is popped, and the new state and new values for

the variables are determined using the current state, current variables, popped symbol,

and popped values from the stack. In each type of transition, the variables are updated

using expressions that allow adding new symbols, string concatenation, and tree insertion

(simulated by replacing the hole with another expression). A key restriction is that vari-

ables are updated in a manner that ensures that each value can contribute at most once

to the eventual output, without duplication. This single-use restriction is enforced via a

binary conflict relation over variables: no output term combines conflicting variables,

and variable occurrences in right-hand sides during each update are consistent with

the conflict relation. The transformation computed by the model can be implemented

as a single-pass linear-time algorithm.

We show that the model can be simplified in natural ways if we want to restrict either

the input or the output to either strings or ranked trees. For example, to compute

transformations that output strings it suffices to consider variable updates that allow

only concatenation, and to compute transformations that output ranked trees it suffices

to consider variable updates that allow only tree insertion. The restriction to the case
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of ranked trees as inputs gives the model of bottom-up ranked-tree transducers. As far as

we know, this is the only transducer model that processes trees in a bottom-up manner

and can compute all MSO-definable tree transformations.

The main technical result in the chapter is that the class of transductions definable using

streaming tree transducers is exactly the class of MSO-definable tree transductions. The

starting point for our result is the known equivalence of MSO-definable tree transduc-

tions and Macro Tree Transducers with regular look-ahead and single-use restriction,

over ranked trees [EM99]. Our proof proceeds by establishing two key properties of

STTs: STTs are closed under regular look-ahead and under sequential composition. These

proofs are challenging due to the requirement that a transducer can use only a fixed

number of variables and such variables can only be updated by assignments which

obey the single-use-restriction rules. We develop the proofs in a modular fashion by

introducing intermediate results (for example, we establish that allowing variables to

range over trees containing multiple parameters does not increase expressiveness). In

this chapter we do not address the problem of representing infinite alphabets.

We show a variety of analysis questions to be decidable for STTs. We establish an

EXPTIME upper bound for type-checking, and provide a NEXPTIME upper bound for

checking functional inequivalence of two STTs. This is the first elementary upper

bound for checking equivalence of a model that captures MSO-definable transforma-

tions. When the number of variables is bounded the upper bound on the complexity

becomes NP.

5.1.3 Organization

This chapter is structured as follows:

• Section 5.2 illustrates the main features of STTs using an example;

• Section 5.3 formally defines streaming tree transducers;

• Section 5.4 gives examples of STTs transformations;

• Section 5.5 defines several variants of STTs;

• Section 5.6 shows how STTs behave when considering the input is a string or a

ranked tree;

• Section 5.7 shows how STTs behave when the output is a string or a ranked tree;
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FIGURE 5.1: Depiction of the transformation tree swap.

• Section 5.8 presents the proof that the class of transductions definable using

streaming tree transducers is exactly the class of MSO-definable tree transduc-

tions;

• Section 5.9 establishes upper bounds for type-checking and functional inequiva-

lence;

• Section 5.10 compares STTs with prior models.

5.2 The features of streaming tree transducers

Before we define streaming tree transducers formally, we introduce the novel features

of our model using a high-level example. Figure 5.1 shows a transduction that trans-

forms the input tree by swapping the first (in inorder traversal) b-rooted subtree t1 with

the next (in inorder traversal) b-rooted subtree t2 not contained in t1.

An STT performing the transformation depicted in Figure 5.1 processes the nested

word left-to-right and uses a stack to record the current depth in the tree. The STT

starts in an initial state q0 that indicates that the transducer has not yet encountered a

b-label.

• In state q0, the STT records the tree traversed so far using a variable x: when

reading a call 〈a, x is stored on the stack, and is reset to ε; when reading a return

a〉, x is updated to xp〈a x a〉where xp is the variable stored on the top of the stack.

In state q0, when reading a call 〈b, the STT pushes q0 along with the current value

of x on the stack, resets x to ε, and updates its state to q′.

• In state q′, the STT constructs the first b-labeled subtree t1 in the variable x: as

long as it does not pop the stack symbol q0, at a call it pushes q′ and x, and at

a return, updates x to xp〈a x a〉 or xp〈b x b〉, depending on whether the current

return symbol is a or b. When it pops q0, it updates x to 〈b x b〉 (at this point, x

contains the tree t1, and its value will be propagated), sets another variable y to

xp ?, and changes its state to q1. The value ? in y is a hole that can be replaced

with a value v using the operation y[v].
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• In state q1, the STT is searching for the next b-labeled call, and processes a-labeled

calls and returns exactly as in state q0, but now using a variable y that contains a

hole ?. We use y[s] to denote the substitution of the hole ? in y with the value s. At

a b-labeled call, it pushes q1 along with y on the stack, resets x to ε, and updates

the state to q′. Now in state q′, the STT constructs the second b-labeled subtree t2

in variable x as before. When it pops q1, the subtree t2 corresponds to 〈b x b〉. The

transducer updates x to yp[〈b x b〉]xp capturing the desired swapping of the two

subtrees t1 and t2 (the variable y is no longer needed and is reset to ε to ensure the

single use restriction), and switches to state q2.

• In state q2, the remainder of the tree is traversed, adding it to x. The output

function is defined only for the state q2 and maps q2 to x.

This example illustrates the main features of STTs: states, variables containing nested

words, a stack for storing states and variable values, and holes that can act as place-

holders inside variables. These features are formally defined in the next section.

5.3 Model definition

We introduce a few preliminary concepts and then define streaming tree transducers.

5.3.1 Nested words

Data with both linear and hierarchical structure can be encoded using nested

words [AM09]. Given a set Σ of symbols, the tagged alphabet Σ̂ consists of the sym-

bols a, 〈a, and a〉, for each a ∈ Σ. A nested word over Σ is a finite sequence over Σ̂. For

a nested word a1 · · · ak, a position j, for 1 ≤ j ≤ k, is said to be a call position if the

symbol aj is of the form 〈a, a return position if the symbol aj is of the form a〉, and an in-

ternal position otherwise. The tags induce a natural matching relation between call and

return positions, and in this paper, we are interested only in well-matched nested words

in which all calls/returns have matching returns/calls. A string over Σ is a nested

word with only internal positions. Nested words naturally encode ordered trees. The

empty tree is encoded by the empty string ε. The tree with a-labeled root with subtrees

t1, . . . tk as children, in that order, is encoded by the nested word 〈a 〈〈t1〉〉 · · · 〈〈tk〉〉 a〉,
where 〈〈ti〉〉 is the encoding of the subtree ti. This transformation can be viewed as an

inorder traversal of the tree. The encoding extends to forests also: the encoding of a for-

est is obtained by concatenating the encodings of the trees it contains. An a-labeled leaf

corresponds to the nested word 〈aa〉, we will use 〈a〉 as its abbreviation. Thus, a binary
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tree with a-labeled root for which the left-child is an a-labeled leaf and the right-child

is a b-labeled leaf is encoded by the string 〈a 〈a〉 〈b〉 a〉.

5.3.2 Nested words with holes

A key operation that our transducer model relies on is insertion of one nested word

within another. In order to define this, we consider nested words with holes, where a

hole is represented by the special symbol ?. For example, the nested word 〈a ? 〈b〉 a〉
represents an incomplete tree with a-labeled root whose right-child is a b-labeled leaf

such that the tree can be completed by adding a nested word to the left of this leaf. We

require that a nested word can contain at most one hole, and we use two types to keep

track of whether a nested word contains a hole or not. A type-0 nested word does not

contain any holes, while a type-1 nested word contains exactly one hole. We can view

a type-1 nested word as a unary function from nested words to nested words. The set

W0(Σ) of type-0 nested words over the alphabet Σ is defined by the grammar

W0 := ε | a | 〈a W0 b〉 |W0 W0,

for a, b ∈ Σ. The set W1(Σ) of type-1 nested words over the alphabet Σ is defined by

the grammar

W1 := ? | 〈a W1 b〉 |W1 W0 |W0 W1,

for a, b ∈ Σ. A nested-word language over Σ is a subset L of W0(Σ), and a nested-word

transduction from an input alphabet Σ to an output alphabet Γ is a partial function f

from W0(Σ) to W0(Γ).

5.3.3 Nested word expressions

In our transducer model, the machine maintains a set of variables that range over out-

put nested words with holes. Each variable has an associated binary type: a type-k

variable has type-k nested words as values, for k = 0, 1. The variables are updated us-

ing typed expressions, where variables can appear on the right-hand side, and we also

allow substitution of the hole symbol by another expression. Formally, a set X of typed

variables is a set that is partitioned into two sets X0 and X1 corresponding to the type-0

and type-1 variables. Given an alphabet Σ and a set X of typed variables, a valuation α

is a function that maps X0 to W0(Σ) and X1 to W1(Σ). Given an alphabet Σ and a set

X of typed variables, we define the sets Ek(X, Σ), for k = 0, 1, of type-k expressions by
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the grammars

E0 := ε | a | x0 | 〈a E0 b〉 | E0 E0 | E1[E0],

E1 := ? | x1 | 〈a E1 b〉 | E0 E1 | E1 E0 | E1[E1]

where a, b ∈ Σ, x0 ∈ X0, and x1 ∈ X1. The clause e[e′] corresponds to substitution of the

hole in a type-1 expression e by another expression e′. A valuation α for the variables

X naturally extends to a type-consistent function that maps the expressions Ek(X, Σ) to

values in Wk(Σ), for k = 0, 1. Given an expression e, α(e) is obtained by replacing each

variable x by α(x): in particular, α(e[e′]) is obtained by replacing the symbol ? in the

type-1 nested word α(e) by the nested word α(e′).

5.3.4 Single use restriction

The transducer updates variables X using type-consistent assignments. To achieve the

desired tractability, we need to restrict the reuse of variables in right-hand sides. In par-

ticular, we want to disallow the assignment x := xx (which would double the length

of x), but allow the assignment (x, y) := (x, x), provided the variables x and y are

guaranteed not to be combined later. For this purpose, we assume that the set X of

variables is equipped with a binary relation η: if η(x, y), then x and y cannot be com-

bined. This “conflict” relation is required to be reflexive and symmetric (but need not

be transitive). Two conflicting variables cannot occur in the same expression used in

the right-hand side of an update or as output. During an update, two conflicting vari-

ables can occur in multiple right-hand sides for updating conflicting variables. Thus,

the assignment (x, y) := (〈a xa〉[y], a?) is allowed, provided η(x, y) does not hold; the

assignment (x, y) := (ax[y], y) is not allowed; and the assignment (x, y) := (ax, x[b])

is allowed, provided η(x, y) holds. Formally, given a set X of typed variables with a

reflexive symmetric binary conflict relation η, and an alphabet Σ, an expression e in

E(X, Σ) is said to be consistent with η if (1) each variable x occurs at most once in e, and

(2) if η(x, y) holds, then e does not contain both x and y. Given sets X and Y of typed

variables, a conflict relation η, and an alphabet Σ, a single-use-restricted assignment is

a function ρ that maps each type-k variable x in X to a right-hand side expression in

Ek(Y, Σ), for k = 0, 1, such that (1) each expression ρ(x) is consistent with η, and (2) if

η(x, y) holds, ρ(x′) contains x, and ρ(y′) contains y, then η(x′, y′) must hold. The set of

such single-use-restricted assignments is denoted A(X, Y, η, Σ).

At a return, the transducer assigns the values to its variables X using the values popped

from the stack as well as the values returned. For each variable x, we will use xp to

refer to the popped value of x. Thus, each variable x is updated using an expression
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over the variables X ∪ Xp. The conflict relation η extends naturally to variables in Xp:

η(xp, yp) holds exactly when η(x, y) holds. Then, the update at a return is specified by

assignments in A(X, X ∪ Xp, η, Σ).

When the conflict relation η is the purely reflexive relation {(x, x) | x ∈ X}, the single-

use-restriction means that a variable x can appear at most once in at most one right-

hand side. We refer to this special case as “copyless”.

5.3.5 Transducer definition

A streaming tree transducer is a deterministic machine that reads the input nested word

left-to-right in a single pass. It uses finitely many states, together with a stack. The use

of the stack is dictated by the hierarchical structure of the call/return tags in the input.

The output is computed using a finite set of typed variables that range over nested

words. Variables are equipped with a conflict relation that restricts which variables can

be combined. Moreover, the stack can be used to store variable values. At each step, the

transducer reads the next symbol of the input. If the symbol is an internal symbol, then

the transducer updates its state and the nested-word variables. If the symbol is a call

symbol, then the transducer pushes a stack symbol, updates the state, stores updated

values of variables in the stack, and reinitializes the variables. While processing a re-

turn symbol, the stack is popped, and the new state and new values for the variables

are determined using the current state, current variables, popped symbol, and popped

variables from the stack. In each type of transition, the variables are updated in paral-

lel using assignments in which the right-hand sides are nested-word expressions. We

require that the update is type-consistent and meets the single-use-restriction with re-

spect to the conflict relation. When the transducer consumes the entire input word, the

output nested word is produced by an expression that is consistent with the conflict

relation. These requirements ensure that, at every step, at most one copy of any value

is contributed to the final output.

5.3.6 STT syntax

A deterministic streaming tree transducer (STT) § from input alphabet Σ to output alpha-

bet Γ consists of

• a finite set of states Q;

• a finite set of stack symbols P;

• an initial state q0 ∈ Q;
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• a finite set of typed variables X with a reflexive symmetric binary conflict relation

η;

• a partial output function F : Q 7→ E0(X, Γ) such that each expression F(q) is

consistent with η;1

• an internal state-transition function δi : Q× Σ 7→ Q;

• a call state-transition function δc : Q× Σ 7→ Q× P;

• a return state-transition function δr : Q× P× Σ 7→ Q;

• an internal variable-update function ρi : Q× Σ 7→ A(X, X, η, Γ);

• a call variable-update function ρc : Q× Σ 7→ A(X, X, η, Γ);

• a return variable-update function ρr : Q× P× Σ 7→ A(X, X ∪ Xp, η, Γ).

5.3.7 STT semantics

To define the semantics of a streaming tree transducer, we consider configurations of

the form (q, Λ, α), where q ∈ Q is a state, α is a type-consistent valuation from variables

X to typed nested words over Γ, and Λ is a sequence of pairs (p, β) such that p ∈ P

is a stack symbol and β is a type-consistent valuation from variables in X to typed

nested words over Γ. The initial configuration is (q0, ε, α0), where α0 maps each type-0

variable to ε and each type-1 variable to ?. The transition function δ over configurations

is defined as follows. Given an input a ∈ Σ̂:

1. Internal transitions: if a is internal, and δi(q, a) = q′, then

δ((q, Λ, α), a) = (q′, Λ, α′), where

• q′ is the state resulting from applying the internal transition that reads a in

state q;

• the stack Λ remains unchanged;

• the new evaluation function α′ = α · ρi(q, a) is the result of applying the

variable update function ρi(q, a) using the variable values in α.

2. Call transitions: if for some b ∈ Σ, a = 〈b, and δc(q, b) = (q′, p), then

δ((q, Λ, α), a) = (q′, Λ′, α0), where

1 It is possible to relax the definition of the output function to support expressions that are not con-
sistent with the conflict relation η, and this will not affect the expressiveness of the model. We use this
restriction to simplify the presentation.
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• q′ is the state resulting from applying the call transition that reads b in state

q;

• Λ′ = (p, α · ρc(q, b))Λ is the new stack resulting from pushing the pair (p, α′)

on top of the old stack Λ, where the stack state p is the one pushed by the

call transition function, and α′ = α · ρc(q, b) is the new evaluation function

α′ resulting from applying the variable update function ρc(q, b) using the

variable values in α;

• α0 is the evaluation function that sets every type-0 variable to ε and every

type-1 variable to ?.

3. Return transitions: if for some b ∈ Σ, a = b〉, and δr(q, p, b) = q′, then

δ((q, (p, β)Λ, α), a) = (q′, Λ′, α′) where

• q′ is the state resulting from applying the return transition that reads b in

state q with p on top of the stack;

• the stack Λ′ = Λ is the result of popping the top of the stack value from the

current stack;

• the new evaluation function α′ = α · βp · ρr(q, p, b), where βp is the valuation

for variables Xp defined by βp(xp) = β(x) for x ∈ X, is the result of applying

the variable update function ρr(q, p, b) using the variable values in α, and the

stack variable values in βp.

We define the closure of δ, δ∗, as δ∗((q, Λ, α), ε) = (q, Λ, α) and δ∗((q, Λ, α), aw) =

δ∗(δ((q, Λ, α), a), w). For an input nested word w ∈W0(Σ), if δ∗((q0, ε, α0), w) = (q, ε, α)

then if F(q) is undefined then so is [[S]](w), otherwise [[S]](w) = α(F(q)). We say that a

nested-word transduction f from input alphabet Σ to output alphabet Γ is STT-definable

if there exists an STT § such that [[S]] = f .

5.4 Examples

Streaming tree transducers can easily implement standard tree-edit operations such as

insertion, deletion, and relabeling. We illustrate the interesting features of our model

using operations such as reverse and sorting based on a fixed number of tags. In each of

these cases, the transducer mirrors the natural algorithm for implementing the desired

operation in a single pass.
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5.4.1 Reverse

Given a nested word a1a2 · · · ak, its reverse is the nested word bk · · · b2b1, where for each

1 ≤ j ≤ k, bj = aj if aj is an internal symbol, bj = 〈a if aj is a return symbol a〉, and

bj = a〉 if aj is a call symbol 〈a. As a tree transformation, reverse corresponds to recur-

sively reversing the order of children at each node: the reverse of 〈a 〈b 〈d〉 〈e〉 b〉 〈c〉 a〉 is

〈a 〈c〉 〈b 〈e〉 〈d〉 b〉 a〉. This transduction can be implemented by a streaming tree trans-

ducer with a single state, a single type-0 variable x, and stack symbols Σ: the internal

transition on input a updates x to a x; the call transition on input a pushes a onto the

stack, stores the current value of x on the stack, and resets x to the empty nested word;

and the return transition on input b, while popping the symbol a and stack value xp

from the stack, updates x to 〈b x a〉 xp.

5.4.2 Tag-based sorting

Suppose that given a sequence of trees t1t2 · · · tk (a forest) and a regular pattern, we

want to rearrange the sequence so that all trees that match the pattern appear before

the trees that do not match the pattern. For example, given an address book where

each entry has a tag that denotes whether the entry is “private” or “public”, we want

to sort the address book based on this tag: all private entries should appear before

public entries, while maintaining the original order for entries with the same tag value.

Such a transformation can be implemented naturally using an STT: variable x collects

entries that match the pattern, while variable y collects entries that do not match the

pattern. As the input is scanned, the state is used to determine whether the current tree

t satisfies the pattern; a variable z is used to store the current tree, and once t is read in

its entirety, based on whether or not it matches the pattern, the update {x := xz, z := ε}
or {y := yz, z := ε} is executed. The output of the transducer is the concatenation xy.

5.4.3 Conditional swap

Suppose that we are given a ternary tree, in which nodes have either three children or

none, and the third child of a ternary node is always a leaf. We want to compute the

transformation f :

f (〈c1x1x2〈c2〉c1〉) =
{
〈c1 f (x2) f (x1) c1〉, if c2 = a;

〈c1 id(x2) id(x1) c1〉, if c2 = b;

id(〈c1x1x2〈c2〉c1〉) = 〈c1 id(x1) id(x2) c1〉.



Streaming tree transducers 116

Informally, while going top-down, f swaps the first two children and deletes the third

one. Whenever f finds a node for which the third child is a b, it copies the rest of the

tree omitting the third child of each node. The STT implementing f uses four variables

x1, y1, x2, y2. Given a tree c(t1, t2, t3), after finishing processing the first two children t1

and t2, the variables x1 and x2 respectively contain the trees f (t1) and f (t2), and the

variables y1 and y2 respectively contain the trees id(t1) and id(t2). When starting to

process the third child t3, all the variables are stored on the stack. At the corresponding

return the variable values are retrieved from the stack (for every v ∈ X, v = vp), and the

state is updated to qa or qb representing whether t3 is labeled with a or b respectively.

When processing the return symbol s of a subtree t, we have the following possibilities.

1. The current state is qa and t is the first child of some node t′. The variables are

updated as follows: x1 := 〈s x2 x1 s〉, x2 := ε, y1 := 〈s y1 y2 s〉, y2 := ε.

2. The current state is qa and t is the second child of some node t′. The variables are

updated as follows: x1 := xp
1 , x2 := 〈s x2 x1 s〉, y1 := yp

1 , y2 := 〈s y1 y2 s〉.

3. The current state is qb and t = c(t1, t2, t3) is the first child of some node t′. In this

case, since t3 is labeled with b we have f (t) = 〈s t2 t1 s〉 and id(t) = 〈s t1 t2 s〉. In

order to maintain the invariants that xi = f (ti) and yi = id(ti), we need to copy

the values of y1 and y2. The variables are updated as follows: x1 := 〈s y2 y1 s〉,
x2 := ε, y1 := 〈s y1 y2 s〉, y2 := ε.

4. the current state is qb and t2 is the second child of some node t′. Following the

same reasoning as for the previous case the variables are updated as follows:

x1 := xp
1 , x2 := 〈s y2 y1 s〉, y1 := yp

1 , y2 := 〈s y1 y2 s〉.

Since y1 and y2 can be copied, the conflict relation η is such that η(x1, y1) and η(x2, y2)

hold.

5.5 Properties and variants

In this section, we note some properties and variants of streaming tree transducers

aimed at understanding their expressiveness. First, STTs compute linearly-bounded out-

puts, that is, the length of the output nested word is within at most a constant factor

of the length of the input nested word. The single-use restriction ensures that, at every

step of the execution of the transducer on an input nested word, the sum of the sizes

of all the variables that contribute to the output term at the end of the execution, can

increase only by an additive constant.
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Proposition 5.1 (Linear-bounded outputs). For an STT-definable transduction f from Σ to

Γ, for all nested words w ∈W0(Σ), | f (w)| = O(|w|).

Proof. Given an STT-definable transduction f from Σ to Γ, let

A f = (Q, q0, P, X, η, F, δ, ρ) be an STT defining f . We will show that for every in-

put w, |[[A f ]](w)| = O(|A f |2|X||w|), and since |A f | and |X| do not depend on w,

| f (w)| = O(|w|).

Given a set X′ ⊆ X of variables, we say that X′ is non-conflicting iff for all variables x

and y in X′, it is not the case that η(x, y). Given a set of non-conflicting variables X1

and a variable assignment v ∈ A(X, Y, η, Σ), it is easy to see that the set of variables X2

appearing in the right-hand sides of v for variables in X1 are also non-conflicting; if two

variables in X2 were conflicting, then X1 should also contain two conflicting variables.

We now show that for every word w, if δ∗((q0, ε, α0), w) = (q, (p1, β1) . . . (pn, βn), α),

then for every set X′ of non-conflicting variables

∑
x∈X′

(|α(x)|+ ∑
1≤i≤n

|βi(x)|) = O(|A f ||X||w|).

We proceed by induction on w. The case w = ε is trivial since every variable has a value

of constant size. Now assume w = w′a, such that

δ∗((q0, ε, α0), w′) = (q, (p1, β1) . . . (pn, βn), α)

and by I.H. for every set X1 of non-conflicting variables

∑
x∈X1

(|α(x)|+ ∑
1≤i≤n

|βi(x)|) = O(|A f ||X||w′|).

We have three possible cases:

a is internal: given a set of non-conflicting variables X1, let X2 be the set of variables

appearing in the right-hand sides of ρi(q, a) for variables in X1. Since both X1 and

X2 are non-conflicting we know that each variable x ∈ X2 appears at most once

in the right-hand side of X1. The right hand side also contains O(|A f |) symbols

in Γ. Let α′ = α · ρi(q, a), then

∑
x∈X1

(|α′(x)|+ ∑
1≤i≤n

|βi(x)|) ≤ ∑
x∈X2

(|α(x)|+ ∑
1≤i≤n

|βi(x)|) +O(|A f |) =

O(|A f ||X||w′|+ |A f |) = O(|A f ||X||w|).

Notice that we can apply the induction hypothesis since X2 is non-conflicting.
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a = 〈b is a call: given a set of non-conflicting variables X1, let X2 be the set of variables

appearing in the right-hand sides of ρc(q, b) for variables in X1. The right hand

side also contains O(|A f |) symbols in Γ. Let βn+1 = α · ρc(q, b). Then

∑
x∈X1

(|α′(x)|+ ∑
1≤i≤n+1

|βi(x)|) ≤

∑
x∈X2

(|α0(x)|+ |α(x)|+ ∑
1≤i≤n

|βi(x)|) +O(|A f |) =

∑
x∈X2

|α0(x)|+ ∑
x∈X2

(|α(x)|+ ∑
1≤i≤n

|βi(x)|) +O(|A f |) = O(|A f ||X||w|).

The equality follows since for every x, |α0(x)| ≤ 1.

a = b〉 is a return: given a set of non-conflicting variables X1, let X2 be the set of vari-

ables appearing in the right-hand sides of ρr(q, b, pn) for variables in X1. Since

both X1 and X2 is non-conflicting, each variable x ∈ X2 can appear at most once

as x and once as xp in the right-hand sides of variables in X1 in ρr(q, b, pn). The

right hand side also contains O(|A f |) symbols in Γ. Let α′ = α · βp
n · ρr(q, a, pn).

Then

∑
x∈X1

(|α′(x)|+ ∑
1≤i≤n−1

|βi(x)|) ≤

∑
x∈X2

(α(x) + βn(x) + ∑
1≤i≤n−1

βi(x)) +O(|A f |) =

∑
x∈X2

(|α(x)|+ ∑
1≤i≤n

|βi(x)|) +O(|A f |) = O(|A f ||X||w|).

As a consequence, after processing a word w, every variable has a value of size

O(|A f ||X||w|). Since the output function has O(|A f |) symbols, the final output has

size O(|A f |2|X||w|). This concludes the proof.

We now examine some of the features in the definition of STTs in terms of how they

contribute to expressiveness. First, having multiple variables is essential: this follows

from results on streaming string transducers [AC10, AC11]. Consider the transduction

that rewrites a nested word w to wn (that is, w repeated n times). An STT with n vari-

ables can implement this transduction. It is easy to prove that an STT with less than n

variables cannot implement this transduction. Second, the ability to store symbols in

the stack at calls is essential. This is because nested word automata are more expressive

than finite state automata over strings.
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5.5.1 Regular nested-word languages

A streaming tree transducer with empty sets of string variables can be viewed as an

acceptor of nested words: the input is accepted if the output function is defined in the

terminal state, and rejected otherwise. In this case, the definition coincides with (deter-

ministic) nested word automata (NWA). The original definitions of NWAs and regular

nested-word languages do not need the input nested word to be well-matched (that

is, the input is a string over Σ̂), but this distinction is not relevant for our purpose. A

nested word automaton A over an input alphabet Σ is specified by a finite set of states

Q; a finite set of stack symbols P; an initial state q0 ∈ Q; a set F ⊆ Q of accepting states;

an internal state-transition function δi : Q × Σ 7→ Q; a call state-transition function

δc : Q × Σ 7→ Q × P; and a return state-transition function δr : Q × P × Σ 7→ Q. A

language L ⊆ W0(Σ) of nested words is regular if it is accepted by such an automaton.

This class includes all regular string and tree languages, and is a subset of deterministic

context-free languages [AM09].

Given a nested-word transduction f from input alphabet Σ to output alphabet Γ, the

domain of f is the set Dom( f ) ⊆ W0(Σ) of input nested words w for which f (w) is

defined, and the image of f is the set Img( f ) ⊆ W0(Γ) of output nested words w′ such

that w′ = f (w) for some w. It is easy to establish that, for STT-definable transductions,

the domain is a regular language, but the image is not necessarily regular:

Proposition 5.2 (Domain-image regularity). For an STT-definable transduction f from Σ

to Γ, Dom( f ) is a regular language of nested words over Σ. There exists an STT-definable

transduction f from Σ to Γ, such that Img( f ) is not a regular language of nested words over Γ.

Proof. Given an STT-definable transduction f from Σ to Γ, let

A f = (Q, q0, P, X, η, F, δ, ρ) be an STT defining it. The NWA A accepting the domain

Dom( f ) of f has set of states Q′ = Q, initial state q′0 = q0, set of stack states P′ = P, set

of final states F′ = {q | F(q) is defined}, and transition function δ′ = δ.

We now construct an STT B from Σ = {a, b} to Γ = {a, b} computing a function f ′ for

which the image Img( f ′) is not regular. The STT B only has one state q which is also

initial and only has transition function δi(q, a) = δi(q, b) = q, and has only one type-0

variable x that is updated as follows: ρi(q, a, x) = δi(q, b, x) = axb. The output function

FB of B is defined as FB(q) = x. The STT B computes the following transduction f ′: if

the input word w has length n, B outputs the word anbn. The image Img( f ′) of f ′ is the

language {anbn | n ≥ 0}, which is not a regular language of nested words over Γ.

It is interesting to observe that the output language might not necessarily be context-

free either, since it is easy to build an STT that on an input string w produces the string
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ww. We refer the reader to Engelriet et al. [EM02] for an analysis of the output lan-

guages of many classes of tree transformations.

5.5.2 Copyless STTs

When the conflict relation η is purely reflexive (i.e. {(x, x) | x ∈ X}) we call an STT

copyless. The set of copyless assignments from Y to X is denoted by A(X, Y, Σ) where

we drop the relation η. We now define the notion of atomic assignment, which will be

fundamental in many proofs.

Definition 5.3. A copyless assignment ρ ∈ A(X, X ∪ Y, Σ) is atomic iff it has one of the

following forms:

Reset: for some variable x ∈ X, and some a, b ∈ Σ, x := ε, x :=?, x := 〈a?b〉, or x := a,

and for every variable y ∈ X, if y 6= x, then y := y;

Concatenation: for some two distinct variables x, y ∈ X, x := xy or x := yx, y := ε or

y :=?, and for every variable z ∈ X, if z 6= x and z 6= y, then z := z;

Substitution: for some two distinct variables x, y ∈ X, x := x[y] or x := y[x], y :=? or

y := ε, and for every variable z ∈ X, if z 6= x and z 6= y, then z := z;

Swap: for some two distinct variables x, y ∈ X, x := y, y := x, and for every variable

z ∈ X, if z 6= x and z 6= y, then z := z.

We then show that every copyless assignment can be broken into a sequence of simpler

atomic assignments.

Lemma 5.4. For every copyless assignment ρ ∈ A(X, X, Σ) there exists a set of variables Y

disjoint from X, and a sequence of assignments s = ρ1, . . . , ρn such that:

1. for every variable x ∈ X, s(x) = ρ(x);

2. the assignment ρ1 belongs to A(X ∪Y, X, Σ) and it is atomic;

3. for every 2 ≤ j ≤ n, the assignment ρj belongs to A(X ∪Y, X ∪Y, Σ), and it is atomic.

Proof. We sketch the proof and gloss over the fact the variables can be of both type-0

and type-1. Given an expression e ∈ E = E0 ∪ E1 we define the size of e, SIZE(e), as the

size of its parse tree:

• if e ∈ {ε, a, 〈a?b〉, ?}, then SIZE(e) = 1;
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• if for some e1 different from ?, e = 〈ae1b〉, then SIZE(e) = 1 + SIZE(e1);

• if for some e1, e2, e = e1e2, or e = e1[e2], then SIZE(e) = 1 + SIZE(e1) + SIZE(e2).

Given an assignment ρ ∈ A(X1, X2, Σ), we define SIZE(ρ) ∈N×N×N to be the value

(a, b, c) such that a = maxx∈X1 SIZE(ρ(x)) is the maximum size of a expression on the

right hand side of a variable, b is the number of variables for which the right-hand side

is an expression of size a, and c is the size of the set {x | ∃y.y 6= x∧ ρ(x) = y}. We define

the total order between two triplets (a, b, c), (a′, b′, c′) ∈ N3 as (a, b, c) < (a′, b′, c′) if

a < a′, or a = a′ and b < b′, or a = a′, b = b′, and c < c′.

Given an assignment ρ that is not atomic, we show that ρ can always be transformed

into a sequence of atomic assignments s = ρ1ρ2, such that SIZE(ρ1) < SIZE(ρ), ρ2 is

atomic, and for every x ∈ X, s(x) = ρ(x). The new assignments can have new vari-

ables. We proceed by case analysis on size(ρ) = (s1, s2, s3).

• If s1 = 0 the assignment is already atomic.

• If s1 = 1 we have two possibilities.

– If ρ is atomic, then we are done; or

– s3 ≥ 1 and there exist two distinct variables x and y, such that ρ(x) = y.

Replace ρ with the sequence ρ1ρ2, such that ρ1(x) = ρ(y), ρ1(y) = y, ρ2(x) =

y, ρ2(y) = x, and for every z different from x and y, ρ1(z) = ρ(z), and

ρ2(z) = z. The size of ρ1 is (s1, s2, s3 − 1) which concludes this case.

• If s1 > 1 we have three possibilities.

– One variable x has right-hand side e = w1w2, and e has size s1. Replace ρ

with the sequence ρ1ρ2, such that ρ1, ρ2 ∈ A(X ∪ {v}, X ∪ {v}, Σ): ρ1(x) =

w1, ρ1(v) = w2, ρ2(x) = xv, ρ2(v) = ε, and for each y such that y 6= x and

y 6= n, ρ1(y) = ρ(y) and ρ2(y) = y. We then have that ρ2 is atomic, and since

w1 and w2 both have smaller size than e, size(ρ1) is smaller than size(ρ).

– One variable x has right-hand side e = w1[w2], and e has size s1. Replace ρ

with the sequence ρ1ρ2 of assignment over X ∪ {n} such that: ρ1(x) = w1,

ρ1(n) = w2, ρ2(x) = x[n], ρ2(x) = ε, and for each y such that y 6= x and

y 6= n, ρ1(y) = ρ(y) and ρ2(y) = y. We then have that ρ2 is atomic, and since

w1 and w2 both have smaller size than e, size(ρ1) is smaller than size(ρ).

– One variable x has right-hand side e = 〈awb〉, e has size s1, and w 6=?. Re-

place ρ with the sequence ρ1ρ2 of assignment over X ∪ {n} such that: 1)

ρ1(x) = 〈a?b〉, ρ1(n) = w, and for each y ∈ X, if y 6= x, ρ1(y) = y, 2)
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ρ2(x) = x[n], ρ2(n)ε, and for each y ∈ X, such that y 6= x, ρ3(y) = y. The

assignment ρ2 is atomic. Since w has smaller size than e, size(ρ1) is smaller

than size(ρ).

It is easy to observe that every atomic assignment over n variables has size (0, n, 0) or

(1, n′, k) with n ≤ n′ and k ≤ 2. We can therefore repeat the procedure we just described

until the first assignment is also atomic. This concludes the proof.

Corollary 5.5. For every copyless assignment ρ ∈ A(X, X ∪ Y, Σ), with X disjoint from

Y, there exists a set of variables Z disjoint from X ∪ Y and a sequence of assignments s =

ρ1, . . . , ρn such that:

1. for every variable x ∈ X, s(x) = ρ(x);

2. the assignment ρ1 belongs to A(X ∪Y ∪ Z, X ∪Y, Σ) and it is atomic;

3. for every 2 ≤ j ≤ n, the assignment ρj belongs to A(X ∪Y ∪ Z, X ∪Y ∪ Z, Σ) and it is

atomic;

4. the assignment ρn belongs to A(X, X ∪Y ∪ Z, Σ) and it is atomic.

Moreover, if two copyless assignments are composed, the resulting assignment is still

copyless.

Lemma 5.6. Given a copyless assignment ρ ∈ A(Y, X, Σ), and a copyless assignment ρ′ ∈
A(Z, Y, Σ), the composed assignment ρ1 = ρ · ρ′ ∈ A(Z, X, Σ) is a copyless assignment in

A(Z, X, Σ).

Proof. Assume this is not the case. Then there exists a variable x ∈ X that appears

twice in the right hand side of ρ1. This means that there exists two variables y1, y2 ∈ Y

appearing in the right hand side of ρ′, such that both ρ(y1) and ρ(y2) contain x. If

y1 6= y2, the assignment ρ cannot be copyless, since it would contain two occurrences

of x. If y1 = y2, ρ′ cannot be copyless, since it would contain two occurrences of y1.

5.5.3 Bottom-up transducers

A nested-word automaton is called bottom-up if it resets its state along the call transition:

if δc(q, a) = (q′, p) then q′ = q0. The well-matched nested word sandwiched between

a call and its matching return is processed by a bottom-up NWA independent of the

outer context. It is known that bottom-up NWAs are as expressive as NWAs over well-

matched nested words [AM09]. We show that a similar result holds for transducers
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also: there is no loss of expressiveness if the STT is disallowed to propagate information

at a call to the linear successor. Notice that STTs reinitialize all the variables at every

call. An STT S is said to be a bottom-up STT if for every state q ∈ Q and symbol a ∈ Σ,

if δc(q, a) = (q′, p) then q′ = q0, and for every variable x ∈ X, ρc(q, a, x) = x.

Theorem 5.7 (Bottom-up STTs). Every STT-definable transduction is definable by a bottom-

up STT.

Proof. Let S = (Q, q0, P, X, η, F, δ, ρ) be an STT. We construct an equivalent bottom-

up STT S′ = (Q′, q′0, P′, X′, η′, F′, δ′, ρ′). Intuitively, S′ delays the application of a call

transition of S to the corresponding return. This is done by computing a summary

of all possible executions of S on the subword between a call and the corresponding

matching return. At the return this summary can be combined with the information

stored on the stack to continue the summarization.

Auxiliary notions. Given a nested word w = a1a2 . . . an, for each position 1 ≤ i ≤ n,

let WMS(w, i) be the longest well-matched subword aj . . . ai ending at position i. For-

mally, given a well-matched nested word w = a1a2 . . . an, we define WMS(w, i) as fol-

lows:

• WMS(w, 0) = ε;

• if ai is internal, then WMS(w, i) = WMS(w, i− 1)ai;

• if ai is a call, then WMS(w, i) = ε;

• if ai is a return with matching call aj, then WMS(w, i) = WMS(w, j− 1)ajaj+1 . . . ai.

The nested word WMS(w, i) is always well-matched, and represents the subword from

the innermost unmatched call position up to position i. For a well-matched nested

word w of length n, WMS(w, n) equals w. Moreover let LC(w, i) denote the last un-

matched call at position i:

• LC(w, 0) = ⊥ is undefined;

• if ai is internal, then LC(w, i) = LC(w, i− 1);

• if ai is a call, then LC(w, i) = i;

• if ai is a return, and WMS(w, i) = aj . . . ai, then LC(w, i) = LC(w, j− 1).
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State components and invariants. Each state f of Q′ is a function from Q to Q. After

reading the i-th symbol of w, S′ is in state f such that f (q) = q′ iff when S processes

WMS(w, i) starting in state q, it reaches the state q′. The initial state of S′ is the identity

function f0 mapping each state q ∈ Q to itself. A stack state in P′ is a pair ( f , a) where

f is a function mapping Q to Q and a is a symbol in Σ.

Next, we define the transition relation δ′. When reading an internal symbol a, starting

in state f , S′ goes to state f ′ such that for each q ∈ Q, f ′(q) = δi( f (q), a). When reading

a call symbol 〈a, starting in state f , S′ stores f on the stack along with the symbol a and

goes to state f0. When reading a return symbol b〉, starting in state f , and with ( f ′, a)

on top of the stack, S′ goes to state f ′′ defined as: for each q ∈ Q, if f ′(q) = q1 (the state

reached by S when reading WMS(w, LC(w, i− 1)) starting in q), δc(q1, 〈a) = (q2, p), and

f (q2) = q3 (the state reached by S when reading WMS(w, i − 1,) starting in q2), then

f ′′(q) = δr(q3, p, b).

Variable updates and invariants. We now explain how S′ achieves the summariza-

tion of the variable updates of S. For each variable x ∈ X and state q ∈ Q, X′ con-

tains a variable xq. After reading the i-th symbol, xq contains the value of x com-

puted by S, when reading WMS(w, i) starting in state q. Given an assignment α ∈
A(X, X, Σ) ∪ A(X, X ∪ Xp, Σ), a state q ∈ Q, and a set of variables Y ⊆ X ∪ Xp, we

define SUBq,Y(α) to be the assignment α′ ∈ A(X′, X′, Σ) ∪ A(X′, X′ ∪ X′p, Σ), where

X′ = (X \ Y) ∪ Y′ with Y′ = {yq | y ∈ Y}, and each variable y ∈ Y is replaced by

yq ∈ Y′.

Initially, and upon every call, each variable xq is assigned the value ? or ε, if x is a type-

1 or type-0 variable respectively. We use e{x/x′} to denote the expression e in which

every variable x is replaced with the variable x′. When processing the input symbol a,

starting in state f , each variable xq is updated as follows:

a is internal: if f (q) = q′, then xq := SUBq,X(ρi(q′, a, x)) is the result of applying the

variable update function of S in state q′ where each variable x ∈ X is renamed to

xq;

a is a call: since S′ is bottom-up, every variable is simply stored on the stack, and the

update function at the call is delayed to the corresponding return, xq := xq;

a = b〉 is a return: if ( f ′, c) is the state popped from the stack, f ′(q) = q1, δc(q1, c) =

(q2, p), and f (q2) = q3, then

xq := SUBq2,X(SUBq,Xp(ρr(q3, b, p, x){yp/ρc(q1, c, y){z/zp}}))
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is the result of applying the call variable update function in state q1, followed by

the return variable update function of S in state q′ where each variable x ∈ X is

renamed to xq2 , and each variable x ∈ Xp is renamed to xq.

Output function. The output function F′ of S′ is defined as follows: for each state

f ∈ Q′, F′( f ) = SUBq0,X(F( f (q0))) is the result of applying the output function of S in

state f (q0) where each variable x ∈ X is renamed to xq0 .

Conflict relation. The conflict relation η′ contains the following rules:

1. Variable summarizing different states are in conflict: for all x, y ∈ X, for all q 6=
q′ ∈ Q, η′(xq, yq′);

2. Variables that conflict in S also conflict in S′, for every possible summary: for all

q ∈ Q, for all x, y ∈ X, if η(x, y), then η′(xq, yq).

Next, we prove that η′ is consistent with the update function ρ′. We assume the current

state f ∈ Q′ to be fixed. We first show that two conflicting variables never appear in the

same right hand side. Each assignment of S′ has the form SUBq,Y(ρ(q, a, x)). Therefore if

no variables of S are conflicting in ρ(q, a, x) with respect to η, no variables are conflicting

in SUBq(ρ(q, a, x)) with respect to η′. Secondly, we show that for each x, y, x′, y′ ∈ X′,

if η′(x, y) holds, x appears in ρ′(q, x′), and y appears in ρ′(q, y′), then η(x′, y′) holds.

From the definition of η′, we have that two variables in X′ can conflict for one of the

following two reasons.

• Two variables xq1 , yq′1
∈ X′ such that q1 6= q′1 appear in two different assignments

to wq2 and zq′2
respectively, for some w, z ∈ X and q2, q′2 ∈ Q. We need to show

η′(wq2 , zq′2
) and we have two possibilities.

– If q2 = q′2, assuming the current symbol is internal, we have that wq2 and

zq2 are updated to SUBq2(ρi( f (q2), a, w)) and SUBq2(ρi( f (q2), a, z)), where all

variables are labeled with q2. This violates the assumption that q1 6= q′1. If

the current symbol is a call or a return a similar reasoning holds.

– If q2 6= q′2, η′(wq2 , zq′2
) follows from the first rule of η′.

• Two variables xq1 , yq1 ∈ X′, such that η(x, y), appear in two different assignments

to wq2 and zq′2
respectively, for some w, z ∈ X, and q2, q′2 ∈ Q. We need to show

η′(wq2 , zq′2
). If q2 = q′2, η′(wq2 , zq′2

) follows from the second rule of η′. If q2 6= q′2,

η′(wq2 , zq′2
) follows from the first rule of η′.

This concludes the proof.
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5.5.4 Regular look-ahead

Now we consider an extension of the STT model in which the transducer can make

its decisions based on whether the remaining (well-matched) suffix of the input nested

word belongs to a regular language of nested words. Such a test is called regular look-

ahead (RLA). A key property of the STT model is the closure under regular look-ahead.

Furthermore, in the presence of regular-look-ahead, the conflict relation can be trivial,

and thus, copyless STTs suffice.

Definition of regular look-ahead. Given a nested word w = a1a2 . . . an, for each po-

sition 1 ≤ i ≤ n, let WMP(w, i) be the longest well-matched subword ai . . . aj starting

at position i. Formally given a well-matched nested word w = a1a2 . . . an, WMP(w, n +

1) = ε, and for each position i such that 1 ≤ i ≤ n:

1. if ai is internal, WMP(w, i) = ai WMP(w, i + 1);

2. if ai is a call with matching return aj, WMP(w, i) = ai WMP(w, i + 1)aj WMP(w, j +

1);

3. if ai is a return, WMP(w, i) = ε.

Given a symbol a ∈ Σ, we define the reverse of a tagged symbol as REV(a) = a,

REV(〈a) = a〉, and REV(a〉) = 〈a. We use REV(w) = REV(an) . . . REV(a1), for the re-

verse of w = a1 . . . an, and REV(L) = {REV(w) | w ∈ L} for the language of reversed

strings in L.

When reading the i-th symbol of w, a look-ahead checks whether a regular property of

the nested word WMP(w, i) holds. Let L be a regular language of nested words, and let

A be a (deterministic) bottom-up NWA for REV(L) (such a NWA exists, since regular

languages are closed under the reverse operation [AM09]). Then, while processing a

nested word, testing whether the nested word WMP(w, i) belongs to L corresponds to

testing whether the state of A after processing REV(WMP(w, i)) is an accepting state of

A. Since regular languages of nested words are closed under intersection, the state of

a single bottom-up NWA A reading the input nested word in reverse can be used to

test membership of the well-matched suffix at each step in different languages. Also

note that, since A is bottom-up, its state after reading REV(WMP(w, i)), is the same as

its state after reading REV(ai . . . an). This motivates the following formalization. Let

w = a1 . . . an be a nested word over Σ, and let A be a bottom-up NWA with states R

processing nested words over Σ. Given a state r ∈ R, we define the (r, A)-look-ahead

labeling of w to be the nested word wr = r1r2 . . . rn over the alphabet R such that for
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each position 1 ≤ j ≤ n, the call/return/internal type of rj is the same as the type of

aj, and the corresponding symbol is the state of the NWA A after reading REV(aj . . . an)

starting in state r. Then, the A-look-ahead labeling of w, is the nested word wA = wr0 . An

STT-with-regular-look-ahead (STTR) consists of a bottom-up NWA A over Σ with states

R, and an STT S from R to Γ. Such a transducer defines a streaming tree transduction

from Σ to Γ: for an input nested word w ∈W(Σ), the output [[S, A]](w) is defined to be

[[S]](wA).

Closure under regular look-ahead. The critical closure property for STTs is captured

by the next theorem, which states that regular look-ahead does not add to the expres-

siveness of STTs. This closure property is key to establishing that STTs can compute all

MSO-definable transductions.

Theorem 5.8 (Closure under regular look-ahead). The transductions definable by STTs

with regular look-ahead are STT-definable.

Proof. Let A be an NWA with states R, initial state r0, stack symbols P′′, and state-

transition function δ′′. Let SA be an STT from R to Γ. We construct an STT S′ =

(Q′, q′0, P′, X′, η′, F′, δ′, ρ′) equivalent to the STTR (SA, A). Using Theorem 5.7, let S =

(Q, q0, P, X, η, F, δ, ρ) be a bottom-up STT equivalent to SA. We use few definitions from

the proof of Theorem 5.7: 1) WMS(w, i) is the longest well-matched subword aj . . . ai

ending at position i; 2) SUBq,Y(α) is the function that substitutes each variable x ∈ Y in

an assignment α with the variable xq.

First of all, we observe that for a well-matched nested word w, and an STT S, if

δ∗((q, Λ, α), w) = (q′, Λ′, α′), then Λ = Λ′, and the value Λ does not influence the

execution of S. Hence, for a well-matched nested word w, we can omit the stack com-

ponent from configurations, and write δ∗((q, α), w) = (q′, α′).

State components and invariants. Given the input nested word w = a1 . . . an, when

processing the symbol ai, the transition of the STT S depends on the state of A after

reading REV(WMP(w, i)). Since the STT S′ cannot determine this value based on the

prefix read so far, it needs to simulate S for every possible choice of r ∈ R. We do this

by keeping some extra information in the states of S′.

Each state q′ ∈ Q′ is a pair ( f , g), where f : R 7→ R, and g : R 7→ Q. After reading

the input symbol ai, for every state r ∈ R, f (r) is the state reached by A after reading

REV(WMS(w, i)) when starting in state r, and g(r) is the state reached by S after reading

WMS(w, i)r starting in state q0. Recall that wr is the state labeling produced by A, when
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reading w starting in state r. The initial state is q′0 = ( f0, g0), where, for every r ∈ R,

f0(r) = r and, g0(r) = q0. Each stack state p′ ∈ P′ is a triplet ( f , g, a), where the

components f and g are the same as for Q′, and a is a symbol in Σ.

We now describe the transition relation δ′. We assume S′ to be in state q = ( f , g), and

processing the input symbol ai. There are three possibilities:

ai is internal: δ′i(q, ai) = ( f ′, g′) where, for each r ∈ R, if δ′′i (r, ai) = r′

• if f (r′) = r′′, then f ′(r) = r′′; the state reached by A when reading

REV(WMS(w, i)), starting in r, is the same as the state reached when read-

ing REV(WMS(w, i− 1)) starting in r′;

• if g(r′) = q, and δi(q, r′) = q′, then g′(r) = q′; the state reached by S

when reading WMS(w, i)r, is the same as the state it reaches when reading

WMS(w, i− 1)r′r′;

ai = 〈a is a call: δ′c(q, a) = (q′0, p), where p = ( f , g, a); the current state ( f , g) is stored

on the stack along with the current symbol a, and the control state is reset to q′0;

ai = a〉 is a return: let aj = 〈b be the matching call of ai, and let p = ( f ′, g′, b) be the state

popped from the stack. Since A is bottom-up for every r ∈ R, δ′′c (r, a) = (r0, pr)

for some pr ∈ P′′. Let f (r0) = r1 be the state reached by A when reading

REV(WMS(w, i− 1)) (i.e., the reversed subword sandwiched between the match-

ing call and return) starting in state r0, and g(r0) = q1 is the state reached by

S after processing WMS(w, i − 1)r0 . Finally, δ′r(q, p, a) = ( f ′′, g′′), where for each

r ∈ R, if δ′′r (r1, pr, b) = r2,

• if f ′(r2) = r′, then f ′′(r) = r′;

• if g′(r2) = q2, δ′c(q2, r2) = (q0, p′), and δ′r(q1, p′, r0) = q′, then g′′(r) = q′.

Variable updates and invariants. The STT S′ has variable set X′ = {xr | x ∈ X, r ∈
R}. After processing the i-th symbol ai, the value of xr is the same as the value of x

computed by S after reading WMS(w, i)r. We can now describe the variable update

function ρ′. We assume that S′ is in state q = ( f , g) and it is processing the symbol ai.

For each variable xr ∈ X′, S′ performs the following update:

ai is internal: if δ′′i (r, a) = r′, and g(r′) = q′, then ρ′(q, a, xr) = SUBr′(ρi(q′, r′, x)) is the

assignment of S to x where each variable x is replaced with xr′ ;

ai = 〈a is a call: S′ performs the assignment ρ′c(q, b, xr) = xr, where we store all variable

values on the stack, and delay the update to the matching return;
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ai = a〉 is a return: let aj = 〈b be the corresponding call, and let p = ( f ′, g′, b) be the

state popped from the stack. The update follows a similar reasoning to that of

the transition function δ′. Assume δ′′c (r, a) = (r0, p), f (r0) = r1, δ′′r (r1, p, b) = r2,

g(r0) = q1, g′(r2) = q2, δc(q2, r2) = (q3, p′). For each x ∈ X, let tc(x) be the

expression ρc(q2, r2, x), and tr(x) be the expression ρr(q1, r0, x);

now for every x ∈ X, let t′c(x) = tc(x){y/yp} be the expression tc(x) in which

every variable y ∈ X is replaced with the corresponding stack variable yp, and let

t′′(x) = tr(x){yp/t′c(y)} be the expression tr(x) in which every variable yp ∈ Xp

is replaced with the expression t′c(y). The final update will be the expression

ρ′(q, a, xr) = SUBr2,Xp(SUBr′,X(t′′(x))) where each non stack variable x is replaced

with x′r, and each stack variable y is replaced with yr2 .

Output function. The function output F′ only outputs variables labeled with r0: for

every state ( f , g) ∈ Q′, if g(r0) = q, then F′( f , g) = SUBr0 F(q).

Conflict relation. Finally, we define the conflict relation η′ as follows:

1. Variables summarizing different look-ahead states are in conflict: for all x, y ∈ X,

for all r1 6= r2 ∈ R, then η′(xr1 , yr2);

2. Variables that conflict in S also conflict in S′ for every possible summary: for all

x, y ∈ X, such that η(x, y), and for all r ∈ R, η′(xr, yr).

The proof that ρ′ is consistent with η′ is analogous to the proof of Theorem 5.7.

Copyless STTs with RLA. Recall that an STT is said to be copyless if η is the reflexive

relation. In an STT, an assignment of the form (x, y) := (z, z) is allowed if x and y are

guaranteed not to be combined, and thus, if only one of x and y contributes to the final

output. Using regular look-ahead, the STT can check which variables contribute to the

final output, avoid redundant updates, and thus be copyless.

Theorem 5.9 (Copyless STT with RLA). A nested-word transduction f is STT-definable iff

it is definable by a copyless STT with regular look-ahead.

Proof. The proof of the⇐ direction is straightforward: given a copyless STT with reg-

ular look-ahead, we can use Theorem 5.8 to construct an equivalent STT.
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We now prove the ⇒ direction. Let S1 be an STT from Σ to Γ. Using theorem 5.7, let

S = (Q, q0, P, X, η, F, δ, ρ) be a bottom-up STT, equivalent to S1. We construct a bottom-

up NWA A = (R, r0, P′′, δ′′), and a copyless STT S′ from R to Γ, such that [[S′, A]] is

equivalent to [[S]].

The NWA A keeps in the state information about which variables will contribute to the

final output. The STT S′ uses such information to update only the variables that will

contribute to the final output and reset all the ones that will not. This allows S′ to be

copyless.

Auxiliary notions. We use the notion WMP(w, i) of longest well-matched subword

ai . . . aj starting at position i. Given a nested word w = a1 . . . an, we also define NR(w, i)

to be the position of the first unmatched return in ai . . . an. By definition, NR(w, n+ 1) =

n + 1, and for each position i such that 1 ≤ i ≤ n:

1. if ai is internal, NR(w, i) = NR(w, i + 1);

2. if ai is a call, with matching return aj, NR(w, i) = NR(w, j + 1);

3. if ai is a return, NR(w, i) = i.

RLA automaton intuition. Since A needs to reset its state at every call, it is not enough

to consider the variables appearing in the output function of S as contributing variables.

After reading the i-th input symbol in REV(w), the state r ∈ R of A contains the follow-

ing information: for every set of variables Y, if Y is the set of relevant variables after

reading NR(w, i), r contains the set of variables Y′ that must be updated when reading

the i-th symbol, in order to have all necessary information to update the variables Y

when processing NR(w, i).

Before presenting the construction in detail, we need few more definitions. We define

the set of subsets of non-conflicting variables of X as follows: UX
def
= {Y | Y ⊆ X ∧

∀x, y ∈ Y, if x 6= y, (x, y) 6∈ η}. We then enrich it with a special variable xF that

represents the final output: UF
X

def
= UX ∪ xF. Moreover, given an expression s ∈ E(X, Σ)

(i.e. an assignment’s right hand side), we use x ∈a s to say that a variable x ∈ X appears

in s.

Given a nested word w = a1 . . . an, and an STT S, we define the function CVS,w : Q×
{0, . . . , n} ×UF

X 7→ UF
X, such that, for every state q ∈ Q, position i, and set of variables

Y, CVS,w(q, i, Y) = Y′ iff Y′ is the set of variables that must be updated by S′ when

reading ai+1 in state q, if the set of relevant variables at NR(w, i) is Y. For every Y ∈ UF
X,

CVS,w(q, n, Y) = Y. For every 0 ≤ i ≤ n− 1 we have the following possibilities.



Streaming tree transducers 131

ai+1 is internal: if δi(q, ai+1) = q′, and CVS,w(q′, i + 1, Y1) = Y2, then CVS,w(q, i, Y1) = Y3

where

• if Y2 = xF, then Y3 = {x | x ∈a F(q′)};
• if Y2 6= xF and ai+2 is a call 〈a, then Y3 = {x | ∃y ∈ Y2.x ∈a ρc(q′, a, y)}; Y3

contains the variables that appear on the right-hand side of the variables Y2

while reading the symbol ai+2;

• if Y2 6= xF and ai+2 is internal, then Y3 = {x | ∃y ∈ Y2.x ∈a ρi(q′, ai+2, y)};
• if ai+2 is a return, then Y3 = Y2.

ai+1 = 〈a is a call: let aj+1 = b〉 be the matching return;

if δc(q, a) = (q0, p), δ∗(q0, (ai+2 . . . aj)) = q1, δr(q1, aj+1, p) = q2, and CVS,w(q2, j +

1, Y1) = Y2, then CVS,w(q, i, Y1) = Y3 where

• if Y2 = xF, then Y3 = {x | ∃y ∈a F(q2).xp ∈a ρr(q1, b, p, y)};
• if Y2 6= xF, then Y3 = {x | ∃y ∈ Y2 ∧ xp ∈a ρr(q1, b, p, y)}.

ai+1 is a return: CVS,w(q, i, Y) = Y if Y 6= xF, and undefined otherwise.

Before continuing we prove that the function CVS,w always returns a set of

non-conflicting variables.

Lemma 5.10. For every i ∈ {0, . . . , n − 1}, q ∈ Q, Y ∈ UF
X, if CVS,w(q, i, Y) = Y′ then

Y′ ∈ UF
X.

Proof. We proceed by induction on i. The base case, i = n and CVS,w(q, n, Y) = Y, is

trivial. We now have to show that for all i < n, if CVS,w(q, i, Y) = Y′, then Y′ ∈ UF
X. We

assume by induction hypothesis that, for all q′ ∈ Q, Z ∈ UF
X, if CVS,w(q′, i + 1, Z) = Z′

then Z′ ∈ UF
X. We have the following three cases.

ai+1 is internal: we need to prove that Y3 ∈ UF
X. By IH, we know that Y2 ∈ UF

X. If

Y2 = xF, Y3 = {x | x ∈a F(q′)} must be a set non-conflicting for F(q′) to be well

defined. If Y2 6= xF, and ai+2 = 〈a is a call, Y3 = {x | ∃y ∈ Y3.x ∈a ρc(q′, a, y))}.
Let’s assume by way of contradiction that there exist x, y ∈ Y2, such that η(x, y)

holds. If this is the case there must exist either two variables x′, y′ ∈ Y3 such

that x ∈a ρc(q′, ai+2, x′) and y ∈a ρc(q′, a, y′), or a variable x′ ∈ Y2 such that

x, y ∈a ρc(q′, a, x′). In both cases, using the definition of conflict relation, we can

show that the hypothesis that Y2 ∈ UF
X contains only conflict free variables is

violated.

ai+1 is a call: similar to the previous case;
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ai+1 is a return: trivial.

This concludes the proof.

RLA automaton construction. We now construct the NWA A that computes the func-

tion CVS,w. The NWA A mimics the definition of CVS,w while reading the input nested

word backward. At every call (return for the input) the state of A is reset to ensure that

the A is bottom-up and the current value of CVS,w is stored on the stack. At the match-

ing return (call for the input), the value popped from the stack is used to compute the

new value of CVS,w.

In order for the construction to work, we also need A to “remember”, while read-

ing backward, what is the set of variables that will be relevant at the next call. Given

a nested word w = a1 . . . an, and a position i, we define NC(w, i) as the next call in

WMP(w, i). Formally, NC(w, n + 1) = ⊥, and, for each 1 ≤ i ≤ n,

• if ai is internal, then NC(w, i) = NC(w, i + 1);

• if ai is a call, then NC(w, i) = i;

• if ai is a return, then NC(w, i) = ⊥.

Next, we define the set of states R of A. Each state r ∈ R, is a quadruple (s, f , g, h)

where s ∈ Σ ∪ {⊥}, f : Q × UF
X 7→ UF

X, g : Q 7→ Q, and h : Q × UF
X 7→ (UF

X ∪ ⊥),
where f computes the function CVS,w(q, i, Y) = Y′, g summarizes the execution of S on

WMP(w, i), and h computes which variables will be necessary at the return matching

the next call, and therefore which variables must be stored on the stack. We formally

present the invariants maintained by A and then show its construction. Given the input

nested word w = a1 . . . an, after processing REV(ai . . . an), A is in state (s, f , g, h), where:

1. for all Y ∈ UF
X, and q ∈ Q, if CVS,w(q, i, Y) = Y′, then f (q, Y) = Y′;

2. if ai is a return, then s = ⊥, otherwise s = ai;

3. if q′ = δ∗(q, WMP(w, i)), then g(q) = q′;

4. for all Y ∈ UF
X, and q ∈ Q, h(q, Y) = Y1, where

• if NC(w, i) = ⊥, then Y1 = ⊥,

• if NC(w, i) = ic, aic = 〈a has matching return air = b〉, δ∗(q, ai . . . aic−1) =

q1, δc(q1, aic) = (q0, p), δ∗(q0, WMP(w, ic + 1) = q2, δr(q2, p, air) = q3, and

CVS,w(q3, ir, Y) = Y2, then
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– if Y2 = xF, then Y1 = {x | x 6∈ Xp ∧ ∃y ∈a F(q3). x ∈a ρr(q2, b, p, y)};
– if Y2 6= xF and air+1 = 〈c is a call, then Y1 = {x | x 6∈ Xp ∧ ∃y ∈ Y2.∃z ∈a

ρc(q3, c, y).x ∈a ρr(q2, b, z)};
– if Y2 6= xF and air+1 is internal, then Y1 = {x | x 6∈ Xp ∧ ∃y ∈ Y2.∃z ∈a

ρi(q3, air+1, y).x ∈a ρr(q2, b, z)};
– if Y2 6= xF and air+1 = c〉 is a return, then Y1 = {x | x 6∈ Xp ∧ ∃y ∈a

Y2. x ∈a ρr(q2, air , p, y)}.

The initial state of A is r0 = (⊥, f0, g0, h0), where f0(q, Y) = Y, g0(q) = q and h0(q, Y) =

⊥, for every q ∈ Q, and Y ∈ UF
X.

Next we define the transition relation δ′′ of A, that preserves the invariants presented

above. For each r = (s, f , g, h) ∈ R, a ∈ Σ, δ′′(r, a) is defined as follows:

a is internal: δ′′i (r, a) = (a, f1, g1, h1) where for each q ∈ Q, Y1 ∈ UF
X, if δi(q, a) = q′, then

g1(q) = g(q′), h1(q, Y1) = h(q′, Y1), and f1(q, Y1) = Y3 where

• if Y2 = xF, then Y3 = {x | x ∈a F(q′)};
• if Y2 6= xF and s = 〈c is a call, then Y3 = {x | ∃y ∈ Y2.∃z ∈a ρc(q3, c, y).x ∈a

ρr(q2, b, z))};
• if Y2 6= xF and s is internal, then Y3 = {x | ∃y ∈ Y2.x ∈a ρi(q′, s, y)};
• if s = ⊥, then Y3 = Y2;

a is a call 〈b (return reading backward): let r1 = ((s1, f1, g1, h1), s) be the state popped from

the stack, then, δ′′r (r, r1, b) = (b, f2, g2, h2), where for each q ∈ Q, Y ∈ UF
X,

if δc(q, b) = (q0, p), g(q0) = q1, δr(q1, s, p) = q2, and f1(q2, Y1) = Y2, then,

g2(q) = g(q2), h2(q, Y1) = Y3 ∩ X, and, f2(q, Y1) = {x | xp ∈ Y3}, where

• if Y2 = xF, then Y3 = {x | ∃y ∈a F(q2) ∧ x ∈a ρr(q1, s, p, y)};
• if Y2 6= xF and s1 = 〈c is a call, then Y3 = {x | ∃y ∈ Y2. ∃z ∈a ρc(q1, s1, y). x ∈a

ρr(q2, s, z)};
• if Y2 6= xF and s1 is internal, then Y3 = {x | ∃y ∈ Y2. ∃z ∈a ρc(q1, s1, y). x ∈a

ρr(q2, s, z)};
• if Y2 6= xF and s1 = c〉 is a return, then Y3 = {x | ∃y ∈ Y2. x ∈a ρr(q1, s, p, y)};

a is a return b〉 (call reading backward): δ′′c (r, b) = (r0, (r, b)).
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STT construction. We finally need to define the STT S′ from R to Γ. When reading

an input symbol in (a, f , g, h) ∈ R, S′ uses the information stored in the function f

to update only the variables that are relevant to the final output. The set of states

of S′ is Q′ = Q × UF
X, with initial state q′0 = (q0, xF). When processing the symbol

ri = (a, f , g, h), S′ is in state (q, Y) iff S reaches the state q when processing a1 . . . ai−1,

starting in q0, and the set of relevant variables at the end of WMP(w, i) is Y. Similarly,

the set of stack states is P′ = P ×UF
X. The set of variables is X′ = X. The transition

function δ′ is defined as follows. For each state (q, Y) ∈ Q′, stack state (p, Y′) ∈ P′, and

symbol r = (a, f , g, h) ∈ R we have the following possibilities:

a is internal: if δi(q, a) = q′, then δ′i((q, Y), r) = (q′, Y);

a is a call: if δc(q, a) = (q′, p), and h(q, Y) = Y′, then δ′c((q, Y), r) = (q′, (p, Y′));

a is a return: if δr(q, p, a) = q′, then δ′r((q, Y), (p, Y′), r) = (q′, Y′).

Next, we define the variable update function ρ′. For each state (q, Y) ∈ Q′, stack state

(p, Y′) ∈ P′, symbol r = (a, f , g, h) ∈ R, variable x ∈ X′;

• if x ∈ f (q, Y), then we have the following possibilities:

a is internal: ρ′i(q, r, x) is the same as ρi(q, a, x);

a is a call: ρ′c(q, r, x) is the same as ρc(q, a, x);

a is a return: ρ′r(q, p, r, x) is the same as ρr(q, p, a, x);

• if x 6∈ f (q, Y), then we have the following possibilities:

a is internal: if x is a type-0 variable then ρ′i(q, r, x) = ε, otherwise ρ′i(q, r, x) =?;

a is a call: if x is a type-0 variable then ρ′c(q, r, x) = ε, otherwise ρ′c(q, r, x) =?;

a is a return: if x is a type-0 variable then ρ′r(q, r, p, x) = ε, otherwise

ρ′r(q, r, p, x) =?.

Last, the output function F′ is the same as F. From the definition of CVS,w we have that

S′ is copyless, and by construction [[S′, A]] is equivalent to [[S]].

5.5.5 Multi-parameter STTs

In our basic transducer model, the value of each variable can contain at most one hole.

Now we generalize this definition to allow a value to contain multiple parameters.
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Such a definition can be useful in designing an expressive high-level language for trans-

ducers, and it is also used to simplify constructions in later proofs.

We begin by defining nested words with parameters. The set H(Σ, Π) of parameterized

nested words over the alphabet Σ using the parameters in Π, is defined by the grammar

H := ε | a |π | 〈a H b〉 |H H for a, b ∈ Σ and π ∈ Π.

For example, the nested word 〈a π1 〈b〉 π2 a〉 represents an incomplete tree with a-

labeled root that has a b-labeled leaf as a child, such that trees can be added to its left as

well as right by substituting the parameter symbols π1 and π2 with nested words. We

can view such a nested word with 2 parameters as a function of arity 2 that takes two

well-matched nested words as inputs and returns a well-matched nested word.

In the generalized transducer model, the variables range over parameterized nested

words over the output alphabet. Given an alphabet Σ, a set X of variables, and a set Π

of parameters, the set E(Σ, X, Π) of expressions is defined by the grammar

E := ε | a |π | x | 〈a E b〉 | E E | E[π 7→ E] for a, b ∈ Σ, x ∈ X, and π ∈ Π.

A valuation α from X to H(Σ, Π) naturally extends to a function from the expressions

E(Σ, X, Π) to H(Σ, Π).

To stay within the class of regular transductions, we need to ensure that each variable

is used only once in the final output and each parameter appears only once in the

right-hand side at each step. To understand how we enforce single-use restriction on

parameters, consider the update x := xy associated with a transition from state q to

state q′. To conclude that each parameter can appear at most once in the value of x

after the update, we must know that the sets of parameters occurring in the values of

x and y before the update are disjoint. To be able to make such an inference statically,

we associate, with each state of the transducer, an occurrence-type that limits, for each

variable x, the subset of parameters that are allowed to appear in the valuation for x

in that state. Formally, given parameters Π and variables X, an occurrence-type ϕ is a

function from X to 2Π. A valuation α from X to H(Σ, Π) is said to be consistent with the

occurrence-type ϕ if for every parameter π ∈ Π and variable x ∈ X, if π ∈ ϕ(x), then

the parametrized nested word α(x) contains exactly one occurrence of the parameter

π, and if π 6∈ ϕ(x), then π does not occur in α(x). An occurrence-type from X to Π

naturally extends to expressions in E(Σ, X, Π): for example, for the expression e1e2, if

the parameter-sets ϕ(e1) and ϕ(e2) are disjoint, then ϕ(e1e2) = ϕ(e1) ∪ ϕ(e2), else the

expression e1e2 is not consistent with the occurrence-type ϕ. An occurrence-type ϕX
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from variables X to 2Π is said to be type-consistent with an occurrence-type ϕY from Y

to 2Π and an assignment ρ from Y to X, if for every variable x in X:

• the expression ρ(x) is consistent with the occurrence-type ϕY, and

• the parameters resulting from performing the assignment to x are consistent:

ϕY(ρ(x)) = ϕX(x).

Type-consistency ensures that for every valuation α from Y to H(Σ, Π) consistent with

ϕ, the updated valuation α · ρ from X to H(Σ, Π) is guaranteed to be consistent with ϕ′.

Now we can define the transducer model that uses multiple parameters. A multi-

parameter STT § from input alphabet Σ to output alphabet Γ consists of:

• a finite set of states Q;

• an initial state q0;

• a set of stack symbols P;

• state-transition functions δi, δc, and δr, that are defined in the same way as for

STTs;

• a finite set of typed variables X equipped with a reflexive symmetric binary con-

flict relation η;

• for each state q, an occurrence-type ϕ(q) : X 7→ 2Π, and for each stack symbol p,

an occurrence-type ϕ(p) : X 7→ 2Π;

• a partial output function F : Q 7→ E(X, Γ, Π) such that for each state q, the ex-

pression F(q) is consistent with η, and ϕ(q)(F(q)) is the empty set;

• for each state q and input symbol a, the update function ρi(q, a) from variables X

to X over Γ is consistent with η and is such that the occurrence-type ϕ(δi(q, a)) is

type-consistent with the occurrence-type ϕ(q) and the update ρi(q, a);

• for each state q and input symbol a, the update function ρc(q, a) from variables

X to X over Γ is consistent with η and it is such that, if δc(q, a) = (q′, p) the

occurrence-types ϕ(p) and ϕ(q′) are type-consistent with the occurrence-type

ϕ(q) and the update ρc(q, a);

• for each state q and input symbol a and stack symbol p, the update function

ρr(q, p, a) from variables X ∪ Xp to X over Γ is consistent with η and it is such

that the occurrence-type ϕ(δr(q, p, a)) is type-consistent with the occurrence-type

ϕ(q) and ϕ(p) and the update ρr(q, p, a).
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We can assume that ϕ(q0) = ∅, and therefore all variables are initialized to ε.

Configurations of a multi-parameter STT are of the form (q, Λ, α), where q ∈ Q is a

state, α is a valuation from variables X to H(Γ, Π) that is consistent with the occurrence-

type ϕ(q), and Λ is a sequence of pairs (p, β) such that p ∈ P is a stack symbol and

β is a valuation from variables X to H(Γ, Π) that is consistent with the occurrence-

type ϕ(p). The clauses defining internal, call, and return transitions are the same as

for STTs, and the transduction [[S]] is defined as before. In the same way as before we

define a copyless multi-parameter STT as a multi-parameter STT with a purely reflexive

reflexive conflict relation (i.e.η = {(x, x) | x ∈ X}) .

Now we establish that multiple parameters do not add to expressiveness. We first

prove the property for copyless STTs. Then we add regular look-ahead and show and

use it to show that the property holds for general STTs.

Theorem 5.11 (Copyless multi-parameter STTs). A nested-word transduction is definable

by a copyless STT iff it is definable by a copyless multi-parameter STT.

Proof. Given a copyless STT S constructing a multi-parameter copyless STT S′ is trivial.

The parameter set Π of S′ is the singleton {?}. For every state q of S, there is a corre-

sponding state q in S′. For every type-0 variable x and state q in S, ϕ(q, x) = ∅ while

for every type-1 variable y, ϕ(q, y) = {?}.

We now prove the other direction of the iff. Let S be a multi-parameter copyless STT

with states Q, initial state q0, stack symbols P, parameters Π with |Π| = k, variables

X with |X| = n, occurrence-type ϕ, output function F, state-transition functions δi,

δc, and δr, and variable-update functions ρi, ρc, and ρr. We construct an equivalent

copyless STT S′ = (Q′, q′0, P′, X′, F′, δ′, ρ′).

Variable summarization intuition. We need to simulate the multi-parameter vari-

ables using only variables with a single hole. We do this by using multiple variables

to represent a single multi-parameter variable, and by maintaining in the state extra

information on how to combine them.

The construction maintains a compact representation of every multi-parameter vari-

able. To understand the construction, consider a variable x with value

〈a 〈b π1 b〉 〈c〉 〈b π2 b〉 a〉. One possible way to represent x using multiple variables,

each with only one parameter in its value, is the following: x1 = 〈a?a〉, x2 = 〈b?b〉〈c〉,
and x3 = 〈b?b〉. Next, we need to maintain in the state some information regarding

how to combine these three values to reconstruct x. For this purpose, we use a function

of the form f (x1) = (x2, x3), f (x2) = π1, f (x3) = π2, that tells us to replace the ? in x1
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with x2x3 and the holes in x2 and x3, with π1 and π2 respectively. The state will also

maintain a function g that remembers the starting variable (the root of the tree): in this

case g(x) = x1 means that x1 is the root of the symbolic tree representing the variable

x.

We now formalize this idea. The set of variables X′ contains (2k − 1)n variables of

type-1 and n variables of type-0. When S′ is in state q, for every variable x ∈ X,

• if ϕ(x) 6= ∅, the value of x is represented by 2|ϕ(x)| − 1 type-1 variables in X′;

• if ϕ(x) = ∅, the value of x is represented by one type-0 variable in X′.

Since ϕ(x) ≤ k, we can assume that for every variable x ∈ X, there are exactly 2k− 1

type-1 variables and one type-0 variable in S′ corresponding to it. We denote this set

by V(x) = {x0, x1, . . . , x2k−1}, where x0 is the only type-0 variable. Therefore, the STT

S′ has the set of variables X′ =
⋃

x∈X V(x).

State components and invariants. Each state of Q′ is a triplet (q, g, f ), where q ∈ Q

keeps track of the current state of S, g : X 7→ X′ keeps track of the root of the sym-

bolic tree representing each variable, and f : X′ 7→ (X′ × X′) ∪Π ∪ {ε} ∪ ⊥ maintains

information on the symbolic tree representing each variable. Given a variable x ∈ X′,

f (x) = ⊥means that x is not being used in any symbolic tree.

We now define the unfolding f ∗ of the function f that, given a variable in x ∈ X′

provides the value in H(Σ, Π) corresponding to the symbolic tree rooted in x:

• if f (x) = ε, then f ∗(x) = x;

• if f (x) = πi, then f ∗(x) = x[πi];

• if f (x) = (y, z), then f ∗(x) = x[ f ∗(y) f ∗(z)];

• if f (x) = ⊥, then f ∗(x) = ⊥.

Our construction maintains the following invariant: at every point in the computation,

the value of f ∗(g(x)) in S′ is exactly the same as the value of x in S. We can assume

that at the beginning every variable x ∈ X′ has value ε, and we represent this with

g(x) = x0 and f (x0) = ε. For this base case the invariant holds.

Similarly to what we did for STTs (Corollary 5.5), we observe that every assignment

can be expressed as a sequence of elementary updates of the following form:
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Constant assignment: x := w where w is a constant (w is of the form a, π, x, 〈aπb〉);

Concatenation: {x := xy; y := ε} (and similar cases such as {x := yx; y := ε});

Parameter substitution: {x := x[π 7→ y]; y := ε} (and similar cases such as {x := y[π 7→
x]; y := ε});

Swap: {x := y; y := x}.

Update functions. We now describe at the same time the transition relation δ′ and the

variable update function ρ′ of S′. Consider a state (q, f , g). We call (q′, f ′, g′) the target

state and we only write the parts that are updated skipping the trivial cases. Every time

a variable v is unused we set f ′(v) to ⊥. We show that the state invariant is inductively

preserved:

{x := w}: where w is a constant. Similarly to what we showed earlier in the informal

description, the content of x can be summarized using 2|ϕ(x)| − 1 variables.

{x := xy; y := ε}: in order for the assignment to be well-defined ϕ(q′, x) must be the

same as ϕ(q, x) ∪ ϕ(q, y), and |ϕ(q′, x)| = |ϕ(q, x)|+ |ϕ(q, y)| ≤ k. Let’s assume

wlog that both ϕ(q, x) and ϕ(q, y) are not empty. By IH x and y use 2|ϕ(x)| − 1 +

2|ϕ(y)| − 1 = 2(|ϕ(q, x)|+ |ϕ(q, y)|)− 2 ≤ 2k− 2 variables. First we assign each

yi in the tree rooted in g(y) to some unused xi′ in V(x). Let a(yi) = xi′ be such

a mapping. From the IH we know that at least one type-1 variable xj ∈ V(x) is

unused. We can use xj to concatenate the variables summarizing x and y. We can

reflect such an update in the tree shape of x as follows: for every z ∈ V(x),

• if there exists y′ such that a(y′) = z, we copy the summary from y′ to z and

replace each variable in the summary with the corresponding one in V(x):

f (z) = f (y){y′/a(y′)}, z = y, and y′ = ε;

• if z = xj we concatenate the previous summaries of x and y: if g(x) = x′,

and g(y) = y′, and a(y′) = x′′, then g′(x) = z, and f ′(z) = x′x′′. Finally the

variable z needs to hold the ?: ρ(z) =?.

Finally if y0 is the type-0 variable in V(y), g′(y) = y′, f (y′) = ε, and y0 = ε.

{x := x[π 7→ y]; y := ε}: in order for the assignment to be well-defined ϕ(q′, x) must be

the same as (ϕ(q, x) \ {π})∪ ϕ(q, y), and |ϕ(q′, x)| = (|ϕ(q, x)| − 1) + |ϕ(q, y)| ≤
k. Let’s assume wlog that both ϕ(q, x) and ϕ(q, y) are not empty. By IH x and y

use 2|ϕ(x)| − 1 + 2|ϕ(y)| − 1 = 2(|ϕ(q, x)|+ |ϕ(q, y)|)− 2 ≤ 2(k + 1)− 2 = 2k

variables. First we assign each yi 6= g(y) in the tree rooted in g(y) to some unused

xi′ in V(x). Let a(yi) = xi′ be such a mapping. So far we used 2k − 1 variables
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x := ax[π1 ← π1π5]

FIGURE 5.2: Example of paramter tree update.

in V(x). When performing the updates we show how the variable representing

the root g(y) need not be copied allowing us to use at most 2k − 1 variables to

summarize the value of x. The root of the tree summarizing x will be the same as

before: if g′(x) = g(x). Every variable z ∈ V(x) is updated as follows:

• if there exists y such that a(y) = z, we copy the summary from y to z and

replace each variable in the summary with the corresponding one in V(x):

f (z) = f (y){y′/a(y′)}, z = y, and y′ = ε;

• if z = xπ we append the summary of y to it: if g(y) = y′, then

– if f (y′) = y1y2, a(y′) = x′, a(y1) = x1 and a(y2) = x2, then f ′(z) =

(x1, x2), and ρ(z) = z[y′];

– if f (y′) = π′, and a(y′) = x′, then f ′(z) = π′, and ρ(z) = z[y′].

Finally if y0 is the type-0 variable in V(y), g′(y) = y′, f (y′) = ε, and y0 = ε.

{x := y; y := x}: we simply swap the summaries of x and y. Let a : V(x) 7→ V(y) be

a bijection from V(x) to V(y), and let b : V(y) 7→ V(x) be the inverse of a. Then

g′(x) = a(g(y)), g′(y) = b(g(x), f ′(x) = f (y){y′/a(y′)}, f ′(y) = f (x){x′/b(x′)},
for each x′ ∈ V(x), x′ = a(x′), and for each y′ ∈ V(y), y′ = b(y′).

Figure 5.2 shows an example of update involving a combination of elementary up-

dates. The parameter tree on the left shows represents the content π1π2π3π4 for a

variable x. Therefore, for the tree on the left, g(x) = x5 and f (x5) = (x1, x6), f (x6) =

(x2, x7), f (x7) = (x3, x4), f (x1) = π1, f (x2) = π2, f (x3) = π3, f (x4) = π4. Each vari-

able is of type-1. After the update we have x5 := ax5, and we take two fresh variables

x′, x′′ to update the tree to the one on the right where we set

f (x′′) = (x1, x′), f (x′) = π5. Since we have 5 parameters and 9 nodes, the counting

argument still holds. Before the update f ∗(x5) evaluates to π1π2π3π4, while after the

update f ∗(x5) evaluates to aπ1π5π2π3π4.

We finally show how δ′ and ρ′ are defined at calls and returns. The functions main-

tained in the state are stored on the stack at every call, and this information is used at
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the corresponding return to create the updated tree. Since all variables are reset at calls,

this step is quite straightforward and we omit it. By inspection of the variable update

function, it is easy to see that the assignments are still copyless.

Output function. Last, for every state (q, f , g) ∈ Q′, the output function F′(q, f , g) =

f ∗(F(q)), where f ∗ is naturally extended to sequences: f ∗(ab) = f ∗(a) f ∗(b).

We can then equip Theorem 5.11 with regular look-ahead and get the following result.

Corollary 5.12 (Copyless multi-parameter STTs RLA). A nested-word transduction is de-

finable by a copyless STT with regular look-ahead iff it is definable by a copyless multi-parameter

STT with regular look-ahead.

We then extend the result of Theorem 5.9 to multi-parameter STTs.

Lemma 5.13. A nested-word transduction is definable by a copyless multi-parameter STT with

regular look-ahead iff it is definable by a multi-parameter STT.

Proof. The proof of Theorem 5.9 does not use parameter assignment and can therefore

be used for this theorem as well.

Finally, we can conclude that multi-parameter STTs capture the class of STT definable

transformations.

Theorem 5.14 (Multi-parameter STTs). A nested-word transduction is definable by an STT

iff it is definable by a multi-parameter STT.

Proof. From Theorems 5.13, 5.12, and 5.14.

5.5.6 Closure under composition

We proceed to show that STTs are closed under sequential composition. Many of our

results rely on this crucial closure property.

Theorem 5.15 (Closure under composition). Given two STT-definable transductions, f1

from Σ1 to Σ2 and f2 from Σ2 to Σ3, the composite transduction f2 · f1 from Σ1 to Σ3 is STT-

definable.

Proof. Using Theorem 5.9, we consider S1 and S2 to be copyless STTs with regular look-

ahead.
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• S1 = (Q1, q01, P1, X1, F1, δ1, ρ1) with regular look-ahead automaton A1, and

• S2 = (Q2, q02, P2, X2, F2, δ2, ρ2) with regular look-ahead automaton

A2 = (R, r0, Pr, δr).

We construct a multi-parameter STT S with regular look-ahead automaton A1, that is

equivalent to S1 composed with S2. Finally, we use Theorems 5.8 and 5.14, to remove

the parameters and then regular look-ahead, proving that there exists an STT equiva-

lent to S.

Intuition behind the construction. The STT S has to simulate all the possible execu-

tions of S2 on the output of S1 in a single execution. S keeps in each state a summariza-

tion of the possible executions S2 and uses a larger set of variables to consider all the

possible variable values of such executions. At every point in the execution, for every

state q ∈ Q2, and for every variable x1 ∈ X1 and x2 ∈ X2, the STT S has to remember

what would be the value of x2 if S2 reads the content of x1 starting in q. The construc-

tion relies on the fact that the content of a variable is a well-matched nested word (with

parameters). Thanks to this property, S does not need to collect any information about

the stack of S2.

We show the intuition with a simple example. Let’s assume for simplicity that S1 has

only one variable x and S2 has only one variable y. We also assume that both the look-

aheads consist of only one state, and therefore we ignore them. Let’s say that at some

point in the computation x has value ? and the next input symbol is a. When reading a,

S1 updates x to ax[?b]. We need to reflect this update on the variable y of S2 — i.e. what

is the value of y when S2 reads ax[?b]. However, we do not know what is the current

state of S2, and what value S1 stores in the hole ?. For every possible state q of S2, and

variable x of S1, the STT S tracks what is the state reached by S2 after processing the

value in x, starting in state q. However, we still need to deal with the unknown value of

the hole ?. We can extend the previous idea to solve this problem. Consider the value

of x to be a?b, where a and b are the nested words respectively before and after the hole.

The STT S maintains a function f that, for every two states q1 and q2 of S2, keeps track

of the state reached by S2 when reading a starting in state q1, and the state reached by

S2 when reading b starting in state q2 knowing that a was read starting in state q1. In

order to compute the second part of the function, S needs the stack computed by the

first one and therefore needs to know that a is processed starting in state q1.

Next, we describe how we summarize the variable updates of S2. Again, the update

of y depends on the state in which S2 starts reading the value of x. Similarly to before,

we need to deal with the unknown value of the hole ?. However this is not the only
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problem. Let’s assume the variable update function of S2 is as follows: ρ2(q, y, b) = cy.

We want to simulate the execution of S2, but at this point we do not know what is the

previous value of y! We address this issue by treating the old value of y as a parameter.

This tells us that the set of parameters contains a parameter x′ for every variable in

x ∈ X2. Similarly to what we did for the transition relation, for every two states q1 and

q2 of S2, and every variable y of S1, there is

• a variable gL
1 (q1, x, y) representing the value of y, when S2 reads the value of x on

the left of ?, starting in state q1;

• a variable gR
1 (q1, q2, x, y) representing the value of y, when S2 reads the value of x

on the right of ?, starting in state q2, assuming that the value of y on the left of ?

was read by S2 starting in state q1.

Both these variables at the beginning are set to y′, a parameter that represents the value

of y before processing the current input. The updates then mimic the transition relation.

For example, for the case in which ρ2(q, y, b) = cy, the value of gR
1 (q
′, q, x, y) is set to

cy′.

Since S2 itself uses type-1 variables, we use the parameter ? for such variable values.

Let’s analyze this case in detail. When ? directly appears in the g representation of a

variable, we can treat it as a normal parameter. The problem occurs in the following

case: let’s say at a particular step g(q, x, y) = y′ but y is a type-1 variable. This can only

mean that the ? appears in y′. Now let’s assume that the next update is of the form

y := y[a]. As we can see, we still do not have the ? appearing in the representation of

y. We record this fact with a function and delay the substitution using an extra variable

for the parameters. As an example, suppose that at some point the values of x and

y, both of type 1, are x′, y′. We use the variables x? =? and y? =? to represent their

parameters. Then, after processing a well-matched subword, we may have an update

of this form x := ax[cy[a?c]]b and y := a?. Notice that the reflexivity of η ensures

that x′ and y′ can appear at most once in the valuation of a variable at any point. This

configuration is captured by x := axb, x? = cy, y? = a?c and y = a?. In addition we

need to keep information about where the actual parameter of every variable is. Let’s

consider the case in which we are trying to summarize a type-0 variable y of S2. We

keep in the state a function p0, such that p0(q, x, y) = ε if the ? appears in g0(q, x, y),

while p0(q, x, y) = xy, if, for example, in order to substitute the value of ? with the

value v (x := x[v]), we need to perform the following update, where we omit the state

q and the variable x for readability:

x := x[x′ 7→ x?[y′ 7→ y?[? 7→ v]]].
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Finally, we need to summarize the possible look-ahead values of S2 when reading the

variable contents. For example if a variable x of S1 contains the value s?t, we need

to know, for every r1 and r2 in R, what state would A2 reach when reading s and t

backward. We use two functions lL
1 and lR

1 , such that lR
1 (r2, x) = r′2 and lL

1 (r1, r2, x) = r′1,

iff δ∗R(r2, REV(t)) = (r′2, Λ), and δ∗R(r1, Λ, REV(s)) = r′1.

State components and invariants. We denote with Xi,j the set of type-j variables in

Xi. Each state of Q is a tuple (q, f0, f L
1 , f R

1 , l0, lL
1 , lR

1 , p0, pL
1 , pR

1 ), where

• q ∈ Q1 keeps track of the current state of S1;

• f0 : Q2 × R× X1,0 7→ Q2 is the summarization function for type-0 variable;

• f L
1 : Q2 × R × R × X1,1 7→ Q2, and f R

1 : Q2 × Q2 × R × R × X1,1 7→ Q2 are the

summarization functions for type-1 variables;

• l0 : R× X1,0 7→ R is the look-ahead summarization function for type-0 variable;

• lL
1 : R× R× X1,1 7→ R, and lR

1 : R× X1,1 7→ R are the look-ahead summarization

functions for type-1 variables;

• p0 : Q2 × R× X1,0 × X2,1 7→ X∗2,1 is the function keeping track of the ? for type-0

variables;

• pL
1 : Q2 × R× R× X1,1 × X2,1 7→ X∗2,1, and pR

1 : Q2 ×Q2 × R× R× X1,1 × X2,1 7→
X∗2,1 are the function keeping track of the ? for type-1 variables.

We first describe the invariants that S maintains for the first 7 components: given an in-

put nested word w = a1 . . . an, after reading the symbol ai, S is in state

(q, f0, f L
1 , f R

1 , l0, lL
1 , lR

1 , , , ).

• The component q is the state reached by S1 on the prefix a1 . . . ai, δ∗1 (q01, a1 . . . ai) =

q.

• Given q1 ∈ Q2, and r ∈ R, if x contains the value s ∈ W0(Σ2), and δ∗2 (q1, sr) = q′1,

then f0(q1, r, x) = q′1.

• Given q1, q2 ∈ Q2, and r1, r2 ∈ Q2, if x contains the value s?t ∈ W1(Σ2),

δ∗2 (q1, sr1,Λr2,t) = (q′1, Λ), and δ∗2 (q2, Λ, tr2) = q′2, then f L
1 (q1, r1, r2, x) = q′1, and

f R
1 (q1, q2, r1, r2, x) = q′2. We use the notation sr1,Λr2,t to denote the run on s of A2

starting in state r1 assuming that A2 has an initial stack value computed by A2 on

t starting in state r2.
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• Given r1 ∈ R, if x contains the value s ∈ W0(Σ2), and δ∗2 (r1, REV(s)) = r′1, then

l0(r1, x) = r′1.

• Given r1, r2 ∈ R, if x contains the value s?t ∈ W1(Σ2), δ∗2 (r2, REV(t)) = (r′2, Λ),

and δ∗2 (r1, Λ, REV(s)) = r′1, then lL
1 (r1, r2, x) = r′1, and lR

1 (r2, x) = r′2.

State transition function. We now show how we maintain the invariants defined

above at every update. We first investigate the update of all the components differ-

ent from p0, pL
1 , and pR

1 . Let’s assume S is in state (q, f0, f L
1 , f R

1 , l0, lL
1 , lR

1 , p0, pL
1 , pR

1 ). We

are only going to write the parts that are updated, and as before we only consider

atomic updates of S1. We analyze the type-1 case (the 0 case is easier). At every step we

indicate with a prime sign the updated components.

{x := w}: we consider the case where w = 〈a?b〉 (the other cases are similar). For each

q1 and q2 in Q2, r1, r2 in R, if δR(r2, 〈b) = (r′2, p) for some p ∈ Pr, δR(r1, p, a〉) = r′1,

δ∗2 (q1, r′1) = (q′1, Λ), and δ∗2 (q2, Λ, r′2) = q′2, then the new state has the following

components: f L
1
′
(q1, r1, r2, x) = q′1, f R

1
′
(q1, q2, r1, r2, x) = q′2, lL

1
′
(r1, r2, x) = r′1, and

lR
1
′
(r2, x) = r′2.

{x := xy; y := ε}: without loss of generality, let y be a type-0 variable, and x be a type-

1 variable. For each ql and qr in Q2, rl , rr in R, if l0(r1, y) = r1, lR
1 (r1, x) = r2,

lL
1 (rl , r1, x) = r3, f L

1 (ql , rl , r1, x) = q1, f R
1 (qr, rl , r1, x) = q2, and f0(q2, rr, y) =

q3, then for every q ∈ Q2, and r ∈ R, the new state has the following com-

ponents: lL
1
′
(rl , rr, x) = r3, lR

1
′
(rr, x) = r2, l0′(r, y) = r, f L

1
′
(ql , rl , rr, x) = q1,

f R
1
′
(ql , qr, rl , rr, x) = q3, and f0

′(q, r, y) = q.

{x := x[y]; y :=?}: let x and y be type-1 variables (the other cases are simpler). We

need to “synchronize” the left and right parts to update the function f . For each

ql and qr in Q2, rl , rr in R, assume lR
1 (rr, x) = r1, lR

1 (r1, y) = r2, lL
1 (rl , r1, y) = r3,

lL
1 (r3, rr, z) = r4, and f L

1 (ql , r3, rr, x) = q1, f L
1 (q1, rl , r1, y) = q2, f R

1 (q1, qr, rl , r1, y) =

q3, and f R
1 (ql , q3, r3, rr, x) = q4. For every q, q′ ∈ Q2, and r, r′ ∈ R, the new state

has the following components: lL
1
′
(rl , rr, x) = r4, lR

1
′
(rr, x) = r2, lL

1
′
(r, r′, y) = r,

lR
1
′
(r, y) = r, f L

1
′
(ql , rl , rr, x) = q2, f R

1
′
(ql , qr, rl , rr, x) = q4, f L

1
′
(q, r, r′, y) = q, and

f R
1
′
(q, q′, r, r′, y) = q′.

{x := y; y := x}: every component involving x is swapped with the corresponding

component involving y.

Variable summarization. Similarly to what we did for state summarization, S will

have variables of the form g0(q, r, x, y) with the following meaning: if x contains a
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nested word w, g0(q, r, x, y) is the value contained in y ∈ X2 after reading wr starting

in state q. As we described earlier, there will also be variables of the form g0(q, r, x, y)?

representing the value of the parameter of y. The set of variables X of S described by

the union of the following sets:

• {g0(q, r, x, y) | (q, r, x, y) ∈ Q2 × R× X1,0 × X2};

• {g0(q, r, x, y)? | (q, r, x, y) ∈ Q2 × R× X1,0 × X2,1};

• {gL
1 (q, r1, r2, x, y) | (q, r1, r2, x, y) ∈ Q2 × R× R× X1,1 × X2};

• {gL
1 (q, r1, r2, x, y)? | (q, r1, r2, x, y) ∈ Q2 × R× R× X1,1 × X2,1};

• {gR
1 (q, q′, r1, r2, x, y) | (q, q′, r1, r2, x, y) ∈ Q2 ×Q2 × R× R× X1,1 × X2};

• {gR
1 (q, q′, r1, r2, x, y)? | (q, q′, r1, r2, x, y) ∈ Q2 ×Q2 × R× R× X1,1 × X2,1}.

Given a nested word w, and a stack Λ, we use wr,Λ to denote the regular look-ahead

labeling of w when processing REV(w) in the starting configuration (r, Λ). For every

q1 ∈ Q2, r1, r2 ∈ R, x ∈ X1,1, and y ∈ X2, if x contains a nested word v?w, δ∗r (r2, w) =

(r′2, Λr2), and δ∗2 (q1, vr1,Λr2
) = (q2, Λq2), then:

• gL
1 (q1, r1, r2, x, y) is the variable representing the value of y, after S2 reads vr1,Λr2

starting in state q1;

• gR
1 (q1, q2, r1, r2, x, y) is the variable representing the value of y, after S2 reads wr2

starting in the configuration (q2, Λq2).

The parameters of S are used to represent the values of the variables in X2 when starting

reading the values of a variable X1. At this point we do not know what the values

of the variables in X2 are and for every variable x ∈ X2, we use a parameter x′ to

represent the value of x before reading the value in X1. The STT S has set of parameters

Π = {x′|x ∈ X2} ∪ {?}.

At any point in the execution the variable values and the state of S will be related by

the following invariant: for any starting valuation α of the variables in X2, state q ∈ Q2,

look-ahead state r ∈ R, variable y ∈ X2, and variable x ∈ X1 with value w, the value of

y after reading wr with initial configuration α can be retrieved from the variables in X

and the state components p0, pL
1 , pR

1 .

Given a nested word w = a1 . . . an, we consider the configuration of S and S1 right

after processing the symbol ai. Let’s call (q1, Λ1, α1) the current configuration of S1,

and (qS, Λ, α), with qS = (q, f0, f L
1 , f R

1 , l0, lL
1 , lR

1 , p0, pL
1 , pR

1 ), the current configuration of
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S. For every two states q2, q′2 ∈ Q2, look-ahead states r, r′ ∈ R, variables x0 ∈ X1,0,

x1 ∈ X1,1, y0 ∈ X2,0, and y1 ∈ X2,1 we have the following possibilities.

x0, y0: let α1(x0) = sx0 be the current valuation of x0 in S1, α(g0(q2, r, x0, y0)) = t be the

current valuation of g0(q2, r, x0, y0) in S, and {v′1, . . . , v′k} ⊆ Π be the set of pa-

rameters in ϕ(g0(q2, r, x0, y0)); for every valuation α2 over X2, if δ∗((q2, α2), sx0
r ) =

(q3, α′2), then:

α′2(y0) = t[v′1 7→ α2(v1)] . . . [v′k 7→ α2(vk)].

x0, y1: let α1(x0) = sx0 be the current valuation of x0 in S1, α(g0(q2, r, x0, y1)) = t be

the current valuation of g0(q2, r, x0, y1) in S, p0(q2, r, x0, y1) = z1 . . . zi be the se-

quence of variables to follow to reach the hole ? in the representation of y1, and

{v′1, . . . , v′k} ⊆ Π be the set of parameters in

(ϕ(g0(q2, r, x0, y1)) ∪ ϕ(g0(q2, r, x0, z1)?) ∪ . . . ∪ ϕ(g0(q2, r, x0, zi)?)) \ {z1, . . . , zi}

then, for every valuation α2 over X2, if δ∗((q2, α2), sx0
r ) = (q3, α′2), then:

α′2(y1) = t[z′1 7→ [g0(q2, x0, z1)?[. . . [z′i 7→ g0(q2, x0, zi)?]]]])

[v′1 7→ α2(v1)] . . . [v′k 7→ α2(vk)].

x1, y0: let α1(x1) = sxL
1 ?sxR

1 be the current valuation of x1 in S1, α(gL
1 (q2, r, r′, x1, y0)) = tL

be the current valuation of gL
1 (q2, r, r′, x1, y0) in S, α(gR

1 (q2, q′2, r, r′, x1, y0)) = tR

be the current valuation of gR
1 (q2, q′2, r, r′, x1, y0) in S, let {vL

1
′, . . . , vL

k
′} ⊆ Π be

the set of parameters in ϕ(gL
1 (q2, r, r′, x1, y0)), and let {vR

1
′, . . . , vr

l
′} ⊆ Π be the

set of parameters in ϕ(gR
1 (q2, q′2, r, r′, x1, y0)); for every valuations α2, α′2 over X2,

if δ∗((q2, α2), sxL
1

r,Λ′r ,sx1,R) = (q3, Λ2, α3), and δ∗((q′2, Λ2, α′2), sxR
1

r′ ) = (q′3, α′3), then

α3(y0) = tL[vL
1
′ 7→ α2(vL

1 )] . . . [vL
k
′ 7→ α2(vL

k )], and

α′3(y0) = tR[vR
1
′ 7→ α2(vR

1 )] . . . [vR
l
′ 7→ α2(vR

l )].

x1, y1: let α1(x1) = sxL
1 ?sxR

1 be the current valuation of x1 in S1, α(gL
1 (q2, r, r′, x1, y1)) = tL

be the current valuation of gL
1 (q2, r, r′, x1, y1) in S, α(gR

1 (q2, q′2, r, r′, x1, y1)) = tR be

the current valuation of gR
1 (q2, q′2, r, r′, x1, y1) in S, pL

1 (q2, r, r′, x1, y1) = zL
1 . . . zL

i

be the sequence of variables to follow to reach the hole ? in the representation

of y1 on the right of the ?, pR
1 (q2, q′2, r, r′, x1, y1) = zR

1 . . . zR
j be the sequence of

variables to follow to reach the hole ? in the representation of y1 on the right of

the ?, {vL
1
′, . . . , vL

k
′} ⊆ Π be the set of parameters in ϕ(gL

1 (q2, r, r′, x1, y1)), and

{vR
1
′, . . . , vR

l
′} ⊆ Π be the set of parameters in ϕ(gR

1 (q2, q′2, r, r′, x1, y1)); for every

valuations α2, α′2 over X2, if δ∗((q2, α2), sxL
1

r,Λ′r ,sxR
1
) = (q3, Λ2, α3), and
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δ∗((q′2, Λ2, α′2), sx1,R
r′ ) = (q′3, α′3), then

α3(y1) = tL[zL
1
′ 7→ [gL

1 (q2, r, r′, x1, zL
1 )?[. . . [zL

i
′ 7→ gL

1 (q2, r, r′, x1, zL
i )?]]]])

[vL
1
′ 7→ α2(vL

1 )] . . . [vL
k
′ 7→ α2(vL

k )]

α′3(y1) = tR[zR
1
′ 7→ [gR

1 (q2, q′2, r, r′, x1, zR
1 )?[. . . [zR

i
′ 7→ gR

1 (q2, q′2, r, r′, x1, zR
i )?]]]])

[vR
1
′ 7→ α2(vR

1 )] . . . [vR
k
′ 7→ α2(vR

k )].

Variable update function. We assume that S is reading the symbol a, starting in state

qS = (q, f0, f L
1 , f R

1 , l0, lL
1 , lR

1 , p0, pL
1 , pR

1 ). We only describe the components that are up-

dated, and assume w.l.o.g that x0, x1 ∈ X1,0 are type-0 variable, and x2 ∈ X2,1 is a

type-1 variable. We assume the occurrence-type function ϕ : Q× X 7→ 2Π to be well

defined according to the following assignments (we will prove consistency later).

{x0 := w}: where without loss of generality w is a constant without a ?. We fix the

variable components to be the state q ∈ Q2, look-ahead state r ∈ R, and we

are summarizing the values of y0 ∈ X2,0 and y1, y2 ∈ X2,1, when reading the

value in x0 ∈ X1,0. We consider the variable updates performed by S2 when

reading the w, and assume u = u1 . . . un to be the sequence of atomic updates

(using Theorem 5.4) performed by S2 when reading wr starting in state q. We now

provide the updates of S corresponding to the updates in u. At the beginning of

the procedure g0(q, r, x0, y1) = y′1, and p0(q, r, x0, y1) = y1.

We denote with a prime the new state values and we only write the parts that are

updated. Let’s assume the atomic update is of the following form:

{y1 := w}: where w = 〈a?b〉 (the other cases are similar). We have p′0(q, r, x0, y1) =

ε, and we define the current assignment to be g0(q, r, x0, y1) := w.

{y0 := ε; y1 := y0y1}: p′0(q, r, x0, y1) = p0(q, r, x0, y1), and we define the current

assignment to be g0(q, r, x0, y1) := g0(q, r, x0, y0)g0(q, r, x0, y1), and

g0(q, r, x0, y0) = ε.

{y1 := y1[y2]; y2 :=?}: the summary p0 is updated as

p′0(q, r, x0, y1) = p0(q, r, x0, y1)p0(q, r, x0, y2), p0(q, r, x0, y2) = ε;

if p0(q, r, x0, y1) = v1 . . . vk, then we define the current assignment to be

• if k = 0, then

g0(q, r, x0, y1) := g0(q, r, x0, y1)[g0(q, r, x0, y2)], and g0(q, r, x0, y2) =?;

• if k > 0, then g0(q, r, x0, y1) := g0(q, r, x0, y1),

g0(q, r, x0, vk?) := g0(q, r, x0, vk?)[g0(q, r, x0, y2)], and

g0(q, r, x0, y2) =?.
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{y1 := y2; y2 := y1}: every component involving y1 is swapped with the corre-

sponding component involving y2.

The final variable update is the result of composing all the atomic updates. As

shown in Lemma 5.6, the composition of copyless updates is itself copyless.

{x0 := x0x1; x1 := ε}: we need to substitute the values of the variables after reading

x0 in the corresponding parameters in x1 in order to simulate the concatenation.

Informally (we omit the states for readability) if g0(x1, y) contains the value az′,

and g0(x0, z) contains the value bw′, the new summarization g′0(x0, y) will contain

the value abw′ where the parameter z′ is being replaced with the corresponding

variable values.

For every state q2 ∈ Q2, look-ahead state r ∈ R, variable y1 ∈ X2,1, if l0(r, x1) = r1,

f0(q2, r1, x0) = q3, ϕ(qS, g0(q3, r, x1, y1)) = {v′1, . . . , v′k}, and p0(q2, r, x1, y1) =

b1 . . . bk′ , then p0
′(q2, r, x0, y1) := p0(q2, r1, x0, b1) . . . p0(q2, r1, x0, bk′), and

p0
′(q2, r, x1, y1) := y1. The next step is collapsing all the parameters chains that

can now be resolved with proper parameter substitution. For each assignment to

a variable g′0(q2, r1, x0, v) we omit, unless interesting, the fact that every parame-

ter v′ is replaced with the corresponding variable value g0(q2, r1, x0, v′), and we

iterate the following procedure starting with the sequence P = b1 . . . bk′ , and the

variable v = y1.

1. let pi be the first element in P = p1 . . . pn such that p0
′(q2, r, x0, pi) 6= ε;

2. perform the following assignment

g0
′(q2, r, x0, v) := g0(q3, r, x1, v)[

p′1 7→ g0(q3, r1, x0, p1)[

? 7→ g0(q3, r1, x1, p1)?[

. . . p′i−1 7→ g0(q3, r1, x0, pi−1)[

? 7→ g0(q3, r1, x1, pi−1)?] . . .]]];

g0
′(q2, r, x0, pj)? :=? for each 1 ≤ j < i;

3. P := pi+1 . . . pn, and v := pi+1.

Last, g0
′(q2, r, x1, y1) := x′1.

{x0 := x2[x0]; x2 :=?}: we need to “synchronize” the variables representing the left and

right parts in a way similar to the previous case.

{x0 := x1; x1 := x0}: every component involving x0 is swapped with the correspond-

ing x1 component.
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Conflict relation and well-formedness. First of all we need to show that the assign-

ments are consistent with respect to the parameters. Let’s assume by contradiction that

at some point in the computation, for some q ∈ Q and x ∈ X some parameter u′ ∈ Π

appears twice in ϕ(q, x). This means that there exists a run of S2 in which a variable u

appears twice in a right hand side, violating the copyless assignment.

Next, we show that there exists a conflict relation η over X consistent with ρ. We’ll

often use the fact that, in assignments of the form x := yz or x := y[z], it is always

the case that y 6= z. The conflict relation η is defined as follows: for all q1, q′1, q2, q′2 ∈
Q2, r1, r′1, r2, r′2 ∈ R, x ∈ X1,0, y ∈ X1,1, u, v ∈ X2,

• if (q1, r1) 6= (q′1, r′1), then η(g0(q1, r1, x, u), g0(q′1, r′1, x, v));

• if (q1, r1) 6= (q′1, r′1), then η(g0(q1, r1, x, u?), g0(q′1, r′1, x, v?));

• if (q1, r1, r2) 6= (q′1, r′1, r′2), then η(gL
1 (q1, r1, r2, y, u), gL

1 (q
′
1, r′1, r′2, y, v));

• if (q1, r1, r2) 6= (q′1, r′1, r′2), then η(gL
1 (q1, r1, r2, y, u?), gL

1 (q
′
1, r′1, r′2, y, v?));

• if (q1, q2, r1, r2) 6= (q′1, q′2, r′1, r′2), then η(gR
1 (q1, q2, r1, r2, y, u), gR

1 (q
′
1, q′2, r′1, r′2, y, v));

• if (q1, q2, r1, r2) 6= (q′1, q′2, r′1, r′2), then η(gR
1 (q1, q2, r1, r2, y, u?), gR

1 (q
′
1, q′2, r′1, r′2, y, v?)).

We now show that the variable update function ρ does not violate the conflict relation

η. Inspecting the updates we perform, it is easy to see that the same variable never ap-

pears twice on the right-hand side of the same variable. Now, by way of contradiction,

let’s assume there exists an assignment which violates the constraints (we indicate in

bold the meta-variables of S and in italic those of S2). There are two possibilities:

1. x 6= y, η(x, y), and both x and y occur on the right-hand side of some variable;

2. η(x, y), and there exists two variables x′ and y, such that x′ := FUN(x), y′ =

FUN(y) for which η(x′, y′) doesn’t hold.

Case (1) can be ruled out by simply inspecting all the possible assignments in the defini-

tion of ρ. The only interesting cases are {x0 := x0x1; x1 := ε} and {x0 := x2[x0]; x2 :=?}
where the reasoning is the following. We first need to show that, for every q2 ∈ Q2,

r ∈ R, x0 ∈ X1,0, if X2,1 = {y1, . . . , yn} is the set of type-1 variables in S2, then the

sequence p0(q2, r, x0, y1) . . . p0(q2, r, x0, yn) is repetition free. It is easy to show that this

property holds by induction. After we have this, it is easy to show that the assignments

do not violate the conflict relation.
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We now need to deal with the conflict case (2). Before starting we point out that

every variable x ∈ X1 appears in at most one of the assignments of S2 due to the

copyless restriction. We want to show that it cannot happen that two variables that

are in conflict are assigned to two different variables that are not in conflict. Let’s

try to analyze when two variables x, y assigned to different variables can be in con-

flict. The first case is x = y. The case for {x0 := w} can be ruled out by inspect-

ing the assignments. For the cases {x0 := x0x1; x1 := ε} we observe the following:

the only case in which two variables appearing on two different right hand sides con-

flict is when (looking at point two of the iteration) we perform the following update:

{g0(q2, r, x0, v) := g0(q3, r, x1, v); g0(q3, r, x1, v) := . . . g0(q3, r, x1, v) . . .}. The two left-

hand side are in conflict, therefore η is well defined. For the case x0 := x2[x0] the

argument is analogous.

Next, we show how the construction deals with calls and returns. As in the proof

of Theorem 5.14, at every call, S stores the state containing the information about the

current variable values on the stack, and, at the corresponding return we use them to

construct the new values for the state. Since at every call variables are reset, this con-

struction is quite straightforward. Using an argument similar to that of Theorem 5.14,

assignments do not violate the single use restriction. Notice that the fact that the vari-

ables are reset at calls is crucial for this construction.

Output function. Finally, we define the output function F. When reaching the last

symbol, we need to construct the final output, but now at this point, we know what

states to use. We illustrate the construction with an example, since the general one is

very similar to the construction of ρ. Let’s assume we are in state

qS = (q, f0, f L
1 , f R

1 , l0, lL
1 , lR

1 , p0, pL
1 , pR

1 ), then F(qS) is defined as follows. We assume,

without loss of generality, that F1(q) = x for some x0 ∈ X1,0, since the other cases are

similar to our previous constructions. If f0(q02, r0, x0) = q f , and F2(q f ) = y0, with

y0 ∈ X2,0, then F(qS) = g0(q02, r0, x0, y0){v′ 7→ ε} for every v′ ∈ ϕ(qS, g0(q02, r0, x0, y0)).

This concludes the proof.

5.6 Restricted inputs

A nested word captures both linear and hierarchical structure. There are two natural

subclasses of nested words: strings are nested words with only linear structure, and

ranked trees are nested words with only hierarchical structure. Let us consider how

the definition of STT can be simplified when the input is restricted to these two special

cases.
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5.6.1 Mapping strings

Suppose we restrict the inputs to contain only internal symbols, that is, strings over Σ.

Then the STT cannot use its stack, and we can assume that the set P of stack symbols

is the empty set. This restricted transducer can still map strings to nested words (or

trees) over Γ with interesting hierarchical structure, and hence, is called a string-to-tree

transducer. This leads to the following definition: a streaming string-to-tree transducer

(SSTT) § from input alphabet Σ to output alphabet Γ consists of a finite set of states Q;

an initial state q0 ∈ Q; a finite set of typed variables X together with a conflict relation

η; a partial output function F : Q 7→ E0(X, Γ) such that for each state q, a variable x

appears at most once in F(q); a state-transition function δ : Q× Σ 7→ Q; and a variable-

update function ρ : Q × Σ 7→ A(X, X, η, Γ). Configurations of such a transducer are

of the form (q, α), where q ∈ Q is a state, and α is a type-consistent valuation for the

variables X. The semantics [[S]] of such a transducer is a partial function from Σ∗ to

W0(Γ). We notice that in this setting the copyless restriction is enough to capture MSO

completeness since the model is closed under regular look-ahead (i.e. a reflexive η is

enough).

Theorem 5.16 (Copyless SSTTs are closed under RLA). A string-to-tree transduction is

definable by an SSTT iff it is definable by a copyless SSTT.

Proof. The⇐ direction is immediate. For the⇒ direction, using Theorem 5.9 we con-

sider the input to be a copyless SSTT with regular look-ahead. Given a DFA A =

(R, r0, δA) over the alphabet Σ, and a copyless string-to-tree STT S = (Q, q0, X, F, δ, ρ)

over R, we construct an equivalent copyless multi-parameter STT

S′ = (Q′, q′0, X′, Π, ϕ, F′, δ′, ρ′) over Σ. Thanks to Theorem 5.11 this implies the exis-

tence of a copyless SSTT.

Auxiliary notions. Given a finite set U, we inductively define the following sets:

F (U): the set of forests over U defined as: ε ∈ F (U), and if s0, . . . , sn ∈ U, and

f0, . . . , fn ∈ F (U), then s0( f0) . . . sn( fn) ∈ F (U);

SF ( f ′): given a forest f ′ ∈ F (U), the set of sub-forests of f ′, for short SF ( f ′), is

defined as follows:

• if f ′ ≡ s′0(t
′
0) . . . s′m(t′m), and there exist i ≤ m such that f ∈ SF (t′i), then

f ∈ SF ( f ′);

• if f ∈ SFM( f ′), then f ∈ SF ( f ′);
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• the empty forest ε belongs to SM( f ′);

• let f ≡ s0(t0) . . . sn(tn), and f ′ ≡ s′0(t
′
0) . . . s′m(t′m). If there exist 0 ≤ i ≤ m− n

such that s0 . . . sn = s′i . . . s′i+n, and for every 0 ≤ j ≤ n, tj ∈ SFM(t′i+j), then

f ∈ SF ( f ′).

Intuitively, the first rule in the definition of SF allows to move down in the forest

until an exact match in SFM is found by the other rules. Given two forests f1, f2 ∈
F (U), we write S( f1, f2) ≡ SF ( f1) ∩ SF ( f2) for the set shared sub-forests of f1 and

f2. Finally the set of maximal shared sub-forests is defined as

M(t1, t2) = { f | f ∈ S(t1, t2) ∧ ¬∃ f ′ ∈ S(t1, t2). f ′ 6= f ∧ f ∈ SF ( f ′)}.

State components and invariants. The transition of the STT S at a given step depends

on the state of A after reading the reverse of the suffix. Since the STT S′ cannot deter-

mine this value based on the prefix, it needs to simulate S for every possible choice. We

denote by Xi the type-i variables of X. Every state q ∈ Q′ is a tuple (l, f , g) where

• l : R 7→ R, keeps track, for every possible state r ∈ R, of what would be the state

of A after processing the string REV(w), where w is the string read so far;

• f : R 7→ Q, keeps track, for every possible state r ∈ R, of what would be the state

of S after processing the string wr, where w is the string read so far;

• g : (R× X) 7→ F(X′ ∪ {?}) keeps track of how the variables X′ of S′ need to be

combined in order to obtain the value of a variable of S.

State summarization invariants. We first discuss the invariants of the first two com-

ponents l and f of a state, and how they are preserved by the transition function δ′ of

S′. After reading a word w S′ is in state (l, f , g) where

• for every look-ahead state r ∈ R, l(r) = r′, δ∗A(r, REV(w)) = r′;

• for every look-ahead state r ∈ R, f (r) = q, δ∗(q0, wr) = q.

At the beginning S′ is in state (l0, f0, g0), where for every r ∈ R, l0(r) = r and f0(r) = q0.

The component g0 is discussed later.

Next we describe the transition function δ′. We assume S′ to be in state (l, f , g), and

to be reading the input symbol a ∈ Σ; we denote with l′, f ′ the new values of the state

components, and we only write the parts that change. For every look-ahead state r ∈ R,

if δA(r, a) = r′, f (r) = q, and δ(q, r′) = q′, then l′(r) = l(r′) and f ′(r) = q′.
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Variable summarization. Next, we describe how S′ keeps track of the variable values.

The natural approach for this problem would be that of keeping, for each state r ∈ R

and variable x ∈ X, a variable g(r, x) containing the value of x in S, assuming the prefix

read so far, was read by A starting in state r. This natural approach, however, would

cause the machine not to be copyless. Consider, for example, the following scenario.

Let r, r1 and r2 be look-ahead states in R such that, for some a ∈ Σ, δ(r1, a) = δ(r2, a) =

r. Assume S only has one state q ∈ Q, and one variable x ∈ X. If S updates ρ(q, r, x) to

x, in order to perform the corresponding update in S′ we would have to assign g(r, x)

to both g(r1, x) and g(r2, x), and this assignment is not copyless.

Our solution to this problem relies on a symbolic representation of the update and a

careful analysis of sharing. In the previous example, a possible way to represent such

update is by storing the content of g(r, x) into a variable z, and then remembering

in the state the fact that both g(r1, x) and g(r2, x) now contain z as a value. In the

construction, the above update is reflected by updating the state, without touching the

variable values.

The set of variables X′ contains |R|(4|X0||R|) type-0 variables, and |R|(4|X1||R|) type-1

variables. The set of parameters Π of S′ is {πi | 0 ≤ i ≤ 4|X||R|}. We will show later

how these numbers are obtained.

Variables semantics and invariants. We next describe how we can recover the value

of a variable in X from the corresponding shape function g(x). Intuitively, the value of

a variable x is recovered by merging together the variables appearing in the shape of x.

We call this operation unrolling.

We define the unrolling u : F (X′) 7→ E(X′, Σ) of a symbolic variable representation

as follows. Given a forest f = s0( f0) . . . sn( fn) ∈ F (X′), the unrolling of f is de-

fined as u( f ) ≡ ut(s0, f0) . . . ut(sn, fn), where for every s ∈ X, and g0 . . . gm ∈ X∗,

ut(s, g0 . . . gm) ≡ s[π0 7→ u(g0), . . . , πm 7→ u(gm)].

After reading i-th symbol ai of an input word w, S′ is in a configuration ((l, f , g), α)

iff for every look-ahead state r ∈ R, and variable x ∈ X, if δ∗(q0, REV((a1 . . . ai)r)) =

(q, α1), and u(g(r, x)) = s, then α1(x) = α(s).

Counting argument invariants. Next, we describe how we keep the shape function

g compact, allowing us to use a finite number of variables while updating them in a

copyless manner. The shape function g maintains the following invariants.
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Single-Use: each shape g(r, x) is repetition-free: no variable x′ ∈ X′ appears twice in

g(r, x).

Sharing Bound: for all states r, r′ ∈ R, ∑x,y∈X |M(g(r, x), g(r′, y))| ≤ |X|.

Hole Placement: for every type-1 variable x ∈ X1, and state r ∈ R, there exists exactly

one occurrence of ? in g(r, x), and it does not have any children.

Horizontal compression: for every f f ′ ∈ SF (g(r, x)), such that ? 6∈ f f ′, then there must

be a shape g(r′, x′), with (r′, x′) 6= (r, x), such that either f ∈ SF (g(r′, x′)) and

f f ′ 6∈ SF (g(r′, x′)), or f ′ ∈ SF (g(r′, x′)) and f f ′ 6∈ SF (g(r′, x′)).

Vertical compression: for every s( f ) ∈ SF (g(r, x)), such that ? 6∈ s( f ), then there must

be a shape g(r′, x′), with (r′, x′) 6= (r, x), such that either s() ∈ SF (g(r′, x′)) and

s( f ) 6∈ SF (g(r′, x′)), or f ∈ SF (g(r′, x′)) and s( f ) 6∈ SF (g(r′, x′)).

The first invariant ensures the bounded size of shapes. The second invariant limits the

amount of sharing between shapes and it implies that, for each r, and for each x 6= y,

g(r, x) and g(r, y) are disjoint. The second invariant also implies that, for every state r,

the tree g(r, x), for all x cumulatively, can have a total of |X||R| maximal shared sub-

forests, with respect to all other strings. The third invariant says that the tree of each

type-1 variable contains exactly one hole and this hole appears as a leaf. This helps us

dealing with variable substitution. The fourth and fifth compression invariants guar-

antee that the shapes use only the minimum necessary amount of variables. Together

they imply that the sum ∑x∈X |g(r, x)| is bounded by 4|X||R|. This is due to the fact

that a shape can be updated only in three ways, 1) on the left, 2) on the right, and 3)

below the ?. As a result it suffices to have |R|(4|X||R|) variables in Z.

Variable and state updates. Next we show how g and the variables in X′ are updated

and initialized.

The initial value g0 in the initial state, and each variable in X′ are defined as follows:

let X′0 = {z1, . . . , zk}, X′1 = {z′1, . . . , z′k}, X0 = {x1, . . . , xi}, X1 = {x′1, . . . , x′j}. For each

type-0 variable xi ∈ X0, for each type-1 variable x′i ∈ X1, and look-ahead state r ∈ R,

we have that g0(r, xi) = zi, zi = ε, g0(r, x′j) = z′j(?), and z′j = π0.

We assume S′ to be in state (l, f , g), and to be reading the input symbol a ∈ Σ. We

denote with g′ the new value of g. We assume we are given a look-ahead state r ∈ R,

such that δA(r, a) to be equal to r′, and x and y are the variables to be the updated.

{x := w}: where without loss of generality w = 〈a?b〉. We first assume there exists

an unused variable, and then show that such a variable must exist. Let z f be an
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unused variable. We update g′(r, x) = z f , and set z f := 〈a?b〉. Since the counting

invariants are preserved, there must have existed an unused variable z f .

{x := xy, y := ε}: we perform the following update: g′(r, x) = g(r′, x)g(r′, y). Let

g(r′, x) = s1( f1) . . . sn( fn) and g(r′, y) = s′1( f ′1) . . . s′m( f ′m). We now have two pos-

sibilities:

• there exists (r1, x1) 6= (r, x) such that g(r1, x1) contains sn or s′1, but not sns′1;

or

• there does not exist (r1, x1) 6= (r, x) such that g(r1, x1) contains sn or s′1, but

not sns′1. In this case we can compress: if fn = t1 . . . ti and f ′1 = t′1 . . . t′k, then

sn := sns′1[π0 7→ πi, . . . , πk 7→ πk+i] and

g′(r, x) = s1( f1) . . . sn( fn f ′1)s
′
2( f ′2) . . . s′m( f ′m). In this new assignment to sn,

the parameters in s′1 have been shifted by i to reflect the concatenation with

sn.

In both cases, due to the preserved counting invariant, we can take an unused

variable z f and use it to update g(r, y): z f := ε, and g′(r, y) = z f .

{x := x[y], y :=?)}: without loss of generality let x and y be type-1 variables. Let

s(?) be the subtree of g(r′, x) containing ?. We perform the following update:

g′(r, x) = g(r′, x){?/g(r′, y)}, where a{b/c} replaces the node b of a with c. Let

g(r′, y) = s′1( f ′1) . . . s′m( f ′m). For every sl , we now have two possibilities:

• there exists p ≤ m′, and (r1, x1) 6= (r, x) such that g(r1, x1) contains s or s′p,

but not s(s′p); or

• there does not exist p ≤ m′, and (r1, x1) 6= (r, x) such that g(r1, x1) contains

s or s′p; in this case we can compress: assume f ′p = t1 . . . tk, then s := s[πi 7→
s′p[π0 7→ πi, . . . , πk 7→ πk+i], πi+1 7→ πi+1+k, . . . , πn+k+1], and g′(r, x) =

g′(r, x){s(s′p)/s}.

In both cases, due to the preserved counting invariant, we can take an unused

variable z f and use it to update g(r, y): z f := π0, and g′(r, y) = z f (?). Figure 5.3

shows an example of such an update.

{x := y, y := x}: we symbolically reflect the swap. g′(r, x) = g(r′, y), and g′(r, y) =

g(r′, x). Similarly to before, we compress if necessary.

By inspection of the variable assignments, it is easy to see that S′ is copyless.

Figure 5.3 shows an example of an update of the form x = x[y]. In the figure, each

variable zi belongs to X′. The depicted update represents the case in which we are
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z1# z4#

g(r1,x)# g(r2,x)#

x:=x[y]#
y:=?#

?#

z2#

z8# z4#

?#

z2#

z5# z7#

g(r1,y)# g(r2,y)#

?#

z6#

z10# z7#

?#

z6#

z1# z4#

g’(r1,x)# g’(r2,x)#

z2#

z8# z4#

z5#

g’(r1,y)# g’(r2,y)#

?#

z10#

?#

z3# z9#
z3# z7#

?#

z6#

z2#

z9# z7#

?#

z6#

z2#:=#z2[π0;>π0π1]# #z2#:=#z2[π0;>π0π1]#
z3#:=#z3[π0;>z5] # #z9##:=#z9[π0;>z10]#
z5#:=#π0 # # #z10:=#π0#

FIGURE 5.3: Example of symbolic variable assignment.

reading the symbol a such that δA(r1, a) = r1 and δA(r2, a) = r1. Before reading a (on

the left), the variables z2, z4, z6, and z7 are shared between the two representations of

the variables at r1 and r2. In the new shape g′ the hole ? in g(r1, x) (respectively g(r2, x))

is replaced by g(r1, y) (respectively g(r2, y)). However, since the sequence z3z5 (respec-

tively z9z10) is not shared, we can compress it into a single variable z3 (respectively

z9), and reflect such a compression in the variable update z3 := z3[π0 7→ z5] (respec-

tively z9 := z9[π0 7→ z10]). Now the variable z5 (respectively z10) is unused and we can

therefore use it to update g′(r1, y) (respectively g′(r2, y)).

The output function F, of S′ simply applies the unrolling function. For example, let’s

assume S′ ends in state (l, f , g) ∈ Q′, with l(r0) = r, f (r) = q, and F(q) = xy. We have

that F(l, f , g) = u(g(r0, x)g(r0, y)). This concludes the proof.

5.6.2 Mapping ranked trees

In a ranked tree, each symbol a has a fixed arity k, and an a-labeled node has exactly

k children. Ranked trees can encode terms, and existing literature on tree transducers

focuses primarily on ranked trees. Ranked trees can be encoded as nested words of a

special form, and the definition of an STT can be simplified to use this structure. For

simplicity of notation, we assume that there is a single 0-ary symbol 0 6∈ Σ, and every

symbol in Σ is binary. The set BT(Σ) of binary trees over the alphabet Σ is then a subset

of nested words defined by the grammar T := 0 | 〈a T T a〉, for a ∈ Σ. We will use the

more familiar tree notation a〈tl , tr〉, instead of 〈a tl tr a〉, to denote a binary tree with a-

labeled root and subtrees tl and tr as children. The definition of an STT can be simplified

in the following way if we know that the input is a binary tree. First, we do not need to
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worry about processing of internal symbols. Second, we restrict to bottom-up STTs due

to their similarity to bottom-up tree transducers, where the transducer returns, along

with the state, values for variables ranging over output nested words, as a result of

processing a subtree. Finally, at a call, we know that there are exactly two subtrees, and

hence, the propagation of information across matching calls and returns using a stack

can be combined into a unified combinator: the transition function computes the result

corresponding to a tree a〈tl , tr〉 based on the symbol a, and the results of processing the

subtrees tl and tr.

A bottom-up ranked-tree transducer (BRTT) § from binary trees over Σ to nested words

over Γ consists of a finite set of states Q; an initial state q0 ∈ Q; a finite set of typed

variables X equipped with a conflict relation η; a partial output function F : Q 7→
E0(X, Γ) such that for each state q, the expression F(q) is consistent with η; a state-

combinator function δ : Q× Q× Σ 7→ Q; and a variable-combinator function ρ : Q×
Q × Σ 7→ A(X, Xl ∪ Xr, η, Γ), where Xl denotes the set of variables {xl | x ∈ X}, Xr

denotes the set of variables {xr | x ∈ X}, and the conflict relation η extends to these

sets naturally: for every x, y ∈ X, if η(x, y), then η(xl , yl), and η(xr, yr). The state-

combinator extends to trees in BT(Σ): δ∗(0) = q0 and δ∗(a〈tl , tr〉) = δ(δ∗(tl), δ∗(tr), a).

The variable-combinator is used to map trees to valuations for X: α∗(0) = α0, where

α0 maps each type-0 variable to ε and each type-1 variable to ?, and α∗(a〈tl , tr〉) =

ρ(δ∗(tl), δ∗(tr), a)[Xl 7→ α∗(tl)][Xr 7→ α∗(tr)]. That is, to obtain the result of processing

the tree t with a-labeled root and subtrees tl and tr, consider the states ql = δ∗(tl)

and qr = δ∗(tr), and valuations αl = α∗(tl) and αr = α∗(tr), obtained by processing

the subtrees tl and tr. The state corresponding to t is given by the state-combinator

δ(ql , qr, a). The value α∗(x) of a variable x corresponding to t is obtained from the

right-hand side ρ(ql , qr, a)(x) by setting variables in Xl to values given by αl and setting

variables in Xr to values given by αr. Note that the consistency with the conflict relation

ensures that each value gets used only once. Given a tree t ∈ BT(Σ), let δ∗(t) be q and

let α∗(t) be α. Then, if F(q) is undefined then [[S]](t) is undefined, else [[S]](t) equals

α(F(q)) obtained by evaluating the expression F(q) according to valuation α.

Theorem 5.17 (Expressiveness of ranked tree transducers). A partial function from BT(Σ)

to W0(Γ) is STT-definable iff it is BRTT-definable.

Proof. From STT to BRTT ⇒. Using Theorem 5.7, let S = (Q, P, q0, X, F, η, δ, ρ) be a

binary bottom-up STT. We construct a BRTT S′ = (Q′, q′0, X′, F′, η′, δ′, ρ′) equivalent to

S. We can assume w.l.o.g. that the set of variables X is partitioned into two disjoint sets

Xl = {xL
1 , . . . , xL

n} and Xr = {xR
1 , . . . , xR

n } such that, given a tree t = a〈tl , tr〉, 1) after

processing the left child tl , all the variables in Xl depend on the run over tl , while all

the variables in Xr are reset to their initial values, and 2) after processing the second
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child, the values of Xr only depend on tr (do not use any variable xp ∈ Xp), and every

variable x ∈ Xl is exactly assigned the corresponding value xp stored on the stack. In

summary, every variable in Xr only depends on the second child, and every variable in

XL only depends on the first child. Such variables can only be combined at the return

a〉 at the end of t. An STT of this form can be obtained by delaying the variable update

at the return at the end tr to the next step in which a〉 is read.

Now that we are given a bottom-up STT, the construction of S′ is similar to the one

showed in Theorem 5.7. Each state q ∈ Q′ contains a function f : Q 7→ Q, that keeps

track of the executions of S for every possible starting state. After processing a tree t,

S′ is in state f , such that for every q ∈ Q, f (q) = q′ iff when S reads the tree t starting

in state q, it will end up in state q′. Similarly, the BRTT S′ uses multiple variables to

keep track of all the possible states with which a symbol could have been processed.

The BRTT S′ has set of variables X′ = {xq | x ∈ X, q ∈ Q}. After processing a tree t, for

every x ∈ X, and q ∈ Q, if, after S processes t starting in state q, x contains the value s,

then xq also contains the value s.

Next we describe how these components are updated. Let fl and fr be the states of S′

after processing the children tl and tr of a tree a〈tl , tr〉. We denote with f ′ the new state

after reading a. For every state q,∈ Q, and variable x ∈ X, if δc(q, 〈a) = (q1, p), fl(q1) =

q2, fr(q2) = q3, and δr(q3, p, 〈a) = q4, then f ′(q) = q4, and xq is assigned the value

ρ(q3, p, 〈a, x), in which every variable in Xl and Xr is replaced with the corresponding

variables in X′l and X′R. For every state f , the output function of F′ of S′ is then defined

as F′( f ) = F( f (q0)). The conflict relation η′ of S′ has the following rules:

1. for every x, y ∈ X, and q 6= q′ ∈ Q, η′(xq, yq′);

2. for every q ∈ Q, and x, y ∈ X, if η(x, y), then η′(xq, yq).

The proof of consistency is the same as for Theorem 5.7.

From BRTT to STT ⇐. Given a BRTT S = (Q, q0, X, F, η, δ, ρ), we construct an STT

S′ = (Q′, P′, q′0, X′, F′, η′, δ′, ρ′) equivalent to S. The STT S′ simulates the execution of S

while reading the input nested word. The states and stack states of S′ are used to keep

track of whether the current child is a first or second child. The STT S′ has set of states

Q′ = Q× ({l, r} ∪ Q), initial state q′0 = (q0, l), and set of stack state P′ = Q× {l, r}.
Given a tree 〈a tl , tr a〉, the STT S′ maintains the following invariant:

• right before processing the first child tl , S′ is in state (q0, l);

• right before processing the second child tr, S′ is in state (q1, r);



Streaming tree transducers 160

• right after processing the second child tr, S′ is in state (q1, q2).

We now define the transition relation δ′ that preserves the invariant defined above.

Let’s assume S′ is in state q = (q1, d), and it is processing the symbol a.

a is a call 〈b: the STT S′ resets the control to the initial state and pushes q1 on the stack:

δ′(q1, b) = (q′0, q1).

a is a return b〉: we first of all observe that, since the input is a binary tree, d cannot

have value r when reading a return symbol. If the state popped from the stack is

p = (qp, dp) we have the following cases.

End of First Child: if dp = l we have two cases:

Leaf: if d = l, and δ(q0, q0, b) = q2 then δ′(q, p, b) = (q2, r);

Not a Leaf: if d = q2 ∈ Q, and δ(q1, q2, b) = q3, then δ′(q, p, b) = (q3, r).

End of Second Child: if dp = r we have two cases:

Leaf: if d = l, and δ(q0, q0, b) = q2, then δ′(q, p, b) = (qp, q2);

Not a Leaf: if d = q2 ∈ Q, and δ(q1, q2, b) = q3, then δ′(q, p, b) = (qp, q3).

The STT S′ has set of variables X′ = X′l ∪ X′r, where X′d = {xd | x ∈ X}. We use one

set of variables Xl for the variable values after processing the left child, and Xr for the

variable values after processing the right child. The variables in Xl and Xr are combined

when processing the parent. The STT S′ maintains the following invariant: given a tree

〈a tl , tr a〉, and d ∈ {l, r}, after processing the child td, every variable xd ∈ X′d will

contain the value of x computed by S after processing the tree td.

We can now describe the variable update function ρ′ of S′. Given a variable x ∈ X′, let

the function INI(x) be the function that returns the initial value of a variable x, that is

defined as: 1) if x is a type-0 variable, then INI(x) = ε, and 2) if x is a type-1 variable,

then INI(x) =?. Let’s assume S′ is in state q = (q1, d), it is processing the symbol a, and

updating the variable x ∈ X′:

a is a call 〈b: every variable is copied on the stack ρ′(q, b, x) = x;

a is a return b〉: if the state popped from the stack is p = (qp, dp), we have the following

cases.

End of First Child: if dp = l we have two cases:

• if x ∈ XL we have two more cases

Leaf: if d = l, then ρ′(q, p, b, x) = ρ(q0, q0, b, x);
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Not a Leaf: if d = q2 ∈ Q, then ρ′(q, p, b, x) = ρ(q1, q2, b, x).

• if x ∈ XR, then ρ′(q, p, b, x) = INI(x).

End of Second Child: if dp = r we have two cases

• if x ∈ XL, then ρ′(q, p, b, x) = xp;

• if x ∈ XR we have two more cases:

Leaf: if d = l, then ρ′(q, p, b, x) = ρ(q0, q0, b, x);

Not a Leaf: if d = q2 ∈ Q, then ρ′(q, p, b, x) = ρ(q1, q2, b, x).

The conflict relation η′ of S′ is defined as: for every x, y ∈ X, and d ∈ {L, R}, if η(x, y),

then η′(xd, yd). The consistency of η is trivial. Finally, the output function F′ is de-

fined as follows. For every state (q, d) ∈ Q′, if d = r, F′(q, d) = F(q), otherwise F′ is

undefined.

5.7 Restricted outputs

Let us now consider how the transducer model can be simplified when the output

is restricted to the special cases of strings and ranked trees. The desired restrictions

correspond to limiting the set of allowed operations in expressions used for updating

variables.

5.7.1 Mapping nested words to strings

Each variable of an STT stores a potential output fragment. These fragments get up-

dated by addition of outputs symbols, concatenation, and insertion of a nested word in

place of the hole. If we disallow the substitution operation, then the STT cannot manip-

ulate the hierarchical structure in the output. More specifically, if all variables of an STT

are type-0 variables, then the STT produces outputs that are strings over Γ. The set of

expressions used in the right-hand sides can be simplified to E0 := ε | a | x0 | E0E0. That

is, each right-hand side is a string over Γ ∪ X. Such a restricted form of STT is called

a streaming tree-to-string transducer (STST). While less expressive than STTs, this class is

adequate to compute all tree-to-string transformations, that is, if the final output of an

STT is a string over Γ, then it does not need to use holes and substitution.

Theorem 5.18 (STST expressiveness). A partial function from W0(Σ) to Γ∗ is STT-definable

iff it is STST-definable.
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Proof. Since STSTs are also STTs, the⇐ direction of the proof is immediate.

We now prove the⇒ direction. Given an STT S that only outputs strings over Γ∗, we

can build an equivalent STST S′ as follows. The goal of the construction is eliminating

all the type-1 variables from S. This can be done by replacing each type-1 variable x

in S with two type-0 variables xl , xr in S′ representing the values to the left and to the

right of the ? in x. If, after reading a nested word w, the type-1 variable x of S contains

the value wl?wr, then the type-0 variables xl and xr of S′ respectively contain the values

wl and wr. Notice that this cannot be done in general for SSTs, because wl and wr might

not be well-matched nested words. The states, and state transition function of S′ are the

same as for S, and the variable update function and the output function can be easily

derived. If η is the conflict relation of S, then the conflict relation η′ of S′ is defined as

follows: for every variable x, η′(x, x), and given two variables x 6= y of S, if η(x, y), and

d, d′ ∈ {l, r}, then η′(xd, yd′).

If we want to compute string-to-string transformations, then the STT does not need a

stack and does not need type-1 variables. Such a transducer is both an SSTT and an

STST, and this restricted class coincides with the definition of streaming string trans-

ducers (SST) [AC11].

5.7.2 Mapping nested words to ranked trees

Suppose we are interested in outputs that are binary trees in BT(Γ). Then, variables of

the transducer can take values that range over such binary trees, possibly with a hole.

The internal symbols, and the concatenation operation, are no longer needed in the set

of expressions. More specifically, the grammar for the type-0 and type-1 expressions

can be modified as

E0 := 0 | x0 | a〈 E0 E0 〉 | E1[E0]

E1 := ? | x1 | a〈 E0 E1 〉 | a〈 E1 E0 〉 | E1[E1]

where a ∈ Γ, x0 ∈ X0 and x1 ∈ X1. To define transformations from ranked trees

to ranked trees, we can use the model of bottom-up ranked-tree transducers with the

above grammar.
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5.8 Expressiveness

The goal of this section is to prove that the class of nested-word transductions defin-

able by STTs coincides with the class of transductions definable using Monadic Second

Order logic (MSO).

We first show that any STT can be simulated by an MSO definable transduction. The

other direction of the proof relies on the known equivalence between MSO and Macro

Tree Transducers over ranked trees. Our first step is to lift STTs to operate over ranked

trees. Next, to simulate a given Macro Tree Transducer, we show construct a sequence

of STTs over ranked trees. Finally, using closure under composition, this sequence of

STTs is composed into a single STT.

5.8.1 MSO for nested-word transductions

Formulas in monadic second-order logic (MSO) can be used to define functions from

(labeled) graphs to graphs [Cou94]. We adapt this general definition for our purpose

of defining transductions over nested words. A nested word w = a1 . . . ak over Σ is

viewed as an edge-labeled graph Gw with k + 1 nodes v0 . . . vk such that (1) there is

an edge from each vj−1 to vj, for 1 ≤ j ≤ k, labeled with the symbol aj ∈ Σ, and (2)

for every pair of matching call-return positions i and j, there is an unlabeled (nesting)

edge from vi−1 to vj−1. The monadic second-order logic of nested words is given by the

syntax:

φ := a(x, y) |X(x) | x y | φ ∨ φ | ¬φ | ∃x.φ | ∃X.φ

where a ∈ Σ, x, y are first-order variables, and X is a second-order variable. The se-

mantics is defined over nested words in a natural way. The first-order variables are

interpreted over nodes in Gw, while set variables are interpreted over sets of nodes.

The formula a(x, y) holds if there an a-labeled edge from the node x to node y (this can

happen only when y is interpreted as the linear successor position of x), and x  y

holds if the nodes x and y are connected by a nesting edge.

An MSO nested-word transducer Φ from input alphabet Σ to output alphabet Γ consists

of a finite set C called the copy set, node formulas φc for each c ∈ C, each of which is an

MSO formula over nested words over Σ with one free first-order variable x, and edge

formulas φc,d and φc,d
a for each a ∈ Γ and c, d ∈ C, each of which is an MSO formula over

nested words over Σ with two free first-order variables x and y. Intuitively, given an

input nested word, Φ builds an output graph corresponding to the output nested word;

this graph can contain up to C times as many nodes (the copies) as the ones appearing

in the input nested word; for each node x and c ∈ C, xc denotes the c-th copy of the
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node x. Each unary formula φc is used to decide whether the c-th copy of a node x

should appear in the graph, the binary formula φc,d is used to decide whether there

exists a nesting edge between the c-th copy of x and the d-th copy of y, and the binary

formula φc,d
a is used to decide whether there exists an a-labeled edge between the c-th

copy of x and the d-th copy of y. Given an input nested word w, consider the following

output graph: for each node x in Gw and c ∈ C, there is a node xc in the output if the

formula φc holds over Gw, and for all such nodes xc and yd, there is an a-labeled edge

from xc to yd if the formula φc,d
a holds over Gw, and there is a nesting edge from xc to yd

if the formula φc,d holds over Gw. If this graph is the graph corresponding to the nested

word u over Γ then [[Φ]](w) = u, and otherwise [[Φ]](w) is undefined. A nested-word

transduction f from input alphabet Σ to output alphabet Γ is MSO-definable if there

exists an MSO nested-word transducer Φ such that [[Φ]] = f .

By adapting the simulation of string transducers by MSO [EH01, AC10], we show that

the computation of an STT can be encoded by MSO, and thus, every transduction com-

putable by an STT is MSO definable.

Theorem 5.19 (STT-to-MSO). Every STT-definable nested-word transduction is

MSO-definable.

Proof. Consider a copyless STT S with regular look-ahead automaton A. The labeling of

positions of the input nested word with states of the regular look-ahead automaton can

be expressed in MSO. The unique sequence of states and stack symbols at every step of

the execution of the transducer S over a given input nested word w can be captured in

MSO using second order existential quantification. Thus, we assume that each node in

the input graph is labeled with the corresponding state of the STT while processing the

next symbol. The positions corresponding to calls and returns are additionally labeled

with the corresponding stack symbol pushed/popped.

We explain the encoding using the example shown in Figure 5.4. Suppose the STT uses

one variable x of type-1. The corresponding MSO transducer has eight copies in the

copy set, four for the current value of the variable and four for the current value of the

variable on the top of the stack. The current value of the variable x is represented by

4 copies in the copy set: xi, xo, xi? and xo?. At every step i (see top of Figure 5.4) the

value of x corresponds to the sequence of symbols labeling the unique path starting at

xi and ending at xi?, followed by the hole ? and by the sequence labeling the unique

path starting at xo? and ending at xo. At step i the value of x on top of the stack (xp in

this example) is captured similarly.

We now explain how the STT variable updates are captured by the MSO transducer. At

step 0, x is instantiated to ? by adding an ε-labeled edge from the xi node to the xi? node
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FIGURE 5.4: Encoding of an STT’s computation in MSO.

and from the xo? node to the xo node. Consider an internal position i and the variable

assignment x := ax[c?]. This means that the value of x for column i is the value of

x in column i − 1, preceded by the symbol a, where we add a c before the parameter

position in i − 1. To reflect this assignment, we insert an a-labeled edge from the xi

node in column i to the xi node in column i− 1, a c-labeled edge from the xi? node in

column i − 1 to the xi? node in column i (this reflects adding to the left of the ?), an

ε-labeled edge from the xo? node in column i to the xo? node in column i − 1, and an

ε-labeled edge from the xo node in column i− 1 to the xo node in column i.

We again use Figure 5.4 to show how variables are stored on the stack. At the call step

i + 1, the assignment xp := x is reflected by the ε-labeled edges between the xp nodes in

column i + 1 and the x nodes in column i. The edges are added in a similar way as for

the previous assignment. The value of xp in column i + 1 is preserved unchanged until

the corresponding matching return position is found. At the return step j, the value of

x can depend on the values of x in column j− 1, and the value of xp on the top stack,

which is captured by the input/output nodes for xp in column j− 1. The j− 1 position

can be identified uniquely using the matching relation . Even though it is not shown

in figure, at position j we have to add ε edges from the xp nodes at position j to the xp

nodes at position i to represent the value of xp that now is on the top of the stack. In

Figure 5.4 the bold edges connect the current variable values to the values on top of the

stack and they are added when processing the return position j.
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To represent the final output, we use an additional column k. In the example, the output

expression is x[b]. We mark the first edge from xi by a special symbol C to indicate

where the output string starts, a b-labeled edge from the xi? node to the xo? node of

x. In the same way as before we connect each component to the corresponding k − 1

component using ε edges.

Notice that in this exposition, we have assumed that in the MSO transducer, edges can

be labeled with strings over the output alphabet (including ε) instead of single symbols.

It is easy to show that allowing strings to label the edges of the output graph does not

increase the expressiveness of MSO transducers. Also notice that not every node will

appear in the final output string. An MSO transducer able to remove the useless edges

and nodes can be defined. Using closure under composition we can then build the final

transducer. Some extra attention must be paid to add the matching edges in the output,

but since the output at every point is always a well-matched nested word, the matching

relation over the output nested word can be induced by inspection of each assignment

(i.e. the matching edges are always between nodes in the same column).

Nested Words as Binary Trees

Nested words can be encoded as binary trees. This encoding is analogous to the en-

coding of unranked trees as binary trees. Such an encoding increases the depth of the

tree by imposing unnecessary hierarchical structure, and thus, is not suitable for pro-

cessing of inputs. However, it is useful to simplify proofs of subsequent results about

expressiveness. The desired transduction nw_bt from W0(Σ) to BT(Σ) is defined by:

nw_bt(ε) = 0;

nw_bt(aw) = a〈 nw_bt(w), 0 〉;
nw_bt(〈a w1 b〉w2) = a〈 nw_bt(w1), b〈 nw_bt(w2), 0 〉 〉.

Notice that the tree corresponding to a nested word w has exactly one internal node for

each position in w. Observe that nw_bt is a one-to-one function, and in particular, the

encodings of the two nested words aaa and 〈a a a〉 differ:

• nw_bt(aaa) = a〈 a〈 a〈 0, 0 〉, 0 〉, 0 〉;

• nw_bt(〈aaa〉) = a〈 a〈 0, 0 〉, a〈 0, 0 〉 〉.

We can define the inverse partial function bt_nw from binary trees to nested words as

follows: given t ∈ BT(Σ), if t equals nw_bt(w), for some w ∈ W0(Σ) (and if so, the
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choice of w is unique), then bt_nw(t) = w, and otherwise bt_nw(t) is undefined. The

next proposition shows that both these mappings can be implemented as STTs.

Proposition 5.20 (Nested words to binary trees correspondence). nw_bt : W0(Σ) 7→
BT(Σ), and bt_nw : BT(Σ) 7→W0(Σ) are both STT-definable transductions.

Proof. We prove the two statements in the order.

STT for nw_bt. The transduction nw_bt can be performed by an STT S that basically

simulates its inductive definition and only needs one type-1 variable x. When process-

ing the input nested word w = a1 . . . an, after reading the symbol ai, x[0] contains the

value of nw_bt(WMS(w, i)) (see Theorem 5.7 for the definition of WMS(w, i)). The STT

S has one state q, which is also initial. The set of stack states is the same as the input

alphabet P = Σ, and the output function is F(q) = x[0]. Next we define the update

functions. For every a, b ∈ Σ,

• δi(q, a) = q, δc(q, a) = (q, a), and δr(q, a, b) = q;

• ρi(q, a, x) = x[a〈?, 0〉], ρc(q, a, x) = x, and ρr(q, a, b) = xp[a〈x[0], b〈?, 0〉〉].

STT for bt_nw. The translation bt_nw can be implemented by the following BRTT S′.

The BRTT S′ has three type-0 variables xi, xc, xr such that after processing the tree t, 1) xi

contains the value of bt_nw(t), assuming t’s root was representing an internal symbol,

2) xc contains the value of bt_nw(t), assuming t’s root was representing a call, and 3)

xr contains the value of bt_nw(t), assuming t’s root was representing a return. The

BRTT S′ has set of states Q′ = {q0} ∪ ({qa | a ∈ Σ} × {C, IR}), and initial state q0.

The {C, IR} component is used to remember whether the last symbol S′ read was a

call, or an internal or return symbol. The BRTT S′ is in a state (qa, ) after processing a

tree rooted with the symbol a. The output function F′ is defined as follows: for every

a ∈ Σ, F′(qa, IR) = xi, F′(qa, C) = xc, and F′ is undefined otherwise. Next we define

the update functions. When a variable is not assigned, we assume it is set to ε. For

every symbol a ∈ Σ,

Right Child is 0: for every q′ ∈ Q, δ(q′, q0, a) = (qa, IR), and

• if q′ = q0, then ρ(q0, q0, a, xi) = a;

• q′ = (qb, C) for some b ∈ Σ, then ρ((qb, C), q0, a, xi) = axl
c, and

ρ((qb, IR), q0, a, xr) = xl
c;
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• q′ = (qb, IR) for some b ∈ Σ, then ρ((qb, IR), q0, a, xi) = axl
i , and

ρ((qb, IR), q0, a, xr) = xl
i .

Right child is not 0: for every ql , qr ∈ Q, δ(ql , qr, a) = (qa, C), and qr must be of the form

(qb, IR) for some b ∈ Σ. The variable update is defined as follows:

• if ql = q0, then ρ(q0, (qb, IR), a, xc) = 〈ab〉xr
r;

• ql = (qc, C) for some c ∈ Σ, then ρ((qc, C), (qb, IR), a, xc) = 〈axl
cb〉xr

r;

• ql = (qc, IR) for some c ∈ Σ, then ρ((qc, IR), (qb, IR), a, xc) = 〈axl
ib〉xr

r.

Finally, the conflict relation of S′ only contains η′(xi, xr)

For a nested-word transduction f from W0(Σ) to W0(Γ), we can define another trans-

duction f̃ that maps binary trees over Σ to binary trees over Γ: given a binary tree

t ∈ BT(Σ), if t equals nw_bt(w), then f̃ (t) = nw_bt( f (w)), and otherwise f̃ (t) is un-

defined. The following proposition can be proved easily from the definitions of the

encodings.

Proposition 5.21 (Encoding nested-word transductions). If f is an MSO-definable trans-

duction from W0(Σ) to W0(Γ), then the transduction f̃ : BT(Σ) 7→ BT(Γ) is an MSO-

definable binary-tree transduction and f = bt_nw · f̃ · nw_bt.

Since STT-definable transductions are closed under composition, to establish that ev-

ery MSO-definable transduction is STT-definable, it suffices to consider MSO-definable

transductions from binary trees to binary trees.

5.8.2 Macro tree transducers

A Macro Tree Transducer (MTT) [EV85, EM99] is a tree transducer in which the trans-

lation of a tree may depend not only on its subtrees but also on its context. While the

subtrees are represented by input variables, the context information is handled by pa-

rameters. We refer the reader to Engelfriet et al. [EV85, EM99] for a detailed definition

of MTTs, and present here the essential details. We only consider deterministic MTTs

with regular look-ahead that map binary trees to binary trees.

A (deterministic) macro-tree transducer with regular look-ahead (MTTR) M from BT(Σ) to

BT(Γ) consists of a finite set Q of ranked states, a list Y = y1, . . . yn of parameter sym-

bols, variables X = {xl , xr} used to refer to input subtrees, an initial state q0, a fi-

nite set R of look-ahead types, an initial look-ahead type r0, a look-ahead combinator
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θ : Σ× R× R 7→ R, and the transduction function ∆. For every state q and every look-

ahead type r, ∆(q, r) is a ranked tree over the alphabet (Q× X)∪ Γ∪Y, where the rank

of a label (q, x) is the same as the rank of q, the rank of an output symbol a ∈ Γ is 2,

and the rank of each parameter symbol is 0 (that is, only leaves can be labeled with

parameters).

The look-ahead combinator is used to define look-ahead types for trees: θ∗(0) = r0 and

θ∗(a〈 sl , sr 〉) = θ(a, θ∗(sl), θ∗(sr)). Assume that only the tree 0 has the type r0, and for

every state q, ∆(q, r0) is a tree over Γ∪Y (the variables X are used to refer to immediate

subtrees of the current input tree being processed, and the type r0 indicates that the

input tree has no subtrees).

The MTTR M rewrites the input binary tree s0, and at every step the output tree is a

ranked tree with nodes labeled either with an output symbol, or with a pair consisting

of a state of the MTTR along with a subtree of the input tree. Let T (s0) denote the set

of all subtrees of the input tree s0. Then, the output t at any step is a ranked tree over

(Q×T (s0))∪ Γ∪{0}. The semantics of the MTTR is defined by the derivation relation,

denoted by ⇒, over such trees. Initially, the output tree is a single node labeled with

[q0, s0]. Consider a subtree of the output of the form u = [q, s](t1, . . . tn), that is, the root

is labeled with the state q of rank n, with input subtree s, and children of this node are

the output subtrees t1, . . . tn. Suppose the look-ahead type of the input subtree s is r,

and let sl and sr be the children of the root. Let χ be the tree obtained from the tree

∆(q, r) by replacing input variables xl and xr appearing in a node label with the input

subtrees sl and sr respectively, and replacing each leaf labeled with a parameter yl by

the output subtree tl . Then, in one step, the MTTR can replace the subtree u with the

tree χ. The rewriting stops when all the nodes in the output tree are labeled only with

output symbols. That is, for s ∈ BT(Σ) and t ∈ BT(Γ), [[M]](s) = t iff [q0, s]⇒∗ t.

In general, MTTs are more expressive than MSO. The restrictions needed to limit the

expressiveness rely on the notions of single-use and finite copying, which enforce an MTT

to process every subtree in the input a bounded number of times. Let M be an MTTR.

1. The MTTR M is single use restricted in the parameters (SURP) if for every state q and

every look-ahead type r, each parameter yj occurs as a node-label at most once in

the tree ∆(q, r).

2. The MTTR M is finite-copying in the input (FCI) if there exists a constant K such

that, for every tree s over Σ and subtree s′ of s, if the (intermediate) tree t is deriv-

able from [q0, s], then t contains at most K occurrences of the label [q, s′] (and thus,

each input subtree is processed at most K times during a derivation).
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Theorem 5.22 (Regularity for MTTs [EM99]). A ranked-tree transduction f is MSO-definable

iff there exists an MTTR M with SURP/FCI such that f = [[M]].

5.8.3 MSO equivalence

We first show that bottom-up ranked-tree transducers are as expressive as MTTs with

regular-look-ahead and single-use restriction, and then conclude that STTs are equiva-

lent to MSO-definable transducers.

Theorem 5.23 (MTTs to BRTTs). If a ranked-tree transduction f : BT(Σ) 7→ BT(Γ) is

definable by an MTTR with SURP/FCI, then it is BRTT-definable.

Proof. In the same way as we did for STTs, we can extend BRTTs to multi-parameter

BRTTs (MBRTT). We omit the definition, since it is straightforward. Using the proof

for Theorem 5.17 we can show that these are equivalent to multi-parameter STTs and

therefore using Theorem 5.14 to STTs.

We are given a MTTR with SURP/FCI M = (Q, Y, q0, R, r0, θ, ∆) with FCI constant K

computing a transduction f and we construct a BRTT B equivalent to M.

We divide the construction into several steps, each step using one of the properties of

the MTT.

1. We construct a BRTT S1, computing the transduction f1 : BT(Σ) 7→ BT(R), where

each input element is replaced by its regular look-ahead state.

2. We construct an STT S2, computing the transduction f2 : BT(R) 7→ BT(R′), where

each element of R′, contains information on the set of states in which the MTT

processes the corresponding node.

3. We construct a multi-parameter BRTT S3, that computes the function

f3 : BT(R′) 7→ BT(Γ). This part relies on the SURP restriction.

4. Finally, we use the fact that STTs are closed under composition (Theorem 5.15),

and the equivalence of STTs and BRTTs (Theorem 5.17), to show that f = f1 · f2 · f3

is a BRTT definable transduction.

Step 1. The BRTT S1 simulates the look-ahead automaton of M by following the tran-

sition relation θ. The set of states of S1 is R, with initial state r0, and it only has one

type-0 variable x. For every symbol a ∈ Σ, and states r1, r2 ∈ R, the transition func-

tion δ1, and the variable update function ρ1 of S1 are as follows: if θ(r1, r2, a) = r, then

δ1(r1, r2, a) = r, and ρ1(r1, r2, a, x) = r〈xlxr〉. Finally, for every r ∈ R, F(r) = x.
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Step 2. STTs can also be viewed as a top down machine, and f2 is in fact a top-down

relabeling. Every subtree s can be processed at most K times, and we can therefore use

S2 to label s with the ordered sequence of states that processes it. So given a tree over

BT(R), S2 outputs a tree over BT(R′), where R′ = R×Q≤K, and Q≤K =
⋃

0≤k≤K Qk .

The states and stack states of S2 are defined by the set Q2 = P2 = Q≤K ∪ (Q≤K ×Q≤K).

The initial state q2
0 = q0 ∈ Q≤K means that the root is only processed by q0. The

construction of S2 then maintains the following invariants: assume tl and tr are the left

and right children of a node, ml ∈ Q≤K is the sequence of states that processes tl in M,

and mr ∈ Q≤K is the sequence of states that processes tr in M;

• before processing tl , S2 is in state (ml , mr);

• before processing tr (after processing tl), S2 is in state mr.

The states mi can be obtained directly from the right hand sides of the rules of the MTT.

It’s now trivial to do the corresponding labeling using the information stored in the

state. Given a state q ∈ Q, and a symbol r1 ∈ R, let Sd(q, r1), with d ∈ {l, r}, be the

sequence of states processing the child sd in ∆(q, r1), assuming a linearization of such

a tree. For every sequence m = q1 . . . qn ∈ Q≤K, and symbol r1 ∈ R, Sd(m, r1) =

Sd(q1, r1) . . . Sd(qn, r1). The STT S2 only has one variable x.

We can now define the transition relation δ2, and the variable update function ρ2 of S2.

For every states m ∈ Q2, m′ ∈ Q≤K, (m1, m2) ∈ Q≤K × Q≤K, and for every symbol

r ∈ R:

r1 is a call 〈r2: store the variables on the stack and update the state consistently:

• δ2(m′, r2) = (m1, m′), where m1 = (Sl(m′, r2),Sr(m′, r2)), and

δ2((m1, m2), r2) = (m3, (m1, m2)), where m3 = (Sl(m1, r2),Sr(m1, r2));

• ρ2(m′, r2, x) = x, and ρ2((m1, m2), r2, x) = x;

r is a return r2〉: use the values on the stack to compute the labeling:

• δ2(m, (m1, m2), r2) = m2, and δ2(m, m′, r2) = m;

• ρ2(m, (m1, m2), r2, x) = 〈(r, m1) x (r, m1)〉, and

ρ2(m, m′, r2, x) = xp 〈(r2, m′) x (r2, m′)〉.

Finally, the output function F2 of S2 outputs x for every possible q ∈ Q2.
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Step 3. This last step relies on the SURP property of the MTT M. We notice that,

when processing bottom-up the MTT parameter updates behave in a different way as

when processing top-down: to perform the top-down parameter update y1 := a(y2) in

bottom-up manner, we need to use the multi-parameter BRTT parameter substitution

x := x[y1 7→ a(y2)], where now, the new visible parameter is y2. We now formalize this

idea.

We construct a multi-parameter BRTT S3 = (Q3, q03, Π3, η3, X3, F3, δ3, ρ3) from

BT(R′) 7→ BT(Γ), that implements the transduction f3. The set of states Q3 only con-

tains one state q03, which is also initial. The transition function is therefore trivial.

The set of variables X3 = {x1, . . . , xK} contains K variables. After processing a tree t,

xi contains the result of M processing the tree t starting in qi, with the possible holes

given from the parameters. At the beginning all the variable values are set to ε. The

parameter set Π3 is Y.

Next, we define the update functions of S3. We start from the leaf rules, in which

both the 0 children are labeled with the empty sequence. Let’s assume the current leaf

is (r, m), where m = q1 . . . qj. We assume w.l.o.g., that all the states have exactly K

parameters. For every qi ∈ m, if ∆(qi, r) = ti(y1, . . . , yK), we update xi := ti(y1, . . . , yK),

where y1, . . . , yK ∈ Π. Since the MTT is SURP, there is at most one occurrence of each

yi.

We now analyze the binary node rules. Let’s assume the node we are processing the

input node (r, m), where m = q1 . . . qj. For every qi ∈ m, ∆(qi, r) is of the form

ti(Y, (qi
l,1, sl), . . . , (qi

l,ai
, sl), (qi

r,1, sr), . . . , (qi
r,bi

, sr))

where qi
l,1 . . . qi

l,ai
is the sequence of states processing the left subtree, and qi

r,1 . . . qi
r,bi

is

the sequence of states processing the right subtree.

When picking the concatenation of all the ∆(qi, r) , we have that by the construction

of S2, the left child (similarly for the right), must have been labeled with the sequence

ml = q1
l,1 . . . q1

l,a1
. . . qj

l,1 . . . qj
l,aj

such that |ml | ≤ K. Moreover, we have that for all xi ∈ Xl

(similarly for Xr), xi contains the output of M when processing the left child of the

current node starting in state qi, where qi is the i-th element of the sequence ml and

assuming the parameter are not instantiated yet

Now we have all the ingredients to complete the rule. The right hand side of a variable

xi contains the update corresponding to the rule in M where we replace every state

with the corresponding variable in the linearization stated above and parameters are
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updated via substitution. Since ρ is copyless η3 is trivial. The output function FS simply

outputs x1, i.e. the transformation of the input tree starting in q0.

Step 4. We use Theorem 5.15, and Theorem 5.17 to compose all the transformations

and build the final BRTT equivalent to the MTT M.

Theorem 5.24 (MSO equivalence). A nested-word transduction f : W0(Σ) 7→ W0(Γ) is

STT-definable iff it is MSO-definable.

Proof. From Theorems 5.15, 5.17, 5.19, 5.20, 5.22, and 5.23.

5.9 Decision problems

In this section, we show that a number of analysis problems are decidable for STTs.

Moreover, we show that STTs are the first model that capture MSO-definable trans-

formations while enjoying an elementary upper bound for the problem of checking

inequivalence (NEXPTIME).

5.9.1 Output analysis

Given an input nested word w over Σ, and an STT S from Σ to Γ, consider the problem

of computing the output [[S]](w). To implement the operations of the STT efficiently,

we can store the nested words corresponding to variables in linked lists with reference

variables pointing to positions that correspond to holes. Each variable update can be

executed by changing only a number of pointers that is proportional to the number of

variables.

Proposition 5.25 (Computing output). Given an input nested word w and an STT S with k

variables, the output nested word [[S]](w) can be computed in time O(k|w|) in a single pass.

Proof. A naive implementation of the transducer would cause the running time to be

O(k|w|2) due to possible variable sharing. Let’s consider the assignment (x, y) :=

(x, x). The naive implementation of this assignment would copy the value of the vari-

able x in both x and y, causing the single step to costO(k|w|) since every variable might

contain a string of length O(|w|).

We now explain how we achieve the O(k|w|) bound by changing the representation of

the output. Instead of outputting the final string, we output a pointer graph represen-

tation of the run. The construction is exactly the same as in Theorem 5.19. In this case
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the transducer might not be copyless; however, we can construct the graph in the same

way. The key of the construction is that due to the definition of sharing, each variable

contributes only once to the final output. In this way, starting from the output variable,

we can reconstruct the output string by just following the edges in the graph. Notice

that the stack variables won’t cause a linear blow-up in the size of the graph because at

every point in the run the graph only needs to represent the top of the stack.

The second problem we consider corresponds to type-checking: given a regular language

Lpre of nested words over Σ, a regular language Lpost of nested words over Γ, and an

STT S from Σ to Γ, the type-checking problem is to determine if [[S]](Lpre) ⊆ Lpost (that

is, if for every w ∈ Lpre, [[S]](w) ∈ Lpost).

Theorem 5.26 (Type-checking). Given an STT S from Σ to Γ, an NWA A accepting nested

words over Σ, and an NWA B accepting nested words over Γ, checking [[S]](L(A)) ⊆ L(B) is

solvable in EXPTIME, and more precisely in time O(|A|3 · |S|3 · nkn2
) where n is the number

of states of B, and k is the number of variables in S.

Proof. The construction is similar to the one of Theorem 5.15. Therefore we only present

a sketch. Given S, A, and B, we construct an NWA P, that accepts a nested word w iff

w is accepted by A and [[S]](w) is not accepted by B. This is achieved by summarizing

the possible executions of B on the variable values of S. The states of P are triplets

(qA, qS, f ), such that:

• qA is the current state of A;

• qS is the current state of S;

• for every variable x of S, and states q1, q2 in B, f (x, q1, q2) is a pair of states (q′1, q′2)

of B, such that if the value of x is w1?w2:

– if B reads w1 starting in state q1, then it ends in state q′1 and produces some

stack Λ;

– if B reads w2 starting in state q2, and with stack Λ, then it ends in state q′2.

The final states of the machine are those where A is final, and the summary of the

output function of the current state of QS of S leads to a non accepting state in B.

As noted in Proposition 5.2, the image of an STT is not necessarily regular. However,

the pre-image of a given regular language is regular, and can be computed. Given

an STT S from input alphabet Σ to output alphabet Γ, and a language L ⊆ W0(Γ) of

output nested words, the set PreImg(L, S) consists of input nested words w such that

[[S]](w) ∈ L.
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Theorem 5.27 (Computing pre-image). Given an STT S from Σ to Γ, and an NWA B

over Γ, there is an EXPTIME algorithm to compute an NWA A over Σ such that L(A) =

PreImg(L(B), S). The NWA A has size O(|S|3 · nkn2
) where n is the number of states of B,

and k is the number of variables in S.

Proof. The proof is the same as for Theorem 5.26, but this time the final states of the

machine are those where S is in a final configuration, and the summary of the output

function of the current state qS of S leads to an accepting state in B.

5.9.2 Functional equivalence

Finally, we consider the problem of checking functional equivalence of two STTs: given

two STTs S and S′, we want to check if they define the same transduction. Given two

streaming string transducers S and S′, one can construct an NFA A over the alphabet

{0, 1} such that the two transducers are inequivalent exactly when A accepts some string

w such that w has equal number of 0’s and 1’s [AC10, AC11]. The idea can be adopted

for the case of STTs, but A now is a nondeterministic pushdown automaton. The size

of A is polynomial in the number of states of the input STTs, but exponential in the

number of variables of the STTs. We then adapt existing results to show that [Esp97,

SSMH04, KT10] it is decidable to check whether this pushdown automaton accepts a

string with the same number of 0’s and 1’s.

Theorem 5.28 (Checking equivalence). Given two STTs S1 and S2, it can be decided in

NEXPTIME whether [[S]] 6= [[S′]].

Proof. Two STTs S1 and S2 are inequivalent if one of the following holds:

1. for some input u, only one of [[S1]](u) and [[S2]](u) is defined;

2. for some input u, the lengths of [[S1]](u) and [[S2]](u) are different;

3. for some input u, there exist two symbols a and b, such that a 6= b, [[S1]](u) =

u1au2, [[S2]](u) = v1bv2, and u1 and v1 have the same length.

The first case can be solved in PTIME [AM09]. The second case can be reduced to

checking an affine relation over pushdown automata and this problem can be solved

in PTIME [MOS04]. Informally, let A be a pushdown automaton where each transition

computes an affine transformation. Checking whether a particular affine relation holds

at every final state is decidable in polynomial time [MOS04]. We can therefore take the

product Sp of S1 and S2, where Sp updates the variables of S1 and S2 as follows. Let Xi
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be the set of variables in Si. For every state (q1, q2), symbol a ∈ Σ and every x ∈ Xi,

Sp updates the variable x to the sum of the number of constant symbols in the variable

update of x in Si when reading a in state qi, and the variables appearing in such variable

update. For every state (q1, q2) for which F1(q1) and F2(q2) are defined, we impose the

affine relation F1(q1) = F2(q2) which checks whether the two outputs have the same

length. We can then use the algorithm by Müller-Olm and Seidl [MOS04] to check if

such a relation holds.

Let us focus on the third case, in which the two outputs differ in some position. Given

the STT S1 and a symbol a, we construct a nondeterministic visibly pushdown trans-

ducer (VPT) V1 (a visibly pushdown automaton with output), from Σ to {0} such that

V1 produces 0n on input u, if [[S1]](u) = u1au2 and |u1| = n. Similarly, given S2, and a

symbol b 6= a, we construct a VPT V2 from Σ to {1} such that V2 produces 1n on input

u, if [[S2]](u) = u1bu2 and |u1| = n.

Using V1 and V2 we then build the product V = V1 ×V2 which interleaves the outputs

of V1 and V2. If V outputs a string s containing the same number of 0s and 1s, then there

exists an input w on which S1 outputs a string α1aβ1, S2 outputs α2bβ2, and |α1| = |α2|.
Since in V the input labels are synchronized, they are no longer relevant. Therefore, we

can view such machine as a pushdown automaton that generates/accepts strings over

{0, 1}∗. If a string s with the same number of 0s and 1s is accepted by V, it can be found

by constructing the semi-linear set that characterizes the Parikh image of the context-

free language of V [Esp97, SSMH04]. A solution to such semi-linear set can be found

in NP (in the number of states of V) [KT10]. However, as we will see, the number of

states of V is polynomial in the number of states of S1 and S2, and exponential in their

number of variables of S1 and S2. This allows us to conclude that checking whether

two STTs are inequivalent can be solved in NEXPTIME.

The rest of the proof shows how to construct V1, V2, and V = V1 × V2. We modify

S1 = (Q, q0, P, X, η, F, δ, ρ), so that we do not have to worry about the output function.

We add to S1 a new variable x f , and a new state q f , obtaining a new STT S′1. We can

then add a special end-of-input symbol #, such that, for every state q ∈ Q for which

F(q) is defined, S′1 goes from q to q f on input #, and updates x f to F(q). This new STT

S′1 has the following property: for every input u, [[S1]](w) = [[S′1]](w#).

Each state of V1 is a pair (q, f ), where q is a state of S′1, and f is a partition of the

variables X of S′1 into 6 categories {l, m1, m?, m2, r, n}, such that a variable x is in the

set:

l: if x contributes to the final output occurring on the left of a symbol a where a is the

symbol we have guessed the two transducers differ in the final output;
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m1: if x contributes to the final output and the symbol a appears in this variable on the

left of the ?;

m?: if x contributes to the final output and the symbol a appears in this variable in the

? (a future substitution will add a to the ?);

m2: if x contributes to the final output and the symbol a appears in this variable on the

right of the ?;

r: if x contributes to the final output occurring on the right of a symbol a;

n: if x does not contribute to the final output.

At every step, V1 nondeterministically chooses which of the previous categories each

of the variables of S1 belongs to. In the following, we use fp to denote a particular

partition: for example fm1 is the set of variables mapped by f to m1. A state (q, f ) of

V1 is initial, if q = q0 is the initial state of S1, and fm1 ∪ fm2 = ∅. A state (q, f ) of V1

is final, if q = q f , fm1 = {x f } (the only variable contributing to the output is x f ), and

fl ∪ fr ∪ fm? ∪ fm2 = ∅.

We now define the transition relation of V1. Given a state s, and a symbol b, a transition

updates the state to some s′, and outputs a sequence in 0∗. We assume V1 is in state

(q, f ), and it is processing the input symbol b. Given an expression α ∈ E(X, Σ) (i.e. an

assignment right hand side), we use x ∈a α to say that a variable x ∈ X appears in α.

b is internal: the VPT V1 goes to state (q′, f ′), where δi(q, s) = q′. For computing f ′ we

have three different possibilities.

1. The VPT V1 guesses that in this transition, some variable x is going to con-

tain the position on which the outputs differ. We show the construction with

an example. Assume ρi(q, b, x) = α1cα2?α3, and c is the position on which

we guess the output differs. The transition must satisfy the following prop-

erties, which ensures that the current labeling is consistent:

• ∀y ∈a α1.y ∈ fl , ∀y ∈a α2α3.y ∈ fr, f ′m1 = {x}, and fm = ∅ (the only

variable that contributes in the middle now is x);

• for every y 6= x, all the variables appearing to the left of the ? in ρi(q, b, y)

belong to the same partition pl ;

• for every y 6= x all the variables appearing to the right of the ? in

ρi(q, b, y) belong to the same partition pr;

• if pl = pr, then y belongs to f ′pl
;

• if pl 6= pr, then y belongs to f ′m?.
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If a variable is assigned a constant, we nondeterministically choose which

category it belongs to in f ′. The output of the transition is 0k, where k is the

sum of the number of output symbols in α and in {ρi(q, b, y)|y ∈ f ′l }.
2. The transition is just maintaining the consistency of the partition, and the

position on which the output differs has not been guessed yet. Similar to

case (1).

3. The transition is just maintaining the consistency of the partition, and the

position on which the output differs has already been guessed. Similar to

case (1).

b is a call: in this case the updates are similar to the internal case. The updated partition

is stored on the stack, and a new partition is non-deterministically chosen for the

variables that are reset.

b is a return b′〉: the VPT V1 uses the partition in the state for the variables in X, and the

partition on the stack state for the variables in Xp. We assume (p, f ′) is the state

on top of the stack. The VPT V1 steps to (q′′, f ′′), such that δr(q, p, b) = q′. The

computation of f ′ is similar to case in which a is internal.

For every transition we also impose the following conditions: the cardinality of fm1 ∪
fm2 is always less or equal than 1, and if a variable x does not appear in the right

hand side of any assignment then x ∈ fn. The first condition ensures that at most one

variable contains the position on which the outputs differ. Due to the partitioning of

the variables into the 6 categories V1 will have exponentially many states. The VPT V2

corresponding to S2 and a symbol b such that b 6= a can be built in a similar manner.

We finally show how to build the product VPT V = V1 × V2 that reads nested words

over the alphabet Σ and outputs strings over the alphabet {0, 1}. The VPT V is a simple

product construction where:

• each state of V is a pair (q1, q2), where qi is a state of Vi;

• each stack state of V is a pair (p1, p2), where pi is a stack state of Vi;

• the initial state is (q0
1, q0

2), where q0
i is the initial state of Vi;

• a state (q1, q2) is final iff qi is a final state of Vi;

• if δ1 and δ2 are the transition functions of V1 and V2 respectively, then given a

symbol a ∈ Σ, a state (q1, q2), and a stack state (p1, p2), the transition relation δ of

V is defined as

– if δ1
i (q1, a) = q′1, 0n and δ2

i (q2, a) = q′2, 1m, then δi((q1, q2), a) = (q′1, q′2), 0n1m;
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– if δ1
c (q1, a) = q′1, p′1, 0n and δ2

c (q2, a) = q′2, p′2, 1m, then

δc((q1, q2), a) = (q′1, q′2), (p′1, p′2), 0n1m;

– if δ1
r (q1, p1, a) = q′1, 0n and δ2

r (q2, p2, a) = q′2, 1m, then δr((q1, q2), (p1, p2), a) =

(q′1, q′2), 0n1m.

This concludes the proof.

If the number of variables is bounded, then the size of V is polynomial, and this gives

an upper bound of NP. For the transducers that map strings to nested words, that is,

for streaming string-to-tree transducers (SSTT), the above construction yields a PSPACE

bound [AC11].

Corollary 5.29 (Equivalence of string-to-tree transducers). Given two SSTTs S and S′

that map strings to nested words, the problem of checking whether [[S]] = [[S′]] is solvable in

PSPACE.

Improving these bounds remains a challenging open problem.

5.10 Related work

We have proposed the model of streaming tree transducers to implement

MSO-definable tree transformations by processing the linear encoding of the input tree

in a single left-to-right pass in linear time. Below we discuss the relationship of our

model to the rich variety of existing transducer models, and directions for future work.

5.10.1 Executable models

A streaming tree transducer is an executable model, just like a deterministic automa-

ton or a sequential transducer, meaning that the operational semantics of the machine

processing the input coincides with the algorithm to compute the output from the in-

put and the machine description. Earlier executable models for tree transducers in-

clude bottom-up tree transducers, visibly pushdown transducers (a VPT is a sequential

transducer with a visibly pushdown store: it reads the input nested word left to right

producing output symbols at each step) [RS09], and multi bottom-up tree transducers

(such a transducer computes a bounded number of transformations at each node by

combining the transformations of subtrees) [ELM08]. Each of these models computes

the output in a single left-to-right pass in linear time. However, none of these models

can compute all MSO-definable transductions.
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5.10.2 Regular look-ahead

Finite copying Macro Tree Transducers (MTTs) with regular look-ahead [EM99] can

compute all MSO-definable ranked-tree-to-ranked-tree transductions. The “finite copy-

ing” restriction, namely, each input node is processed only a bounded number of times,

can be equivalently replaced by the syntactic “single use restriction” which restricts

how the variables and parameters are used in the right-hand sides of rewriting rules in

MTTs. In all these models, regular look-ahead cannot be eliminated without sacrific-

ing expressiveness: all of these process the input tree in a top-down manner, and it is

well-known that deterministic top-down tree automata cannot specify all regular tree

languages. A more liberal model, that uses a “weak finite copying” restriction, achieves

closure under regular look-ahead and MSO-equivalence by allowing each input node to

be processed an unbounded number of times, provided only a bounded subset of these

contribute to the final output. It should be noted, however, that a linear time algorithm

exists to compute the output [Man02]. This algorithm essentially uses additional look-

ahead passes to label the input with the information needed to restrict attention to only

those copies that contribute to the final output (in fact, Maneth [Man02] shows how

relabeling of the input can be effectively used to compute the output of every MTT in

time linear in the size of the input and the output). Finally, to compute tree-to-string

transductions using regular look-ahead, MTTs need just one parameter (alternatively,

top-down tree transducers suffice). In absence of regular look-ahead, even if the final

output is a string, the MTT needs multiple parameters, and thus, intermediate results

must be trees (that is, one parameter MTTs are not closed under regular look-ahead).

Thus, closure under regular look-ahead is a key distinguishing feature of STTs.

5.10.3 From SSTs to STTs

The STT model generalizes earlier work on streaming string transducers (SST). An SST

is a copyless STT without a stack [AC10, AC11]. While results in Section 5 follow by

a natural generalization of the corresponding results for SSTs, the results in Section 3

and 4 require new approaches. In particular, equivalence of SSTs with MSO-definable

string-to-string transductions is proved by simulating a two-way deterministic sequen-

tial transducer, a well-studied model known to be MSO-equivalent [EH01], by an SST.

The MSO-equivalence proof in this chapter first establishes closure under regular look

ahead, and then simulates finite copying MTTs with regular look-ahead. The natural

analog of two-way deterministic string transducers would be the two-way version of

visibly pushdown transducers [RS09]: while such a model has not been studied, it is
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easy to show that it would violate the “linear-bounded output” property of Proposi-

tion 1, and thus, won’t be MSO-equivalent. While in the string case the copyless re-

striction does not reduce the expressiveness, in Section 5.4 we argue that the example

conditional swap cannot be expressed by a copyless STT. Proving this result formally

is a challenging open problem.

5.10.4 Succinctness

To highlight the differences in how MTTs and STTs compute, we consider two exam-

ples. Let f1 and f2 be two MSO-definable transductions, and consider the transforma-

tion f (w) = f1(w) f2(w). An MTT at every node can send multiple copies to children

and this enables a form of parallelism. Therefore, an MTT can compute f by having

one copy compute f1, and one copy compute f2, and the size of the resulting MTT will

be the sum of the sizes of MTTs computing f1 and f2. STTs are sequential and, to com-

pute f , one needs the product of the STTs computing f1 and f2. This can be generalized

to show that MTTs (or top-down tree transducers) can be exponentially more succinct

than STTs. If we were to restrict MTT rules so that multiple states processing the same

subtree must coincide, then this gap disappears. In the other direction, consider the

transformation f ′ that maps input u#v#a to uv if a = 0 and vu otherwise. The transduc-

tion f ′ can be easily implemented by an STT using two variables, one of which stores

u and one which stores v. The ability of an STT to concatenate variables in any order

allows it to output either uv or vu depending on the last symbol. In absence of look-

ahead, an MTT for f ′ must use two parameters, compute (the tree encodings of) uv and

vu separately in parallel, and make a choice at the end. This is because, while an MTT

rule can swap or discard output subtrees corresponding to parameters, it cannot com-

bine subtrees corresponding to parameters. This example can be generalized to show

that an MTT must use exponentially many parameters as well as states, compared to

an STT.

5.10.5 Input/output encoding

Most models of tree transducers process ranked trees (exceptions include visibly push-

down transducers [RS09] and Macro forest transducers [PS04]). While an unranked tree

can be encoded as a ranked tree (for example, a string of length n can be viewed as a

unary tree of depth n), this is not a good encoding choice for processing the input, since

the stack height is related to depth (in particular, processing a string does not need a

stack at all). We have chosen to encode unranked trees by nested words; formalization
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restricted to tree words (that are isomorphic to unranked trees) would lead to a slight

simplification of the STT model and the proofs.

5.10.6 Streaming algorithms

Consistent with the notion of a streaming algorithm, an STT processes each input sym-

bol in constant time. However, it stores the output in multiple chunks in different vari-

ables, rearranging them without examining them, making decisions based on finite-

state control. Unlike a typical streaming algorithm, or a sequential transducer, the out-

put of an STT is available only after reading the entire input. This is unavoidable if

we want to compute a function that maps an input to its reverse. We would like to ex-

plore if the STT model can be modified so that it commits to output symbols as early as

possible. A related direction of future work concerns minimization of resources (states

and variables). Another streamable model is that of Visibly Pushdown Transducers

(VPT) [FGRS11], which is however less expressive than STT. In particular VPTs cannot

guarantee the output to be a well-matched nested word.

We have argued that SSTs correspond to a natural model with executable interpreta-

tion, adequate expressiveness, and decidable analysis problems, and in future work, we

plan to explore its application to querying and transforming XML documents [Hos11,

HMNI14] (see also http://www.w3.org/TR/xslt20/). Our analysis techniques

typically have complexity that is exponential in the number of variables, but we do

not expect the number of variables to be the bottleneck.

5.10.7 Complexity of checking equivalence

The problem of checking functional equivalence of MSO tree transducers is decidable

with non-elementary complexity [EM06]. Decidability follows for MSO-equivalent

models such as MTTs with finite copying, but no complexity bounds have been estab-

lished. Polynomial-time algorithms for equivalence checking exist for top-down tree

transducers (without regular look-ahead) and visibly pushdown transducers [CDG+07,

RS09, EMS09]. For STTs, we have established an upper bound of NEXPTIME, while

the upper bound for SSTs is PSPACE [AC11]. Improving these bounds, or establishing

lower bounds, remains a challenging open problem. If we extend the SST/STT model

by removing the single-use restriction on variable updates, we get a model more ex-

pressive than MSO-definable transductions; it remains open whether the equivalence

problem for such a model is decidable.

http://www.w3.org/TR/xslt20/
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5.10.8 Alphabet limitations

STTs only operate over finite alphabets, and this can be a limitation in practical do-

mains like XML processing. Integrating data values (that is, tags ranging over a poten-

tially unbounded domain) in our model is an interesting research direction. A partic-

ularly suitable implementation platform for this purpose seems to be the framework

of symbolic automata and symbolic transducers we discussed in Chapter 3. These mod-

els integrate automata-theoretic decision procedures on top of an SMT solver, enabling

manipulation of formulas specifying input/output values from a large or unbounded

alphabet in a symbolic and succinct manner [VB12b, DVLM14]. A symbolic version of

visibly pushdown automata is discussed in Chapter 4.
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Part III

Conclusion
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Chapter 6

Future work

“If I had to do it all over again? Why not, I would do it a

little bit differently.”

— Freddie Mercury, Life in His Own Words

This dissertation demonstrates that automata and transducers are effective tools for

reasoning about real-world programs that manipulate lists and trees. We first pre-

sented two novel transducer-based languages, BEX and FAST, used the former to verify

efficient implementations of complex string coders, the latter to prove properties of

HTML sanitizers, functional programs, and augmented reality taggers. We then in-

troduced two new executable single-pass models for efficiently processing hierarchi-

cal data: symbolic visibly pushdown automata for monitoring properties involving

infinite alphabets, and streaming tree transducers for expressing complex tree-to-tree

transformations.

These results do not, however, close the book on automata- and transducer-based pro-

gramming. In fact, our work can be seen as a new trampoline for designing languages

and techniques that enable analysis and efficient execution of restricted classes of pro-

grams. This final chapter identifies specific avenues for future research.

6.1 Declarative languages

The languages described in Chapters 2 and 3 mainly acted as a frontend for the under-

lying transducer model: the language syntax and the transducer definition were nearly

isomorphic. Another option is that of separating the two and designing declarative

languages that can be compiled into transducers. For example, regular expressions are
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a declarative language that can be compiled into finite automata. Since declarative lan-

guages typically improve programmability and enable succinctness, one might wonder

whether it is possible to design declarative programming languages that capture more

classes of languages and transformations.

We and others have already made progress in this area. Alur, Freilich, and

Raghothaman identified a set of combinators that captures exactly the class of regular

string-to-string transformations [AFR14]. Based on these combinators, together with

Alur and Raghothaman we designed DReX, a declarative language for string transfor-

mations [ADR15]. Programs written in DReX can be analysed statically and executed

efficiently.

6.2 Algorithms

We described several novel models and decision procedures. For many of the models,

in particular those supporting infinite alphabets, the theory is still not complete and

many algorithms can be improved. For example, together with Veanes we developed

new algorithms for minimizing symbolic automata [DV14]. Other problems remain

open, despite a very active community. For the problem of checking equivalence of

streaming tree transducers we provided a NEXPTIME upper bound, but we have no

exponential lower bound. A similar result holds for streaming string transducers. Im-

proving these bounds is a challenging and active research direction [FR14].

6.3 New models

We introduce new models that target particular application domains. There are count-

less possible extensions that could help capture richer domains. How does one handle

infinite strings and trees? Can these models be extended with counters? Together with

Alur, Deshmukh, Raghothaman, and Yuan, we investigated numerical extensions of

streaming transducers [ADD+13]. Understanding the properties of these models has

been an active research direction [AR13].

6.4 Data-parallelism

In this dissertation we often emphasized how many automata and transducer models

allow the efficient processing of inputs in a single pass. For very large inputs this is not
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enough and it is necessary to process the inputs in a parallel fashion. Veanes, Mytkow-

icz, Molnar, and Livshits have investigated how programs expressed as transducers

can be used to generate efficient data-parallel code [VMML15]. This builds on the idea

that the transition relation of a transducer can be represented as a matrix, and applying

the transducer to the input corresponds to performing a matrix multiplication. In this

representation, it can be shown that the state component of the transducer is not neces-

sary. The input can therefore be divided into chunks that can be processed in parallel

and then merged. This insight opens a new avenue in the world of automata-based

programming. In particular, it would be interesting to create data-parallel models in

the context of XML processing.

6.5 New applications

In this dissertation we only discussed a few applications of automata- and transducer-

based languages. However, many more applications can benefit from these models.

6.5.1 Direct memory access in device drivers

Together with Albarghouthi, Cerny, and Ryzhyk, we are currently applying symbolic

transducers to the verification of direct memory access (DMA) in device drivers.1 Al-

though there exist many tools for verifying device drivers [BLR11], verifying the DMA

part remains challenging. When performing DMA the state space accessed by the

driver becomes the whole memory and explicit techniques do not scale. Our goal is to

model DMA operations, in particular those operating over packet queues, using trans-

ducer models. This requires the extension of our models to allow counters and data

values, features that typically cause most procedures to become undecidable. We are

currently in the process of identifying a model that can capture typical DMA operations

without compromising decidability.

6.5.2 Networking

Recently Anderson, Foster, Guha, Jeannin, Kozen, Schlesinger, and Walker proposed

a novel declarative language for verifying network configurations, NetKAT, that is

strongly founded in automata theory [AFG+14]. In NetKAT a network is abstracted

1https://msdn.microsoft.com/en-us/library/windows/hardware/ff544074%28v=vs.
85%29.aspx

https://msdn.microsoft.com/en-us/library/windows/hardware/ff544074%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff544074%28v=vs.85%29.aspx
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by an automaton that moves packets from node to node along the links in its topol-

ogy. Actions in the network are then modeled using Kleene algebra with tests (KAT),

an extension of regular expressions. Using KAT’s closure properties and decision pro-

cedures the network can be then statically analyzed. Many of the ideas presented in

this dissertation could be applied to NetKAT and in general to networking. Currently

NetKAT explicitly queries each packet using multiple disjoint predicates, as KAT oper-

ates over finite alphabets. Symbolic automata techniques could be beneficial in reduc-

ing the complexity of these operations by representing predicates in a more succinct

way, and by clearly separating the packet querying from the network operations.

6.5.3 Deep packet inspection

Fast identification of network traffic patterns is of vital importance in network rout-

ing, firewall filtering, and intrusion detection. This task is addressed with the name

“deep packet inspection” (DPI) [SEJK08]. Due to performance constraints, DPI must be

performed in a streaming fashion, and many automata models have been proposed to

perform this task. Since packets contain large headers and payload, symbolic automata

could be again beneficial in achieving succinctness. In particular, combining symbolic

automata with BDDs could help leverage the bit-vector structure of the packets.

6.5.4 Binary assemblers and disassemblers

An assembler converts code written in assembly language into binary machine code. A

disassembler inverts this operation. These programs are ubiquitous and hard to verify

as they operate over large bit patterns. Transducers provide a potential solution to this

problem. In particular, the models we devised in Chapter 2 to verify string coders could

be adapted to work in this setting. Moreover, modeling disassemblers as transducers

could provide new insights on deobfuscation, the task of extracting readable code from

binaries.

6.5.5 Binary code similarity analysis

Identifying whether two binaries were compiled from similar pieces of code is neces-

sary in identifying malware fingerprints – whether two programs contained the same

malicious code. This task is challenging due to the many compiler transformations that

slightly affect the structure of the compiled binary. Dalla Preda, Giacobazzi, Lakho-

tia, and Mastroieni recently showed how to treat symbolic automata as an abstract
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domain [DPGLM15] and used this notion to perform binary similarity analysis. The

core idea is to represent programs as automata, and then use abstract interpreting op-

erations on such automata. Although at first the programs would not be identical,

iterated abstraction operations can remove unnecessary information which can make

the two automata closer to each other. This application of symbolic automata is novel

and many possible extensions are possible. For example, symbolic visibly pushdown

automata could be used to extend the techniques presented by Dalla Preda et al. to

operate over recursive programs.
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