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1 INTRODUCTION
Finite-state machines and logics for specifying tree transformations offer a suitable theoretical foundation for
studying expressiveness and complexity of analysis problems for languages for processing and transforming XML
documents. Representative formalisms for specifying tree transductions include finite-state top-down and bottom-up
tree transducers, Macro tree transducers (MTT), attribute grammars, MSO (monadic second-order logic) definable
graph transductions, and specialized programming languages such as XSLT and XDuce [5, 6, 9, 12, 16, 21, 22, 28, 29].

In this paper, we propose the model of streaming tree transducers (STT), which has the following three properties:
(1) Single-pass linear-time processing: an STT is a deterministic machine that computes the output using a single left-
to-right pass through the linear encoding of the input tree processing each symbol in constant time; (2) Expressiveness:
STTs specify exactly the class of MSO-definable tree transductions; and (3) Analyzability: decision problems such as
type-checking and checking functional equivalence of two STTs, are decidable. The last two features indicate that our
model has the commonly accepted trade-off between analyzability and expressiveness in formal language theory. The
motivation for designing streaming algorithms that can process a document in a single pass has led to streaming
models for checking membership in a regular tree language and for querying [25, 29, 31, 34], but there is no previous
model that can compute all MSO-definable transformations in a single pass (see Section 6 for detailed comparisons of
STTs with prior models).

The transducer model integrates features of visibly pushdown automata, equivalently nested word automata [3], and
streaming string transducers [1, 2]. In our model, the input tree is encoded as a nested word, which is a string over
alphabet symbols, tagged with open/close brackets (or equivalently, call/return types) to indicate the hierarchical
structure. The streaming tree transducer reads the input nested word left-to-right in a single pass. It uses finitely
many states, together with a stack, but the type of operation applied to the stack at each step is determined by the
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hierarchical structure of the tags in the input. The output is computed using a finite set of variables with values
ranging over output nested words, possibly with holes that are used as place-holders for inserting subtrees. At each
step, the transducer reads the next symbol of the input. If the symbol is an internal symbol, then the transducer
updates its state and the output variables. If the symbol is a call symbol, then the transducer pushes a stack symbol,
along with updated values of variables, updates the state, and reinitializes the variables. While processing a return
symbol, the stack is popped, and the new state and new values for the variables are determined using the current
state, current variables, popped symbol, and popped values from the stack. In each type of transition, the variables
are updated using expressions that allow adding new symbols, string concatenation, and tree insertion (simulated by
replacing the hole with another expression). A key restriction is that variables are updated in a manner that ensures
that each value can contribute at most once to the eventual output, without duplication. This single-use-restriction is
enforced via a binary conflict relation over variables: no output term combines conflicting variables, and variable
occurrences in right-hand sides during each update are consistent with the conflict relation. The transformation
computed by the model can be implemented as a single-pass linear-time algorithm.
To understand the novel features of our model, let us consider two kinds of transformations. First, suppose we

want to select and output the sequence of all subtrees that match a pattern, that is specified by a regular query over
the entire input, and not just the prefix read so far. To implement this query, the transducer uses multiple variables
to store alternative outputs, and exploiting regularity to maintain only a bounded number of choices at each step.
Second, suppose the transformation requires swapping of subtrees. The operations of concatenation and tree-insertion
allows an STT to implement this transformation easily. This ability to combine previously computed answers seems
to be missing from existing transducer models. We illustrate the proposed model using examples such as reverse,
swap, tag-based sorting, where the natural single-pass linear-time algorithms for implementing these transformations
correspond to STTs.

We show that the model can be simplified in natural ways if we want to restrict either the input or the output, to
either strings or ranked trees. For example, to compute transformations that output strings it suffices to consider
variable updates that allow only concatenation, and to compute transformations that output ranked trees it suffices to
consider variable updates that allow only tree insertion. The restriction to the case of ranked trees as inputs gives the
model of bottom-up ranked-tree transducers. As far as we know, this is the only transducer model that processes trees
in a bottom-up manner, and can compute all MSO-definable tree transformations.

The main technical result in the paper is that the class of transductions definable using streaming tree transducers
is exactly the class of MSO-definable tree transductions. The starting point for our result is the known equivalence of
MSO-definable tree transductions and Macro Tree Transducers with regular look-ahead and single-use restriction,
over ranked trees [12]. Our proof proceeds by establishing two key properties of STTs: the model is closed under
regular look-ahead and under sequential composition. These proofs are challenging due to the requirement that a
transducer can use only a fixed number of variables and these variables can only be updated by assignments that
obey the single-use-restriction rules. We develop them in a modular fashion by introducing intermediate results (for
example, we establish that allowing variables to range over trees containing multiple parameters does not increase
expressiveness).
We show a variety of analysis questions for our transducer model to be decidable. Given a regular language L1

of input trees and a regular language L2 of output trees, the type-checking problem is to determine if the output of
the transducer on an input in L1 is guaranteed to be in L2. We establish an ExpTime upper bound for type-checking.
We provide a NExpTime upper bound for checking functional inequivalence of two STTs, and when the number of
variables is bounded the upper bound on the complexity becomes NP. Improving the NExpTime bound remains a
challenging open problem.

2 TRANSDUCER MODEL
We first introduce some preliminary notions, then formally define streaming tree transducers, and finally provide few
examples.

2.1 Preliminaries
In this section we first recall the notion of nested word and then introduce the basic building blocks of streaming tree
transducers.
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Nested Words. Data with both linear and hierarchical structure can be encoded using nested words [3]. Given a set
Σ of symbols, the tagged alphabet Σ̂ consists of the symbols a, ⟨a, and a⟩, for each a ∈ Σ. A nested word over Σ is a
finite sequence over Σ̂. For a nested word a1 · · ·ak , a position j , for 1 ≤ j ≤ k , is said to be a call position if the symbol
aj is of the form ⟨a, a return position if the symbol aj is of the form a⟩, and an internal position otherwise. The tags
induce a natural matching relation between call and return positions, and in this paper, we are interested only in
well-matched nested words in which all calls/returns have matching returns/calls. A string over Σ is a nested word
with only internal positions. Nested words naturally encode ordered trees. The empty tree is encoded by the empty
string ε . The tree with a-labeled root with subtrees t1, . . . tk as children, in that order, is encoded by the nested word
⟨a ⟨⟨t1⟩⟩ · · · ⟨⟨tk ⟩⟩a⟩, where ⟨⟨ti ⟩⟩ is the encoding of the subtree ti . This transformation can be viewed as an inorder
traversal of the tree. The encoding extends to forests also: the encoding of a forest is obtained by concatenating
the encodings of the trees it contains. An a-labeled leaf corresponds to the nested word ⟨aa⟩, we will use ⟨a⟩ as its
abbreviation. Thus, a binary tree with a-labeled root for which the left-child is an a-labeled leaf and the right-child is
a b-labeled leaf is encoded by the string ⟨a ⟨a⟩ ⟨b⟩a⟩.

Nested Words with Holes. A key operation that our transducer model relies on is insertion of one nested word
within another. In order to define this, we consider nested words with holes, where a hole is represented by the
special symbol ?. For example, the nested word ⟨a ? ⟨b⟩ a⟩ represents an incomplete tree with a-labeled root where its
right-child is a b-labeled leaf such that the tree can be completed by adding a nested word to the left of this leaf. We
require that a nested word can contain at most one hole, and we use a two types to keep track of whether a nested
word contains a hole or not. A type-0 nested word does not contain any holes, while a type-1 nested word contains
exactly one hole. We can view a type-1 nested word as a unary function from nested words to nested words. The set
W0 (Σ) of type-0 nested words over the alphabet Σ is defined by the grammar

W0 := ε | a | ⟨aW0 b⟩ |W0W0 for a,b ∈ Σ

The setW1 (Σ) of type-1 nested words over the alphabet Σ is defined by the grammar

W1 := ? | ⟨aW1 b⟩ |W1W0 |W0W1 for a,b ∈ Σ

A nested-word language over Σ is a subset L ofW0 (Σ), and a nested-word transduction from an input alphabet Σ to an
output alphabet Γ is a partial function f fromW0 (Σ) toW0 (Γ).

Nested Word Expressions. In our transducer model, the machine maintains a set of variables with values ranging
over output nested words with holes. Each variable has an associated binary type: a type-k variable has type-k nested
words as values, for k = 0, 1. The variables are updated using typed expressions, where variables can appear on the
right-hand side, and we also allow substitution of the hole symbol by another expression. Formally, a set X of typed
variables is a set that is partitioned into two sets X0 and X1 corresponding to the type-0 and type-1 variables. Given
an alphabet Σ and a set X of typed variables, a valuation α is a function that maps X0 toW0 (Σ) and X1 toW1 (Σ). Given
an alphabet Σ and a set X of typed variables, we define the sets Ek (X , Σ), for k = 0, 1, of type-k expressions by the
grammars

E0 := ε | a | x0 | ⟨a E0 b⟩ | E0 E0 | E1[E0]
E1 := ? | x1 | ⟨a E1 b⟩ | E0 E1 | E1 E0 | E1[E1]

where a,b ∈ Σ, x0 ∈ X0, and x1 ∈ X1. The clause e[e ′] corresponds to substitution of the hole in a type-1 expression e
by another expression e ′. A valuation α for the variables X naturally extends to a type-consistent function that maps
the expressions Ek (X , Σ) to values inWk (Σ), for k = 0, 1. Given an expression e , α (e ) is obtained by replacing each
variable x by α (x ): in particular, α (e[e ′]) is obtained by replacing the symbol ? in the type-1 nested word α (e ) by the
nested word α (e ′).

Single Use Restriction. The transducer updates variables X using type-consistent assignments. To achieve the
desired expressiveness, we need to restrict the reuse of variables in right-hand sides. In particular, we want to disallow
the assignment x := xx (which would double the length of x), but allow the parallel assignment (x := x ,y := x ),
provided the variables x and y are guaranteed not to be combined later. For this purpose, we assume that the set
X of variables is equipped with a binary relation η: if η(x ,y), then x and y cannot be combined. This “conflict”
relation is required to be reflexive and symmetric (but need not be transitive). Two conflicting variables cannot
occur in the same expression used in the right-hand side of a variable update or as output. During an update, two
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conflicting variables can occur in multiple right-hand sides for updating conflicting variables. Thus, the assignment
(x := ⟨a xa⟩[y],y := a?) is allowed, provided η(x ,y) does not hold; the assignment (x := ax[y],y := y) is not allowed;
and the assignment (x := ax ,y := x[b]) is allowed, provided η(x ,y) holds. Intuitively, the conflict relation allows the
content of a variable to be temporarily copied into different variables as long as such variables are not combined later.
We will use the examples in Section 2.3 to illustrate the usage of the conflict relation and argue in Section 3.2 that
weaker notions of single use restrictions—e.g., allowing only purely reflexive conflict relations—limit expressiveness.
Formally, given a set X of typed variables with a reflexive symmetric binary conflict relation η, and an alphabet Σ,
an expression e in E (X , Σ) is said to be consistent with η if (1) each variable x occurs at most once in e , and (2) if
η(x ,y) holds, then e does not contain both x and y. Given sets X and Y of typed variables, a conflict relation η, and an
alphabet Σ, a single-use-restricted assignment is a function ρ that maps each type-k variable x in X to a right-hand
side expression in Ek (Y , Σ), for k = 0, 1, such that (1) each expression ρ (x ) is consistent with η, and (2) if η(x ,y) holds,
ρ (x ′) contains x , and ρ (y ′) contains y, then η(x ′,y ′) must hold. The set of such single-use-restricted assignments is
denoted A (X ,Y ,η, Σ).
At a return, the transducer assigns the values to its variables X using the values popped from the stack as well

as the values returned. For each variable x , we will use xp to refer to the popped value of x . Thus, each variable x
is updated using an expression over the variables X ∪ Xp . The conflict relation η extends naturally to variables in
Xp : η(xp ,yp ) holds exactly when η(x ,y) holds. However η(x ,yp ) does not hold for any x ∈ X and yp ∈ Xp . Then, the
update at a return is specified by assignments in A (X ,X ∪ Xp ,η, Σ). 1

2.2 Transducer Definition
A streaming tree transducer is a deterministic machine that reads the input nested word left-to-right in a single pass.
It uses finitely many states, together with a stack. The use of the stack is dictated by the hierarchical structure of the
call/return tags in the input. The output is computed using a finite set of typed variables that range over nested words.
Variables are equipped with a conflict relation that restricts which variables can be combined. Moreover, the stack
can be used to store variable values. At each step, the transducer reads the next symbol of the input. If the symbol
is an internal symbol, then the transducer updates its state and the nested-word variables. If the symbol is a call
symbol, then the transducer pushes a stack symbol, updates the state, stores updated values of variables in the stack,
and reinitializes the variables. While processing a return symbol, the stack is popped, and the new state and new
values for the variables are determined using the current state, current variables, popped symbol, and popped variable
values from the stack. In each type of transition, the variables are updated in parallel using assignments in which the
right-hand sides are nested-word expressions. We require that the update is type-consistent and meets the single-use
restriction with respect to the conflict relation. When the transducer consumes the entire input nested word, the
output nested word is produced by an expression that is consistent with the conflict relation. These requirements
ensure that at every step at most one copy of any value is contributed to the final output.

STT syntax. A deterministic streaming tree transducer (STT) S from input alphabet Σ to output alphabet Γ consists of

• a finite set of states Q ;
• a finite set of stack symbols P ;
• an initial state q0 ∈ Q ;
• a finite set of typed variables X with a reflexive symmetric binary conflict relation η;
• a partial output function F : Q 7→ E0 (X , Γ) such that each expression F (q) is consistent with η; 2
• an internal state-transition function δi : Q × Σ 7→ Q ;
• a call state-transition function δc : Q × Σ 7→ Q × P ;
• a return state-transition function δr : Q × P × Σ 7→ Q ;
• an internal variable-update function ρi : Q × Σ 7→ A (X ,X ,η, Γ);
• a call variable-update function ρc : Q × Σ 7→ A (X ,X ,η, Γ);
• a return variable-update function ρr : Q × P × Σ 7→ A (X ,X ∪ Xp ,η, Γ).

1 Given a particular variable update function, it is always possible to compute, if it exists, a conflict relation that is consistent with all updates.
Although the conflict relation η could be inferred from the variable update, we will make it part of our definitions to simplify the presentation.
2 It is possible to relax the definition of the output function to support expressions that are not consistent with the conflict relation η, and this will
not affect the expressiveness of the model. We use this restriction to simplify the presentation.
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STT semantics. To define the semantics of a streaming tree transducer, we consider configurations of the form
(q,Λ,α ), where q ∈ Q is a state, α is a type-consistent valuation from variables X to typed nested words over Γ, and
Λ is a sequence of pairs (p, β ) such that p ∈ P is a stack symbol and β is a type-consistent valuation from variables in
X to typed nested words over Γ. The initial configuration is (q0, ε,α0), where α0 maps each type-0 variable to ε and
each type-1 variable to ?. The transition function δ over configurations is defined as follows. Given an input a ∈ Σ̂:

(1) Internal transitions: if a is internal, and δi (q,a) = q′, then δ ((q,Λ,α ),a) = (q′,Λ,α ′), where
• q′ is the state resulting from applying the internal transition that reads a in state q,
• the stack Λ remains unchanged,
• the new evaluation function α ′ = α · ρi (q,a) is the result of applying the variable update function ρi (q,a)
using the variable values in α .

(2) Call transitions: if for some b ∈ Σ, a = ⟨b, and δc (q,b) = (q′,p), then δ ((q,Λ,α ),a) = (q′,Λ′,α0), where
• q′ is the state resulting from applying the call transition that reads b in state q;
• Λ′ = (p,α · ρc (q,b))Λ is the new stack resulting from pushing the pair (p,α ′) on top of the old stack Λ,
where the stack state p is the one pushed by the call transition function, and α ′ = α · ρc (q,b) is the new
evaluation function α ′ resulting from applying the variable update function ρc (q,b) using the variable
values in α ,

• α0 is the evaluation function that sets every type-0 variable to ε and every type-1 variable to ?.
(3) Return transitions: if for some b ∈ Σ, a = b⟩, and δr (q,p,b) = q′, then δ ((q, (p, β )Λ,α ),a) = (q′,Λ′,α ′)

where
• q′ is the state resulting from applying the return transition that reads b in state q with p on top of the
stack,

• the stack Λ′ = Λ is the result of popping the top of the stack value from the current stack,
• the new evaluation function α ′ = α · βp · ρr (q,p,b), where βp is the valuation for variables Xp defined
by βp (xp ) = β (x ) for x ∈ X , is the result of applying the variable update function ρr (q,p,b) using the
variable values in α , and the stack variable values in βp .

For an input nested word w ∈ W0 (Σ), if δ ∗ ((q0, ε,α0),w ) = (q, ε,α ) then if F (q) is undefined then so is JSK(w ),
otherwise JSK(w ) = α (F (q)). We say that a nested word transduction f from input alphabet Σ to output alphabet Γ is
STT-definable if there exists an STT S such that JSK = f .

2.3 Examples
Streaming tree transducers can easily implement standard tree-edit operations such as insertion, deletion, and
relabeling. We illustrate the interesting features of our model using operations such as reverse, swap, and sorting
based on a fixed number of tags. In each of these cases, the transducer mirrors the natural algorithm for implementing
the desired operation in a single pass.

Reverse. Given a nested word a1a2 · · ·ak , its reverse is the nested word bk · · ·b2b1, where for each 1 ≤ j ≤ k ,
bj = aj if aj is an internal symbol, bj = ⟨a if aj is a return symbol a⟩, and bj = a⟩ if aj is a call symbol ⟨a. As a
tree transformation, reverse corresponds to recursively reversing the order of children at each node: the reverse of
⟨a ⟨b ⟨d⟩ ⟨e⟩b⟩ ⟨c⟩a⟩ is ⟨a ⟨c⟩ ⟨b ⟨e⟩ ⟨d⟩b⟩a⟩. This transduction can be implemented by a streaming tree transducer
with a single state, a single type-0 variable x , and stack symbols Σ: the internal transition on input a updates x to a x ;
the call transition on input a pushes a onto the stack, stores the current value of x on the stack, and resets x to the
empty nested word; and the return transition on input b, while popping the symbol a and stack value xp from the
stack, updates x to ⟨b x a⟩xp .

Tree Swap. Figure 1 shows the transduction that transforms the input tree by swapping the first (in inorder
traversal) b-rooted subtree t1 with the next (in inorder traversal) b-rooted subtree t2, not contained in t1. For clarity of
presentation, we assume that the input nested word encodes a tree: it does not contain any internal symbols and if a
call position is labeled ⟨a then its matching return is labeled a⟩.
The initial state is q0 which means that the transducer has not yet encountered a b-label. In state q0, the STT

records the tree traversed so far using a type-0 variable x : upon an a-labeled call, x is stored on the stack, and is reset
to ε ; and upon an a-labeled return, x is updated to xp⟨a x a⟩. In state q0, upon a b-labeled call, the STT pushes q0 along
with the current value of x on the stack, resets x to ε , and updates its state to q′. In state q′, the STT constructs the
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Fig. 1. Tree Swap

first b-labeled subtree t1 in the variable x : as long as it does not pop the stack symbol q0, at a call it pushes q′ and x ,
and at a return, updates x to xp⟨a x a⟩ or xp⟨b x b⟩, depending on whether the current return symbol is a or b. When
it pops q0, it updates x to ⟨b x b⟩ (at this point, x contains the tree t1, and its value will be propagated), sets another
type-1 variable y to xp ?, and changes its state to q1. In state q1, the STT is searching for the next b-labeled call, and
processes a-labeled calls and returns exactly as in state q0, but now using the type-1 variable y. At a b-labeled call, it
pushes q1 along with y on the stack, resets x to ε , and updates the state to q′. Now in state q′, the STT constructs
the second b-labeled subtree t2 in variable x as before. When it pops q1, the subtree t2 corresponds to ⟨b x b⟩. The
transducer updates x to yp[⟨b x b⟩]xp capturing the desired swapping of the two subtrees t1 and t2 (the variable y
is no longer needed and is reset to ε to ensure the single use restriction), and switches to state q2. In state q2, the
remainder of the tree is traversed adding it to x . The output function is defined only for the state q2 and maps q2 to x .

Tag-based Sorting. Suppose that given a sequence of trees t1t2 · · · tk (a forest) and a regular pattern, we want
to rearrange the sequence so that all trees that match the pattern appear before the trees that do not match the
pattern. For example, given an address book where each entry has a tag that denotes whether the entry is “private” or
“public”, we want to sort the address book based on this tag: all private entries should appear before public entries,
while maintaining the original order for entries with the same tag value. Such a transformation can be implemented
naturally using an STT: variable x collects entries that match the pattern, while variable y collects entries that do
not match the pattern. As the input is scanned, the state is used to determine whether the current tree t satisfies the
pattern; a variable z is used to store the current tree, and once t is read in its entirety, based on whether or not it
matches the pattern, the update {x := xz, z := ε } or {y := yz, z := ε } is executed. The output of the transducer is the
concatenation xy.

Conditional Swap. Suppose that we are given a ternary tree, in which nodes have either three children or none, and
the third child of a ternary node is always a leaf. We want to compute the transformation f :

f (⟨c1x1x2⟨c2⟩c1⟩) =

{
⟨c1 f (x2) f (x1) c1⟩ if c2 = a
⟨c1 id (x2) id (x1) c1⟩ if c2 = b

id (⟨c1x1x2⟨c2⟩c1⟩) = ⟨c1 id (x1) id (x2) c1⟩

Informally, while going top-down, f swaps the first two children and deletes the third one. Whenever f finds a
node for which the third child is a b, it copies the rest of the tree omitting the third child of each node. The STT
implementing f uses four variables x1,y1,x2,y2. Given a tree c (t1, t2, t3), after finishing processing the first two
children t1 and t2, the variables x1 and x2 respectively contain the trees f (t1) and f (t2), and the variables y1 and y2
respectively contain the trees id (t1) and id (t2). When starting to process the third child t3 all the variables are stored
on the stack. At the corresponding return the variable values are retrieved from the stack (for every v ∈ X , v = vp ),
and the state is updated to qa or qb representing whether t3 is labeled with a or b respectively. When processing the
return symbol s of a subtree t , we have the following possibilities.

(1) The current state is qa , and t is the first child of some node t ′. The variables are updated as follows: x1 :=
⟨s x2 x1 s⟩, x2 := ε , y1 := ⟨s y1 y2 s⟩, y2 := ε .

(2) The current state is qa , and t is the second child of some node t ′. The variables are updated as follows: x1 := x
p
1 ,

x2 := ⟨s x2 x1 s⟩, y1 := y
p
1 , y2 := ⟨s y1 y2 s⟩.

(3) The current state is qb , and t = c (t1, t2, t3) is the first child of some node t ′. In this case, since t3 is labeled
with b we have f (t ) = ⟨s t2 t1 s⟩ and id (t ) = ⟨s t1 t2 s⟩. In order to maintain the invariants that xi = f (ti ) and
yi = id (ti ), we need to copy the values of y1 and y2. The variables are updated as follows: x1 := ⟨s y2 y1 s⟩,
x2 := ε , y1 := ⟨s y1 y2 s⟩, y2 := ε .
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(4) The current state is qb , and t2 is the second child of some node t ′. Following the same reasoning as for the
previous case the variables are updated as follows: x1 := x

p
1 , x2 := ⟨s y2 y1 s⟩, y1 := y

p
1 , y2 := ⟨s y1 y2 s⟩.

Since y1 and y2 can be copied, the conflict relation η is such that η(x1,y1) and η(x2,y2) hold.

3 PROPERTIES AND VARIANTS
In this section, we note some properties and variants of streaming tree transducers aimed at understanding their
expressiveness. First, STTs compute linearly-bounded outputs, that is, the length of the output nested word is within
at most a constant factor of the length of the input nested word. The single-use restriction ensures that, at every step
of the execution of the transducer on an input nested word, the sum of the sizes of all the variables that contribute to
the output term at the end of the execution, can increase only by an additive constant.

Proposition 3.1 (Linear-Bounded Outputs). For an STT-definable transduction f from Σ to Γ, for all nested words
w ∈W0 (Σ), | f (w ) | = O ( |w |).

Proof. Given an STT-definable transduction f from Σ to Γ, let Af = (Q,q0, P ,X ,η, F ,δ , ρ) be an STT defining
f . We will show that for every input w , |JAf K(w ) | = O ( |Af |

2 |X | |w |), and since |Af | and |X | do not depend on w ,
| f (w ) | = O ( |w |).
Given a set X ′ ⊆ X of variables, we say that X ′ is non-conflicting iff for all variables x and y in X ′, it is not the case

that η(x ,y). Also given a set of non-conflicting variables X1, and a variable assignment v ∈ A (X ,Y ,η, Σ), it is easy to
see that the set of variables X2 appearing in the right-hand sides of v for variables in X1 are also non-conflicting; if
two variables in X2 were conflicting, then X1 should also contain two conflicting variables.
We now show that for every word w , if δ ∗ ((q0, ε,α0),w ) = (q, (p1, β1) . . . (pn , βn ),α ), then for every set X ′ of

non-conflicting variables ∑
x ∈X ′

( |α (x ) | +
∑

1≤i≤n
|βi (x ) |) = O ( |Af | |X | |w |)

We proceed by induction onw . The casew = ε is trivial since every variable has a value of constant size. Now assume
w = w ′a, such that δ ∗ ((q0, ε,α0),w ′) = (q, (p1, β1) . . . (pn , βn ),α ) and by I.H. for every set X1 of non-conflicting
variables ∑

x ∈X1

( |α (x ) | +
∑

1≤i≤n
|βi (x ) |) = O ( |Af | |X | |w

′ |)

We have three possible cases:
a is internal: given a set of non-conflicting variables X1, let X2 be the set of variables appearing in the right-

hand sides of ρi (q,a) for variables in X1. Since both X1 and X2 are non-conflicting we know that each variable
x ∈ X2 appears at most once in the right-hand side of X1. The right hand side also contains O ( |Af |) symbols
in Γ. Let α ′ = α · ρi (q,a), then∑

x ∈X1

( |α ′(x ) | +
∑

1≤i≤n
|βi (x ) |) ≤

∑
x ∈X2

( |α (x ) | +
∑

1≤i≤n
|βi (x ) |) +O ( |Af |) = O ( |Af | |X | |w

′ | + |Af |) = O ( |Af | |X | |w |)

Notice that we can apply the induction hypothesis since X2 is non-conflicting.
a = ⟨b is a call: given a set of non-conflicting variables X1, let X2 be the set of variables appearing in the

right-hand sides of ρc (q,b) for variables in X1. The right hand side also contains O ( |Af |) symbols in Γ. Let
βn+1 = α · ρc (q,b). Then∑

x ∈X1

( |α ′(x ) | +
∑

1≤i≤n+1
|βi (x ) |) ≤

∑
x ∈X2

( |α0 (x ) | + |α (x ) | +
∑

1≤i≤n
|βi (x ) |) +O ( |Af |) =

∑
x ∈X2

|α0 (x ) | +
∑
x ∈X2

( |α (x ) | +
∑

1≤i≤n
|βi (x ) |) +O ( |Af |) = O ( |Af | |X | |w |)

The equality follows since for every x , |α0 (x ) | ≤ 1.
a = b⟩ is a return: given a set of non-conflicting variables X1, let X2 be the set of variables appearing in the

right-hand sides of ρr (q,b,pn ) for variables in X1. We know that X2 is non-conflicting and each variable
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x ∈ X2 can appear at most once as x and once as xp in the right-hand sides of variables in X1 in ρr (q,b,pn ).
The right hand side also contains O ( |Af |) symbols in Γ. Let α ′ = α · β

p
n · ρr (q,a,pn ). Then∑

x ∈X1

( |α ′(x ) | +
∑

1≤i≤n−1
|βi (x ) |) ≤

∑
x ∈X2

(α (x ) + βn (x ) +
∑

1≤i≤n−1
βi (x )) +O ( |Af |) =∑

x ∈X2

( |α (x ) | +
∑

1≤i≤n
|βi (x ) |) +O ( |Af |) = O ( |Af | |X | |w |).

As a consequence, after processing a word w , every variable has a value of size O ( |Af | |X | |w |). Since the output
function has O ( |Af |) symbols, the final output has size O ( |Af |

2 |X | |w |). This concludes the proof. □
We now examine some of the features in the definition of STTs in terms of how they contribute to expressiveness.

First, having multiple variables is essential: this follows from results on streaming string transducers [1, 2]. Consider
the transduction that rewrites a nested word w to wn (that is, w repeated n times). An STT with n variables can
implement this transduction. It is easy to prove that an STT with less than n variables cannot implement this
transduction. Second, the ability to store symbols in the stack at calls is essential. This is because nested word
automata are more expressive than classical finite-state automata over strings.

3.1 Regular Nested-Word Languages
A streaming tree transducer with empty sets of string variables can be viewed as an acceptor of nested words: the
input is accepted if the output function is defined in the terminal state, and rejected otherwise. In this case, the
definition coincides with (deterministic, complete) nested word automata (NWA). The original definitions of NWAs
and regular nested-word languages do not need the input nested word to be well-matched (that is, the input is a
string over Σ̂), but this distinction is not relevant for our purpose. A (deterministic, complete) nested word automaton
A over an input alphabet Σ is specified by a finite set of statesQ ; a finite set of stack symbols P ; an initial state q0 ∈ Q ;
a set F ⊆ Q of accepting states; an internal state-transition function δi : Q × Σ 7→ Q ; a call state-transition function
δc : Q × Σ 7→ Q × P ; and a return state-transition function δr : Q × P × Σ 7→ Q . A language L ⊆ W0 (Σ) of nested
words is regular if it is accepted by such an automaton. This class includes all regular string and tree languages, and
is a subset of deterministic context-free languages [3].
Given a nested-word transduction f from input alphabet Σ to output alphabet Γ, the domain of f is the set

Dom( f ) ⊆W0 (Σ) of input nested wordsw for which f (w ) is defined, and the image of f is the set Img( f ) ⊆W0 (Γ) of
output nested wordsw ′ such thatw ′ = f (w ) for somew . It is easy to establish that, for STT-definable transductions,
the domain is a regular language, but the image is not necessarily regular:
Proposition 3.2 (Domain-Image Regularity). For an STT-definable transduction f from Σ to Γ, Dom( f ) is a

regular language of nested words over Σ. There exists an STT-definable transduction f from Σ to Γ, such that Img( f ) is
not a regular language of nested words over Γ.

Proof. Given an STT-definable transduction f from Σ to Γ, let Af = (Q,q0, P ,X ,η, F ,δ , ρ) be an STT defining it.
The NWAA accepting the domain Dom( f ) of f has set of statesQ ′ = Q , initial state q′0 = q0, set of stack states P

′ = P ,
set of final states F ′ = {q | F (q) is defined}, and transition function δ ′ = δ .

We now construct an STT B from Σ = {a,b} to Γ = {a,b} computing a function f ′ for which the image Img( f ′) is
not regular. The STT B only has one state q which is also initial and only has transition function δi (q,a) = δi (q,b) = q,
and has only one type-0 variable x that is updated as follows: ρi (q,a,x ) = δi (q,b,x ) = axb. The output function FB
of B is defined as FB (q) = x . The STT B computes the following transduction f ′: if the input wordw has length n, B
outputs the word anbn . The image Img( f ′) of f ′ is the language {anbn | n ≥ 0}, which is not a regular language of
nested words over Γ. □

It is interesting to observe that the output language might not necessarily be context-free either, since it is easy to
build an STT that on an input string w produces the string ww . We refer the reader to [13] for an analysis of the
output languages of many classes of tree transformations.

3.2 Copyless STTs
When the conflict relation η is purely reflexive (i.e. {(x ,x ) | x ∈ X }) we call an STT copyless. The set of copyless
assignments from Y to X is denoted by A (X ,Y , Σ) where we drop the relation η. We now define the notion of atomic
assignment, which will be fundamental in many proofs.
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Definition 3.3. A copyless assignment ρ ∈ A (X ,X ∪ Y , Σ) is atomic iff it has one of the following forms:
Reset: for some variable x ∈ X , and some a,b ∈ Σ, x := ε , x :=?, x := ⟨a?b⟩, or x := a, and for every variable

y ∈ X , if y , x , then y := y;
Concatenation: for some two distinct variables x ,y ∈ X , x := xy or x := yx , y := ε or y :=?, and for every

variable z ∈ X , if z , x and z , y, then z := z;
Substitution: for some two distinct variables x ,y ∈ X , x := x[y] or x := y[x], y :=? or y := ε , and for every

variable z ∈ X , if z , x and z , y, then z := z;
Swap: for some two distinct variables x ,y ∈ X , x := y, y := x , and for every variable z ∈ X , if z , x and z , y,

then z := z.

We then show that every copyless assignment can be broken into a sequence of simpler atomic assignments.

Lemma 3.4. For every copyless assignment ρ ∈ A (X ,X , Σ) there exists a set of variables Y disjoint from X , and a

sequence of assignments s = ρ1, . . . , ρn such that:

(1) for every variable x ∈ X , s (x ) = ρ (x ),
(2) the assignment ρ1 belongs to A (X ∪ Y ,X , Σ) and it is atomic,

(3) for every 2 ≤ j ≤ n, the assignment ρ j belongs to A (X ∪ Y ,X ∪ Y , Σ), and it is atomic.

Proof. We sketch the proof and gloss over the fact the variables can be of both type-0 and type-1. Given an
expression e ∈ E = E0 ∪ E1 we define the size of e , size(e ), as the size of its parse tree:

• if e ∈ {ε,a, ⟨a?b⟩, ?}, then size(e ) = 1;
• if for some e1 different from ?, e = ⟨ae1b⟩, then size(e ) = 1 + size(e1);
• if for some e1, e2, e = e1e2, or e = e1[e2], then size(e ) = 1 + size(e1) + size(e2).

Given an assignment ρ ∈ A (X1,X2, Σ), we define size(ρ) ∈ N × N × N to be the value (a,b, c ) such that a =
maxx ∈X1size(ρ (x )) is the maximum size of a expression on the right hand side of a variable, b is the number of
variables for which the right-hand side is an expression of size a, and c is the size of the set {x | ∃y.y , x ∧ ρ (x ) = y}.
We define the total order between two triplets (a,b, c ), (a′,b ′, c ′) ∈ N3 as (a,b, c ) < (a′,b ′, c ′) if a < a′, or a = a′ and
b < b ′, or a = a′, b = b ′, and c < c ′.

Given an assignment ρ that is not atomic, we show that ρ can always be transformed into a sequence of atomic
assignments s = ρ1ρ2, such that size(ρ1) < size(ρ), ρ2 is atomic, and for every x ∈ X , s (x ) = ρ (x ). The new
assignments can have new variables. We proceed by case analysis on size (ρ) = (s1, s2, s3).

• If s1 = 0 the assignment is already atomic.
• If s1 = 1 we have the following possibilities.

– If ρ is atomic, then we are done; or
– s3 ≥ 1 and there exist two distinct variables x and y, such that ρ (x ) = y. Replace ρ with the sequence

ρ1ρ2, such that ρ1 (x ) = ρ (y), ρ1 (y) = y, ρ2 (x ) = y, ρ2 (y) = x , and for every z different from x and y,
ρ1 (z) = ρ (z), and ρ2 (z) = z. The size of ρ1 is (s1, s2, s3 − 1) which concludes this case.

• if s1 > 1 we have the following possibilities.
– One variable x has right-hand side e = w1w2, and e has size s1. Replace ρ with the sequence ρ1ρ2, such

that ρ1, ρ2 ∈ A (X ∪ {v},X ∪ {v}, Σ): ρ1 (x ) = w1, ρ1 (v ) = w2, ρ2 (x ) = xv , ρ2 (v ) = ε , and for each y such
that y , x and y , n, ρ1 (y) = ρ (y) and ρ2 (y) = y. We then have that ρ2 is atomic, and sincew1 andw2
both have smaller size than e , size (ρ1) is smaller than size (ρ).

– One variable x has right-hand side e = w1[w2], and e has size s1. Replace ρ with the sequence ρ1ρ2 of
assignment over X ∪ {n} such that: ρ1 (x ) = w1, ρ1 (n) = w2, ρ2 (x ) = x[n], ρ2 (x ) = ε , and for each y such
that y , x and y , n, ρ1 (y) = ρ (y) and ρ2 (y) = y. We then have that ρ2 is atomic, and sincew1 andw2
both have smaller size than e , size (ρ1) is smaller than size (ρ).

– One variable x has right-hand side e = ⟨awb⟩, e has size s1, andw ,?. Replace ρ with the sequence ρ1ρ2
of assignment over X ∪ {n} such that: 1) ρ1 (x ) = ⟨a?b⟩, ρ1 (n) = w , and for each y ∈ X , if y , x , ρ1 (y) = y,
2) ρ2 (x ) = x[n], ρ2 (n)ε , and for each y ∈ X , such that y , x , ρ3 (y) = y. The assignment ρ2 is atomic.
Sincew has smaller size than e , size (ρ1) is smaller than size (ρ).

It is easy to observe that every atomic assignment over n variables has size (0,n, 0) or (1,n′,k ) with n ≤ n′ and k ≤ 2.
We can therefore repeat the procedure we just described until the first assignment is also atomic. This concludes the
proof. □
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Corollary 3.5. For every copyless assignment ρ ∈ A (X ,X ∪ Y , Σ), with X disjoint from Y , there exists a set of

variables Z disjoint from X ∪ Y and a sequence of assignments s = ρ1, . . . , ρn such that:

(1) for every variable x ∈ X , s (x ) = ρ (x ),
(2) the assignment ρ1 belongs to A (X ∪ Y ∪ Z ,X ∪ Y , Σ) and it is atomic,

(3) for every 2 ≤ j ≤ n, the assignment ρ j belongs to A (X ∪ Y ∪ Z ,X ∪ Y ∪ Z , Σ), and it is atomic,

(4) the assignment ρn belongs to A (X ,X ∪ Y ∪ Z , Σ) and it is atomic.

Moreover, if two copyless assignments are composed, the resulting assignment is still copyless.

Lemma 3.6. Given a copyless assignment ρ ∈ A (Y ,X , Σ), and a copyless assignment ρ ′ ∈ A (Z ,Y , Σ), the composed

assignment ρ1 = ρ · ρ ′ ∈ A (Z ,X , Σ) is a copyless assignment in A (Z ,X , Σ).

Proof. Assume this is not the case. Then there exists a variable x ∈ X that appears twice in the right hand side of
ρ1. This means that there exists two variables y1,y2 ∈ Y appearing in the right hand side of ρ ′, such that both ρ (y1)
and ρ (y2) contain x . If y1 , y2, the assignment ρ cannot be copyless, since it would contain two occurrences of x . If
y1 = y2, ρ ′ cannot be copyless, since it would contain two occurrences of y1. □

3.3 Bottom-up Transducers
A nested-word automaton is called bottom-up if it resets its state along the call transition: if δc (q,a) = (q′,p) then
q′ = q0. The well-matched nested word sandwiched between a call and its matching return is processed by a bottom-up
NWA independent of the outer context. It is known that bottom-up NWAs are as expressive as NWAs over well-
matched nested words [3]. We show that a similar result holds for transducers also: there is no loss of expressiveness
if the STT is disallowed to propagate information at a call to the linear successor. Notice that STTs reinitialize all
the variables at every call. An STT S is said to be a bottom-up STT if for every state q ∈ Q and symbol a ∈ Σ, if
δc (q,a) = (q′,p) then q′ = q0, and for every variable x ∈ X , ρc (q,a,x ) = x .

Theorem 3.7 (Bottom-up STTs). Every STT-definable transduction is definable by a bottom-up STT.

Proof. Let S = (Q,q0, P ,X ,η, F ,δ , ρ) be an STT.We construct an equivalent bottom-up STT S ′ = (Q ′,q′0, P
′,X ′,η′, F ′,δ ′, ρ ′).

Intuitively, S ′ delays the application of a call transition of S to the corresponding return. This is done by computing a
summary of all possible executions of S on the subword between a call and the corresponding matching return. At
the return this summary can be combined with the information stored on the stack to continue the summarization.
Auxiliary Notions. Given a nested wordw = a1a2 . . . an , for each position 1 ≤ i ≤ n, let wms(w, i ) be the longest
well-matched subword aj . . . ai ending at position i . Formally, given a well-matched nested wordw = a1a2 . . . an , we
define wms(w, i ) as follows:

• wms(w, 0) = ε ;
• if ai is internal, then wms(w, i ) = wms(w, i − 1)ai ;
• if ai is a call, then wms(w, i ) = ε ;
• if ai is a return with matching call aj , then wms(w, i ) = wms(w, j − 1)ajaj+1 . . . ai .

The nested word wms(w, i ) is always well-matched, and represents the subword from the innermost unmatched call
position up to position i . For a well-matched nested word w of length n, wms(w,n) equals w . For example, in the
nested word wex = ⟨a ⟨b b⟩a⟩, we have wms(wex , 0) = wms(wex , 1) = wms(wex , 2) = ε , wms(wex , 3) = ⟨b b⟩, and
wms(wex , 4) = wex .

Next, we define lc(w, i ) as the last unmatched call at position i:
• lc(w, 0) = ⊥ is undefined;
• if ai is internal, then lc(w, i ) = lc(w, i − 1);
• if ai is a call, then lc(w, i ) = i;
• if ai is a return, and wms(w, i ) = aj . . . ai , then lc(w, i ) = lc(w, j − 1).

In the example nested wordwex , we have lc(wex , 1) = 1, lc(wex , 2) = 2, lc(wex , 3) = 1. and lc(wex , 4) = ⊥.
State Components and Invariants. Each state f of Q ′ is a function from Q to Q . After reading the i-th symbol of
w , S ′ is in state f such that f (q) = q′ iff when S processes wms(w, i ) starting in state q, it reaches the state q′. The
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initial state of S ′ is the identity function f0 mapping each state q ∈ Q to itself. A stack state in P ′ is a pair ( f ,a) where
f is a function mapping Q to Q and a is a symbol in Σ.
Next, we define the transition relation δ ′. When reading an internal symbol a, starting in state f , S ′ goes to state

f ′ such that for each q ∈ Q , f ′(q) = δi ( f (q),a). When reading a call symbol ⟨a, starting in state f , S ′ stores f on the
stack along with the symbol a and goes to state f0. When reading a return symbol b⟩, starting in state f , and with
( f ′,a) on top of the stack, S ′ goes to state f ′′ defined as: for each q ∈ Q , if f ′(q) = q1 (the state reached by S when
reading wms(w, lc(w, i − 1)) starting in q), δc (q1, ⟨a) = (q2,p), and f (q2) = q3 (the state reached by S when reading
wms(w, i − 1,) starting in q2), then f ′′(q) = δr (q3,p,b).
Variable Updates and Invariants. We now explain how S ′ achieves the summarization of the variable updates
of S . For each variable x ∈ X and state q ∈ Q , X ′ contains a variable xq . After reading the i-th symbol, xq contains
the value of x computed by S , when reading wms(w, i ) starting in state q. Given an assignment α ∈ A (X ,X , Σ) ∪
A (X ,X ∪ Xp , Σ), a state q ∈ Q , and a set of variables Y ⊆ X ∪ Xp , we define subq,Y (α ) to be the assignment
α ′ ∈ A (X ′,X ′, Σ) ∪ A (X ′,X ′ ∪ X ′p , Σ), where X ′ = (X \ Y ) ∪ Y ′ with Y ′ = {yq | y ∈ Y }, and each variable y ∈ Y is
replaced by yq ∈ Y ′.
Initially, and upon every call, each variable xq is assigned the value ? or ε , if x is a type-1 or type-0 variable

respectively. We use e{x/x ′} to denote the expression e in which every variable x is replaced with the variable x ′.
When processing the input symbol a, starting in state f , each variable xq is updated as follows:

a is internal: if f (q) = q′, then xq := subq,X (ρi (q′,a,x )) is the result of applying the variable update function
of S in state q′ where each variable x ∈ X is renamed to xq ;

a is a call: since S ′ is bottom-up, every variable is simply stored on the stack, and the update function at the
call is delayed to the corresponding return, xq := xq ;

a = b⟩ is a return: if ( f ′, c ) is the state popped from the stack, f ′(q) = q1, δc (q1, c ) = (q2,p), and f (q2) = q3,
then xq := subq2,X (subq,Xp (ρr (q3,b,p,x ){yp/ρc (q1, c,y){z/zp }})) is the result of applying the call variable
update function in state q1, followed by the return variable update function of S in state q′ where each variable
x ∈ X is renamed to xq2 , and each variable x ∈ Xp is renamed to xq .

Output Function. The output function F ′ of S ′ is defined as follows: for each state f ∈ Q ′, F ′( f ) = subq0,X (F ( f (q0)))
is the result of applying the output function of S in state f (q0) where each variable x ∈ X is renamed to xq0 .
Conflict Relation. The conflict relation η′ contains the following rules.

(1) Variable summarizing different states are in conflict: for all x ,y ∈ X , for all q , q′ ∈ Q , η′(xq ,yq′ ).
(2) Variables that conflict in S also conflict in S ′, for every possible summary: for all q ∈ Q , for all x ,y ∈ X , if

η(x ,y), then η′(xq ,yq ).
Next, we prove that η′ is consistent with the update function ρ ′. We assume the current state f ∈ Q ′ to be fixed. We
first show that two conflicting variables never appear in the same right hand side. Each assignment of S ′ has the
form subq,Y (ρ (q,a,x )). Therefore if no variables of S are conflicting in ρ (q,a,x ) with respect to η, no variables are
conflicting in subq (ρ (q,a,x )) with respect to η′. Secondly, we show that for each x ,y,x ′,y ′ ∈ X ′, if η′(x ,y) holds,
x appears in ρ ′(q,x ′), and y appears in ρ ′(q,y ′), then η(x ′,y ′) holds. From the definition of η′, we have that two
variables in X ′ can conflict for one of the following reasons.

• Two variables xq1 ,yq′1 ∈ X
′ such that q1 , q′1 appear in two different assignments towq2 and zq′2 respectively,

for somew, z ∈ X and q2,q′2 ∈ Q . We need to show η′(wq2 , zq′2 ). We now have two possibilities.
– Ifq2 = q′2, assuming the current symbol is internal, we have thatwq2 and zq2 are updated to subq2 (ρi ( f (q2),a,w ))

and subq2 (ρi ( f (q2),a, z)), where all variables are labeled with q2. This violates the assumption that
q1 , q

′
1. If the current symbol is a call or a return a similar reasoning holds.

– If q2 , q′2, η
′(wq2 , zq′2 ) follows from the first rule of η′.

• Two variables xq1 ,yq1 ∈ X ′ such that η(x ,y) appear in two different assignments towq2 and zq′2 respectively,
for some w, z ∈ X , and q2,q

′
2 ∈ Q . We need to show η′(wq2 , zq′2 ). If q2 = q′2, η

′(wq2 , zq′2 ) follows from the
second rule of η′, while if q2 , q′2, η

′(wq2 , zq′2 ) follows from the first rule of η′. □

3.4 Regular Look-ahead
Now we consider an extension of the STT model in which the transducer can make its decisions based on whether
the remaining (well-matched) suffix of the input nested word belongs to a regular language of nested words. Such
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a test is called regular look-ahead (RLA). A key property of the STT model is the closure under regular look-ahead.
Furthermore, in the presence of regular-look-ahead, the conflict relation can be trivial, and thus, copyless STTs suffice.

Definition of Regular Look-ahead. Given a nested wordw = a1a2 . . . an , for each position 1 ≤ i ≤ n, let wmp(w, i )
be the longest well-matched subword ai . . . aj starting at position i . Formally given a well-matched nested word
w = a1a2 . . . an , wmp(w,n + 1) = ε , and for each position i such that 1 ≤ i ≤ n:

(1) if ai is internal, wmp(w, i ) = aiwmp(w, i + 1);
(2) if ai is a call with matching return aj , wmp(w, i ) = ai wmp(w, i + 1) aj wmp(w, j + 1);
(3) if ai is a return, wmp(w, i ) = ε .

Given a symbol a ∈ Σ, we define the reverse of a tagged symbol as rev(a) = a, rev(⟨a) = a⟩, and rev(a⟩) = ⟨a. We
use rev(w ) = rev(an ) . . . rev(a1), for the reverse ofw = a1 . . . an , and rev(L) = {rev(w ) | w ∈ L} for the language
of reversed strings in L.

When reading the i-th symbol ofw , a look-ahead checks whether a regular property of the nested word wmp(w, i )
holds. Let L be a regular language of nested words, and let A be a (deterministic) bottom-up NWA for rev(L) (such a
NWA exists, since regular languages are closed under the reverse operation [3]). Then, while processing a nested word,
testing whether the nested wordwmp(w, i ) belongs to L corresponds to testing whether the state ofA after processing
rev(wmp(w, i )) is an accepting state of A. Since regular languages of nested words are closed under intersection, the
state of a single bottom-up NWA A reading the input nested word in reverse can be used to test membership of the
well-matched suffix at each step in different languages. Also note that, since A is bottom-up, its state after reading
rev(wmp(w, i )), is the same as its state after reading rev(ai . . . an ). This motivates the following formalization. Let
w = a1 . . . an be a nested word over Σ, and let A be a bottom-up NWA with states R processing nested words over
Σ. Given a state r ∈ R, we define the (r ,A)-look-ahead labeling of w to be the nested word wr = r1r2 . . . rn over
the alphabet R such that for each position 1 ≤ j ≤ n, the call/return/internal type of r j is the same as the type of
aj , and the corresponding symbol is the state of the NWA A after reading rev(aj . . . an ) starting in state r . Then,
the A-look-ahead labeling of w , is the nested word wA = wr0 . An STT-with-regular-look-ahead (STTR) consists of
a bottom-up NWA A over Σ with states R, and an STT S from R to Γ. Such a transducer defines a streaming tree
transduction from Σ to Γ: for an input nested wordw ∈W (Σ), the output JS,AK(w ) is defined to be JSK(wA).

Closure under Regular Look-Ahead. The critical closure property for STTs is captured by the next theorem, which
states that regular look-ahead does not add to the expressiveness of STTs. This closure property is key to establishing
that STTs can compute all MSO-definable transductions.

Theorem 3.8 (Closure under Regular-Look-Ahead). The transductions definable by STTs with regular look-ahead
are STT-definable.

Proof. Let A be an NWA with states R, initial state r0, stack symbols P ′′, and state-transition function δ ′′. Let SA
be an STT from R to Γ. We construct an STT S ′ = (Q ′,q′0, P

′,X ′,η′, F ′,δ ′, ρ ′) equivalent to the STTR (SA,A). Using
Theorem 3.7, let S = (Q,q0, P ,X ,η, F ,δ , ρ) be a bottom-up STT equivalent to SA. We use few definitions from the
proof of Theorem 3.7: 1) wms(w, i ) is the longest well-matched subword aj . . . ai ending at position i; 2) subq,Y (α ) is
the function that substitutes each variable x ∈ Y in an assignment α with the variable xq .

First of all, we observe that for a well-matched nested wordw , and an STT S , if δ ∗ ((q,Λ,α ),w ) = (q′,Λ′,α ′), then
Λ = Λ′, and the value Λ does not influence the execution of S . Hence, for a well-matched nested wordw , we can omit
the stack component from configurations, and write δ ∗ ((q,α ),w ) = (q′,α ′).
State Components and Invariants. Given the input nested wordw = a1 . . . an , when processing the symbol ai , the
transition of the STT S depends on the state of A after reading rev(wmp(w, i )). Since the STT S ′ cannot determine
this value based on the prefix read so far, it needs to simulate S for every possible choice of r ∈ R. We do this by
keeping some extra information in the states of S ′.
Each state q′ ∈ Q ′ is a pair ( f ,д), where f : R 7→ R, and д : R 7→ Q . After reading the input symbol ai , for every

state r ∈ R, f (r ) is the state reached by A after reading rev(wms(w, i )) when starting in state r , and д(r ) is the state
reached by S after reading wms(w, i )r starting in state q0. Recall thatwr is the state labeling produced by A, when
readingw starting in state r . The initial state is q′0 = ( f0,д0), where, for every r ∈ R, f0 (r ) = r and, д0 (r ) = q0. Each
stack state p ′ ∈ P ′ is a triplet ( f ,д,a), where the components f and д are the same as for Q ′, and a is a symbol in Σ.

We now describe the transition relation δ ′. We assume S ′ to be in state q = ( f ,д), and processing the input symbol
ai . There are three possibilities.
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ai is internal: δ ′i (q,ai ) = ( f ′,д′) where, for each r ∈ R, if δ ′′i (r ,ai ) = r
′

• if f (r ′) = r ′′, then f ′(r ) = r ′′; the state reached by A when reading rev(wms(w, i )), starting in r , is the
same as the state reached when reading rev(wms(w, i − 1)) starting in r ′;

• if д(r ′) = q, and δi (q, r ′) = q′, then д′(r ) = q′; the state reached by S when reading wms(w, i )r , is the
same as the state it reaches when reading wms(w, i − 1)r ′r ′;

ai = ⟨a is a call: δ ′c (q,a) = (q′0,p), where p = ( f ,д,a); the current state ( f ,д) is stored on the stack along with
the current symbol a, and the control state is reset to q′0;

ai = a⟩ is a return: let aj = ⟨b be the matching call of ai , and let p = ( f ′,д′,b) be the state popped from the
stack. SinceA is bottom-up for every r ∈ R, δ ′′c (r ,a) = (r0,pr ) for some pr ∈ P ′′. Let f (r0) = r1 and д(r0) = q1.
Informally, the state r1 is the one reached by A when reading rev(wms(w, i − 1)) (i.e., the reversed subword
sandwiched between the matching call and return) starting in state r0, while q1 is the state reached by S after
processing wms(w, i − 1)r0 . Finally, we have δ ′r (q,p,a) = ( f ′′,д′′), where for each r ∈ R, if δ ′′r (r1,pr ,b) = r2,
• if f ′(r2) = r ′, then f ′′(r ) = r ′;
• if д′(r2) = q2, δ ′c (q2, r2) = (q0,p

′), and δ ′r (q1,p ′, r0) = q′, then д′′(r ) = q′.

Variable Updates and Invariants. The STT S ′ has variable set X ′ = {xr | x ∈ X , r ∈ R}. After processing the i-th
symbol ai , the value of xr is the same as the value of x computed by S after reading wms(w, i )r . We can now describe
the variable update function ρ ′. We assume that S ′ is in state q = ( f ,д) and it is processing the symbol ai . For each
variable xr ∈ X ′, S ′ performs the following update:

ai is internal: if δ ′′i (r ,a) = r
′, and д(r ′) = q′, then ρ ′(q,a,xr ) = subr ′ (ρi (q′, r ′,x )) is the assignment of S to x

where each variable x is replaced with xr ′ ;
ai = ⟨a is a call: S ′′ perform the assignment ρ ′c (q,b,xr ) = xr , where we store all variable values on the stack,

and delay the update to the matching return;
ai = a⟩ is a return: let aj = ⟨b be the corresponding call, and let p = ( f ′,д′,b) be the state popped from the

stack. The update follows a similar reasoning to that of the transition function δ ′. Assume δ ′′c (r ,a) = (r0,p),
f (r0) = r1, δ ′′r (r1,p,b) = r2, д(r0) = q1, д′(r2) = q2, δc (q2, r2) = (q3,p

′). For each x ∈ X , let tc (x ) be the
expression ρc (q2, r2,x ), and tr (x ) be the expression ρr (q1, r0,x );
now for every x ∈ X , let t ′c (x ) = tc (x ){y/yp } be the expression tc (x ) in which every variable y ∈ X is
replaced with the corresponding stack variable yp , and let t ′′(x ) = tr (x ){yp/t

′
c (y)} be the expression tr (x ) in

which every variable yp ∈ Xp is replaced with the expression t ′c (y). The final update will be the expression
ρ ′(q,a,xr ) = subr2,Xp (subr ′,X (t ′′(x ))) where each non stack variable x is replaced with x ′r , and each stack
variable y is replaced with yr2 .

Output Function. The function output F ′ only outputs variables labeled with r0: for every state ( f ,д) ∈ Q ′, if
д(r0) = q, then F ′( f ,д) = subr0F (q).
Conflict Relation. Finally, we define the conflict relation η′ as follows:

(1) Variables summarizing different lookahead states are in conflict: for all x ,y ∈ X , for all r1 , r2 ∈ R, then
η′(xr1 ,yr2 ).

(2) Variables that conflict in S also conflict in S ′ for every possible summary: for all x ,y ∈ X , such that η(x ,y),
and for all r ∈ R, η′(xr ,yr ).

The proof that ρ ′ is consistent with η′ is analogous to the proof of Theorem 3.7. □

Copyless STTs with RLA. Recall that an STT is said to be copyless if η is the reflexive relation. In an STT, an
assignment of the form (x ,y) := (z, z) is allowed if x and y are guaranteed not to be combined, and thus, if only one
of x and y contributes to the final output. Using regular look-ahead, the STT can check which variables contribute to
the final output, avoid redundant updates, and thus be copyless.

Theorem 3.9 (Copyless STT with RLA). A nested-word transduction f is STT-definable iff it is definable by a

copyless STT with regular look-ahead.

Proof. The proof of the⇐ direction is straightforward: given a copyless STT with regular look-ahead, we can use
Theorem 3.8 to construct an equivalent STT.
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We now prove the⇒ direction. Let S1 be an STT from Σ to Γ. Using theorem 3.7, let S = (Q,q0, P ,X ,η, F ,δ , ρ) be a
bottom-up STT, equivalent to S1. We construct a bottom-up NWA A = (R, r0, P

′′,δ ′′), and a copyless STT S ′ from R
to Γ, such that JS ′,AK is equivalent to JSK.
The NWA A keeps in the state information about which variables will contribute to the final output. The STT S ′

uses such information to update only the variables that will contribute to the final output and reset all the ones that
will not. This allows S ′ to be copyless.
Auxiliary Notions.We use the notion wmp(w, i ) of longest well-matched subword ai . . . aj starting at position i .
Given a nested wordw = a1 . . . an , we also define nr(w, i ) to be the position of the first unmatched return in ai . . . an .
By definition, nr(w,n + 1) = n + 1, and for each position i such that 1 ≤ i ≤ n:

(1) if ai is internal, nr(w, i ) = nr(w, i + 1);
(2) if ai is a call, with matching return aj , nr(w, i ) = nr(w, j + 1);
(3) if ai is a return, nr(w, i ) = i .

For example, in the nested word wex = ⟨a ⟨b b⟩a⟩, we have nr(wex , 1) = 5, nr(wex , 2) = 4, nr(wex , 3) = 3, and
nr(wex , 4) = 4.
RLA Automaton Intuition. Since A needs to reset its state at every call, it is not enough to consider the variables
appearing in the output function of S as contributing variables. After reading the i-th input symbol in rev(w ), the
state r ∈ R of A contains the following information: for every set of variables Y , if Y is the set of relevant variables
after reading nr(w, i ), r contains the set of variables Y ′ that must be updated when reading the i-th symbol, in order
to have all necessary information to update the variables Y when processing nr(w, i ).
Before presenting the construction in detail, we need few more definitions. We define the set of subsets of non-

conflicting variables of X as follows: UX
def
= {Y | Y ⊆ X ∧ ∀x ,y ∈ Y , if x , y. (x ,y) < η}. We then enrich it with a

special variable xF that represents the final output:U F
X

def
= UX ∪ xF . Moreover, given an expression s ∈ E (X , Σ) (i.e. an

assignment’s right hand side), we use x ∈a s to say that a variable x ∈ X appears in s .
Given a nested wordw = a1 . . . an , and an STT S , we define the function cvS,w : Q × {0, . . . ,n} ×U F

X 7→ U F
X , such

that, for every state q ∈ Q , position i , and set of variables Y , cvS,w (q, i,Y ) = Y ′ iff Y ′ is the set of variables that must
be updated by S ′ when reading ai+1 in state q, if the set of relevant variables at nr(w, i ) is Y . For every Y ∈ U F

X ,
cvS,w (q,n,Y ) = Y . For every 0 ≤ i ≤ n − 1:

ai+1 is internal: if δi (q,ai+1) = q′, and cvS,w (q′, i + 1,Y1) = Y2, then cvS,w (q, i,Y1) = Y3 where
• if Y2 = xF , then Y3 = {x | x ∈a F (q′)};
• if Y2 , xF and ai+2 is a call ⟨a, then Y3 = {x | ∃y ∈ Y2.x ∈a ρc (q

′,a,y)}; Y3 contains the variables that
appear on the right-hand side of the variables Y2 while reading the symbol ai+2;

• if Y2 , xF and ai+2 is internal, then Y3 = {x | ∃y ∈ Y2.x ∈a ρi (q
′,ai+2,y)};

• if ai+2 is a return, then Y3 = Y2.
ai+1 = ⟨a is a call: letaj+1 = b⟩ be thematching return; ifδc (q,a) = (q0,p),δ ∗ (q0, (ai+2 . . . aj )) = q1,δr (q1,aj+1,p) =

q2, and cvS,w (q2, j + 1,Y1) = Y2, then cvS,w (q, i,Y1) = Y3 where
• if Y2 = xF , then Y3 = {x | ∃y ∈a F (q2).x

p ∈a ρr (q1,b,p,y)};
• if Y2 , xF , then Y3 = {x | ∃y ∈ Y2 ∧ xp ∈a ρr (q1,b,p,y)}.

ai+1 is a return: cvS,w (q, i,Y ) = Y if Y , xF , and undefined otherwise.
Before continuing we prove that the function cvS,w always returns a set of non-conflicting variables.

Lemma 3.10. For every i ∈ {0, . . . ,n − 1}, q ∈ Q , Y ∈ U F
X , if cvS,w (q, i,Y ) = Y

′
then Y ′ ∈ U F

X .

Proof. We proceed by induction on i . The base case, i = n and cvS,w (q,n,Y ) = Y , is trivial. We now have to show
that for all i < n, if cvS,w (q, i,Y ) = Y ′, then Y ′ ∈ U F

X . We assume by induction hypothesis that, for all q′ ∈ Q , Z ∈ U F
X ,

if cvS,w (q′, i + 1,Z ) = Z ′ then Z ′ ∈ U F
X . We have the following three cases:

ai+1 is internal: we need to prove that Y3 ∈ U F
X . By IH, we know that Y2 ∈ U F

X . If Y2 = xF , Y3 = {x | x ∈a F (q′)}
must be a set non-conflicting for F (q′) to be well defined. If Y2 , xF , and ai+2 = ⟨a is a call, Y3 = {x |
∃y ∈ Y3.x ∈a ρc (q

′,a,y))}. Let’s assume by way of contradiction that there exist x ,y ∈ Y2, such that η(x ,y)
holds. If this is the case there must exist either two variables x ′,y ′ ∈ Y3 such that x ∈a ρc (q

′,ai+2,x
′) and

y ∈a ρc (q
′,a,y ′), or a variable x ′ ∈ Y2 such that x ,y ∈a ρc (q

′,a,x ′). In both cases, using the definition of
conflict relation, we can show that the hypothesis that Y2 ∈ U F

X contains only conflict free variables is violated.
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ai+1 is a call: similar to the previous case;
ai+1 is a return: trivial. □

RLA Automaton Construction. We now construct the NWA A that computes the function cvS,w . The NWA A
mimics the definition of cvS,w while reading the input nested word backward. At every call (return for the input)
the state of A is reset to ensure that the A is bottom-up and the current value of cvS,w is stored on the stack. At the
matching return (call for the input), the value popped from the stack is used to compute the new value of cvS,w .
In order for the construction to work, we also need A to “remember”, while reading backward, what is the set of

variables that will be relevant at the next call. Given a nested wordw = a1 . . . an , and a position i , we define nc(w, i )
as the next call in wmp(w, i ). Formally, nc(w,n + 1) = ⊥, and, for each 1 ≤ i ≤ n,

• if ai is internal, then nc(w, i ) = nc(w, i + 1);
• if ai is a call, then nc(w, i ) = i;
• if ai is a return, then nc(w, i ) = ⊥.

Next, we define the set of statesR ofA. Each state r ∈ R, is a quadruple (s, f ,д,h) where s ∈ Σ∪{⊥}, f : Q×U F
X 7→ U F

X ,
д : Q 7→ Q , and h : Q × U F

X 7→ (U F
X ∪ ⊥), where f computes the function cvS,w (q, i,Y ) = Y ′, д summarizes the

execution of S on wmp(w, i ), and h computes which variables will be necessary at the return matching the next call,
and therefore which variables must be stored on the stack. We formally present the invariants maintained by A and
then show its construction. Given the input nested wordw = a1 . . . an , after processing rev(ai . . . an ), A is in state
(s, f ,д,h), where:

(1) for all Y ∈ U F
X , and q ∈ Q , if cvS,w (q, i,Y ) = Y

′, then f (q,Y ) = Y ′;
(2) if ai is a return, then s = ⊥, otherwise s = ai ;
(3) if q′ = δ ∗ (q,wmp(w, i )), then д(q) = q′;
(4) for all Y ∈ U F

X , and q ∈ Q , h(q,Y ) = Y1, where
• if nc(w, i ) = ⊥, then Y1 = ⊥,
• if nc(w, i ) = ic , aic = ⟨a has matching return air = b⟩, δ ∗ (q,ai . . . aic−1) = q1, δc (q1,aic ) = (q0,p),
δ ∗ (q0,wmp(w, ic + 1) = q2, δr (q2,p,air ) = q3, and cvS,w (q3, ir ,Y ) = Y2, then

– if Y2 = xF , then Y1 = {x | x < Xp ∧ ∃y ∈a F (q3). x ∈a ρr (q2,b,p,y)};
– if Y2 , xF and air+1 = ⟨c is a call, then Y1 = {x | x < Xp ∧ ∃y ∈ Y2.∃z ∈a ρc (q3, c,y).x ∈a

ρr (q2,b, z)};
– if Y2 , xF and air+1 is internal, then Y1 = {x | x < Xp ∧ ∃y ∈ Y2.∃z ∈a ρi (q3,air+1,y).x ∈a

ρr (q2,b, z)};
– if Y2 , xF and air+1 = c⟩ is a return, then Y1 = {x | x < Xp ∧ ∃y ∈a Y2. x ∈a ρr (q2,air ,p,y)}.

The initial state of A is r0 = (⊥, f0,д0,h0), where f0 (q,Y ) = Y , д0 (q) = q and h0 (q,Y ) = ⊥, for every q ∈ Q , and
Y ∈ U F

X .
Next we define the transition relation δ ′′ of A, that preserves the invariants presented above. For each r =

(s, f ,д,h) ∈ R, a ∈ Σ, δ ′′(r ,a) is defined as follows:
a is internal: δ ′′i (r ,a) = (a, f1,д1,h1) where for each q ∈ Q , Y1 ∈ U F

X , if δi (q,a) = q′, then д1 (q) = д(q′),
h1 (q,Y1) = h(q

′,Y1), and f1 (q,Y1) = Y3 where
• if Y2 = xF , then Y3 = {x | x ∈a F (q′)};
• if Y2 , xF and s = ⟨c is a call, then Y3 = {x | ∃y ∈ Y2.∃z ∈a ρc (q3, c,y).x ∈a ρr (q2,b, z))};
• if Y2 , xF and s is internal, then Y3 = {x | ∃y ∈ Y2.x ∈a ρi (q

′, s,y)};
• if s = ⊥, then Y3 = Y2;

a is a call ⟨b (return reading backward): let r1 = ((s1, f1,д1,h1), s ) be the state popped from the stack, then,
δ ′′r (r , r1,b) = (b, f2,д2,h2), where for each q ∈ Q , Y ∈ U F

X ,
if δc (q,b) = (q0,p), д(q0) = q1, δr (q1, s,p) = q2, and f1 (q2,Y1) = Y2, then,
д2 (q) = д(q2), h2 (q,Y1) = Y3 ∩ X , and, f2 (q,Y1) = {x | xp ∈ Y3}, where
• if Y2 = xF , then Y3 = {x | ∃y ∈a F (q2) ∧ x ∈a ρr (q1, s,p,y)};
• if Y2 , xF and s1 = ⟨c is a call, then Y3 = {x | ∃y ∈ Y2. ∃z ∈a ρc (q1, s1,y). x ∈a ρr (q2, s, z)};
• if Y2 , xF and s1 is internal, then Y3 = {x | ∃y ∈ Y2. ∃z ∈a ρc (q1, s1,y). x ∈a ρr (q2, s, z)};
• if Y2 , xF and s1 = c⟩ is a return, then Y3 = {x | ∃y ∈ Y2. x ∈a ρr (q1, s,p,y)};

a is a return b⟩ (call reading backward): δ ′′c (r ,b) = (r0, (r ,b)).
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STT Construction.We finally need to define the STT S ′ from R to Γ. When reading an input symbol in (a, f ,д,h) ∈ R,
S ′ uses the information stored in the function f to update only the variables that are relevant to the final output. The
set of states of S ′ is Q ′ = Q ×U F

X , with initial state q′0 = (q0,xF ). When processing the symbol ri = (a, f ,д,h), S ′ is in
state (q,Y ) iff S reaches the state q when processing a1 . . . ai−1, starting in q0, and the set of relevant variables at the
end of wmp(w, i ) is Y . Similarly, the set of stack states is P ′ = P ×U F

X . The set of variables is X
′ = X . The transition

function δ ′ is defined as follows. For each state (q,Y ) ∈ Q ′, stack state (p,Y ′) ∈ P ′, and symbol r = (a, f ,д,h) ∈ R we
have the following possibilities:

a is internal: if δi (q,a) = q′, then δ ′i ((q,Y ), r ) = (q′,Y );
a is a call: if δc (q,a) = (q′,p), and h(q,Y ) = Y ′, then δ ′c ((q,Y ), r ) = (q′, (p,Y ′));
a is a return: if δr (q,p,a) = q′, then δ ′r ((q,Y ), (p,Y

′), r ) = (q′,Y ′).
Next, we define the variable update function ρ ′. For each state (q,Y ) ∈ Q ′, stack state (p,Y ′) ∈ P ′, symbol r =
(a, f ,д,h) ∈ R, variable x ∈ X ′;

• if x ∈ f (q,Y ), then we have the following possibilities:
a is internal: ρ ′i (q, r ,x ) is the same as ρi (q,a,x );
a is a call: ρ ′c (q, r ,x ) is the same as ρc (q,a,x );
a is a return: ρ ′r (q,p, r ,x ) is the same as ρr (q,p,a,x );

• if x < f (q,Y ), then we have the following possibilities:
a is internal: if x is a type-0 variable then ρ ′i (q, r ,x ) = ε , otherwise ρ ′i (q, r ,x ) =?;
a is a call: if x is a type-0 variable then ρ ′c (q, r ,x ) = ε , otherwise ρ ′c (q, r ,x ) =?;
a is a return: if x is a type-0 variable then ρ ′r (q, r ,p,x ) = ε , otherwise ρ ′r (q, r ,p,x ) =?.

Last, the output function F ′ is the same as F . From the definition of cvS,w we have that S ′ is copyless, and by
construction JS ′,AK is equivalent to JSK. □

3.5 Multi-parameter STTs
In our basic transducer model, the value of each variable can contain at most one hole. Now we generalize this
definition to allow a value to contain multiple parameters. Such a definition can be useful in designing an expressive
high-level language for transducers, and it is also used to simplify constructions in later proofs.
We begin by defining nested words with parameters. The set H (Σ,Π) of parameterized nested words over the

alphabet Σ using the parameters in Π, is defined by the grammar

H := ε | a | π | ⟨a H b⟩ |H H for a,b ∈ Σ and π ∈ Π

For example, the nested word ⟨a π1 ⟨b⟩ π2 a⟩ represents an incomplete tree with a-labeled root that has a b-labeled
leaf as a child, such that trees can be added to its left as well as right by substituting the parameter symbols π1 and
π2 with nested words. We can view such a nested word with 2 parameters as a function of arity 2 that takes two
well-matched nested words as inputs and returns a well-matched nested word.

In the generalized transducer model, the variables range over parametrized nested words over the output alphabet.
Given an alphabet Σ, a set X of variables, and a set Π of parameters, the set E (Σ,X ,Π) of expressions is defined by
the grammar

E := ε | a | π | x | ⟨a E b⟩ | E E | E[π 7→ E] for a,b ∈ Σ,x ∈ X , and π ∈ Π
A valuation α from X to H (Σ,Π) naturally extends to a function from the expressions E (Σ,X ,Π) to H (Σ,Π).

To stay within the class of regular transductions, we need to ensure that each variable is used only once in the final
output and each parameter appears only once in the right-hand side at each step. To understand how we enforce
single-use-restriction on parameters, consider the update x := xy associated with a transition from state q to state q′.
To conclude that each parameter can appear at most once in the value of x after the update, we must know that the sets
of parameters occurring in the values of x and y before the update are disjoint. To be able to make such an inference
statically, we associate, with each state of the transducer, an occurrence-type that limits, for each variable x , the
subset of parameters that are allowed to appear in the valuation for x in that state. Formally, given parameters Π and
variables X , an occurrence-type φ is a function from X to 2Π . A valuation α from X to H (Σ,Π) is said to be consistent
with the occurrence-type φ if for every parameter π ∈ Π and variable x ∈ X , if π ∈ φ (x ), then the parametrized
nested word α (x ) contains exactly one occurrence of the parameter π , and if π < φ (x ), then π does not occur in
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α (x ). An occurrence-type from X to Π naturally extends to expressions in E (Σ,X ,Π): for example, for the expression
e1e2, if the parameter-sets φ (e1) and φ (e2) are disjoint, then φ (e1e2) = φ (e1) ∪ φ (e2), else the expression e1e2 is not
consistent with the occurrence-type φ. An occurrence-type φX from variables X to 2Π is said to be type-consistent
with an occurrence-type φY from Y to 2Π and an assignment ρ from Y to X , if for every variable x in X :

• the expression ρ (x ) is consistent with the occurrence-type φY , and
• the parameters resulting from performing the assignment to x are consistent: φY (ρ (x )) = φX (x ).

Type-consistency ensures that for every valuation α from Y to H (Σ,Π) consistent with φY , the updated valuation
α · ρ from X to H (Σ,Π) is guaranteed to be consistent with φX . Informally, if we take the union of the parameters
associated to all variables appearing in ρ (x ) we get exactly φX (x ).
Now we can define the transducer model that uses multiple parameters. A multi-parameter STT S from input

alphabet Σ to output alphabet Γ consists of:

• a finite set of states Q ;
• an initial state q0;
• a set of stack symbols P ;
• state-transition functions δi , δc , and δr , that are defined in the same way as for STTs;
• a finite set of typed variables X equipped with a reflexive symmetric binary conflict relation η;
• for each state q, an occurrence-type φ (q) : X 7→ 2Π , and for each stack symbol p, an occurrence-type
φ (p) : X 7→ 2Π ;
• a partial output function F : Q 7→ E (X , Γ,Π) such that for each state q, the expression F (q) is consistent with
η, and φ (q) (F (q)) is the empty set;
• for each state q and input symbol a, the update function ρi (q,a) from variables X to X over Γ is consistent
with η and is such that the occurrence-type φ (δi (q,a)) is type-consistent with the occurrence-type φ (q) and
the update ρi (q,a);

• for each state q and input symbol a, the update function ρc (q,a) from variables X to X over Γ is consistent
with η and is such that, if δc (q,a) = (q′,p) the occurrence-types φ (p) and φ (q′) are type-consistent with the
occurrence-type φ (q) and the update ρc (q,a);

• for each state q and input symbol a and stack symbol p, the update function ρr (q,p,a) from variables X ∪Xp
to X over Γ is consistent with η and is such that the occurrence-type φ (δr (q,p,a)) is type-consistent with the
occurrence-type φ (q) and φ (p) and the update ρr (q,p,a).

We can assume that φ (q0) = ∅, and therefore all variables are initialized to ε .
Configurations of a multi-parameter STT are of the form (q,Λ,α ), where q ∈ Q is a state, α is a valuation from

variables X to H (Γ,Π) that is consistent with the occurrence-type φ (q), and Λ is a sequence of pairs (p, β ) such that
p ∈ P is a stack symbol and β is a valuation from variables X to H (Γ,Π) that is consistent with the occurrence-type
φ (p). The clauses defining internal, call, and return transitions are as in the case of STTs, and the transduction JSK is
defined as before. In the same way as before we define a copyless multi-parameter STT as a multi-parameter STT
with a purely reflexive reflexive conflict relation (i.e.η = {(x ,x ) | x ∈ X }) .

Now we establish that multiple parameters do not add to expressiveness. We first prove the property for copyless
STTs. Then we add regular look-ahead and show, through the closure under this operation, that the property holds
for general STTs.

Theorem 3.11 (Copyless Multi-parameter STTs). A nested-word transduction is definable by a copyless STT iff it

is definable by a copyless multi-parameter STT.

Proof. Given a copyless STT S constructing a multi-parameter copyless STT S ′ is trivial. The parameter set Π of S ′
is the singleton {?}. For every state q of S , there is a corresponding state q in S ′. For every type-0 variable x and state
q in S , φ (q,x ) = ∅ while for every type-1 variable y, φ (q,y) = {?}.

We now prove the other direction of the iff. Let S be a multi-parameter copyless STT with states Q , initial state
q0, stack symbols P , parameters Π with |Π | = k , variables X with |X | = n, occurrence-type φ, output function F ,
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state-transition functions δi , δc , and δr , and variable-update functions ρi , ρc , and ρr . We construct an equivalent
copyless STT S ′ = (Q ′,q′0, P

′,X ′, F ′,δ ′, ρ ′).
Variable Summarization Intuition.We need to simulate the multi-parameter variables using only variables with a
single hole. We do this by using multiple variables to represent a single multi-parameter variable, and by maintaining
in the state extra information on how to combine them.
The construction maintains a compact representation of every multi-parameter variable. To understand the

construction, consider a variable x with value ⟨a ⟨b π1 b⟩ ⟨c⟩ ⟨b π2 b⟩ a⟩. One possible way to represent x using
multiple variables, each with only one parameter in its value, is the following: x1 = ⟨a?a⟩, x2 = ⟨b?b⟩⟨c⟩, and x3 = ⟨b?b⟩.
Next, we need to maintain in the state some information regarding how to combine these three values to reconstruct
x . For this purpose, we use a function of the form f (x1) = (x2,x3), f (x2) = π1, f (x3) = π2, that tells us to replace the
? in x1 with x2x3 and the holes in x2 and x3, with π1 and π2 respectively. The state will also maintain a function д that
remembers the starting variable (the root of the tree): in this case д(x ) = x1 means that x1 is the root of the symbolic
tree representing the variable x .

We now formalize this idea. The set of variables X ′ contains (2k − 1)n variables of type-1 and n variables of type-0.
When S ′ is in state q, for every variable x ∈ X ,

• if φ (x ) , ∅, the value of x is represented by 2|φ (x ) | − 1 type-1 variables in X ′;
• if φ (x ) = ∅, the value of x is represented by one type-0 variable in X ′.

Since φ (x ) ≤ k , we can assume that for every variable x ∈ X , there are exactly 2k − 1 type-1 variables and one
type-0 variable in S ′ corresponding to it. We denote this set by V (x ) = {x0,x1, . . . ,x2k−1}, where x0 is the only type-0
variable. Therefore, the STT S ′ has the set of variables X ′ =

⋃
x ∈X V (x ).

State Components and Invariants. Each state of Q ′ is a triplet (q,д, f ), where q ∈ Q keeps track of the current
state of S , д : X 7→ X ′ keeps track of the root of the symbolic tree representing each variable, and f : X ′ 7→
(X ′ × X ′) ∪ Π ∪ {ε } ∪ ⊥ maintains information on the symbolic tree representing each variable. Given a variable
x ∈ X ′, f (x ) = ⊥ means that x is not being used in any symbolic tree.

We now define the unfolding f ∗ of the function f that, given a variable in x ∈ X ′ provides the value in H (Σ,Π)
corresponding to the symbolic tree rooted in x :

• if f (x ) = ε , then f ∗ (x ) = x ;
• if f (x ) = πi , then f ∗ (x ) = x[πi ];
• if f (x ) = (y, z), then f ∗ (x ) = x[f ∗ (y) f ∗ (z)];
• if f (x ) = ⊥, then f ∗ (x ) = ⊥.

If we consider again our previous example in which f (x1) = (x2,x3), f (x2) = π1, f (x3) = π2, we have f ∗ (x1) =
x1[f ∗ (x2) f ∗ (x3)] = x1[x2[π2]x3[π3]].

Our construction maintains the following invariant: at every point in the computation, the value of f ∗ (д(x )) in S ′

is exactly the same as the value of x in S . We can assume that at the beginning every variable x ∈ X ′ has value ε , and
we represent this with д(x ) = x0, and f (x0) = ε . For this base case the invariant holds.

Similarly to what we did for STTs (Corollary 3.5), we observe that every assignment can be expressed as a sequence
of elementary updates of the following form:

Constant assignment x := w wherew is a constant (w is of the form a,π ,x , ⟨aπb⟩);
Concatenation {x := xy;y := ε } (and similar cases such as {x := yx ;y := ε });
Parameter substitution: {x := x[π 7→ y];y := ε } (and similar cases such as {x := y[π 7→ x];y := ε });
Swap: {x := y;y := x }.

Update Functions.We now describe at the same time the transition relation δ ′ and the variable update function
ρ ′ of S ′. Consider a state (q, f ,д). We call (q′, f ′,д′) the target state and we only write the parts that are updated,
skipping the trivial cases. Every time a variable v is unused we set f ′(v ) to ⊥. We show that the state invariant is
inductively preserved:

{x := w }: wherew is a constant. Similarly to what we showed earlier in the informal description, the content of
x can be summarized using 2|φ (x ) | − 1 variables.

{x := xy;y := ε }: in order for the assignment to be well-defined φ (q′,x ) must be the same as φ (q,x ) ∪ φ (q,y),
and |φ (q′,x ) | = |φ (q,x ) | + |φ (q,y) | ≤ k . Let’s assume wlog that both φ (q,x ) and φ (q,y) are not empty. By IH
x and y use 2|φ (x ) | − 1+ 2|φ (y) | − 1 = 2( |φ (q,x ) | + |φ (q,y) |) − 2 ≤ 2k − 2 variables. First we assign each yi in

18
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x1 x ′′

x3

x5

x2 x7x1

x6

x7

x4 x4

x6

x ′

x := ax [π1 ← π1π5]

Fig. 2. Parameter tree for the variable x = π1π2π3π4. In this case (on the left) д(x ) = x5 and f (x5) = (x1,x6), f (x6) =
(x2,x7), f (x7) = (x3,x4), f (x1) = π1, f (x2) = π2, f (x3) = π3, f (x4) = π4. Each variable is of type-1. After the update we have
x5 := ax5, andwe take two fresh variablesx ′,x ′′ to update the tree to the one on the right wherewe set f (x ′′) = (x1,x ′), f (x ′) = π5.
Since we have 5 parameters and 9 nodes, the counting argument still holds. Before the update f ∗ (x5) evaluates to π1π2π3π4 and
after the update f ∗ (x5) evaluates to aπ1π5π2π3π4.

the tree rooted in д(y) to some unused xi′ in V (x ). Let a(yi ) = xi′ be such a mapping. From the IH we know
that at least one type-1 variable x j ∈ V (x ) is unused. We can use x j to concatenate the variables summarizing
x and y. We can reflect such an update in the tree shape of x as follows: for every z ∈ V (x ),
• if there exists y ′ such that a(y ′) = z, we copy the summary from y ′ to z and replace each variable in the
summary with the corresponding one in V (x ): f (z) = f (y){y ′/a(y ′)}, z = y, and y ′ = ε ;

• if z = x j we concatenate the previous summaries of x and y: if д(x ) = x ′, and д(y) = y ′, and a(y ′) = x ′′,
then д′(x ) = z, and f ′(z) = x ′x ′′. Finally the variable z needs to hold the ?: ρ (z) =?.

Finally if y0 is the type-0 variable in V (y), д′(y) = y ′, f (y ′) = ε , and y0 = ε .
{x := x[π 7→ y];y := ε }: in order for the assignment to be well-defined φ (q′,x ) must be the same as (φ (q,x ) \
{π }) ∪ φ (q,y), and |φ (q′,x ) | = ( |φ (q,x ) | − 1) + |φ (q,y) | ≤ k . Let’s assume wlog that both φ (q,x ) and φ (q,y)
are not empty. By IH x and y use 2|φ (x ) | − 1 + 2|φ (y) | − 1 = 2( |φ (q,x ) | + |φ (q,y) |) − 2 ≤ 2(k + 1) − 2 = 2k
variables. First we assign each yi , д(y) in the tree rooted in д(y) to some unused xi′ in V (x ). Let a(yi ) = xi′

be such a mapping. So far we used 2k − 1 variables in V (x ). When performing the updates we show how
the variable representing the root д(y) need not be copied allowing us to use at most 2k − 1 variables to
summarize the value of x . The root of the tree summarizing x will be the same as before: if д′(x ) = д(x ).
Every variable z ∈ V (x ) is updated as follows,
• if there exists y such that a(y) = z, we copy the summary from y to z and replace each variable in the
summary with the corresponding one in V (x ): f (z) = f (y){y ′/a(y ′)}, z = y, and y ′ = ε ;

• if z = xπ we append the summary of y to it: if д(y) = y ′, then
– if f (y ′) = y1y2, a(y ′) = x ′, a(y1) = x1 and a(y2) = x2, then f ′(z) = (x1,x2), and ρ (z) = z[y ′];
– if f (y ′) = π ′, and a(y ′) = x ′, then f ′(z) = π ′, and ρ (z) = z[y ′].

Finally if y0 is the type-0 variable in V (y), д′(y) = y ′, f (y ′) = ε , and y0 = ε .
{x := y;y := x }: we simply swap the summaries of x andy. Let a : V (x ) 7→ V (y) be a bijection fromV (x ) toV (y),

and let b : V (y) 7→ V (x ) be the inverse of a. Then д′(x ) = a(д(y)), д′(y) = b (д(x ), f ′(x ) = f (y){y ′/a(y ′)},
f ′(y) = f (x ){x ′/b (x ′)}, for each x ′ ∈ V (x ), x ′ = a(x ′), and for each y ′ ∈ V (y), y ′ = b (y ′).

Figure 2 shows an example of update involving a combination of elementary updates. We still have to show how δ ′

and ρ ′ are defined at calls and returns. The functions maintained in the state are stored on the stack at every call, and
this information is used at the corresponding return to create the updated tree. Since all variables are reset at calls,
this step is quite straightforward and we omit it. By inspection of the variable update function, it is easy to see that
the assignments are still copyless.
Output Function. Last, for every state (q, f ,д) ∈ Q ′, the output function F ′(q, f ,д) = f ∗ (F (q)), where f ∗ is
naturally extended to sequences: f ∗ (ab) = f ∗ (a) f ∗ (b). □
We can then equip Theorem 3.11 with regular look-ahead and get the following result.

Corollary 3.12 (Copyless Multi-parameter STTs RLA). A nested-word transduction is definable by a copyless

STT with regular look-ahead iff it is definable by a copyless multi-parameter STT with regular look-ahead.
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We then extend the result of Theorem 3.9 to multi-parameter STTs.

Lemma 3.13. A nested-word transduction is definable by a copyless multi-parameter STT with regular look-ahead iff it

is definable by a multi-parameter STT.

Proof. The proof of Theorem 3.9 does not use parameter assignment and can therefore be used for this theorem as
well. □
Finally, we can conclude that multi-parameter STTs capture the class of STT-definable transformations.

Theorem 3.14 (Multi-parameter STTs). A nested-word transduction is definable by an STT iff it is definable by a

multi-parameter STT.

Proof. From Theorems 3.13, 3.12, and 3.14. □

3.6 Closure Under Composition
We proceed to show that STTs are closed under sequential composition. Many of our results rely on this crucial
closure property.

Theorem 3.15 (Composition Closure). Given two STT-definable transductions, f1 from Σ1 to Σ2 and f2 from Σ2 to

Σ3, the composite transduction f2 · f1 from Σ1 to Σ3 is STT-definable.

Proof. Using Theorem 3.9, we consider S1 and S2 to be copyless STTs with regular look-ahead.
• S1 = (Q1,q01, P1,X1, F1,δ1, ρ1) with regular look-ahead automaton A1, and
• S2 = (Q2,q02, P2,X2, F2,δ2, ρ2) with regular look-ahead automaton A2 = (R, r0, Pr ,δr ).

We construct a multi-parameter STT S with regular look-ahead automaton A1 that is equivalent to S1 composed with
S2. Finally, we use Theorems 3.8 and 3.14, to remove the parameters and then regular look-ahead, proving that there
exists an STT equivalent to S .
Intuition Behind the Construction. The STT S has to simulate all the possible executions of S2 on the output of
S1 in a single execution. S keeps in each state a summarization of the possible executions S2 and uses a larger set of
variables to consider all the possible variable values of such executions. At every point in the execution, for every
state q ∈ Q2, and for every two variables x1 ∈ X1 and x2 ∈ X2, the STT S has to remember what would be the value
of x2 if S2 read the content of x1 starting in q. The construction relies on the fact that the content of a variable is a
well-matched nested word (with parameters). Thanks to this property, S does not need to collect any information
about the stack of S2.
We show the intuition with a simple example. Let’s assume for simplicity that S1 has only one variable x and S2

has only one variable y. We also assume that both the lookaheads consist of only one state, and therefore we ignore
them. Let’s say that at some point in the computation x has value ? and the next input symbol is a. When reading a,
S1 updates x to ax[?b]. We need to reflect this update on the variable y of S2 — i.e. what is the value of y when S2
reads ax[?b]. However, we do not know what is the current state of S2, and what value S1 stores in the hole ?. For
every possible state q of S2 and variable x of S1, the STT S tracks what is the state reached by S2 after processing the
value in x , starting in state q. However, we still need to deal with the unknown value of the hole ?. We can extend the
previous idea to solve this problem. Consider the value of x to be a?b, where a and b are the nested words respectively
before and after the hole. The STT S maintains a function f that, for every two states q1 and q2 of S2, keeps track of
the state reached by S2 when reading a starting in state q1, and the state reached by S2 when reading b starting in
state q2 knowing that a was read starting in state q1. In order to compute the second part of the function, S needs the
stack computed by the first one and therefore needs to know that a is processed starting in state q1.
Next, we describe how we summarize the variable updates of S2. Again, the update of y depends on the state in

which S2 starts reading the value of x . Similarly to before, we need to deal with the unknown value of the hole ?.
However this is not the only problem. Let’s assume the variable update function of S2 is as follows: ρ2 (q,y,b) = cy.
We want to simulate the execution of S2, but at this point we do not know what is the previous value of y! We address
this issue by treating the old value of y as a parameter. This tells us that the set of parameters contains a parameter x ′
for every variable in x ∈ X2. Similarly to what we did for the transition relation, for every two states q1 and q2 of S2,
and every variable y of S1, there is
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• a variable дL1 (q1,x ,y) representing the value of y, when S2 reads the value of x on the left of ?, starting in
state q1;

• a variable дR1 (q1,q2,x ,y) representing the value of y, when S2 reads the value of x on the right of ?, starting
in state q2, assuming that the value of y on the left of ? was read by S2 starting in state q1.

Both these variables at the beginning are set to y ′, a parameter that represents the value of y before processing the
current input. The updates then mimic the transition relation. For example, for the case in which ρ2 (q,y,b) = cy, the
value of дR1 (q

′,q,x ,y) is set to cy ′.
Since S2 itself uses type-1 variables, we use the parameter ? for such variable values. Let’s analyze this case in detail.

When ? directly appears in the д representation of a variable, we can treat it as a normal parameter. The problem
occurs in the following case: let’s say at a particular step д(q,x ,y) = y ′ but y is a type-1 variable. This can only mean
that the ? appears in y ′. Now let’s assume that the next update is of the form y := y[a]. As we can see, we still do not
have the ? appearing in the representation of y. We record this fact with a function and delay the substitution using
an extra variable for the parameters. As an example, suppose that at some point the values of x and y, both of type 1,
are x ′,y ′. We use the variables x? =? and y? =? to represent their parameters. Then, after processing a well-matched
subword, we may have an update of this form x := ax[cy[a?c]]b and y := a?. Notice that the reflexivity of η ensures
that x ′ and y ′ can appear at most once in the valuation of a variable at any point. This configuration is captured by
x := axb, x? = cy, y? = a?c and y = a?. In addition we need to keep information about where the actual parameter of
every variable is. Let’s consider the case in which we are trying to summarize a type-0 variable y of S2. We keep in
the state a function p0, such that p0 (q,x ,y) = ε if the ? appears in д0 (q,x ,y), while p0 (q,x ,y) = xy, if, for example, in
order to substitute the value of ? with the value v (x := x[v]), we need to perform the following update, where we
omit the state q and the variable x for readability:

x := x[x ′ 7→ x?[y ′ 7→ y?[? 7→ v]]]

Finally, we need to summarize the possible lookahead values of S2 when reading the variable contents. For example
if a variable x of S1 contains the value s?t , we need to know, for every r1 and r2 in R, what state would A2 reach
when reading s and t backward. We use two functions lL1 and lR1 , such that lR1 (r2,x ) = r ′2 and lL1 (r1, r2,x ) = r ′1, iff
δ ∗R (r2, rev(t )) = (r ′2,Λ), and δ

∗
R (r1,Λ, rev(s )) = r

′
1.

State Components and Invariants. We denote with Xi, j the set of type-j variables in Xi . Each state of Q is a tuple
(q, f0, f

L
1 , f

R
1 , l0, l

L
1 , l

R
1 ,p0,p

L
1 ,p

R
1 ), where

• q ∈ Q1 keeps track of the current state of S1;
• f0 : Q2 × R × X1,0 7→ Q2 is the summarization function for type-0 variable;
• f L1 : Q2 × R × R × X1,1 7→ Q2, and f R1 : Q2 × Q2 × R × R × X1,1 7→ Q2 are the summarization functions for
type-1 variables;

• l0 : R × X1,0 7→ R is the lookahead summarization function for type-0 variable;
• lL1 : R × R × X1,1 7→ R, and lR1 : R × X1,1 7→ R are the lookahead summarization functions for type-1 variables;
• p0 : Q2 × R × X1,0 × X2,1 7→ X ∗2,1 is the function keeping track of the ? for type-0 variables;
• pL1 : Q2 × R × R × X1,1 × X2,1 7→ X ∗2,1, and p

R
1 : Q2 ×Q2 × R × R × X1,1 × X2,1 7→ X ∗2,1 are the function keeping

track of the ? for type-1 variables.

We first describe the invariants that S maintains for the first 7 components: given an input nested wordw = a1 . . . an ,
after reading the symbol ai , S is in state (q, f0, f L1 , f

R
1 , l0, l

L
1 , l

R
1 , , , ), such that:

• q is the state reached by S1 on the prefix a1 . . . ai , δ ∗1 (q01,a1 . . . ai ) = q;
• given q1 ∈ Q2, and r ∈ R, if x contains the value s ∈W0 (Σ2), and δ ∗2 (q1, sr ) = q

′
1, then f0 (q1, r ,x ) = q

′
1;

• given q1,q2 ∈ Q2, and r1, r2 ∈ Q2, if x contains the value s?t ∈ W1 (Σ2), δ ∗2 (q1, sr1,Λr2,t ) = (q′1,Λ), and
δ ∗2 (q2,Λ, tr2 ) = q′2, then f L1 (q1, r1, r2,x ) = q′1, and f R1 (q1,q2, r1, r2,x ) = q′2. We use the notation sr1,Λr2,t to
denote the run on s of A2 starting in state r1 assuming that A2 has an initial stack value computed by A2 on t
starting in state r2;

• given r1 ∈ R, if x contains the value s ∈W0 (Σ2), and δ ∗2 (r1, rev(s )) = r
′
1, then l0 (r1,x ) = r

′
1;

• given r1, r2 ∈ R, if x contains the value s?t ∈W1 (Σ2), δ ∗2 (r2, rev(t )) = (r ′2,Λ), and δ
∗
2 (r1,Λ, rev(s )) = r

′
1, then

lL1 (r1, r2,x ) = r
′
1, and l

R
1 (r2,x ) = r

′
2.
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State Transition Function.We now show howwemaintain the invariants defined above at every update. We first in-
vestigate the update of all the components different fromp0,p

L
1 , andp

R
1 . Let’s assume S is in state (q, f0, f L1 , f

R
1 , l0, l

L
1 , l

R
1 ,p0,p

L
1 ,p

R
1 ).

We are only going to write the parts that are updated, and as before we only consider atomic updates of S1. We
analyze the type-1 case (the 0 case is easier). At every step we indicate with a prime sign the updated components.

{x := w }: we consider the case where w = ⟨a?b⟩ (the other cases are similar). For each q1 and q2 in Q2, r1, r2
in R, if δR (r2, ⟨b) = (r ′2,p) for some p ∈ Pr , δR (r1,p,a⟩) = r ′1, δ

∗
2 (q1, r

′
1) = (q′1,Λ), and δ

∗
2 (q2,Λ, r

′
2) = q′2, then

the new state has the following components: f L1
′
(q1, r1, r2,x ) = q

′
1, f

R
1
′
(q1,q2, r1, r2,x ) = q

′
2, l

L
1
′
(r1, r2,x ) = r

′
1,

and lR1
′
(r2,x ) = r

′
2.

{x := xy;y := ε }: without loss of generality, let y be a type-0 variable, and x be type-1 variables.
For each ql and qr in Q2, rl , rr in R, if l0 (r1,y) = r1, lR1 (r1,x ) = r2, lL1 (rl , r1,x ) = r3, f L1 (ql , rl , r1,x ) = q1,
f R1 (qr , rl , r1,x ) = q2, and f0 (q2, rr ,y) = q3, then for every q ∈ Q2, and r ∈ R, the new state has the following
components: lL1

′
(rl , rr ,x ) = r3, lR1

′
(rr ,x ) = r2, l0 ′(r ,y) = r , f L1

′
(ql , rl , rr ,x ) = q1, f R1

′
(ql ,qr , rl , rr ,x ) = q3, and

f0
′(q, r ,y) = q.

{x := x[y];y :=?}: let x and y be type-1 variables (the other cases are simpler). We need to “synchronize” the left
and right parts to update the function f . For eachql andqr inQ2, rl , rr inR, assume lR1 (rr ,x ) = r1, l

R
1 (r1,y) = r2,

lL1 (rl , r1,y) = r3, lL1 (r3, rr , z) = r4, and f L1 (ql , r3, rr ,x ) = q1, f L1 (q1, rl , r1,y) = q2, f R1 (q1,qr , rl , r1,y) = q3, and
f R1 (ql ,q3, r3, rr ,x ) = q4. For every q,q′ ∈ Q2, and r , r ′ ∈ R, the new state has the following components:
lL1
′
(rl , rr ,x ) = r4, lR1

′
(rr ,x ) = r2, lL1

′
(r , r ′,y) = r , lR1

′
(r ,y) = r , f L1

′
(ql , rl , rr ,x ) = q2, f R1

′
(ql ,qr , rl , rr ,x ) = q4,

f L1
′
(q, r , r ′,y) = q, and f R1

′
(q,q′, r , r ′,y) = q′.

{x := y;y := x }: every component involving x is swapped with the corresponding component involving y.

Variable Summarization. Similarly to what we did for state summarization, S will have variables of the form
д0 (q, r ,x ,y) with the following meaning: if x contains a nested wordw , д0 (q, r ,x ,y) is the value contained in y ∈ X2
after reading wr starting in state q. As we described earlier, there will also be variables of the form д0 (q, r ,x ,y)?
representing the value of the parameter of y. The set of variables X of S described by the union of the following sets:

• {д0 (q, r ,x ,y) | (q, r ,x ,y) ∈ Q2 × R × X1,0 × X2};
• {д0 (q, r ,x ,y)? | (q, r ,x ,y) ∈ Q2 × R × X1,0 × X2,1};
• {дL1 (q, r1, r2,x ,y) | (q, r1, r2,x ,y) ∈ Q2 × R × R × X1,1 × X2};
• {дL1 (q, r1, r2,x ,y)? | (q, r1, r2,x ,y) ∈ Q2 × R × R × X1,1 × X2,1};
• {дR1 (q,q

′, r1, r2,x ,y) | (q,q
′, r1, r2,x ,y) ∈ Q2 ×Q2 × R × R × X1,1 × X2};

• {дR1 (q,q
′, r1, r2,x ,y)? | (q,q′, r1, r2,x ,y) ∈ Q2 ×Q2 × R × R × X1,1 × X2,1}.

Given a nested wordw , and a stack Λ, we usewr,Λ to denote the regular look-ahead labeling ofw when processing
rev(w ) in the starting configuration (r ,Λ). For every q1 ∈ Q2, r1, r2 ∈ R, x ∈ X1,1, and y ∈ X2, if x contains a nested
word v?w , δ ∗r (r2,w ) = (r ′2,Λr2 ), and δ ∗2 (q1,vr1,Λr2 ) = (q2,Λq2 ), then

• дL1 (q1, r1, r2,x ,y) is the variable representing the value of y, after S2 reads vr1,Λr2 starting in state q1;
• дR1 (q1,q2, r1, r2,x ,y) is the variable representing the value of y, after S2 readswr2 starting in the configuration

(q2,Λq2 ).
The parameters of S are used to represent the values of the variables in X2 when starting reading the values of a
variable X1. At this point we do not know what the values of the variables in X2 are and for every variable x ∈ X2,
we use a parameter x ′ to represent the value of x before reading the value in X1. The STT S has set of parameters
Π = {x ′ |x ∈ X2} ∪ {?}.
At any point in the execution the variable values and the state of S will be related by the following invariant: for

any starting valuation α of the variables in X2, state q ∈ Q2, look-ahead state r ∈ R, variable y ∈ X2, and variable
x ∈ X1 with valuew , the value of y after readingwr with initial configuration α can be retrieved from the variables
in X and the state components p0,pL1 ,p

R
1 .

Given a nested wordw = a1 . . . an , we consider the configuration of S and S1 right after processing the symbol ai .
Let’s call (q1,Λ1,α1) the current configuration of S1, and (qS ,Λ,α ), with qS = (q, f0, f

L
1 , f

R
1 , l0, l

L
1 , l

R
1 ,p0,p

L
1 ,p

R
1 ), the

current configuration of S . For every two states q2,q′2 ∈ Q2, lookahead states r , r ′ ∈ R, variables x0 ∈ X1,0, x1 ∈ X1,1,
y0 ∈ X2,0, and y1 ∈ X2,1:
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x0,y0: let α1 (x0) = sx0 be the current valuation of x0 in S1, α (д0 (q2, r ,x0,y0)) = t be the current valuation of
д0 (q2, r ,x0,y0) in S , and {v ′1, . . . ,v

′
k } ⊆ Π be the set of parameters in φ (д0 (q2, r ,x0,y0)); for every valuation

α2 over X2, if δ ∗ ((q2,α2), sx0r ) = (q3,α
′
2), then:

α ′2 (y0) = t[v ′1 7→ α2 (v1)] . . . [v ′k 7→ α2 (vk )]

x0,y1: let α1 (x0) = sx0 be the current valuation of x0 in S1, α (д0 (q2, r ,x0,y1)) = t be the current valuation of
д0 (q2, r ,x0,y1) in S , p0 (q2, r ,x0,y1) = z1 . . . zi be the sequence of variables to follow to reach the hole ? in the
representation of y1, and {v ′1, . . . ,v

′
k } ⊆ Π be the set of parameters in

(φ (д0 (q2, r ,x0,y1)) ∪ φ (д0 (q2, r ,x0, z1)?) ∪ . . . ∪ φ (д0 (q2, r ,x0, zi )?)) \ {z1, . . . , zi }

then for every valuation α2 over X2, if δ ∗ ((q2,α2), sx0r ) = (q3,α
′
2), then:

α ′2 (y1) = t[z ′1 7→ [д0 (q2,x0, z1)?[. . . [z ′i 7→ д0 (q2,x0, zi )?]]]])[v ′1 7→ α2 (v1)] . . . [v ′k 7→ α2 (vk )]

x1,y0: letα1 (x1) = sx
L
1 ?sxR1 be the current valuation ofx1 in S1,α (дL1 (q2, r , r

′,x1,y0)) = tL be the current valuation
of дL1 (q2, r , r

′,x1,y0) in S , α (дR1 (q2,q
′
2, r , r

′,x1,y0)) = tR be the current valuation of дR1 (q2,q
′
2, r , r

′,x1,y0) in
S , let {vL1

′
, . . . ,vLk

′
} ⊆ Π be the set of parameters in φ (дL1 (q2, r , r

′,x1,y0)), and let {vR1
′
, . . . ,vrl

′} ⊆ Π be the

set of parameters in φ (дR1 (q2,q
′
2, r , r

′,x1,y0)); for every valuations α2,α ′2 over X2, if δ ∗ ((q2,α2), s
xL1
r,Λ′r ,sx1,R

) =

(q3,Λ2,α3), and δ ∗ ((q′2,Λ2,α
′
2), s

xR1
r ′ ) = (q′3,α

′
3), then α3 (y0) = tL[vL1

′
7→ α2 (v

L
1 )] . . . [v

L
k
′
7→ α2 (v

L
k )], and

α ′3 (y0) = tR[vR1
′
7→ α2 (v

R
1 )] . . . [v

R
l
′
7→ α2 (v

R
l )].

x1,y1: letα1 (x1) = sx
L
1 ?sxR1 be the current valuation ofx1 in S1,α (дL1 (q2, r , r

′,x1,y1)) = tL be the current valuation
of дL1 (q2, r , r

′,x1,y1) in S , α (дR1 (q2,q
′
2, r , r

′,x1,y1)) = tR be the current valuation of дR1 (q2,q
′
2, r , r

′,x1,y1) in S ,
pL1 (q2, r , r

′,x1,y1) = zL1 . . . z
L
i be the sequence of variables to follow to reach the hole ? in the representation

of y1 on the right of the ?, pR1 (q2,q
′
2, r , r

′,x1,y1) = zR1 . . . z
R
j be the sequence of variables to follow to reach

the hole ? in the representation of y1 on the right of the ?, {vL1
′
, . . . ,vLk

′
} ⊆ Π be the set of parameters in

φ (дL1 (q2, r , r
′,x1,y1)), and {vR1

′
, . . . ,vRl

′
} ⊆ Π be the set of parameters in φ (дR1 (q2,q

′
2, r , r

′,x1,y1)); for every

valuations α2,α ′2 over X2, if δ ∗ ((q2,α2), s
xL1

r,Λ′r ,s
xR1
) = (q3,Λ2,α3), and δ ∗ ((q′2,Λ2,α

′
2), s

x1,R
r ′ ) = (q′3,α

′
3), then:

α3 (y1) = tL[zL1
′
7→ [дL1 (q2, r , r

′,x1, z
L
1 )?[. . . [z

L
i
′
7→ дL1 (q2, r , r

′,x1, z
L
i )?]]]])

[vL1
′
7→ α2 (v

L
1 )] . . . [v

L
k
′
7→ α2 (v

L
k )]

α ′3 (y1) = tR[zR1
′
7→ [дR1 (q2,q

′
2, r , r

′,x1, z
R
1 )?[. . . [z

R
i
′
7→ дR1 (q2,q

′
2, r , r

′,x1, z
R
i )?]]]])

[vR1
′
7→ α2 (v

R
1 )] . . . [v

R
k
′
7→ α2 (v

R
k )]

VariableUpdate Function.Weassume that S is reading the symbola, starting in stateqS = (q, f0, f
L
1 , f

R
1 , l0, l

L
1 , l

R
1 ,p0,p

L
1 ,p

R
1 ).

We only describe the components that are updated, and assume without loss of generality that x0,x1 ∈ X1,0 are type-0
variable, and x2 ∈ X2,1 is a type-1 variable. We assume the occurrence-type function φ : Q × X 7→ 2Π to be well
defined according to the following assignments (we will prove consistency later).

{x0 := w }: where without loss of generalityw is a constant without a ?. We fix the variable components to be
the state q ∈ Q2, lookahead state r ∈ R, and we are summarizing the values of y0 ∈ X2,0 and y1,y2 ∈ X2,1,
when reading the value in x0 ∈ X1,0. We consider the variable updates performed by S2 when reading thew ,
and assume u = u1 . . .un to be the sequence of atomic updates (using Theorem 3.4) performed by S2 when
reading wr starting in state q. We now provide the updates of S corresponding to the updates in u. At the
beginning of the procedure д0 (q, r ,x0,y1) = y ′1, and p0 (q, r ,x0,y1) = y1.

We denote with a prime the new state values and we only write the parts that are updated. Let’s assume
the atomic update is of the following form:
{y1 := w }: where w = ⟨a?b⟩ (the other cases are similar). We have p ′0 (q, r ,x0,y1) = ε , and we define the

current assignment to be д0 (q, r ,x0,y1) := w .
{y0 := ε ;y1 := y0y1}: p ′0 (q, r ,x0,y1) = p0 (q, r ,x0,y1), andwe define the current assignment to beд0 (q, r ,x0,y1) :=

д0 (q, r ,x0,y0)д0 (q, r ,x0,y1), and д0 (q, r ,x0,y0) = ε .
{y1 := y1[y2];y2 :=?}: the summaryp0 is updated asp ′0 (q, r ,x0,y1) = p0 (q, r ,x0,y1)p0 (q, r ,x0,y2),p0 (q, r ,x0,y2) =

ε ; if p0 (q, r ,x0,y1) = v1 . . .vk , then we define the current assignment to be
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• if k = 0, then
д0 (q, r ,x0,y1) := д0 (q, r ,x0,y1)[д0 (q, r ,x0,y2)], and д0 (q, r ,x0,y2) =?;
• if k > 0, then д0 (q, r ,x0,y1) := д0 (q, r ,x0,y1), д0 (q, r ,x0,vk?) := д0 (q, r ,x0,vk?)[д0 (q, r ,x0,y2)],
and д0 (q, r ,x0,y2) =?.

{y1 := y2;y2 := y1}: every component involvingy1 is swapped with the corresponding component involving
y2.

The final variable update is the result of composing all the atomic updates. As shown in Lemma 3.6, the
composition of copyless updates is itself copyless.

{x0 := x0x1;x1 := ε }: we need to substitute the values of the variables after reading x0 in the corresponding
parameters in x1 in order to simulate the concatenation. Informally (we omit the states for readability) if
д0 (x1,y) contains the value az ′, and д0 (x0, z) contains the value bw ′, the new summarization д′0 (x0,y) will
contain the value abw ′ where the parameter z ′ is being replaced with the corresponding variable values.

For every state q2 ∈ Q2, lookahead state r ∈ R, variable y1 ∈ X2,1, if l0 (r ,x1) = r1, f0 (q2, r1,x0) = q3,
φ (qS ,д0 (q3, r ,x1,y1)) = {v

′
1, . . . ,v

′
k }, andp0 (q2, r ,x1,y1) = b1 . . .bk ′ , thenp0

′(q2, r ,x0,y1) := p0 (q2, r1,x0,b1) . . .p0 (q2, r1,x0,bk ′ ),
and p0 ′(q2, r ,x1,y1) := y1. The next step is collapsing all the parameters chains that can now be resolved with
proper parameter substitution. For each assignment to a variable д′0 (q2, r1,x0,v ) we omit, unless interesting,
the fact that every parameter v ′ is replaced with the corresponding variable value д0 (q2, r1,x0,v ′), and we
iterate the following procedure starting with the sequence P = b1 . . .bk ′ , and the variable v = y1.
(1) let pi be the first element in P = p1 . . .pn such that p0 ′(q2, r ,x0,pi ) , ε
(2) perform the following assignment

д0
′(q2, r ,x0,v ) := д0 (q3, r ,x1,v )[

p ′1 7→ д0 (q3, r1,x0,p1)[
? 7→ д0 (q3, r1,x1,p1)?[
. . .p ′i−1 7→ д0 (q3, r1,x0,pi−1)[

? 7→ д0 (q3, r1,x1,pi−1)?] . . .]]]

д0
′(q2, r ,x0,pj )? :=? for each 1 ≤ j < i;

(3) P := pi+1 . . .pn , and v := pi+1.
Last, д0 ′(q2, r ,x1,y1) := x ′1.

{x0 := x2[x0];x2 :=?}: we need to “synchronize” the variables representing the left and right parts in a way
similar to the previous case.

{x0 := x1;x1 := x0}: every component involving x0 is swapped with the corresponding x1 component.

Conflict Relation and Well-formedness. First of all we need to show that the assignments are consistent with
respect to the parameters. Let’s assume by contradiction that at some point in the computation, for some q ∈ Q and
x ∈ X some parameter u ′ ∈ Π appears twice in φ (q,x ). This means that there exists a run of S2 in which a variable u
appears twice in a right hand side, violating the copyless assignment.
Next, we show that there exists a conflict relation η over X consistent with ρ. We’ll often use the fact that, in

assignments of the form x := yz or x := y[z], it is always the case that y , z. The conflict relation η is defined as
follows: for all q1,q′1,q2,q

′
2 ∈ Q2, r1, r

′
1, r2, r

′
2 ∈ R, x ∈ X1,0, y ∈ X1,1, u,v ∈ X2,

• if (q1, r1) , (q′1, r
′
1), then η(д0 (q1, r1,x ,u),д0 (q

′
1, r
′
1,x ,v ));

• if (q1, r1) , (q′1, r
′
1), then η(д0 (q1, r1,x ,u?),д0 (q

′
1, r
′
1,x ,v?));

• if (q1, r1, r2) , (q′1, r
′
1, r
′
2), then η(дL1 (q1, r1, r2,y,u),д

L
1 (q

′
1, r
′
1, r
′
2,y,v ));

• if (q1, r1, r2) , (q′1, r
′
1, r
′
2), then η(дL1 (q1, r1, r2,y,u?),д

L
1 (q

′
1, r
′
1, r
′
2,y,v?));

• if (q1,q2, r1, r2) , (q′1,q
′
2, r
′
1, r
′
2), then η(дR1 (q1,q2, r1, r2,y,u),д

R
1 (q

′
1,q
′
2, r
′
1, r
′
2,y,v ));

• if (q1,q2, r1, r2) , (q′1,q
′
2, r
′
1, r
′
2), then η(дR1 (q1,q2, r1, r2,y,u?),д

R
1 (q

′
1,q
′
2, r
′
1, r
′
2,y,v?)).

We now show that the variable update function ρ does not violate the conflict relation η. Inspecting the updates, we
perform it is easy to see that the same variable never appears twice on the right-hand side of the same variable. Now,
by way of contradiction, let’s assume there exists an assignment which violates the constraints (we indicate in bold
the meta-variables of S and in italic those of S2). There are two possibilities:

(1) x , y, η(x, y), and both x and y occur on the right-hand side of some variable;
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(2) η(x, y), and there exists two variables x′ and y, such that x′ := f un(x), y′ = f un(y) for which η(x′, y′)
doesn’t hold.

Case (1) can be ruled out by simply inspecting all the possible assignments in the definition of ρ. The only interesting
cases are {x0 := x0x1;x1 := ε } and {x0 := x2[x0];x2 :=?} where the reasoning is the following. We first need to show
that, for every q2 ∈ Q2, r ∈ R, x0 ∈ X1,0, if X2,1 = {y1, . . . ,yn } is the set of type-1 variables in S2, then the sequence
p0 (q2, r ,x0,y1) . . .p0 (q2, r ,x0,yn ) is repetition free. It is easy to show that this property holds by induction. After we
have this, it is easy to show that the assignments do not violate the conflict relation.

We now need to deal with the conflict case (2). Before starting we point out that every variable x ∈ X1 appears in
at most one of the assignments of S2 due to the copyless restriction. We want to show that it cannot happen that two
variables that are in conflict are assigned to two different variables that are not in conflict. Let’s try to analyze when
two variables x, y assigned to different variables can be in conflict. The first case is x = y. The case for {x0 := w } can
be ruled out by inspecting the assignments. For the cases {x0 := x0x1;x1 := ε } we observe the following: the only
case in which two variables appearing on two different right hand sides conflict is when (looking at point two of the
iteration) we perform the following update: {д0 (q2, r ,x0,v ) := д0 (q3, r ,x1,v );д0 (q3, r ,x1,v ) := . . .д0 (q3, r ,x1,v ) . . .}.
The two left-hand side are in conflict, therefore η is well defined. For the case x0 := x2[x0] the argument is analogous.

Next, we show how the construction deals with calls and returns. As in the proof of Theorem 3.14, at every call, S
stores the state containing the information about the current variable values on the stack, and, at the corresponding
return we use them to construct the new values for the state. Since at every call variables are reset, this construction
is quite straightforward. Using an argument similar to that of Theorem 3.14, assignments do not violate the single use
restriction. Notice that the fact that the variables are reset at calls is crucial for this construction.
Output Function. Finally, we define the output function F . When reaching the last symbol, we need to construct the
final output, but now at this point, we knowwhat states to use.We illustrate the construction with an example, since the
general one is very similar to the construction of ρ. Let’s assume we are in state qS = (q, f0, f

L
1 , f

R
1 , l0, l

L
1 , l

R
1 ,p0,p

L
1 ,p

R
1 ),

then F (qS ) is defined as follows. We assume without loss of generality that F1 (q) = x for some x0 ∈ X1,0, since the
other cases are similar to our previous constructions. If f0 (q02, r0,x0) = qf , and F2 (qf ) = y0, with y0 ∈ X2,0, then
F (qS ) = д0 (q02, r0,x0,y0){v

′ 7→ ε } for every v ′ ∈ φ (qS ,д0 (q02, r0,x0,y0)). This concludes the proof. □

3.7 Restricted Inputs
A nested word captures both linear and hierarchical structure. There are two natural subclasses of nested words:
strings are nested words with only linear structure, and ranked trees are nested words with only hierarchical structure.
Let us consider how the definition of STT can be simplified when the input is restricted to these two special cases.

Mapping Strings. Suppose we restrict the inputs to contain only internal symbols, that is, strings over Σ. Then
the STT cannot use its stack, and we can assume that the set P of stack symbols is the empty set. This restricted
transducer can still map strings to nested words (or trees) over Γ with interesting hierarchical structure, and hence, is
called a string-to-tree transducer. This leads to the following definition: a streaming string-to-tree transducer (SSTT) S
from input alphabet Σ to output alphabet Γ consists of a finite set of states Q ; an initial state q0 ∈ Q ; a finite set of
typed variables X together with a conflict relation η; a partial output function F : Q 7→ E0 (X , Γ) such that for each
state q, a variable x appears at most once in F (q); a state-transition function δ : Q × Σ 7→ Q ; and a variable-update
function ρ : Q × Σ 7→ A (X ,X ,η, Γ). Configurations of such a transducer are of the form (q,α ), where q ∈ Q is a state,
and α is a type-consistent valuation for the variables X . The semantics JSK of such a transducer is a partial function
from Σ∗ toW0 (Γ). We notice that in this setting the copyless restriction is enough to capture MSO completeness since
the model is closed under regular look-ahead (i.e. a reflexive η is enough).

Theorem 3.16 (Copyless SSTTs are closed under RLA). A string-to-tree transduction is definable by an SSTT iff it

is definable by a copyless SSTT.

Proof. The⇐ direction is immediate. For the⇒ direction, using Theorem 3.9 we consider the input to be a copyless
SSTT with regular look-ahead. Given a DFA A = (R, r0,δA) over the alphabet Σ, and a copyless string-to-tree STT
S = (Q,q0,X , F ,δ , ρ) over R, we construct an equivalent copyless multi-parameter STT S ′ = (Q ′,q′0,X

′,Π,φ, F ′,δ ′, ρ ′)
over Σ. Thanks to Theorem 3.11 this implies the existence of a copyless SSTT.
Auxiliary Notions. Given a finite setU , we inductively define the following sets:
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F (U ) : the set of forests over U defined as: ε ∈ F (U ), and if s0, . . . , sn ∈ U , and f0, . . . , fn ∈ F (U ), then
s0 ( f0) . . . sn ( fn ) ∈ F (U );

SF ( f ′) : given a forest f ′ ∈ F (U ), the set of sub-forests of f ′, for short SF ( f ′), is defined as follows:
• if f ′ ≡ s ′0 (t

′
0) . . . s

′
m (t ′m ), and there exists i ≤ m such that f ∈ SF (t ′i ), then f ∈ SF ( f ′);

• if f ∈ SFM ( f ′), then f ∈ SF ( f ′);
SFM ( f ′) : given a forest f ′ ∈ F (U ), the set of exact match sub-forests of f ′, for short SFM ( f ′), is defined

as follows:
• the empty forest ε belongs to SFM ( f ′);
• let f ≡ s0 (t0) . . . sn (tn ), and f ′ ≡ s ′0 (t

′
0) . . . s

′
m (t ′m ). If there exists 0 ≤ i ≤ m − n such that s0 . . . sn =

s ′i . . . s
′
i+n , and for every 0 ≤ j ≤ n, tj ∈ SFM (t ′i+j ), then f ∈ SFM ( f ′).

Intuitively, the first rule in the definition of SF allows to move down in the forest until an exact match in SFM
is found by the other rules. We illustrate the definitions with an example. Given a forest f = a(b (c ), e ), we have
SFM ( f ) = {ε,a,a(b),a(e ),a(b (c )),a(b, e )),a(b (c ), e )}, andSF ( f ) = {ε,a,a(b),a(e ),a(b (c )),a(b, e )),a(b (c ), e ),b, e, (b, e ),b (c ), (b (c ), e ), c}
Given two forests f1, f2 ∈ F (U ), we write S ( f1, f2) ≡ SF ( f1) ∩ SF ( f2) for the set shared sub-forests of f1 and f2.
Finally the set of maximal shared sub-forests is defined as

M (t1, t2) = { f | f ∈ S (t1, t2) ∧ ¬∃f
′ ∈ S (t1, t2). f

′ , f ∧ f ∈ SF ( f ′)}

State Components and Invariants. The transition of the STT S at a given step depends on the state of A after
reading the reverse of the suffix. Since the STT S ′ cannot determine this value based on the prefix, it needs to simulate
S for every possible choice. We denote by Xi the type-i variables of X . Every state q ∈ Q ′ is a tuple (l , f ,д) where

• l : R 7→ R, keeps track, for every possible state r ∈ R, of what would be the state of A after processing the
string rev(w ), wherew is the string read so far;

• f : R 7→ Q , keeps track, for every possible state r ∈ R, of what would be the state of S after processing the
stringwr , wherew is the string read so far;

• д : (R × X ) 7→ F (X ′ ∪ {?}) keeps track of how the variables X ′ of S ′ need to be combined in order to obtain
the value of a variable of S .

State Summarization Invariants. We first discuss the invariants of the first two components l and f of a state,
and how they are preserved by the transition function δ ′ of S ′. After reading a wordw S ′ is in state (l , f ,д) where

• for every lookahead state r ∈ R, l (r ) = r ′, δ ∗A (r , rev(w )) = r ′;
• for every lookahead state r ∈ R, f (r ) = q, δ ∗ (q0,wr ) = q.

At the beginning S ′ is in state (l0, f0,д0), where for every r ∈ R, l0 (r ) = r and f0 (r ) = q0. The component д0 is
discussed later.

Next we describe the transition function δ ′. We assume S ′ to be in state (l , f ,д), and to be reading the input symbol
a ∈ Σ; we denote with l ′, f ′ the new values of the state components, and we only write the parts that change. For
every lookahead state r ∈ R, if δA (r ,a) = r ′, f (r ) = q, and δ (q, r ′) = q′, then l ′(r ) = l (r ′) and f ′(r ) = q′.
Variable Summarization. Next, we describe how S ′ keeps track of the variable values. The natural approach for
this problem would be that of keeping, for each state r ∈ R and variable x ∈ X , a variable д(r ,x ) containing the value
of x in S , assuming the prefix read so far, was read by A starting in state r . This natural approach, however, would
cause the machine not to be copyless. Consider, for example, the following scenario. Let r , r1 and r2 be look-ahead
states in R such that, for some a ∈ Σ, δ (r1,a) = δ (r2,a) = r . Assume S only has one state q ∈ Q , and one variable
x ∈ X . If S updates ρ (q, r ,x ) to x , in order to perform the corresponding update in S ′ we would have to assign д(r ,x )
to both д(r1,x ) and д(r2,x ), and this assignment is not copyless.

Our solution to this problem relies on a symbolic representation of the update and a careful analysis of sharing. In
the previous example, a possible way to represent such update is by storing the content of д(r ,x ) into a variable z, and
then remembering in the state the fact that both д(r1,x ) and д(r2,x ), now contain z as a value. In the construction,
the above update is reflected by updating the state, without touching the variable values.
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The set of variables X ′ contains |R |(4|X0 | |R |) type-0 variables, and |R |(4|X1 | |R |) type-1 variables. The set of
parameters Π of S ′ is {πi | 0 ≤ i ≤ 4|X | |R |}. We will show later how these numbers are obtained.
Variables Semantics and Invariants. We next describe how we can recover the value of a variable in X from
the corresponding shape function д(x ). Intuitively, the value of a variable x is recovered by merging together the
variables appearing in the shape of x . We call this operation unrolling.

We define the unrolling u : F (X ′) 7→ E (X ′, Σ) of a symbolic variable representation as follows. Given a forest
f = s0 ( f0) . . . sn ( fn ) ∈ F (X ′), the unrolling of f is defined as u ( f ) ≡ ut (s0, f0) . . .ut (sn , fn ), where for every s ∈ X ,
and д0 . . .дm ∈ X ∗, ut (s,д0 . . .дm ) ≡ s[π0 7→ u (д0), . . . ,πm 7→ u (дm )].

After reading i-th symbol ai of an input wordw , S ′ is in a configuration ((l , f ,д),α ) iff for every lookahead state
r ∈ R, and variable x ∈ X , if δ ∗ (q0, rev((a1 . . . ai )r )) = (q,α1), and u (д(r ,x )) = s , then α1 (x ) = α (s ).
Counting Argument Invariants. Next, we describe how we keep the shape function д compact, allowing us to use
a finite number of variables while updating them in a copyless manner. The shape function д maintains the following
invariants.

Single-Use: each shape д(r ,x ) is repetition-free: no variable x ′ ∈ X ′ appears twice in д(r ,x ).
Sharing Bound: for all states r , r ′ ∈ R,

∑
x,y∈X |M (д(r ,x ),д(r ′,y)) | ≤ |X |.

Hole Placement: for every type-1 variable x ∈ X1, and state r ∈ R, there exists exactly one occurrence of ? in
д(r ,x ), and it does not have any children.

Horizontal compression: for every f f ′ ∈ SF (д(r ,x )), such that ? < f f ′, then there must be a shape д(r ′,x ′),
with (r ′,x ′) , (r ,x ), such that either f ∈ SF (д(r ′,x ′)) and f f ′ < SF (д(r ′,x ′)), or f ′ ∈ SF (д(r ′,x ′)) and
f f ′ < SF (д(r ′,x ′)).

Vertical compression: for every s ( f ) ∈ SF (д(r ,x )), such that ? < s ( f ), then there must be a shape д(r ′,x ′),
with (r ′,x ′) , (r ,x ), such that either s () ∈ SF (д(r ′,x ′)) and s ( f ) < SF (д(r ′,x ′)), or f ∈ SF (д(r ′,x ′)) and
s ( f ) < SF (д(r ′,x ′)).

The first invariant ensures the bounded size of shapes. The second invariant limits the amount of sharing between
shapes and it implies that, for each r , and for each x , y, д(r ,x ) and д(r ,y) are disjoint. The second invariant also
implies that, for every state r , the tree д(r ,x ), for all x cumulatively, can have a total of |X | |R | maximal shared
sub-forests, with respect to all other strings. The third invariant says that the tree of each type-1 variable contains
exactly one hole and this hole appears as a leaf. This helps us dealing with variable substitution. The fourth and fifth
compression invariants guarantee that the shapes use only the minimum necessary amount of variables. Together
they imply that the sum

∑
x ∈X |д(r ,x ) | is bounded by 4|X | |R |. This is due to the fact that a shape can be updated only

in three ways, 1) on the left, 2) on the right, and 3) below the ?. As a result it suffices to have |R |(4|X | |R |) variables in
Z .
Variable and State Updates. Next we show how д and the variables in X ′ are updated and initialized.
The initial value д0 in the initial state, and each variable in X ′ are defined as follows: let X ′0 = {z1, . . . , zk },

X ′1 = {z
′
1, . . . , z

′
k }, X0 = {x1, . . . ,xi }, X1 = {x

′
1, . . . ,x

′
j }. For each type-0 variable xi ∈ X0, for each type-1 variable

x ′i ∈ X1, and look-ahead state r ∈ R, we have that д0 (r ,xi ) = zi , zi = ε , д0 (r ,x ′j ) = z ′j (?), and z
′
j = π0.

We assume S ′ to be in state (l , f ,д), and to be reading the input symbol a ∈ Σ. We denote with д′ the new value of
д. We assume we are given a look-ahead state r ∈ R, such that δA (r ,a) to be equal to r ′, and x and y are the variables
to be the updated.

{x := w }: where without loss of generality w = ⟨a?b⟩. We first assume there exists an unused variable, and
then show that such a variable must exist. Let zf be an unused variable. We update д′(r ,x ) = zf , and set
zf := ⟨a?b⟩. Since the counting invariants are preserved, there must have existed an unused variable zf .

{x := xy,y := ε }: we perform the following update: д′(r ,x ) = д(r ′,x )д(r ′,y). Let д(r ′,x ) = s1 ( f1) . . . sn ( fn ) and
д(r ′,y) = s ′1 ( f

′
1 ) . . . s

′
m ( f ′m ). We now have two possibilities,

• there exists (r1,x1) , (r ,x ) such that д(r1,x1) contains sn or s ′1, but not sns
′
1; or

• there does not exist (r1,x1) , (r ,x ) such that д(r1,x1) contains sn or s ′1, but not sns
′
1. In this case

we can compress: if fn = t1 . . . ti and f ′1 = t ′1 . . . t
′
k , then sn := sns

′
1[π0 7→ πi , . . . ,πk 7→ πk+i ] and

д′(r ,x ) = s1 ( f1) . . . sn ( fn f
′
1 )s
′
2 ( f

′
2 ) . . . s

′
m ( f ′m ). In this new assignment to sn , the parameters in s ′1 have

been shifted by i to reflect the concatenation with sn .
In both cases, due to the preserved counting invariant, we can take an unused variable zf and use it to update
д(r ,y): zf := ε , and д′(r ,y) = zf .
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z1# z4#

g(r1,x)# g(r2,x)#

x:=x[y]#
y:=?#

?#

z2#

z8# z4#

?#

z2#

z5# z7#

g(r1,y)# g(r2,y)#

?#

z6#

z10# z7#

?#

z6#

z1# z4#

g’(r1,x)# g’(r2,x)#

z2#

z8# z4#

z5#

g’(r1,y)# g’(r2,y)#

?#

z10#

?#

z3# z9#
z3# z7#

?#

z6#

z2#

z9# z7#

?#

z6#

z2#:=#z2[π0;>π0π1]# #z2#:=#z2[π0;>π0π1]#
z3#:=#z3[π0;>z5] # #z9##:=#z9[π0;>z10]#
z5#:=#π0 # # #z10:=#π0#

Fig. 3. Example of symbolic variable assignment. Every variable zi belongs to X ′. The depicted update represents the case in
which we are reading the symbol a such that δA (r1,a) = r1 and δA (r2,a) = r1. Before reading a (on the left), the variables z2,
z4, z6, and z7 are shared between the two representations of the variables at r1 and r2. In the new shape д′ the hole ? in д(r1,x )
(respectively д(r2,x )) is replaced by д(r1,y) (respectively д(r2,y)). However, since the sequence z3z5 (respectively z9z10) is not
shared, we can compress it into a single variable z3 (respectively z9), and reflect such a compression in the variable update
z3 := z3[π0 7→ z5] (respectively z9 := z9[π0 7→ z10]). Now the variable z5 (respectively z10) is unused and we can therefore use it
to update д′(r1,y) (respectively д′(r2,y)).

{x := x[y],y :=?)}: without loss of generality let x and y be type-1 variables. Let s (?) be the subtree of д(r ′,x )
containing ?. We perform the following update: д′(r ,x ) = д(r ′,x ){?/д(r ′,y)}, where a{b/c} replaces the node
b of a with c . Let д(r ′,y) = s ′1 ( f

′
1 ) . . . s

′
m ( f ′m ). For every sl , we now have two possibilities:

• there exists p ≤ m′, and (r1,x1) , (r ,x ) such that д(r1,x1) contains s or s ′p , but not s (s ′p ); or
• there does not exist p ≤ m′, and (r1,x1) , (r ,x ) such that д(r1,x1) contains s or s ′p ; in this case
we can compress: assume f ′p = t1 . . . tk , then s := s[πi 7→ s ′p[π0 7→ πi , . . . ,πk 7→ πk+i ],πi+1 7→
πi+1+k , . . . ,πn+k+1], and д′(r ,x ) = д′(r ,x ){s (s ′p )/s}.

In both cases, due to the preserved counting invariant, we can take an unused variable zf and use it to update
д(r ,y): zf := π0, and д′(r ,y) = zf (?). Figure 3 shows an example of such an update.

{x := y,y := x }: we symbolically reflect the swap. д′(r ,x ) = д(r ′,y), and д′(r ,y) = д(r ′,x ). Similarly to before,
we compress if necessary.

By inspection of the variable assignments, it is easy to see that S ′ is copyless.
The output function F , of S ′ simply applies the unrolling function. For example, let’s assume S ′ ends in state

(l , f ,д) ∈ Q ′, with l (r0) = r , f (r ) = q, and F (q) = xy. We have that F (l , f ,д) = u (д(r0,x )д(r0,y)). This concludes the
proof. □

Mapping Ranked Trees. In a ranked tree, each symbol a has a fixed arity k , and an a-labeled node has exactly k
children. Ranked trees can encode terms, and existing literature on tree transducers focuses primarily on ranked
trees. Ranked trees can be encoded as nested words of a special form, and the definition of an STT can be simplified
to use this structure. For simplicity of notation, we assume that there is a single 0-ary symbol 0 < Σ, and every
symbol in Σ is binary. The set B (Σ) of binary trees over the alphabet Σ is then a subset of nested words defined by the
grammar T := 0 | ⟨aT T a⟩, for a ∈ Σ. We will use the more familiar tree notation a⟨tl , tr ⟩, instead of ⟨a tl tr a⟩, to
denote a binary tree with a-labeled root and subtrees tl and tr as children. The definition of an STT can be simplified
in the following way if we know that the input is a binary tree. First, we do not need to worry about processing of
internal symbols. Second, we restrict to bottom-up STTs due to their similarity to bottom-up tree transducers, where
the transducer returns, along with the state, values for variables ranging over output nested words, as a result of
processing a subtree. Finally, at a call, we know that there are exactly two subtrees, and hence, the propagation of
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information across matching calls and returns using a stack can be combined into a unified combinator: the transition
function computes the result corresponding to a tree a⟨tl , tr ⟩ based on the symbol a, and the results of processing the
subtrees tl and tr .

A bottom-up ranked-tree transducer (BRTT) S from binary trees over Σ to nested words over Γ consists of a finite set
of states Q ; an initial state q0 ∈ Q ; a finite set of typed variables X equipped with a conflict relation η; a partial output
function F : Q 7→ E0 (X , Γ) such that for each state q, the expression F (q) is consistent with η; a state-combinator
function δ : Q × Q × Σ 7→ Q ; and a variable-combinator function ρ : Q × Q × Σ 7→ A (X ,Xl ∪ Xr ,η, Γ), where
Xl denotes the set of variables {xl | x ∈ X }, Xr denotes the set of variables {xr | x ∈ X }, and the conflict relation
η extends to these sets naturally: for every x ,y ∈ X , if η(x ,y), then η(xl ,yl ), and η(xr ,yr ). The state-combinator
extends to trees in B (Σ): δ ∗ (0) = q0 and δ ∗ (a⟨tl , tr ⟩) = δ (δ ∗ (tl ),δ

∗ (tr ),a). The variable-combinator is used to map
trees to valuations for X : α∗ (0) = α0, where α0 maps each type-0 variable to ε and each type-1 variable to ?, and
α∗ (a⟨tl , tr ⟩) = ρ (δ ∗ (tl ),δ

∗ (tr ),a)[Xl 7→ α∗ (tl )][Xr 7→ α∗ (tr )]. That is, to obtain the result of processing the tree t with
a-labeled root and subtrees tl and tr , consider the states ql = δ ∗ (tl ) and qr = δ ∗ (tr ), and valuations αl = α∗ (tl ) and
αr = α∗ (tr ), obtained by processing the subtrees tl and tr . The state corresponding to t is given by the state-combinator
δ (ql ,qr ,a). The value α∗ (x ) of a variable x corresponding to t is obtained from the right-hand side ρ (ql ,qr ,a) (x ) by
setting variables inXl to values given by αl and setting variables inXr to values given by αr . Note that the consistency
with the conflict relation ensures that each value gets used only once. Given a tree t ∈ B (Σ), let δ ∗ (t ) be q and let
α∗ (t ) be α . Then, if F (q) is undefined then JSK(t ) is undefined, else JSK(t ) equals α (F (q)) obtained by evaluating the
expression F (q) according to valuation α .

Theorem 3.17 (Expressiveness of Ranked Tree Transducers). A partial function from B (Σ) toW0 (Γ) is STT-
definable iff it is BRTT-definable.

Proof Sketch. From STT to BRTT⇒. Using Theorem 3.7, let S = (Q, P ,q0,X , F ,η,δ , ρ) be a binary bottom-up
STT.We construct a BRTT S ′ = (Q ′,q′0,X

′, F ′,η′,δ ′, ρ ′) equivalent to S . We can assume w.l.o.g. that the set of variables
X is partitioned into two disjoint sets Xl = {x

L
1 , . . . ,x

L
n } and Xr = {x

R
1 , . . . ,x

R
n } such that, given a tree t = a⟨tl , tr ⟩, 1)

after processing the left child tl , all the variables in Xl depend on the run over tl , while all the variables in Xr are
reset to their initial values, and 2) after processing the second child, the values of Xr only depend on tr (do not use
any variable xp ∈ Xp ), and every variable x ∈ Xl is exactly assigned the corresponding value xp stored on the stack.
In summary, every variable in Xr only depends on the second child, and every variable in XL only depends on the
first child. Such variables can only be combined at the return a⟩ at the end of t . An STT of this form can be obtained
by delaying the variable update at the return at the end tr to the next step in which a⟩ is read.

Now that we are given a bottom-up STT, the construction of S ′ is similar to the one showed in Theorem 3.7. Each
state q ∈ Q ′ contains a function f : Q 7→ Q , that keeps track of the executions of S for every possible starting state.
After processing a tree t , S ′ is in state f , such that for every q ∈ Q , f (q) = q′ iff when S reads the tree t starting in
state q, it will end up in state q′. Similarly, the BRTT S ′ uses multiple variables to keep track of all the possible states
with which a symbol could have been processed. The BRTT S ′ has set of variables X ′ = {xq | x ∈ X ,q ∈ Q }. After
processing a tree t , for every x ∈ X and q ∈ Q , if, after S processes t starting in state q, x contains the value s , then xq
also contains the value s .

Next we describe how these components are updated. Let fl and fr be the states of S ′ after processing the children
tl and tr of a tree a⟨tl , tr ⟩. We denote with f ′ the new state after reading a. For every state q, ∈ Q , and variable x ∈ X ,
if δc (q, ⟨a) = (q1,p), fl (q1) = q2, fr (q2) = q3, and δr (q3,p, ⟨a) = q4, then f ′(q) = q4, and xq is assigned the value
ρ (q3,p, ⟨a,x ), in which every variable in Xl and Xr is replaced with the corresponding variables in X ′l and X

′
R . For

every state f , the output function of F ′ of S ′ is then defined as F ′( f ) = F ( f (q0)). The conflict relation η′ of S ′ has the
following rules:

(1) for every x ,y ∈ X , and q , q′ ∈ Q , η′(xq ,yq′ );
(2) for every q ∈ Q , and x ,y ∈ X , if η(x ,y), then η′(xq ,yq ).

The proof of consistency is the same as for Theorem 3.7.
From BRTT to STT⇐. Given a BRTT S = (Q,q0,X , F ,η,δ , ρ), we construct an STT S ′ = (Q ′, P ′,q′0,X

′, F ′,η′,δ ′, ρ ′)
equivalent to S . The STT S ′ simulates the execution of S while reading the input nested word. The states and stack
states of S ′ are used to keep track of whether the current child is a first or second child. The STT S ′ has set of states
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Q ′ = Q × ({l , r } ∪Q ), initial state q′0 = (q0, l ), and set of stack state P ′ = Q × {l , r }. Given a tree ⟨a tl , tr a⟩, the STT S ′

maintains the following invariant:
• right before processing the first child tl , S ′ is in state (q0, l );
• right before processing the second child tr , S ′ is in state (q1, r );
• right after processing the second child tr , S ′ is in state (q1,q2).

We now define the transition relation δ ′ that preserves the invariant defined above. Let’s assume S ′ is in state
q = (q1,d ), and it is processing the symbol a.

a is a call ⟨b: the STT S ′ resets the control to the initial state and pushes q1 on the stack: δ ′(q1,b) = (q′0,q1).
a is a return b⟩: we first of all observe that, since the input is a binary tree, d cannot have value r when reading

a return symbol. If the state popped from the stack is p = (qp ,dp ) we have the following cases.
End of First Child: if dp = l , we have two cases:

Leaf: if d = l , and δ (q0,q0,b) = q2 then δ ′(q,p,b) = (q2, r );
Not a Leaf: if d = q2 ∈ Q , and δ (q1,q2,b) = q3, then δ ′(q,p,b) = (q3, r ).

End of Second Child: if dp = r , we have two cases:
Leaf: if d = l , and δ (q0,q0,b) = q2, then δ ′(q,p,b) = (qp ,q2);
Not a Leaf: if d = q2 ∈ Q , and δ (q1,q2,b) = q3, then δ ′(q,p,b) = (qp ,q3).

The STT S ′ has set of variables X ′ = X ′l ∪ X ′r , where X ′d = {xd | x ∈ X }. We use one set of variables Xl for the
variable values after processing the left child, and Xr for the variable values after processing the right child. The
variables in Xl and Xr are combined when processing the parent. The STT S ′ maintains the following invariant:
given a tree ⟨a tl , tr a⟩, and d ∈ {l , r }, after processing the child td , every variable xd ∈ X ′d will contain the value of x
computed by S after processing the tree td .

We can now describe the variable update function ρ ′ of S ′. Given a variable x ∈ X ′, let the function ini(x ) be the
function that returns the initial value of a variable x , that is defined as: 1) if x is a type-0 variable, then ini(x ) = ε ,
and 2) if x is a type-1 variable, then ini(x ) =?. Let’s assume S ′ is in state q = (q1,d ), it is processing the symbol a, and
updating the variable x ∈ X ′:

a is a call ⟨b: every variable is copied on the stack ρ ′(q,b,x ) = x ;
a is a return b⟩: if the state popped from the stack is p = (qp ,dp ), we have the following cases.

End of First Child: if dp = l we have two cases:
• if x ∈ XL we have two more cases

Leaf: if d = l , then ρ ′(q,p,b,x ) = ρ (q0,q0,b,x );
Not a Leaf: if d = q2 ∈ Q , then ρ ′(q,p,b,x ) = ρ (q1,q2,b,x ).

• if x ∈ XR , then ρ ′(q,p,b,x ) = ini(x ).
End of Second Child: if dp = r we have two cases:

• if x ∈ XL , then ρ ′(q,p,b,x ) = xp ;
• if x ∈ XR we have two more cases

Leaf: if d = l , then ρ ′(q,p,b,x ) = ρ (q0,q0,b,x );
Not a Leaf: if d = q2 ∈ Q , then ρ ′(q,p,b,x ) = ρ (q1,q2,b,x ).

The conflict relation η′ of S ′ is defined as: for every x ,y ∈ X , and d ∈ {L,R}, if η(x ,y), then η′(xd ,yd ). The consistency
of η is trivial. Finally, the output function F ′ is defined as follows. For every state (q,d ) ∈ Q ′, if d = r , F ′(q,d ) = F (q),
otherwise F ′ is undefined. □

3.8 Restricted Outputs
Let us now consider how the transducer model can be simplified when the output is restricted to the special cases of
strings and ranked trees. The desired restrictions correspond to limiting the set of allowed operations in expressions
used for updating variables.

Mapping Nested Words to Strings. Each variable of an STT stores a potential output fragment. These fragments get
updated by addition of outputs symbols, concatenation, and insertion of a nested word in place of the hole. If we
disallow the substitution operation, then the STT cannot manipulate the hierarchical structure in the output. More
specifically, if all variables of an STT are type-0 variables, then the STT produces outputs that are strings over Γ. The
set of expressions used in the right-hand sides can be simplified to E0 := ε | a | x0 | E0E0. That is, each right-hand side
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is a string over Γ ∪ X . Such a restricted form of STT is called a streaming tree-to-string transducer (STST). While less
expressive than STTs, this class is adequate to compute all tree-to-string transformations, that is, if the final output of
an STT is a string over Γ, then it does not need to use holes and substitution.

Theorem 3.18 (STST Expressiveness). A partial function fromW0 (Σ) to Γ
∗
is STT-definable iff it is STST-definable.

Proof Sketch. Since STSTs are also STTs the⇐ direction of the proof is immediate.
We now prove the⇒ direction. Given an STT S that only outputs strings over Γ∗, we can build an equivalent

STST S ′ as follows. The goal of the construction is eliminating all the type-1 variables from S . This can be done by
replacing each type-1 variable x in S with two type-0 variables xl ,xr in S ′ representing the values to the left and to
the right of the ? in x . If, after reading a nested wordw , the type-1 variable x of S contains the valuewl ?wr , then the
type-0 variables xl and xr of S ′ respectively contain the valueswl andwr . Notice that this cannot be done in general
for SSTs, because wl and wr might not be well-matched nested words. The states, and state transition function of
S ′ are the same as for S , and the variable update function and the output function can be easily derived. If η is the
conflict relation of S , then the conflict relation η′ of S ′ is defined as follows: for every variable x , η′(x ,x ), and given
two variables x , y of S , if η(x ,y), and d,d ′ ∈ {l , r }, then η′(xd ,yd ′ ). □
If we want to compute string-to-string transformations, then the STT does not need a stack and does not need

type-1 variables. Such a transducer is both an SSTT and an STST, and this restricted class coincides with the definition
of streaming string transducers (SST) [2].

Mapping Nested Words to Ranked Trees. Suppose we are interested in outputs that are binary trees in B (Γ). Then,
variables of the transducer can take values that range over such binary trees, possibly with a hole. The internal
symbols, and the concatenation operation, are no longer needed in the set of expressions. More specifically, the
grammar for the type-0 and type-1 expressions can be modified as

E0 := 0 | x0 | a⟨E0 E0 ⟩ | E1[E0]
E1 := ? | x1 | a⟨E0 E1 ⟩ | a⟨E1 E0 ⟩ | E1[E1]

where a ∈ Γ, x0 ∈ X0 and x1 ∈ X1. To define transformations from ranked trees to ranked trees, we can use the model
of bottom-up ranked-tree transducers with the above grammar.

4 EXPRESSIVENESS
The goal of this section is to prove that the class of nested-word transductions definable by STTs coincides with the
class of transductions definable using Monadic Second Order logic (MSO).
We first show that any STT can be simulated by an MSO definable transduction. The other direction of the proof

relies on the known equivalence between MSO and Macro Tree Transducers over ranked trees. Our first step is to lift
STTs to operate over ranked trees. Next, to simulate a given Macro Tree Transducer, we show construct a sequence
of STTs over ranked trees. Finally, using closure under composition, this sequence of STTs is composed into a single
STT.

4.1 MSO for Nested Word Transductions
Formulas in monadic second-order logic (MSO) can be used to define functions from (labeled) graphs to graphs [6]. We
adapt this general definition for our purpose of defining transductions over nested words. A nested wordw = a1 . . . ak
over Σ is viewed as an edge-labeled graph Gw with k + 1 nodes v0 . . .vk such that (1) there is a (linear) edge from
each vj−1 to vj , for 1 ≤ j ≤ k , labeled with the symbol aj ∈ Σ, and (2) for every pair of matching call-return positions
i and j, there is an unlabeled (nesting) edge from vi−1 to vj−1. The monadic second-order logic of nested words is
given by the syntax:

ϕ := a(x ,y) |X (x ) | x ⇝ y | ϕ ∨ ϕ | ¬ϕ | ∃x .ϕ | ∃X .ϕ

where a ∈ Σ, x ,y are first-order variables, and X is a second-order variable. The semantics is defined over nested
words in a natural way. The first-order variables are interpreted over nodes in Gw , while set variables are interpreted
over sets of nodes. The formula a(x ,y) holds if there an a-labeled edge from the node x to node y (this can happen
only when y is interpreted as the linear successor position of x ), and x ⇝ y holds if the nodes x and y are connected
by a nesting edge.
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An MSO nested-word transducer Φ from input alphabet Σ to output alphabet Γ consists of a finite copy set C , node
formulas ϕc for each c ∈ C , each of which is an MSO formula over nested words over Σ with one free first-order
variable x , and edge formulas ϕc,d and ϕc,da for each a ∈ Γ and c,d ∈ C , each of which is an MSO formula over nested
words over Σ with two free first-order variables x and y. Given an input nested wordw , consider the following output
graph: for each node x in Gw and c ∈ C , there is a node xc in the output if the formula ϕc holds over Gw , and for all
such nodes xc and yd , there is an a-labeled edge from xc to yd if the formula ϕc,da holds overGw , and there is a nesting
edge from xc to yd if the formula ϕc,d holds over Gw . If this graph is the graph corresponding to the nested word u
over Γ then JΦK(w ) = u, and otherwise JΦK(w ) is undefined. A nested word transduction f from input alphabet Σ to
output alphabet Γ is MSO-definable if there exists an MSO nested-word transducer Φ such that JΦK = f .

By adapting the simulation of string transducers by MSO [1, 10], we show that the computation of an STT can be
encoded by MSO, and thus, every transduction computable by an STT is MSO definable.

Theorem 4.1 (STT-to-MSO). Every STT-definable nested-word transduction is MSO-definable.

Proof. Consider a copyless STT S with regular look-ahead automaton A. The labeling of positions of the input
nested word with states of the regular look-ahead automaton can be expressed in MSO. The unique sequence of
states and stack symbols at every step of the execution of the transducer S over a given input nested wordw can be
captured in MSO using second-order existential quantification. Thus, we assume that each node in the input graph is
labeled with the corresponding state of the STT while processing the next symbol. The positions corresponding to
calls and returns are additionally labeled with the corresponding stack symbol pushed/popped.
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Fig. 4. Encoding STT computation in MSO. The bold edges connect the current variable values to the values on top of the stack
and they are added when processing the return position j.

We explain the encoding using the example shown in Figure 4. Suppose the STT uses one variable x of type-1. The
corresponding MSO transducer has eight copies in the copy set, four for the current value of the variable and four for
the current value of the variable on the top of the stack. The current value of the variable x is represented by 4 copies
in the copy set: xi , xo , xi? and xo?. At every step i (see top of Figure 4) the value of x corresponds to the sequence of
symbols labeling the unique path starting at xi and ending at xi?, followed by the hole ? and by the sequence labeling
the unique path starting at xo? and ending at xo . At step i the value of x on top of the stack (xp in this example) is
captured similarly using other 4 copies.
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We now explain how the STT variable updates are captured by the MSO transducer. At step 0, x is instantiated to
? by adding an ε-labeled edge from the xi node to the xi? node and from the xo? node to the xo node. Consider an
internal position i and the variable assignment x := ax[c?]. This means that the value of x for column i is the value of
x in column i − 1, preceded by the symbol a, where we add a c before the parameter position in i − 1. To reflect this
assignment, we insert an a-labeled edge from the xi node in column i to the xi node in column i − 1, a c-labeled edge
from the xi? node in column i − 1 to the xi? node in column i (this reflects adding to the left of the ?), an ε-labeled
edge from the xo? node in column i to the xo? node in column i − 1, and an ε-labeled edge from the xo node in column
i − 1 to the xo node in column i .

We again use Figure 4 to show how variables are stored on the stack. At the call step i + 1, the assignment xp := x
is reflected by the ε-labeled edges between the xp nodes in column i + 1 and the x nodes in column i . The edges are
added in a similar way as for the previous assignment. The value of xp in column i + 1 is preserved unchanged until
the corresponding matching return position is found. At the return step j, the value of x can depend on the values of
x in column j − 1, and the value of xp on the top stack, which is captured by the input/output nodes for xp in column
j − 1. The j − 1 position can be identified uniquely using the matching relation⇝. Even though it is not shown in
figure, at position j we have to add ε edges from the xp nodes at position j to the xp nodes at position i to represent
the value of xp that now is on the top of the stack.
To represent the final output, we use an additional column k . In the example, the output expression is x[b]. We

mark the first edge from xi by a special symbol ◁ to indicate where the output string starts, a b-labeled edge from
the xi? node to the xo? node of x . In the same way as before we connect each component to the corresponding k − 1
component using ε edges.

Notice that in this exposition, we have assumed that in the MSO transducer, edges can be labeled with strings over
the output alphabet (including ε) instead of single symbols. It is easy to show that allowing strings to label the edges
of the output graph does not increase the expressiveness of MSO transducers. Also notice that not every node will
appear in the final output string. An MSO transducer able to remove the useless edges and nodes can be defined.
Using closure under composition we can then build the final transducer. Some extra attention must be paid to add the
matching edges in the output, but since the output at every point is always a well-matched nested word, the matching
relation over the output nested word can be induced by inspection of each assignment (i.e. the matching edges are
always between nodes in the same column). □

Nested Words as Binary Trees. Nested words can be encoded as binary trees. This encoding is analogous to the
encoding of unranked trees as binary trees. Such an encoding increases the depth of the tree by imposing unnecessary
hierarchical structure, and thus, is not suitable for processing of inputs, however, it is useful to simplify proofs of
subsequent results about expressiveness. The desired transduction nw_bt fromW0 (Σ) to B (Σ) is defined by

nw_bt(ε ) = 0
nw_bt(aw ) = a⟨ nw_bt(w ), 0 ⟩

nw_bt(⟨aw1 b⟩w2) = a⟨ nw_bt(w1),b⟨ nw_bt(w2), 0 ⟩ ⟩

Notice that the tree corresponding to a nested wordw has exactly one internal node for each position inw . Observe
that nw_bt is a one-to-one function, and in particular, the encodings of the two nested words aaa and ⟨a a a⟩ differ:

• nw_bt(aaa) = a⟨a⟨a⟨ 0, 0 ⟩, 0 ⟩, 0 ⟩;
• nw_bt(⟨aaa⟩) = a⟨a⟨ 0, 0 ⟩,a⟨ 0, 0 ⟩ ⟩.

We can define the inverse partial function bt_nw from binary trees to nested words as follows: given t ∈ B (Σ), if
t equals nw_bt(w ), for some w ∈ W0 (Σ) (and if so, the choice of w is unique), then bt_nw(t ) = w , and otherwise
bt_nw(t ) is undefined. The next proposition shows that both these mappings can be implemented as STTs.

Proposition 4.2 (Nested-Words Binary-Trees Correspondence). nw_bt :W0 (Σ) 7→ B (Σ), and bt_nw : B (Σ) 7→
W0 (Σ) are both STT-definable transductions.

Proof.We prove the two statements in the order.
STT for nw_bt. The transduction nw_bt can be performed by an STT S that basically simulates its inductive definition
and only needs one type-1 variable x . When processing the input nested wordw = a1 . . . an , after reading the symbol
ai , x[0] contains the value of nw_bt(wms(w, i )) (see Theorem 3.7 for the definition of wms(w, i )). The STT S has one
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state q, which is also initial. The set of stack states is the same as the input alphabet P = Σ, and the output function is
F (q) = x[0]. Next we define the update functions. For every a,b ∈ Σ,

• δi (q,a) = q, δc (q,a) = (q,a), and δr (q,a,b) = q;
• ρi (q,a,x ) = x[a⟨?, 0⟩], ρc (q,a,x ) = x , and ρr (q,a,b) = xp[a⟨x[0],b⟨?, 0⟩⟩].

STT for bt_nw. The translation bt_nw can be implemented by the following BRTT S ′. The BRTT S ′ has three type-0
variables xi ,xc ,xr such that after processing the tree t , 1) xi contains the value of bt_nw(t ), assuming t ’s root was
representing an internal symbol, 2) xc contains the value of bt_nw(t ), assuming t ’s root was representing a call, and
3) xr contains the value of bt_nw(t ), assuming t ’s root was representing a return. The BRTT S ′ has set of states
Q ′ = {q0} ∪ ({qa | a ∈ Σ} × {C, IR}), and initial state q0. The {C, IR} component is used to remember whether the last
symbol S ′ read was a call, or an internal or return symbol. The BRTT S ′ is in a state (qa , ) after processing a tree
rooted with the symbol a. The output function F ′ is defined as follows: for every a ∈ Σ, F ′(qa , IR) = xi , F ′(qa ,C ) = xc ,
and F ′ is undefined otherwise. Next we define the update functions. When a variable is not assigned, we assume it is
set to ε . For every symbol a ∈ Σ,

Right Child is 0: for every q′ ∈ Q , δ (q′,q0,a) = (qa , IR), and
• if q′ = q0, then ρ (q0,q0,a,xi ) = a;
• q′ = (qb ,C ) for some b ∈ Σ, then ρ ((qb ,C ),q0,a,xi ) = ax lc , ρ ((qb , IR),q0,a,xr ) = x lc ;
• q′ = (qb , IR) for some b ∈ Σ, then ρ ((qb , IR),q0,a,xi ) = ax li , and ρ ((qb , IR),q0,a,xr ) = x li .

Right child is not 0: for every ql ,qr ∈ Q , δ (ql ,qr ,a) = (qa ,C ), and qr must be of the form (qb , IR) for some
b ∈ Σ. The variable update is defined as follows:
• if ql = q0, then ρ (q0, (qb , IR),a,xc ) = ⟨ab⟩x

r
r ;

• ql = (qc ,C ) for some c ∈ Σ, then ρ ((qc ,C ), (qb , IR),a,xc ) = ⟨ax
l
cb⟩x

r
r ;

• ql = (qc , IR) for some c ∈ Σ, then ρ ((qc , IR), (qb , IR),a,xc ) = ⟨ax
l
ib⟩x

r
r .

Finally, the conflict relation of S ′ only contains η′(xi ,xr ) □
For a nested-word transduction f fromW0 (Σ) toW0 (Γ), we can define another transduction f̃ that maps binary

trees over Σ to binary trees over Γ: given a binary tree t ∈ B (Σ), if t equals nw_bt(w ), then f̃ (t ) = nw_bt( f (w )), and
otherwise f̃ (t ) is undefined. The following proposition can be proved easily from the definitions of the encodings.

Proposition 4.3 (Encoding Nested-Word Transductions). If f is an MSO-definable transduction fromW0 (Σ) to

W0 (Γ), then the transduction f̃ : B (Σ) 7→ B (Γ) is an MSO-definable binary-tree transduction and f = bt_nw · f̃ · nw_bt.

Since STT-definable transductions are closed under composition, to establish that every MSO-definable transduction
is STT-definable, it suffices to consider MSO-definable transductions from binary trees to binary trees.

4.2 Macro Tree Transducers
A Macro Tree Transducer (MTT) [12, 16] is a tree transducer in which the translation of a tree may depend not only
on its subtrees but also on its context. While the subtrees are represented by input variables, the context information
is handled by parameters. We refer the reader to [12, 16] for a detailed definition of MTTs, and present here the
essential details. We only consider deterministic MTTs with regular look-ahead that map binary trees to binary trees.

A (complete and deterministic) macro-tree transducer with regular look-ahead (MTTR)M from B (Σ) to B (Γ) consists
of a finite setQ of ranked states, a list Y = y1, . . .yn of parameter symbols, variables X = {xl ,xr } used to refer to input
subtrees, an initial state q0, a finite set R of look-ahead types, an initial look-ahead type r0, a look-ahead combinator
θ : Σ × R × R 7→ R, and the transduction function ∆. For every state q and every look-ahead type r , ∆(q, r ) is a ranked
tree over the alphabet (Q × X ) ∪ Γ ∪ Y , where the rank of a label (q,x ) is the same as the rank of q, the rank of
an output symbol a ∈ Γ is 2, and the rank of each parameter symbol is 0 (that is, only leaves can be labeled with
parameters).

The look-ahead combinator is used to define look-ahead types for trees:θ ∗ (0) = r0 andθ ∗ (a⟨ sl , sr ⟩) = θ (a,θ ∗ (sl ),θ ∗ (sr )).
Assume that only the tree 0 has the type r0, and for every state q, ∆(q, r0) is a tree over Γ ∪ Y (the variables X are
used to refer to immediate subtrees of the current input tree being processed, and the type r0 indicates that the input
tree has no subtrees).

The MTTRM rewrites the input binary tree s0, and at every step the output tree is a ranked tree with nodes labeled
either with an output symbol, or with a pair consisting of a state of the MTTR along with a subtree of the input

34



tree. Let T (s0) denote the set of all subtrees of the input tree s0. Then, the output t at any step is a ranked tree over
(Q × T (s0)) ∪ Γ ∪ {0}. The semantics of the MTTR is defined by the derivation relation, denoted by⇒, over such
trees. Initially, the output tree is a single node labeled with [q0, s0]. Consider a subtree of the output of the form
u = [q, s](t1, . . . tn ), that is, the root is labeled with the state q of rank n, with input subtree s , and children of this
node are the output subtrees t1, . . . tn . Suppose the look-ahead type of the input subtree s is r , and let sl and sr be the
children of the root. Let χ be the tree obtained from the tree ∆(q, r ) by replacing input variables xl and xr appearing
in a node label with the input subtrees sl and sr respectively, and replacing each leaf labeled with a parameter yl by
the output subtree tl . Then, in one step, the MTTR can replace the subtree u with the tree χ . The rewriting stops when
all the nodes in the output tree are labeled only with output symbols. That is, for s ∈ B (Σ) and t ∈ B (Γ), JMK(s ) = t
iff [q0, s]⇒∗ t .
In general, MTTs are more expressive than MSO. The restrictions needed to limit the expressiveness rely on the

notions of single-use and finite copying, which enforce an MTT to process every subtree in the input a bounded
number of times. LetM be an MTTR.

(1) The MTTRM is single use restricted in the parameters (SURP) if for every state q and every look-ahead type r ,
each parameter yj occurs as a node-label at most once in the tree ∆(q, r ).

(2) The MTTRM is finite-copying in the input (FCI) if there exists a constant K such that, for every tree s over Σ
and subtree s ′ of s , if the (intermediate) tree t is derivable from [q0, s], then t contains at most K occurrences
of the label [q, s ′] (and thus, each input subtree is processed at most K times during a derivation).

The following theorem is proved in [12].

Theorem 4.4 (Regularity for MTTs). A ranked-tree transduction f is MSO-definable iff there exists an MTTRM
with SURP/FCI such that f = JMK.

4.3 MSO Equivalence
We first show that bottom-up ranked-tree transducers are as expressive as MTTs with regular-look-ahead and
single-use restriction, and then conclude that STTs are equivalent to MSO-definable transducers.

Theorem 4.5 (MTTs to BRTTs). If a ranked-tree transduction f : B (Σ) 7→ B (Γ) is definable by an MTTR with

SURP/FCI, then it is BRTT-definable.

Proof. In the same way as we did for STTs, we can extend BRTTs to multi-parameter BRTTs (MBRTT). We omit
the definition, since it is straightforward. Using the proof for Theorem 3.17 we can show that these are equivalent to
multi-parameter STTs and therefore using Theorem 3.14 to STTs.
We are given a MTTR with SURP/FCIM = (Q,Y ,q0,R, r0,θ ,∆) with FCI constant K computing a transduction f

and we construct a BRTT B equivalent toM .
We divide the construction into several steps, each using one of the properties of the MTT.
(1) We construct a BRTT S1, computing the transduction f1 : B (Σ) 7→ B (R), where each input element is replaced

by its regular look-ahead state.
(2) We construct an STT S2, computing the transduction f2 : B (R) 7→ B (R′), where each element of R′, contains

information on the set of states in which the MTT processes the corresponding node.
(3) We construct a multi-parameter BRTT S3, that computes the function f3 : B (R′) 7→ B (Γ). This part relies on

the SURP restriction.
(4) Finally, we use the fact that STTs are closed under composition (Theorem 3.15), and the equivalence of STTs

and BRTTs (Theorem 3.17), to show that f = f1 · f2 · f3 is a BRTT definable transduction.

Step 1. The BRTT S1 simulates the look-ahead automaton ofM by following the transition relation θ . The set of states
of S1 is R, with initial state r0, and it only has one type-0 variable x . For every symbol a ∈ Σ, and states r1, r2 ∈ R, the
transition function δ1, and the variable update function ρ1 of S1 are as follows: if θ (r1, r2,a) = r , then δ1 (r1, r2,a) = r ,
and ρ1 (r1, r2,a,x ) = r ⟨xlxr ⟩. Finally, for every r ∈ R, F (r ) = x .
Step 2. STTs can also be viewed as a top down machine, and f2 is in fact a top-down relabeling. Every subtree s
can be processed at most K times, and we can therefore use S2 to label s with the ordered sequence of states that
processes it. So given a tree over B (R), S2 outputs a tree over B (R′), where R′ = R ×Q ≤K , and Q ≤K =

⋃
0≤k≤K Qk .

The states and stack states of S2 are defined by the setQ2 = P2 = Q
≤K∪(Q ≤K×Q ≤K ). The initial stateq20 = q0 ∈ Q

≤K

means that the root is only processed by q0. The construction of S2 then maintains the following invariants: assume
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tl and tr are the left and right children of a node,ml ∈ Q ≤K is the sequence of states that processes tl in M , and
mr ∈ Q

≤K is the sequence of states that processes tr inM ;

• before processing tl , S2 is in state (ml ,mr );
• before processing tr (after processing tl ), S2 is in statemr .

The statesmi can be obtained directly from the right hand sides of the rules of the MTT. It’s now trivial to do the
corresponding labeling using the information stored in the state. Given a state q ∈ Q , and a symbol r1 ∈ R, let
seqd (q, r1), with d ∈ {l , r }, be the sequence of states processing the child sd in ∆(q, r1), assuming a linearization of
such a tree. For every sequencem = q1 . . .qn ∈ Q ≤K , and symbol r1 ∈ R, seqd (m, r1) = seqd (q1, r1) . . . seqd (qn , r1).
The STT S2 only has one variable x .

We can now define the transition relation δ2, and the variable update function ρ2 of S2. For every statesm ∈ Q2,
m′ ∈ Q ≤K , (m1,m2) ∈ Q

≤K ×Q ≤K , and for every symbol r ∈ R:

r1 is a call ⟨r2: store the variables on the stack and update the state consistently:
• δ2 (m

′, r2) = (m1,m
′), where m1 = (seql (m′, r2), seqr (m′, r2)), and δ2 ((m1,m2), r2) = (m3, (m1,m2)),

wherem3 = (seql (m1, r2), seqr (m1, r2));
• ρ2 (m

′, r2,x ) = x , and ρ2 ((m1,m2), r2,x ) = x ;
r is a return r2⟩: use the values on the stack to compute the labeling

• δ2 (m, (m1,m2), r2) =m2, and δ2 (m,m′, r2) =m;
• ρ2 (m, (m1,m2), r2,x ) = ⟨(r ,m1) x (r ,m1)⟩, and

ρ2 (m,m
′, r2,x ) = xp ⟨(r2,m

′) x (r2,m
′)⟩.

Finally, the output function F2 of S2 outputs x for every possible q ∈ Q2.
Step 3. This last step relies on the SURP property of the MTT M . We notice that, when processing bottom-up
the MTT parameter updates behave in a different way as when processing top-down: to perform the top-down
parameter update y1 := a(y2) in bottom-up manner, we need to use the multi-parameter BRTT parameter substitution
x := x[y1 7→ a(y2)], where now, the new visible parameter is y2. We now formalize this idea.

We construct a multi-parameter BRTT S3 = (Q3,q03,Π3,η3,X3, F3,δ3, ρ3) from B (R′) 7→ B (Γ), that implements
the transduction f3. The set of states Q3 only contains one state q03, which is also initial. The transition function is
therefore trivial.
The set of variables X3 = {x1, . . . ,xK } contains K variables. After processing a tree t , xi contains the result of

M processing the tree t starting in qi , with the possible holes given from the parameters. At the beginning all the
variable values are set to ε . The parameter set Π3 is Y .

Next, we define the update functions of S3. We start from the leaf rules, in which both the 0 children are labeled
with the empty sequence. Let’s assume the current leaf is (r ,m), wherem = q1 . . .qj . We assume w.l.o.g., that all the
states have exactly K parameters. For every qi ∈m, if ∆(qi , r ) = ti (y1, . . . ,yK ), we update xi := ti (y1, . . . ,yK ), where
y1, . . . ,yK ∈ Π. Since the MTT is SURP, there is at most one occurrence of each yi .

We now analyze the binary node rules. Let’s assume the node we are processing the input node (r ,m), where
m = q1 . . .qj . For every qi ∈m, ∆(qi , r ) is of the form

ti (Y , (q
i
l,1, sl ), . . . , (q

i
l,ai
, sl ), (q

i
r,1, sr ), . . . , (q

i
r,bi
, sr ))

where qil,1 . . .q
i
l,ai

is the sequence of states processing the left subtree, and qir,1 . . .q
i
r,bi

is the sequence of states
processing the right subtree.

When picking the concatenation of all the ∆(qi , r ) , we have that by the construction of S2, the left child (similarly for
the right), must have been labeled with the sequenceml = q

1
l,1 . . .q

1
l,a1
. . .q jl,1 . . .q

j
l,aj

such that |ml | ≤ K . Moreover,
we have that for all xi ∈ Xl (similarly for Xr ), xi contains the output of M when processing the left child of the
current node starting in state qi , where qi is the i-th element of the sequenceml and assuming the parameter are not
instantiated yet
Now we have all the ingredients to complete the rule. The right hand side of a variable xi contains the update

corresponding to the rule in M where we replace every state with the corresponding variable in the linearization
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stated above and parameters are updated via substitution. Since ρ is copyless η3 is trivial. The output function FS
simply outputs x1, i.e. the transformation of the input tree starting in q0.
Step 4. We use Theorem 3.15, and Theorem 3.17 to compose all the transformations and build the final BRTT
equivalent to the MTTM . □

Theorem 4.6 (MSO Eqivalence). A nested-word transduction f : W0 (Σ) 7→ W0 (Γ) is STT-definable iff it is

MSO-definable.

Proof. From Theorems 3.15, 3.17, 4.1, 4.2, 4.4, and 4.5. □

5 DECISION PROBLEMS
In this section, we show that a number of analysis problems are decidable for STTs. Moreover, we show that STTs
are the first model that capture MSO-definable transformations while enjoying an elementary upper bound for the
problem of checking inequivalence (NExpTime).

5.1 Output Analysis
Given an input nested word w over Σ, and an STT S from Σ to Γ, consider the problem of computing the output
JSK(w ). To implement the operations of the STT efficiently, we can store the nested words corresponding to variables
in linked lists with reference variables pointing to positions that correspond to holes. Each variable update can be
executed by changing only a number of pointers that is proportional to the number of variables.

Proposition 5.1 (Computing Output). Given an input nested wordw and an STT S with k variables, the output

nested word JSK(w ) can be computed in time O (k |w |) in a single pass.

Proof. A naive implementation of the transducer would cause the running time to be O (k |w |2) due to possible
variable sharing. Let’s consider the assignment (x ,y) := (x ,x ). The naive implementation of this assignment would
copy the value of the variable x in both x and y, causing the single step to cost O (k |w |) since every variable might
contain a string of length O ( |w |).
We now explain how we achieve the O (k |w |) bound by changing the representation of the output. Instead of

outputting the final string, we output a pointer graph representation of the run. The construction is exactly the same
as in Theorem 4.1. In this case the transducer might not be copyless; however, we can construct the graph in the same
way. The key of the construction is that due to the definition of sharing, each variable contributes only once to the
final output. In this way, starting from the output variable, we can reconstruct the output string by just following the
edges in the graph. Notice that the stack variables won’t cause a linear blow-up in the size of the graph because at
every point in the run the graph only needs to represent the top of the stack. □
The second problem we consider corresponds to type-checking: given a regular language Lpre of nested words

over Σ, a regular language Lpost of nested words over Γ, and an STT S from Σ to Γ, the type-checking problem is to
determine if JSK(Lpre ) ⊆ Lpost (that is, if for everyw ∈ Lpre , JSK(w ) ∈ Lpost ).

Theorem 5.2 (Type-Checking). Given an STT S from Σ to Γ, a deterministic and complete NWA A accepting nested

words over Σ, and a deterministic and complete NWA B accepting nested words over Γ, checking JSK(L(A)) ⊆ L(B) is

solvable in ExpTime, and more precisely in time O ( |A|3 · |S |3 · nkn
2
) where n is the number of states of B, and k is the

number of variables in S .

Proof Sketch. The construction is similar to the one of Theorem 3.15. Therefore we only present a sketch. Given
S , A, and B, we construct an NWA P , that accepts a nested wordw iffw is accepted by A and JSK(w ) is not accepted
by B. This is achieved by summarizing the possible executions of B on the variable values of S . The states of P are
triplets (qA,qS , f ), such that:

• qA is the current state of A;
• qS is the current state of S ;
• for every variable x of S , and states q1,q2 in B, f (x ,q1,q2) is a pair of states (q′1,q

′
2) of B, such that if the value

of x isw1?w2:
– if B readsw1 starting in state q1, then it ends in state q′1 and produces some stack Λ;
– if B readsw2 starting in state q2, and with stack Λ, then it ends in state q′2.
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The final states of the machine are those where A is final, and the summary of the output function of the current state
of QS of S leads to a non accepting state in B. □
As noted in Proposition 3.2, the image of an STT is not necessarily regular. However, the pre-image of a given

regular language is regular, and can be computed. Given an STT S from input alphabet Σ to output alphabet Γ,
and a language L ⊆W0 (Γ) of output nested words, the set PreImg(L, S ) consists of input nested wordsw such that
JSK(w ) ∈ L.

Corollary 5.3 (Computing Pre-Image). Given an STT S from Σ to Γ, and a deterministic and complete NWA B over

Γ, there is an ExpTime algorithm to compute an NWA A over Σ such that L(A) = PreImg(L(B), S ). The NWA A has size

O ( |S |3 · nkn
2
) where n is the number of states of B, and k is the number of variables in S .

Proof. The construction follows from Theorem 5.2, but this time the final states of the machine are those where S
is in a final configuration, and the summary of the output function of the current state qS of S leads to an accepting
state in B. □

5.2 Functional Equivalence
Finally, we consider the problem of checking functional equivalence of two STTs: given two STTs S and S ′, we want
to check if they define the same transduction. Given two streaming string transducers S and S ′, [1, 2] shows how to
construct an NFA A over the alphabet {0, 1} such that the two transducers are inequivalent exactly when A accepts
some stringw such thatw has equal number of 0’s and 1’s. The idea can be adopted for the case of STTs, but A now
is a nondeterministic pushdown automaton. The size of A is polynomial in the number of states of the input STTs,
but exponential in the number of variables of the STTs. Results in [17, 23, 35] can be adopted to check whether this
pushdown automaton accepts a string with the same number of 0’s and 1’s.

Theorem 5.4 (Checking Eqivalence). Given two STTs S1 and S2, it can be decided inNExpTime whether JSK , JS ′K.

Proof. Two STTs S1 and S2 are inequivalent if one of the following holds:
(1) for some input u, only one of JS1K(u) and JS2K(u) is defined,
(2) for some input u, the lengths of JS1K(u) and JS2K(u) are different, or
(3) for some input u, there exist two symbols a and b, such that a , b, JS1K(u) = u1au2, JS2K(u) = v1bv2, and u1

and v1 have the same length.
The first case can be solved in PTime using the techniques in [3]. The second case can be reduced to checking an

affine relation over pushdown automata and this problem can be solved in polynomial PTime [30]. Informally, let A
be a pushdown automaton where each transition computes an affine transformation. Checking whether a particular
affine relation holds at every final state is decidable in polynomial time [30]. We can therefore take the product Sp of
S1 and S2, where Sp updates the variables of S1 and S2 as follows. Let Xi be the set of variables in Si . For every state
(q1,q2), symbol a ∈ Σ and every x ∈ Xi , Sp updates the variable x to the sum of the number of constant symbols in the
variable update of x in Si when reading a in state qi , and the variables appearing in such variable update. For every
state (q1,q2) for which F1 (q1) and F2 (q2) are defined, we impose the affine relation F1 (q1) = F2 (q2) which checks
whether the two outputs have the same length. We can then use the algorithm in [30] to check if such a relation holds.

Let us focus on the third case, in which the two outputs differ in some position. Given the STT S1 and a symbol a,
we construct a nondeterministic visibly pushdown transducer (VPT) V1 (a visibly pushdown automaton with output),
from Σ to {0} such that V1 produces 0n on input u, if JS1K(u) = u1au2 and |u1 | = n. Similarly, given S2, and a symbol
b , a, we construct a VPT V2 from Σ to {1} such that V2 produces 1n on input u, if JS2K(u) = u1bu2 and |u1 | = n.

Using V1 and V2 we then build the product V = V1 ×V2, which interleaves the outputs of V1 and V2. If V outputs a
string s containing the same number of 0s and 1s, then there exists an inputw on which S1 outputs a string α1aβ1, S2
outputs α2bβ2, and |α1 | = |α2 |. Since in V the input labels are synchronized, they are no longer relevant. Therefore,
we can view such machine as a pushdown automaton that generates/accepts strings over {0, 1}∗. If a string s with the
same number of 0s and 1s is accepted by V , it can be found by constructing the semi-linear set that characterizes the
Parikh image of the context-free language of V [17, 35]. A solution to such semi-linear set can be found in NP (in
the number of states of V ) [23]. However, as we will see, the number of states of V is polynomial in the number of
states of S1 and S2, and exponential in their number of variables of S1 and S2. This allows us to conclude that checking
whether two STTs are inequivalent can be solved in NExpTime.
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The rest of the proof shows how to construct V1, V2, and V = V1 ×V2. We modify S1 = (Q,q0, P ,X ,η, F ,δ , ρ), so
that we do not have to worry about the output function. We add to S1 a new variable xf , and a new state qf , obtaining
a new STT S ′1. We can then add a special end-of-input symbol #, such that, for every state q ∈ Q for which F (q) is
defined, S ′1 goes from q to qf on input #, and updates xf to F (q). This new STT S ′1 has the following property: for
every input u, JS1K(w ) = JS ′1K(w#).

Each state ofV1 is a pair (q, f ), where q is a state of S ′1, and f is a partition of the variables X of S ′1 into 6 categories
{l ,m1,m?,m2, r ,n}, such that a variable x is in the set:

l: if x contributes to the final output occurring on the left of a symbol a where a is the symbol we have guessed
the two transducers differ in the final output,

m1: if x contributes to the final output and the symbol a appears in this variable on the left of the ?,
m?: if x contributes to the final output and the symbol a appears in this variable in the ? (a future substitution

will add a to the ?),
m2: if x contributes to the final output and the symbol a appears in this variable on the right of the ?,
r: if x contributes to the final output occurring on the right of a symbol a, or
n: if x does not contribute to the final output.

At every step, V1 nondeterministically chooses which of the previous categories each of the variables of S1 belongs to.
In the following, we use fp to denote a particular partition: for example fm1 is the set of variables mapped by f tom1.
A state (q, f ) of V1 is initial, if q = q0 is the initial state of S1, and fm1 ∪ fm2 = ∅. A state (q, f ) of V1 is final, if q = qf ,
fm1 = {xf } (the only variable contributing to the output is xf ), and fl ∪ fr ∪ fm? ∪ fm2 = ∅.
We now define the transition relation of V1. Given a state s , and a symbol b, a transition updates the state to some

s ′, and outputs a sequence in 0∗. We assume V1 is in state (q, f ), and it is processing the input symbol b. Given an
expression α ∈ E (X , Σ) (i.e. an assignment right hand side), we use x ∈a α to say that a variable x ∈ X appears in α .

b is internal: the VPT V1 goes to state (q′, f ′), where δi (q, s ) = q′. For computing f ′ we have three different
possibilities.
(1) The VPT V1 guesses that in this transition, some variable x is going to contain the position on which

the outputs differ. We show the construction with an example. Assume ρi (q,b,x ) = α1cα2?α3, and c is
the position on which we guess the output differs. The transition must satisfy the following properties,
which ensures that the current labeling is consistent:
• ∀y ∈a α1.y ∈ fl , ∀y ∈a α2α3.y ∈ fr , f ′m1 = {x }, and fm = ∅ (the only variable that contributes in
the middle now is x ),

• for every y , x , all the variables appearing in ρi (q,b,y), on the left of the ?, belong to the same
partition pl ;

• for every y , x all the variables appearing in ρi (q,b,y), on the right of the ?, belong to the same
partition pr ;

• if pl = pr , then y belongs to f ′pl ;
• if pl , pr , then y belongs to f ′m?.

If a variable is assigned a constant we nondeterministically choose which category it belongs to in f ′.
The output of the transition is 0k , where k is the sum of the number of output symbols in α , and in
{ρi (q,b,y) |y ∈ f ′l }.

(2) The transition is just maintaining the consistency of the partition, and the position on which the output
differs has not been guessed yet. Similar to case (1).

(3) The transition is just maintaining the consistency of the partition, and the position on which the output
differs has already been guessed. Similar to case (1).

b is a call: in this case the updates are similar to the internal case. The updated partition is stored on the stack,
and a new partition is non-deterministically chosen for the variables that are reset.

b is a return b ′⟩: the VPT V1 uses the partition in the state for the variables in X , and the partition on the stack
state for the variables in Xp . We assume (p, f ′) is the state on top of the stack. The VPT V1 steps to (q′′, f ′′),
such that δr (q,p,b) = q′. The computation of f ′ is similar to case in which a is internal.

For every transition we also impose the following conditions: the cardinality of fm1 ∪ fm2 is always less or equal
than 1, and if a variable x does not appear in the right hand side of any assignment then x ∈ fn . The first condition
ensures that at most one variable contains the position on which the outputs differ. Due to the partitioning of the
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variables into the 6 categories V1 will have exponentially many states. The VPT V2 corresponding to S2 and a symbol
b such that b , a can be built in a similar manner.

We finally show how to build the product VPTV = V1 ×V2 that reads nested words over the alphabet Σ and outputs
strings over the alphabet {0, 1}. The VPT V is a simple product construction where:

• each state of V is a pair (q1,q2), where qi is a state of Vi ;
• each stack state of V is a pair (p1,p2), where pi is a stack state of Vi ;
• the initial state is (q01,q

0
2), where q

0
i is the initial state of Vi ;

• a state (q1,q2) is final iff qi is a final state of Vi ;
• if δ 1 and δ 2 are the transition functions of V1 and V2 respectively, then given a symbol a ∈ Σ, a state (q1,q2),
and a stack state (p1,p2), the transition relation δ of V is defined as
– if δ 1i (q1,a) = q

′
1, 0

n and δ 2i (q2,a) = q
′
2, 1

m , then δi ((q1,q2),a) = (q′1,q
′
2), 0

n1m ;
– if δ 1c (q1,a) = q′1,p

′
1, 0

n and δ 2c (q2,a) = q′2,p
′
2, 1

m , then δc ((q1,q2),a) = (q′1,q
′
2), (p

′
1,p
′
2), 0

n1m ;
– if δ 1r (q1,p1,a) = q′1, 0

n and δ 2r (q2,p2,a) = q′2, 1
m , then δr ((q1,q2), (p1,p2),a) = (q′1,q

′
2), 0

n1m .
This concludes the proof. □

If the number of variables is bounded, then the size of V is polynomial, and this gives an upper bound of NP. For
the transducers that map strings to nested words, that is, for streaming string-to-tree transducers (SSTT), the above
construction yields a PSpace bound [2].

Corollary 5.5 (Eqivalence of String-to-Tree Transducers). Given two SSTTs S and S ′ that map strings to

nested words, the problem of checking whether JSK = JS ′K is solvable in PSpace.

6 DISCUSSION
We have proposed the model of streaming tree transducers to implement MSO-definable tree transformations by
processing the linear encoding of the input tree in a single left-to-right pass in linear time. Below we discuss the
relationship of our model to the rich variety of existing transducer models, and directions for future work.

Executable models. A streaming tree transducer is an executable model, just like a deterministic automaton or a
sequential transducer, meaning that the operational semantics of the machine processing the input coincides with
the algorithm to compute the output from the input and the machine description. Earlier executable models for tree
transducers include bottom-up tree transducers, visibly pushdown transducers (a VPT is a sequential transducer with
a visibly pushdown store: it reads the input nested word left to right producing output symbols at each step) [33], and
multi bottom-up tree transducers (such a transducer computes a bounded number of transformations at each node by
combining the transformations of subtrees) [11]. Each of these models computes the output in a single left-to-right
pass in linear time. However, none of these models can compute all MSO-definable transductions. In particular, swap
and tag-based sorting cannot be computed by a left-to-right transducer model with a single output buffer and constant
memory—i.e., finitely many states.

Regular look-ahead. Attribute grammars over terms (ATT) can model tree transformations. Finite copying attribute
grammars with regular look-ahead [4] were the first model shown to be equivalent in expressiveness to MSO-
definable definable tree transductions. Engelfriet and Maneth used this result to show that finite copying Macro Tree
Transducers (MTTs) with regular look-ahead [12] can also compute all MSO-definable ranked-tree-to-ranked-tree
transductions. The “finite copying” restriction, namely, each input node is processed only a bounded number of times,
can be equivalently replaced by the syntactic “single use restriction” which restricts how the variables and parameters
are used in the right-hand sides of rewriting rules in MTTs. While attribute grammars and macro tree transducers
only permit output trees to be built by substituting variables appearing in leaves with trees, STTs allow holes to be
replaced with more complex contexts such as forests.

Deterministic attributed pushdown machines (DAP) can execute the attributed translation defined by an attribute
grammar in a left-to-right fashion [24]. Algorithms for processing attribute grammars in a left-to-right fashion are
further studied in [36]. A DAP is similar to an ordinary pushdown machine, but it also has attributes that can be
manipulated using any computable attribute transformation function. DAPs are strictly more expressive than STTs
and, in a certain sense, STTs are a particular instance of DAPs where the input is restricted to nested words, the stack
is a visibly pushdown one, and where the allowed operations on the attributes are the variable updates defined in
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Section 2.2. Due to the increase in expressiveness, DAPs do not enjoy several of the decidability properties discussed
in this paper.

For all ATT and MTT models that are equivalent in expressiveness to MSO, regular look-ahead cannot be eliminated
without sacrificing expressiveness. In fact, MTTs process the input tree in a top-down manner, and it is well-known
that deterministic top-down tree automata cannot specify all regular tree languages. A more liberal model, which uses
a “weak finite copying” restriction, achieves closure under regular look-ahead, and MSO-equivalence, by allowing
each input node to be processed an unbounded number of times, provided only a bounded subset of these contribute
to the final output.

It should be noted, however, that a linear time algorithm exists to compute the output [26]. This algorithm essentially
uses additional look-ahead passes to label the input with the information needed to restrict attention to only those
copies that contribute to the final output (in fact, [26] shows how relabeling of the input can be effectively used
to compute the output of every MTT in time linear in the size of the input and the output). Finally, to compute
tree-to-string transductions using regular look-ahead, MTTs need just one parameter (alternatively, top-down tree
transducers suffice). In absence of regular look-ahead, even if the final output is a string, the MTT needs multiple
parameters, and thus, intermediate results must be trees (that is, one parameter MTTs are not closed under regular
look-ahead). Thus, closure under regular look-ahead is a key distinguishing feature of STTs.

From SSTs to STTs. The STT model generalizes our earlier work on streaming string transducers (SST): an SST is a
copyless STT without a stack [1, 2]. While results in Section 5 follow by a natural generalization of the corresponding
results for SSTs, the results in Section 3 and 4 require new approaches. In particular, equivalence of SSTs with
MSO-definable string-to-string transductions is proved by simulating a two-way deterministic sequential transducer,
a well-studied model known to be MSO-equivalent [10], by an SST. The MSO-equivalence proof in this paper first
establishes closure under regular look ahead, and then simulates finite copying MTTs with regular look-ahead. The
natural analog of two-way deterministic string transducers would be the two-way version of visibly pushdown
transducers [33]: while such a model has not been studied, it is easy to show that it would violate the “linear-bounded
output” property of Proposition 1, and thus, won’t be MSO-equivalent. While in the string case the copyless restriction
does not reduce the expressiveness, in Section 2.3 we argue that the example conditional swap cannot be expressed
by a copyless STT. Proving this result formally is a challenging open problem.

Succinctness. To highlight the differences in how MTTs and STTs compute, we consider two examples. Let f1 and
f2 be two MSO-definable transductions, and consider the transformation f (w ) = f1 (w ) f2 (w ). An MTT at every node
can send multiple copies to children, and this enables a form of parallelism. Therefore, it can compute f by having
one copy compute f1, and one copy compute f2, and the size of the resulting MTT will be the sum of the sizes of
MTTs computing f1 and f2. STTs are sequential and, to compute f , one needs the product of the STTs computing f1
and f2. This can be generalized to show that MTTs (or top-down tree transducers) can be exponentially more succinct
than STTs. If we were to restrict MTT rules so that multiple states processing the same subtree must coincide, then
this gap disappears. In the other direction, consider the transformation f ′ that maps input u#v#a to uv if a = 0 and
vu otherwise. The transduction f ′ can be easily implemented by an STT using two variables, one of which stores u
and one which stores v . The ability of an STT to concatenate variables in any order allows it to output either uv or
vu depending on the last symbol. In absence of look-ahead, an MTT for f ′ must use two parameters, compute (the
tree encodings of) uv and vu separately in parallel, and make a choice at the end. This is because, while an MTT
rule can swap or discard output subtrees corresponding to parameters, it cannot combine subtrees corresponding to
parameters. This example can be generalized to show that an MTT must use exponentially many parameters as well
as states, compared to an STT.

Input/output encoding. Most models of tree transducers process ranked trees (exceptions include visibly pushdown
transducers [33] and Macro forest transducers [32]). While an unranked tree can be encoded as a ranked tree (for
example, a string of length n can be viewed as a unary tree of depth n), this is not a good encoding choice for
processing the input, since the stack height is related to depth (in particular, processing a string does not need a stack
at all). We have chosen to encode unranked trees by nested words; formalization restricted to tree words (that are
isomorphic to unranked trees) would lead to a slight simplification of the STT model and the proofs.

Streaming algorithms. Consistent with the notion of a streaming algorithm, an STT processes each input symbol
in constant time. However, it stores the output in multiple chunks in different variables, rearranging them without
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examining them, making decisions based on finite-state control. Unlike a typical streaming algorithm, or a sequential
transducer, the output of an STT is available only after reading the entire input. This is unavoidable if we want to
compute a function that maps an input to its reverse. We would like to explore if the STT model can be modified so
that it commits to output symbols as early as possible. A related direction of future work concerns minimization
of resources (states and variables). Another streamable model is that of Visibly Pushdown Transducers (VPT) [18],
which is however less expressive than STT. In particular VPTs cannot guarantee the output to be a well-matched
nested word.

Complexity. The problem of checking functional equivalence of MSO tree transducers is decidable with non-
elementary complexity [14]. Decidability follows for MSO-equivalent models such as MTTs with finite copying,
but no complexity bounds have been established. Polynomial-time algorithms for equivalence checking exist for
top-down tree transducers (without regular look-ahead) and visibly pushdown transducers [5, 15, 33]. For STTs,
we have established an upper bound of NExpTime, while the upper bound for SSTs is PSpace [2]. Improving these
bounds, or establishing lower bounds, remains a challenging open problem. These challenges and long-standing
open problems are further discussed by Maneth in his survey about equivalence problems for tree transducers [27].
If we extend the SST/STT model by removing the single-use-restriction on variable updates, we get a model more
expressive than MSO-definable transductions. Filiot and Reynier have shown that for SSTs without this restriction
equivalence is decidable and it has the same complexity as the HDT0L equivalence problem [19], a hard problem with
non-elementary complexity; it remains open whether the equivalence problem for STTs without single-use-restriction
is decidable.
The constructions presented in Sections 3 and 4 show the expressiveness of STTs and their variants. Since, in

most cases, these constructions are super-exponential—e.g., the one for composing two STTs—we do not analyze
their complexities in detail. Designing efficient constructions for subclasses of STTs and better understanding the
complexities of the presented constructions is an open research direction.

Application to XML processing. We have argued that SSTs correspond to a natural model with executable inter-
pretation, adequate expressiveness, and decidable analysis problems, and in future work, we plan to explore its
application to querying and transforming XML documents [20, 21] (see also http://www.w3.org/TR/xslt20/). Our
analysis techniques typically have complexity that is exponential in the number of variables, but we do not expect
the number of variables to be the bottleneck. Before we start implementing a tool for XML processing, we want to
understand how to integrate data values (that is, tags ranging over a potentially unbounded domain) in our model.
A particularly suitable implementation platform for this purpose is the framework of symbolic visibly pushdown

automata and symbolic tree transducers that integrates automata-theoretic decision procedures with SMT solvers to
support large or unbounded alphabets [7, 8].
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