
Model Checking Procedural Programs

Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

Abstract We consider the model-checking problem for sequential programs with
procedure calls. We first present basic algorithms for solving the reachability prob-
lem and the fair computation problem. The algorithms are based on two techniques:
summarization, that computes reachability information by solving a set of fixpoint
equations, and saturation, that computes the set of all reachable program states
(including call stacks) using automata. Then, we study formalisms to specify re-
quirements of programs with procedure calls. We present an extension of the linear
temporal logic allowing propagation of information across the hierarchical structure
induced by procedure calls and matching returns. Finally, we show how model-
checking can be extended to this class of programs and properties.

1 Introduction

We consider the model-checking problem for sequential programs consisting of pro-
cedures that call one another, possibly in a recursive manner. We assume that all
program variables have a finite range. These programs, called procedural programs
or Boolean programs [9], are used as abstractions of C programs in highly influen-
tial software verification tools like SLAM [8]. The state of a procedural program has
three parts: the current value of the program counter, the current values of the pro-

Rajeev Alur
University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104, USA.
e-mail: alur@cis.upenn.edu

Ahmed Bouajjani
Université Paris Diderot (Paris 7) and Institut Universitaire de France,
LIAFA, Case 7014, 75205 Paris cedex 13, France. e-mail: abou@liafa.univ-paris-diderot.fr

Javier Esparza
Institut für Informatik, Technische Universität München, Boltzmannstr. 3, 85748 Garching bei
München, Germany. e-mail: esparza@in.tum.de

1

2 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

gram variables, and the current stack of procedure calls whose execution has not yet
finished. Since procedures may be recursive, and the recursion depth in not bounded
a priori, the state space of a procedural program may be infinite, and so procedural
programs cannot be verified using standard finite-state model-checking algorithms.

We model procedural programs as recursive state machines (RSM) [2]. Each
procedure of the program is modeled by a different machine. A machine has a finite
number of control states with some distinguished entry and exit points. Control
states are connected by edges that correspond to either a local change in the control
state, or to a full execution (from an entry to an exit point) of another state machine.
The latter case models a procedure call. Recursion is allowed since the dependencies
among state machines can be cyclic in general. RSMs with acyclic dependencies
among state machines are called hierarchical state machines [7].

The operational semantics of RSMs can be defined in terms of pushdown systems
(PDS), state machines whose transitions are labeled with stack operations [13, 30].
Push and pop operations correspond to procedure calls and returns, respectively.
The PDS corresponding to a given RSM can be easily computed and has roughly
the same size as the RSM itself, and either representation can serve as an input to a
verification algorithm, depending on the computational task at hand.

We present two basic techniques for the reachability analysis of RSMs and PDSs.
The first one, called summarization, computes reachability information by solving
a set of fixpoint equations, and is closely related to inter-procedural data-flow anal-
ysis [25, 49]. Roughly speaking, summarization computes the pairs of program
counter and program variable values that can be reached from the initial state of
the program, but not the stack contents with which they can be reached. For ex-
ample, after applying summarization we may know that program location 13 can
be reached with x = 3 and y = 5, but not that this can only happen when the cur-
rent procedure is called from a procedure P. The complete set of reachable program
states (i.e., the set of all reachable triples consisting of the current value of the pro-
gram counter, the current values of the program variables, and the current stack of
procedure calls) can be obtained by employing the second technique, called satura-
tion. Saturation takes as input the PDS associated with the RSM, and computes its
set of reachable configurations. Since this set may be infinite, saturation does not
enumerate its elements, but computes a finite symbolic representation in the shape
of a finite-automaton (compare with the BDD-based techniques of Chap. 9 for com-
pactly representing a large but finite set of states). Summarization and saturation can
also be applied to the fair computation problem, a core computational problem un-
derlying the analysis of infinite program executions. They have been implemented
and extensively applied in tools like Bebop (the model checker inside SLAM [9],
MOPED and jMOPED [29, 47, 52], and WALi [38].

In the second part of the chapter we discuss extensions of automata and log-
ics suitable for specifying properties of procedural programs. We show that many
natural specifications require relating the truth of propositions at a procedure call
with the matching return position. A typical example is the property “if the sta-
tus of a global variable x is locked when a procedure P is called, then its status is
guaranteed to be locked when the procedure P returns”. Asserting such properties is

Model Checking Procedural Programs 3

not possible using formalisms defining regular languages of computations, such as
finite-state automata and Linear Temporal Logic (see Chap. 2). Aimed at specifying
such properties, the notion of nested words is introduced to represent behaviors of
RSMs. They correspond to (finite/infinite) words with additional hierarchical edges
that expose the matching between call and return positions. We define automata
and logics on nested words, and show that model-checking algorithms for RSMs
naturally extend to these formalisms.

In the last section of the paper, we survey some further existing results concerning
RSMs/PDSs and their extensions that are relevant to the domain of verification.

2 Models of Procedural Programs

While programs, consisting of assignment statements, if-then-else statements and
while loops, can be modeled as extended state machines: state machines whose tran-
sitions are guarded by and operate on variables. The states or nodes of an extended
state machine correspond to the control points of the program. The transitions of the
machine are labeled either with assignments, or with the Boolean conditions appear-
ing in the conditional statements and the while loops. Figure 1 shows an example
of a while program with two boolean variables x,y (top left), and its corresponding
extended state machine (top right). The nodes l1 and l5 are called the entry and exit
nodes, respectively.

bool x,y

l1: while x do
l2: if y then
l3: x := false
l4: else y := ¬x

l5: end

l1

l4

l5 l2

y := 1− x

l3

x = 1x = 0

y = 0 y = 1

x := 0

(l1,1,0) (l2,1,0)

(l1,0,0) (l5,0,0)

(l1,0,1) (l5,0,1)

(l4,1,0)

(l1,1,1)

(l2,1,1) (l3,1,1)

Fig. 1 A program, its extended state machine, and its state machine.

4 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

An extended state machine with a set V of variables can be flattened into a state
machine. A node of the state machine is a pair 〈`,v〉, where ` is a node of the ex-
tended state machine, and v is a valuation of the variables of V . Figure 1 shows at
the bottom the state machine obtained by flattening the extended state machine. For
instance, the entry node l1 is split into 4 entry nodes, one for each possible valuation
of the variables x and y. Only the nodes of the state machine reachable from the
entry nodes are shown.

Procedural programs extend while programs with (possibly recursive) proce-
dures. They can no longer be faithfully modeled by state machines. For this reason
we introduce two abstract models of computation, recursive state machines, and
pushdown systems, which play for procedural programs the same role that state ma-
chines play for while programs.

2.1 (Extended) Recursive State Machines

Figure 2 shows a procedural program and its corresponding extended recursive state
machine (ERSM). The program has two global Boolean variables x and y, and con-

bool x,y

proc P1

l1: if x then
l2: call P2 do
l3: x := y

l4: else
l5: x := y

l6: call P2 do
l7: end

proc P2

m1: if y then
m2: y := x

m3: call P2 do
m4: return

A1

m4

A2

y := x

b1:A2
l2 l3

l5

x := y

l6
b2:A2

x := yx = 1

x = 0

l1 l7

m1
y = 1

y = 0

b3: A2
m2 m3

Fig. 2 A procedural program and its extended recursive state machine.

sists of two procedures P1 and P2. The ERSM reflects the structure of the program.
It consists of two components A1 and A2, modeling the procedures P1 and P2, re-
spectively. The nodes of A1 and A2 correspond to the control points of P1 and P2;
assignments, conditionals, etc. are modeled as for while programs. Moreover, for

Model Checking Procedural Programs 5

each call in procedure Pi to the procedure Pj, the component Ai contains a box la-
beled by A j. In our example, component A1 contains two boxes, and component A2
contains one box. Each box has an entry port and an exit port. Ports are pairs (n,b),
where b is a box, n is an entry or exit node of AY (b), and Y (b) denotes the compo-
nent called by the box b. A transition leads from the control point at which the call is
made to the entry port, and a second transition leads from the exit port to the return
address (the control point at which the computation of the caller continues after the
execution of the callee returns).

As in the case of extended state machines, ERSMs can be flattened into recur-
sive state machines. Flattening preserves the number of components and boxes, but
multiplies the number of nodes and ports. As for state machines, a node or a port
of a recursive state machine is a pair 〈`,v〉, where ` is a state of the extended ma-
chine, and v is a valuation of the variables. Figure 3 shows the result of flattening
component A2 of Fig. 2.

(m1,0,0)

(m1,0,1)

(m1,1,0)

(m1,1,1)

A2

(m1,1,1)

b3: A2

(m1,0,0)

(m1,0,1)

(m1,1,0)

(m4,0,0)

(m4,0,1)

(m4,1,0)

(m4,1,1)

(m4,0,0)

(m4,0,1)

(m4,1,0)

(m4,1,1)

(m3,0,0)

(m2,0,1)

(m2,1,1)

(m3,1,1)

Fig. 3 Result of flattening component A2 of Fig. 2.

Definition 1. A recursive state machine (RSM) is a tuple M = (A1, . . . ,Ak) of com-
ponents Ai = (Ni,Bi,Yi,Eni,Exi,δi), where:

• Ni is a finite set of nodes, with two distinguished subsets Eni and Exi of entry
and exit nodes.

• Bi is a finite set of boxes. A box b is labeled with an integer Y (b)∈ {1, . . . ,k}, and
has a call port (en,b) for each entry node en of AY (b), and a return port (ex,b)
for each exit node ex of AY (b).

• δi is a set of transitions u−→v where u is either a non-exit node or a return port,
and v is either a non-entry node, or a call port.

We denote by

6 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

En =
k⋃

i=1

Eni Ex =
k⋃

i=1

Eni N =
k⋃

i=1

Ni B =
k⋃

i=1

Bi

the set of all entry nodes, exit nodes, nodes, and boxes of M, respectively. The set
of all ports is Π = (En∪Ex)×B.

Observe that there are four kinds of transitions: n−→m (node-to-node), n−→(en,b)
(node-to-call-port), (ex,b)−→m (return-port-to-node), and (ex,b)−→(en,b′) (return-
port-to-call-port).

In the component of Fig. 3, the entry and exit nodes are the triples with m1 and
m4 as first element, respectively. The only box is b3, and Y (b3) = 2. The call ports
are ((m1,0,0),b3), . . . ,((m1,1,1),b3). In the figure the ports are labeled just by
(m1,0,0), . . . ,(m1,1,1), and the return ports are ((m4,0,0),b3), . . . ,((m4,1,1),b3).

2.2 Pushdown Systems

Intuitively, an RSM can be executed using a stack that at every point in the compu-
tation contains the sequence of boxes that have been entered but not yet exited. If a
component enters a box b (which corresponds to calling the procedure modeled by
the component AY (b)), then b is pushed into the stack; if the component exits the box
b (which corresponds to a return from the called procedure), then b is popped. This
suggests to give RSMs an operational semantics in terms of pushdown systems.

Definition 2. A pushdown system (PDS) is a triple P = (P,Γ ,∆), where P is a finite
set of control states, Γ is a finite stack alphabet, and ∆ is a finite set of rules of the
form pX ↪→ qα with p,q ∈ P, X ∈ Γ ∪{ε}, and α ∈ Γ ∗.

A configuration of a PDS is a string of the form pσ , where p ∈ P and σ ∈ Γ ∗.
The transition system associated to a PDS is the graph having the configurations as
vertices, and an edge c→ c′ between two configurations c and c′ if there is a rule
pX ↪→ qα and a word σ ∈ Γ ∗ such that c = pXσ and c′ = qασ . We then say that c
is an immediate predecessor of c′ and c′ an immediate successor of c.

Figure 4 shows a PDS and a fragment of its transition system. Notice that the
transition system of a PDS may be infinite, even if we only consider the configura-
tions reachable from some initial configuration.

2.3 From RSMs to PDSs

Loosely speaking, the PDS associated with an RSM is the pushdown machine that
executes the RSM. In programming terms, an RSM is a formal model of a procedu-
ral program, and its corresponding PDS is a formal model of the executable code of
the program.

Model Checking Procedural Programs 7

P = {p,q}

Γ = {A,B,C,D}

∆ = { pA ↪→ qB,
pA ↪→ pC,
qB ↪→ pD,
pC ↪→ pAD,
pD ↪→ p }

...

...

...

...

...

...

...

p

pD qB pA pDA

pC pDC

pDADpADqBDpDD

pCD pDCD

pDADDpADDqBDDpDDD

Fig. 4 A PDS and its transition system.

Formally, the PDS PM = (PM,ΓM,∆M) corresponding to an RSM M= (A1, . . . ,Ak)
is defined as follows:

• PM = N is the set of all nodes of M;
• ΓM = B is the set of all boxes of M; and
• ∆M is the set containing

– a rule n ↪→ m for each transition n−→m;
– a rule n ↪→ enb for every transition n−→(en,b);
– a rule exb ↪→ m for every transition (ex,b)−→m; and
– a rule exb ↪→ enb′ for every transition (ex,b)−→(en,b′).

Observe that the PDS has exactly one rule for each transition of the RSM.

As an example, for the RSM obtained by flattening the ERSM of Fig. 2, we get
PM = {l1, . . . , l7,m1, . . . ,m4}×{0,1}×{0,1} and ΓM = {b1,b2,b3}. Examples of
rules of ∆M are

(m1,0,0) ↪→ (m4,0,0) derived from (m1,0,0)→ (m4,0,0)
(m3,0,0) ↪→ (m1,0,0)b3 derived from (m3,0,0)→ ((m1,0,0),b3))

(m4,0,1)b3 ↪→ (m4,0,1) derived from ((m4,0,1),b3)→ (m4,0,1)

Observe that every rule pX ↪→ qα of a PDS associated with an RSM satisfies
|α| ≤ 2.

3 Basic Verification Algorithms

We proceed to define basic computational problems that are useful for checking
safety and liveness properties of RSMs.

8 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

Definition 3. Let M = (A1, . . . ,Ak) be an RSM, where Ai = (Ni,Bi,Yi,Eni,Exi,δi)
for each i ∈ {1, . . . ,k}. Let ∗−→ be the reflexive-transitive closure of the relation −→
between configurations, i.e., ∗−→=

⋃
∞
n=0(→)n and let +−−→=

⋃
∞
n=1(→)n.

The state reachability problem is to determine, given an entry node p ∈ En and
a node q ∈ PM, if p ∗−→qσ for some σ ∈ Γ ∗M.

The configuration reachability problem is to determine, given two configurations
pσ and p′σ ′, where p, p′ ∈ PM and σ ,σ ′ ∈ Γ ∗M, if pσ

∗−→ p′σ ′.
The fair computation problem is to determine, given an entry node p ∈ En and a

finite set of repeat entry nodes F ⊆ En, whether p has an F-fair computation, i.e.,
an infinite sequence of configurations p0σ0, p1σ1, p2σ2, · · · such that (1) p0 = p and
σ0 = ε , (2) piσi

+−−→ pi+1σi+1 for every i ≥ 0, and (3) p j ∈ F for infinitely many
j ≥ 0.

Consider the RSM of Fig. 3 on its own (not as part of the larger RSM obtained
by flattening the extended RSM of Fig. 2). Choose p as the entry node (m1,0,1),
and q as the node (m4,1,0). The state reachability problem for this choice of p and
q formalizes the question whether some computation of procedure P2 of Fig. 2 with
x = 0 and y = 1, can reach the point m4 with x = 1 and y = 0. However, since the
procedure P2 is recursive, m4 can be visited several times along a computation, and
so the question is whether at one of these visits x and y are equal to 1 and 0, re-
spectively, not whether these are the values after termination. To check this we can
use the configuration reachability problem: Procedure P2 terminates with x = 1 and
y = 0 if and only if the RSM can reach the configuration with (m4,1,0) as con-
trol state and empty stack. Notice that, in general, we cannot reduce termination (a
liveness property) to reachability (a safety property), but inspection of this program
shows that it terminates if and only if it reaches m4 with no pending procedure calls.

The problem of checking liveness properties can be easily reduced to the fair
computation problem by means of the automata-theoretic techniques introduced in
Chap. 7.

3.1 The State Reachability Problem: Computing Summaries

In this section we show how to solve the state reachability problem using the sum-
marization technique. We present the technique for RSMs.

Let M = (A1, . . . ,Ak) be an RSM, and let ΘM = N ∪Π be the set containing
all nodes and all ports in M. For every i ∈ {1, . . . ,k}, consider the relation Ri ⊆
ΘM×ΘM given by

(p,q) ∈ Ri iff p ∈ Eni, q is a node or port of Ai, and p ∗−→q.

Further, for every i, j ∈ {1, . . . ,k} consider the relation R(i, j) ⊆ΘM×ΘM given by

(p,q) ∈ R(i, j) iff p ∈ Eni, q is a node or port of A j, and p ∗−→qσ for some σ ∈ Γ ∗M.

Model Checking Procedural Programs 9

We call these relations summaries, since they can be seen as the result of summa-
rizing executions by their initial and final states. Now, let R =

⋃k
i, j=1 R(i, j). Clearly,

given p ∈ En and q ∈ N, solving the state reachability problem consists of checking
whether (p,q) ∈ R.

It is easy to see that for every i, j ∈ {1, . . . ,k} the relations Ri and R(i, j) are the
smallest relations satisfying the following conditions (where we write Ri(p,q) and
R(i, j)(p,q) instead of (p,q) ∈ Ri and (p,q) ∈ R(i, j)):

S1: Ri(e,e) for every e ∈ Eni.
S2: If Ri(e, p) and (p,q) ∈ δi, where e ∈ Eni,

then Ri(e,q).
S3: If Ri(e,(p,b)) and R`(p,q),

where e ∈ Eni, Yi(b) = `, p ∈ En`, and q ∈ Ex`,
then Ri(e,(q,b)).

S4: If Ri(e,q)
then R(i,i)(e,q).

S5: If Ri(e,(p,b)) and R(`, j)(p,q),
where e ∈ Eni, Yi(b) = `, p ∈ En`, and q ∈ N j,
then R(i, j)(e,q).

The relations Ri and R(i, j) can be simultaneously computed by, starting from the
empty relations, iteratively applying the rules S1-S5 until stabilization. Since the set
ΘM is finite, the computation necessarily terminates. This yields a decision proce-
dure for the state reachability problem of polynomial complexity. More precisely,
as shown in [2], reachability can be solved in time O(|M|θ 2

e) and space O(|M|θe),
where |M| is the total number of nodes and transitions in the RSM, and θe is the
maximum number of entry nodes of a component, i.e., θe = maxk

i=1 |Eni|.
It is straightforward to define a dual algorithm that starts at the exit nodes and

computes the summaries backwards. For instance, in the dual algorithm the rule S2
is replaced by the dual rule

D2 : If Ri(p,x) and (q, p) ∈ δi, where x ∈ Exi,
then Ri(q,x).

The dual algorithm runs in O(|M|θ 2
x) time, where θx is the maximum number of

exit nodes of a component, i.e., θx = maxk
i=1 |Exi|. The primal and dual rules can be

combined component-wise: if the number of entry nodes of component Ai is smaller
than its number of exit nodes, then we compute Ri from the entry nodes using the pri-
mal rules, otherwise from the exit nodes using the dual rules. The complexity of this
algorithm is O(|M|θ 2), where θ = maxk

i=1 min(|Eni|, |Exi|). Since θ ∈O(|M|), the
combined algorithm has cubic complexity in |M|. For the class of RSMs in which θ

is bounded by a constant (which contains in particular procedural programs whose
procedures can only return a fixed number of values, say a Boolean), reachability
can be decided in linear time.

10 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

As an example, we compute part of the relations for the RSMs obtained by flat-
tening the extended machines of Fig. 2. In particular, we show that

R1((`1,1,0),(`7,0,0))

holds, i.e., if we start at location `1 with x = 1 and y = 0, we may reach location `7
with x = 0 = y.

We first apply rule (S1) twice and obtain

R1((`1,1,0),(`1,1,0)) (1)
R2((m1,1,0),(m1,1,0)) (2)

Now we use rule (S2) to establish relations corresponding to single edges in the
graphs of the RSMs. From (1) and ((`2,1,0),((m1,1,0),b1))∈ δ1, and from (2) and
((m1,1,0),(m4,1,0)) ∈ δ2, respectively, we obtain

R1((`1,1,0),((m1,1,0),b1)) (3)
R2((m1,1,0),(m4,1,0)) (4)

Next we apply rule (S3) to (3) and (4). Together with Y1(b1) = 2 we get

R1((`1,1,0),((m4,1,0),b1)) (5)

Then we apply rule (S2) to (5) using the transition (((m4,1,0),b1),(`3,1,0)) ∈ δ1,
to obtain

R1((`1,1,0),(`3,1,0)) (6)

Finally, applying rule (S2) to (6) and ((`3,1,0),(`7,0,0)) ∈ δ1 yields

R1((`1,1,0),(`7,0,0)) (7)

and we are done.

Let us now show
R(1,2)((`1,0,1),(m3,1,1))

Applying rule (S1) and then (S2) to the entry nodes (`1,0,1) and (m1,1,1) we obtain

R1((`1,0,1),((m1,1,1),b2)) (8)
R2((m1,1,1),(m3,1,1)) (9)

Applying rule (S4) to (9) yields

R(2,2)((m1,1,1),(m3,1,1)) (10)

Finally, applying rule (S5) to (8) and (10) we get

R(1,2)((`1,0,1),(m3,1,1)) (11)

Model Checking Procedural Programs 11

Next we show that calls to A2 starting from (m1,1,1) never return, i.e., that
R2((m1,1,1),n) does not hold for any exit node n of A2. Since every path from the
entry node (m1,1,1) leads to (m2,1,1) and (m3,1,1), rule (S2) only allows to derive
R2((m1,1,1),(m2,1,1)) and R2((m1,1,1),((m1,1,1),b3)). Since no other rule can
be applied, we are done.

Finally, similar reasoning shows that no exit node of A1 is reachable from
(`1,0,1). Indeed, this follows easily from the fact that rule (S3) cannot be applied
to (8).

3.2 The Fair Computation Problem

It is shown in [13] that the fair computation problem can be reduced to the state
reachability problem. The key observation, not difficult to prove, is that, given p ∈
En and F ⊆ En, the node p has an F-fair computation if and only if there exists
p′ ∈ F such that

p ∗−→ p′σ for some σ ∈ Γ ∗M and p′ +−−→ p′σ ′ for some σ ′ ∈ Γ ∗M.

This reduction allows us to solve the fair computation problem using summa-
rization. We define a new reachability relation R′ ⊆ΘM×ΘM (in addition to the
relation R defined in Sect. 3.1) as follows:

R′(p,q) holds if and only if p +−−→qσ for some σ ∈ Γ ∗M.

Then, by the observation above, p has a F-fair computation if and only if there exists
p′ ∈ F such that R(p, p′) and R′(p′, p′).

The relation R′ can be computed similarly to the relation R in Sect. 3.1. For every
i ∈ {1, . . . ,k}, define R′i ⊆ΘM×ΘM by

R′i(p,q) iff p ∈ Eni, q is a node or port of Ai, and p +−−→q.

Further, for every i, j ∈ {1, . . . ,k}, define R′(i, j) ⊆ΘM×ΘM by

R′(i, j)(p,q) iff p ∈ Eni, q is a node or port of A j, and p +−−→qσ for some σ ∈ Γ ∗M.

We clearly have R′ =
⋃k

i, j=1 R′(i, j).
For all i, j ∈ {1, . . . ,k}, the relations R′i and R′(i, j) are the smallest relations such

that:

12 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

S2’: If Ri(e, p) or R′i(e, p), and (p,q) ∈ δi, where e ∈ Eni,
then R′i(e,q).

S3’: If R′i(e,(p,b)) and R`(p,q),
where e ∈ Eni, Yj(b) = `, p ∈ En`, and q ∈ Ex`,
then R′i(e,(q,b)).

S4’: If R′i(e,q), where e ∈ Eni,
then R′(i,i)(e,q).

S5’: If R′i(e,(p,b)) and R(`, j)(p,q),
where e ∈ Eni, Yi(b) = `, p ∈ En`, and q ∈ N j,
then R′(i, j)(e,q).

The relations can again be computed by applying the rules until stabilization.
The time complexity is again cubic in |M|, and linear if each component has a small
number of either enter or exit nodes [2].

The model-checking problem for Linear Temporal Logic can be reduced to the
fair computation problem using the automata-theoretic techniques of Chap. 7 and
Sec. 4.

3.3 The Configuration Reachability Problem: Saturating Automata

In this section we solve the configuration reachability problem for RSMs and PDSs.
We present two decision procedures for PDSs. The procedures for RSMs are ob-
tained by applying the translation from RSMs to PDSs shown in Sect. 2.3.

Given two configurations pσ and p′σ ′ of a PDS, we can decide whether pσ
∗−→ p′σ ′

holds by computing the set of all configurations reachable from pσ and checking
whether p′σ ′ belongs to it, or by computing all configurations from which p′σ ′ can
be reached and checking whether pσ belongs to it. Since these sets may be infinite,
we have to explain the meaning of “compute”. A configuration pσ of a PDS can be
seen as a word over the union of the set of control states and stack symbols, and so
a set of configurations is a language over the same alphabet. Recall that a language
is regular if it is recognized by a finite automaton. It turns out that, given a regular
set C of configurations, the set of configurations reachable from C and the set of
configurations from which C can be reached are again regular. This theorem, which
can be traced back to Büchi (see Chap. 5 of [16]), allows us to define “computing
the set” as “computing a finite automaton recognizing the set”.

We fix a PDS P = (P,Γ ,∆) for the rest of the section, and let C denote the set
of all configurations of P. The successor function post : 2C → 2C of P is defined
as follows: c belongs to post(C) if some immediate predecessor of c belongs to C.
The reflexive and transitive closure of post is denoted by post∗ and so, given a set
C of configurations, post∗(C) denotes the set of configurations reachable from C.
Similarly, we define pre(C) as the set of immediate predecessors of elements in C
and pre∗ as the reflexive and transitive closure of pre.

Model Checking Procedural Programs 13

It is convenient to define a variant of finite automata tailored for the task of rep-
resenting sets of configurations of P. A P-automaton is an automaton with Γ as its
alphabet, and P as the set of initial states. Formally, a P-automaton is an automaton
A = (Γ ,Q,δ ,P,F) where Q is the finite set of states, δ ⊆ Q×Γ ×Q is the set of
transitions, P⊆ Q is the set of initial states and F ⊆ Q the set of final states.

All the automata used in this section are P-automata, and so we drop the P from
now on. An automaton accepts or recognizes a configuration pw if p σ−→q for some
q ∈ F , where p σ−→q denotes that there is a path from state p to state q labeled by
σ . A set of configurations of P is regular if it is recognized by some automaton.

In the next sections we present algorithms that given an automaton recognizing
a set C of configurations compute automata recognizing post∗(C) and pre∗(C). We
start with pre∗(C), since in this case the algorithm is a bit simpler.

3.3.1 Computing pre∗(C) for a Regular Set C by Saturation

The input to our algorithm is an automaton A accepting C. Without loss of general-
ity, we assume that A has no transitions leading to an initial state (by adding new ini-
tial states if necessary, every automaton can be easily transformed into another one
satisfying this condition and recognizing the same language). We compute pre∗(C)
as the language accepted by an automaton Apre∗ obtained from A by means of a
saturation procedure. The procedure adds new transitions to A, but no new states.
New transitions are added according to the following saturation rule:

If pγ ↪→ p′σ and p′ σ−→q in the current automaton,
then add a transition (p,γ,q).

Notice that we can have σ = ε , in which case p′ = q, and that all new transitions
start at initial states.

Before explaining the intuition for the rule, let us illustrate the procedure by
means of an example. Let P be the pushdown shown at the top of Fig. 5, and let A
be the automaton recognizing the singleton set C = {p0γ0γ0}, shown on the left. The
automaton Apre∗ is shown on the right. The saturation procedure adds five additional
transitions. The table at the bottom of the figure gives for each new transition of
the automaton the transition rule pγ ↪→ p′σ of the PDS and the path p′ σ−→q of
the current automaton used to apply the saturation rule. The procedure eventually
terminates because the number of possible new transitions is finite.

The intuition for the saturation rule is as follows. Imagine that before adding the
transition (p,γ,q) as indicated in the rule, the automaton accepts a configuration
p′στ by means of a run p′ σ−→q τ−→q′ leading to a final state q′. This means that
p′στ ∈ pre∗(C). Since pγ ↪→ p′σ , we have pγτ ∈ pre∗(C), and so the automaton
should also accept pγτ . This is precisely what the saturation rule achieves: after
adding the transition (p,γ,q) the automaton has the run p γ−→q τ−→q′, and so it ac-
cepts pγτ .

14 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

p0

p1

p2

s1 s2
γ0 γ0

P = { p0, p1, p2 } ∆ = { p0γ0 ↪→ p1γ1γ0 , p2γ2 ↪→ p0γ1,
Γ = { γ0, γ1, γ2 } p1γ1 ↪→ p2γ2γ0 , p0γ1 ↪→ p0 }

p0

p1

p2

s1 s2
γ0 γ0

γ1 γ0

γ1γ2

γ1

pγ ↪→ p′σ p′ σ−→q New transition
p0γ1 ↪→ p0 p0

ε−→ p0 (p0,γ1, p0)

p2γ2 ↪→ p0γ1 p0
γ1−−→ p0 (p2,γ2, p0)

p1γ1 ↪→ p2γ2γ0 p2
γ2γ0−−−→s1 (p1,γ1,s1)

p0γ0 ↪→ p1γ1γ0 p1
γ1γ0−−−→s2 (p0,γ0,s2)

p1γ1 ↪→ p2γ2γ0 p2
γ2γ0−−−→s2 (p1,γ1,s2)

Fig. 5 The automata A (left) and Apre∗ (right).

This argument shows that pre∗(L(A))⊆ L(Apre∗) holds. Proving the other inclu-
sion requires some more care, and it is outside the scope of this article. The proof
can be found in [13]. This direction relies on the assumption that A has no transi-
tions leading to an initial state. Notice that without this assumption the algorithm is
incorrect.

It is clear that the saturation procedure runs in polynomial time in the size of
the PDS P and the automaton A. An efficient implementation and a more careful
complexity analysis can be found in [26]:

Theorem 1. [26] Given P = (P,Γ ,∆) and A = (Γ ,Q,δ ,P,F), the automaton Apre∗

can be computed in O(n2
Qn∆) time and O(nQn∆ + nδ) space, where nQ = |Q|, nδ =

|δ |, and n∆ = |∆ |.

3.3.2 Computing post∗(C) for a Regular Set C by Saturation

We provide an algorithm for the case in which each transition rule pγ ↪→ p′σ of
∆ satisfies |σ | ≤ 2. This restriction is not essential, but leads to a simpler solution.
Moreover, any PDS can be transformed into an equivalent one in this form, and the
PDSs derived from RSMs directly satisfy this condition.

Model Checking Procedural Programs 15

Our input is an automaton A accepting C. Again, we assume that A has no tran-
sitions leading to an initial state. We compute post∗(C) as the language accepted by
an automaton Apost∗ with ε-moves. We denote the relation (

ε−→)∗
γ−→(

ε−→)∗ by
γ

=⇒.
Apost∗ is obtained from A in two stages:

• Add to A a new state r for each transition rule r ∈ ∆ of the form pγ ↪→ p′γ ′γ ′′,
and a transition (p′,γ ′,r).

• Add new transitions to A according to the following saturation rules:

If pγ ↪→ p′ε ∈ ∆ and p
γ

=⇒ q in the current automaton,
then add a transition (p′,ε,q).

If pγ ↪→ p′γ ′ ∈ ∆ and p
γ

=⇒ q in the current automaton,
then add a transition (p′,γ ′,q).

If r = pγ ↪→ p′γ ′γ ′′ ∈ ∆ and p
γ

=⇒ q in the current automaton,
then add a transition (r,γ ′′,q).

Figure 6 shows again the PDS and the automaton from Fig. 5, and, on the right,
the automaton Apost∗ obtained by applying the algorithm. Since the PDS has two
rules of the form pγ ↪→ p′γ ′γ ′′, namely r1 = p0γ0 ↪→ p1γ1γ0, and r2 = p1γ1 ↪→
p2γ2γ0, the first stage of the algorithm adds to Apost∗ two new states r1,r2, and
two new transitions (p1,γ1,r1) and (p2,γ2,r2). In the second stage the algorithm
adds another five transitions. The table at the bottom of the figure gives for each
new transition the transition rule pγ ↪→ p′w of the PDS, the path p′

γ
=⇒ q of the

current automaton, and the saturation rule used to produce it. Again, an efficient
implementation and a more careful complexity analysis can be found in [26].

Theorem 2. [26] Given P= (P,Γ ,∆) and A= (Γ ,Q,δ ,P,F), the automaton Apost∗

can be computed in O(nPn∆ (nQ + n∆) + nPnδ) time and space, where nP = |P|,
n∆ = |∆ |, nQ = |Q|, and nδ = |δ |.

3.4 The Generalized Fair Computation Problem

Section 3.2 presents a summarization algorithm for the fair computation problem:
given a node p and a set F ⊆ En of repeat nodes, decide if p has an F-fair computa-
tion. We now use saturation to solve a generalized version of the problem: compute
the set of all configurations of M having an F-fair computation, i.e., an infinite
computation that visits infinitely often nodes in F .

Let PM = (PM,ΓM,∆M) be the PDS associated with M. It is easy to see that pσ

has an F-fair computation if and only if there exists p′ ∈ F such that pσ
∗−→ p′σ ′

for some σ ′ ∈ Γ ∗M and p′ +−−→ p′τ for some τ ∈ Γ ∗M. We first compute the set Rep
of states q ∈ F such that q +−−→qσ for some σ ∈ Γ ∗M. The set of configurations that

16 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

p0

p1

p2

s1 s2
γ0 γ0

P = { p0, p1, p2 } ∆ = { p0γ0 ↪→ p1γ1γ0 , p2γ2 ↪→ p0γ1,
Γ = { γ0, γ1, γ2 } p1γ1 ↪→ p2γ2γ0 , p0, γ1 ↪→ p0 }

p0

p1

p2

s1 s2

r1

r2

γ0 γ0

γ1
γ0

γ2

γ0

γ0

ε, γ1

pγ ↪→ p′σ p
γ

=⇒ q Saturation rule New transition

p2γ2 ↪→ p0γ1 p2
γ2=⇒ r2 second (p0,γ1,r2)

p0γ0 ↪→ p1γ1γ0 p0
γ0=⇒ s1 third (r1,γ0,s1)

p0γ1 ↪→ p0 p0
γ1=⇒ r2 first (p0,ε,r2)

p1γ1 ↪→ p2γ2γ0 p0
γ0=⇒ r1 (p0

ε−→r2
γ0−−→r1) third (r2,γ0,r1)

p0γ0 ↪→ p1γ1γ0 p0
γ0=⇒ r1 third (r1,γ0,r1)

Fig. 6 The automata A (left) and Apost∗ (right).

have an infinite fair computation is then equal to pre∗(RepΓ ∗M), which is regular and
computable using the construction of Sect. 3.3.1.

To compute Rep we observe that for every state q we have q ∈ Rep if and only if
q ∈ pre+(qΓ ∗M), where pre+(C) = pre(pre∗(C)). We construct a finite automaton
Apre+ recognizing pre+(qΓ ∗M) from an automaton A recognizing C. Since in Sect.
3.3.1 we already constructed an automaton Apre∗ recognizing pre∗(C), it suffices to
provide another construction doing the same for pre (instead of pre∗). The construc-
tion for pre+ is the result of concatenating the two, i.e., of applying the construction
for pre to the result of applying the construction for pre∗.

The construction for pre is, not surprisingly, simpler than the one for pre∗. It
starts with some preprocessing. Given an input automaton A = (γ,Q,δ ,P,F), the
preprocessing adds to it a fresh set P̂ = {p̂ | p ∈ PM} of states, and changes the
set of initial states to P̂. Formally, the preprocessing returns the automaton Â =
(γ,Q∪ P̂,δ , P̂,F). After preprocessing, the construction exhaustively applies the
following modification of the saturation rule:

If pγ ↪→ p′σ and p′ σ−→q in the current automaton,
then add a transition (p̂,γ,q).

Model Checking Procedural Programs 17

(The only change is the substitution of p̂ for p in the last line.) With this rule all
new transitions start from states in P̂, and so new transitions cannot generate further
transitions. The correctness of the construction is easy to prove.

This algorithm for computing Rep, presented in [13], has polynomial complexity,
but can be improved. A more efficient procedure involving Tarjan’s algorithm for
computing strongly connected components is presented in [26].

Theorem 3. [26] Given P = (P,Γ ,∆) and a set F ⊆ P of repeat states, the set Rep
can be computed in O(n2

Pnδ) time and O(nPnδ) space.

Recall that the algorithm for the generalized fair computation problem first com-
putes Rep and then pre∗(RepΓ ∗M). By Theorem 1, pre∗(RepΓ ∗M) can be computed
in O(|PM|2|∆M|) time and O(|PM||∆M|) space, and so the generalized fair compu-
tation problem can also be solved within the same time and space bounds.

4 Specifying Requirements

In order to specify requirements of programs modeled by RSMs, we first choose
a set Σ of observables. Each program statement, or a transition of the RSM, is
labeled with an observation σ ∈ Σ . A (possibly infinite) execution of the RSM then
produces a sequence of observations. In this manner, we can associate a language
L(M) with the RSM M as its observational (linear) semantics. Requirements can be
written using linear-time specification formalisms such as Linear Temporal Logic
(LTL) (see Chap. 2). Given an LTL specification ϕ over the observables Σ , and an
RSM model M, the model checking question is to check if every sequence in L(M)
satisfies the formula ϕ . To solve this problem, we can compile the negation of the
specification into a Büchi automaton A¬ϕ that accepts all computations that violate
ϕ (see Chap. 7) and check that the intersection of the languages of M and A¬ϕ is
empty. This can be algorithmically solved using the analysis algorithms discussed
in Sect. 3. In this setup, even though the language L(M) is context-free (since the
underlying model is a pushdown system), the requirement is given as an ω-regular
language.

While many analysis problems such as identifying dead code and accesses to
uninitialized variables can be captured as regular requirements, many others require
inspection of the stack or matching of calls and returns, and are context-free. These
include access control requirements such as “a procedure P should be invoked only
if the procedure P′ belongs to the call-stack,” bounds on stack size such as “if the
number of interrupt-handling procedures in the call-stack currently is less than 5,
then a property p holds,” and correctness specifications using pre and post condi-
tions such as “if the property p holds when a procedure P is invoked, the procedure
P must return, and the property q holds upon return.” When viewed in isolation,
each of these requirements is a context-free language, and checking context-free
requirements of RSMs (or pushdown systems) is undecidable in general. However,
the key feature of these example requirements is that the stacks in the model and the

18 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

requirement are correlated: while the stacks are not identical, the two synchronize
on when to push and when to pop, and are always of the same depth. To formalize
this, we view an execution of the program as a nested word, which consists of a
linear sequence of states (or observations), augmented with nesting edges connect-
ing calls with matching returns, that impart a tree-like hierarchical structure to the
execution. Automata and logics over nested words can be used to express a variety
of requirements such as stack-inspection properties, pre-post conditions, and inter-
procedural data-flow properties. Closure properties and decision problems of these
automata can then be used for algorithmic verification of procedural programs.

4.1 Nested Words

Nested words model data with both linear and hierarchical structure. Here we con-
sider only infinite nested words (which can model nonterminating executions of
programs).

Given a linear sequence, the hierarchical structure is added using edges that are
well nested (that is, they do not cross). We will use edges starting at −∞ and edges
ending at +∞ to model “pending” edges. Assume that −∞ < i < +∞ for every
integer i. A matching relation ; is a subset of {−∞,1,2, . . .}×{1,2, . . .+ ∞} such
that (1) nesting edges go only forward: if i ; j then i< j; (2) no two nesting edges
share a position: for each natural number i, |{ j | i ; j}| ≤ 1 and |{ j | j ; i}| ≤ 1;
and (3) nesting edges do not cross: if i ; j and i′ ; j′ then it is not the case that
i< i′ ≤ j < j′.

When i ; j holds, the position i is called a call position. For a call position i,
if i ; +∞, then i is called a pending call, otherwise i is called a matched call, and
the unique position j such that i ; j is called its return-successor. Similarly, when
i ; j holds, the position j is called a return position. For a return position j, if
−∞ ; j, then j is called a pending return, otherwise j is called a matched return,
and the unique position i such that i ; j is called its call-predecessor. A position i
that is neither a call nor a return is called internal.

A nested word w over an alphabet Σ is a pair (a1a2 · · · ,;) such that each ai is a
symbol in Σ , and ; is a matching relation. Let us denote the set of all nested words
over Σ as NW (Σ). A language of nested words over Σ is a subset of NW (Σ).

As an example, consider the program of Fig. 2 again. Suppose we are inter-
ested in tracking read/write accesses to the global program variable x. Then, we can
choose the following set of symbols for the observables Σ : rd to denote a read access
to x, wr to denote a write access to x, cl to denote beginning of a new scope (such
as a call to the procedure P2), rt to denote the ending of the current scope, and sk
to denote all other actions of the program. Note that in any structured programming
language, in a given execution, there is a natural nested matching of the symbols cl
and rt. Figure 7 shows a sample execution of the program modeled as a nested word
(this execution corresponds to the initial state in which x is 0 and y is 1). For exam-
ple, the second symbol (labeled rd) corresponds to the execution of the test “if x”,

Model Checking Procedural Programs 19

98

5 6 7 10 11

3 4 12 132

1 14

cl rtwrrd sk

rtcl

sk sk

sk cl rt sksk

Fig. 7 Sample execution as a nested word.

and the next corresponds to the assignment x := y. Both these steps do not involve
a change of context, and are internal positions. The procedure P2 is called at posi-
tion 4, and this call has a nesting edge to the matching position 12 (labeled rt). The
subword from position 5 to position 11 encodes the execution of the called proce-
dure. The main benefit of explicitly augmenting the linear structure with the nesting
edges, is that using nesting edges one can skip call to a procedure entirely, and con-
tinue to trace a local path through the calling procedure. Consider the property that
“if a procedure writes to x then it later reads x.” This requires keeping track of the
context. If we were to model executions as words, the set of executions satisfying
this property would be a context-free language of words, and hence, not specifiable
in classical temporal logics. Soon we will see that when we model executions as
nested words, the set of executions satisfying this property is a regular language of
nested words, and is amenable to algorithmic verification.

4.2 Nested Word Automata

We define and study finite-state automata as acceptors of nested words. A nested
word automaton (NWA) is similar to a classical finite-state word automaton, and
reads the input from left to right according to the linear sequence. At a call, it can
propagate states along both linear and nesting outgoing edges, and at a return, the
new state is determined based on states labeling both the linear and nesting incoming
edges. Thus, NWA combines the features of top-down and bottom-up tree automata.
It can also be viewed as a restricted form of a pushdown automaton: at a call posi-
tion, it pushes a symbol on the stack; at a return position, it pops a symbol from the
stack; and at an internal position, it does not update or examine the stack. Thus, the
updates to the stack are determined by the call/return structure of the input word, and
that’s why a nested word automaton is also called a visibly pushdown automaton.

In the context of program verification, we are interested in nondeterministic
NWAs: nondeterminism can arise due to inputs, due to abstraction, or when mul-

20 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

tiple states/transitions are associated with the same observation. We focus only on
automata over infinite words using the Büchi acceptance condition.

A nondeterministic Büchi nested word automaton (BNWA) A over an alphabet Σ

consists of

• a finite set of states Q,
• a set of initial states Q0 ⊆ Q,
• a set of Büchi states Q f ⊆ Q,
• a finite set of hierarchical states P,
• a set of initial hierarchical states P0 ⊆ P,
• a call transition relation δc ⊆ Q×Σ ×Q×P,
• an internal transition relation δl ⊆ Q×Σ ×Q, and
• a return transition relation δr ⊆ Q×P×Σ ×Q.

Given a nested word w, the automaton A starts in an initial state, and reads the nested
word from left to right according to the linear order. The state is propagated along
the linear edges as in case of a standard word automaton. However, at a call, the
nested word automaton can propagate a hierarchical state along the outgoing nesting
edge also. At a return, the new state is determined based on the states propagated
along the linear edge as well as along the incoming nesting edge. A pending nesting
edge incident upon a pending return is labeled with an initial hierarchical state. The
run is accepting if one of the Büchi states repeats infinitely often.

Formally, a run r of the BNWA A over a nested word w = (a1a2 · · · ,;) is an
infinite sequence qi ∈ Q, for i ≥ 0, of states corresponding to linear edges, and a
sequence pi ∈ P, for call positions i, of hierarchical states corresponding to nest-
ing edges, such that q0 ∈ Q0, and for each position i ≥ 1, if i is a call position
then (qi−1,ai,qi, pi) ∈ δc; if i is an internal position then (qi−1,ai,qi) ∈ δl ; if i is
a matched return with call-predecessor j then (qi−1, p j,ai,qi) ∈ δr, and if i is a
pending return then (qi−1, p0,ai,qi) ∈ δr for some p0 ∈ P0. The run is accepting if
qi ∈ Q f for infinitely many indices i≥ 0. The automaton A accepts the nested word
w if A has some accepting run over w. The language L(A) is the set of nested words
it accepts. A set L of nested words is ω-regular iff there is a BNWA A such that
L(A) = L.

4.2.1 RSMs as NWAs

An RSM can be interpreted as a nested word automaton. Consider an RSM M =
(A1, . . . ,Ak) with components Ai = (Ni,Bi,Yi,Eni,Exi,δi). For the corresponding
NWA AM, for each component Ai, for every node, call-port, and return port of Ai,
there is a corresponding linear state in AM. The set of hierarchical states is the set of
boxes of all the components. The entry nodes of the main component are the initial
states, and the NWA does not rely on initial hierarchical states (since there will be
no pending returns in the nested words it generates). For every transition u→ v of
each component Ai, there is a corresponding internal transition in AM. For every call
port (en,b) of Ai, the NWA has a call transition from the state (en,b) to the state en

Model Checking Procedural Programs 21

(a) (b)

q0 q1

wr
q0

rd

wr,rt〉/1

rd,〈cl/1

rd,sk,〈cl/0,rt〉/0 wr,skrd,sk,〈cl,rt〉 wr,sk,〈cl,rt〉

q1

Fig. 8 Using NWA to specify program requirements.

(corresponding to the entry node of the component AY (b)) propagating the hierarchi-
cal state b along the nesting edge. For every return port (ex,b) of Ai, the NWA has a
return transition to the state (ex,b) from the state ex (corresponding to the exit node
of the component AY (b)) provided the hierarchical state along the incoming nesting
edge is b. The labels on the transitions correspond to observations suitable for the
analysis problem. In the example corresponding to Fig. 7, each call transition is la-
beled with the symbol cl, each return transition is labeled with the symbol rt, and
each internal transition is labeled with either rd, wr, or sk, depending on the type of
the statement executed. The NWA is augmented with Büchi acceptance condition
if needed (for instance, to ensure fair resolution of choice when nondeterminism is
used for abstraction).

4.2.2 NWAs for Requirements

The requirements of a program can also be described as an ω-regular languages of
nested words. Let us revisit the example used in Fig. 7. Suppose we want to specify
that each write to x is followed by some read of x. We will consider two variations
of this requirement.

First, suppose we want to specify that a symbol wr is followed by rd, without
any reference to the procedural context. This can be captured by standard word
automata, and also by NWAs. Figure 8 (a) shows the 2-state (deterministic) NWA for
the requirement. We use the prefix 〈 with a symbol to indicate a call transition, and
the suffix 〉 with a symbol to indicate a return transition. Call and return transitions
also have associated hierarchical states. In this example, hierarchical states are not
needed.

Now suppose, we want to specify that if a procedure writes to x, then the same
invocation should read it before it returns. That is, between every pair of matching
call and return, along the local path obtained deleting every enclosed well-matched
subword between a call and its matching return, every wr is followed by rd. Viewed
as a property of words, this is not a regular language, and thus, not expressible in
the classical specification languages. However, over nested words, this can easily be
specified using an NWA, see Fig. 8 (b). The initial state is q0, and has no pending

22 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

obligations, and is the only final state. The hierarchical states are {0,1}, where 0 is
the initial state. The state q1 means that along the local path of the current scope, a
write-access has been encountered with no following read access. While processing
the call, the automaton remembers the current state by propagating 0 or 1 along
the nesting edge, and starts checking the requirement for the called procedure by
transitioning to the initial state q0. While processing internal read/write symbols, it
updates the state as in the finite-state word automaton of case (a). At a return, if the
current state is q0 (meaning the current context satisfies the desired requirement), it
restores the state of the calling context. Note that there are no return transitions from
the state q1, and this means that if a return position is encountered while in state q1,
the automaton rejects the input word.

We now review some key properties of nested word automata that are useful in
their application to model checking

4.2.3 Closure Properties

The class of ω-regular (and regular) languages of nested words is closed under a
variety of operations including union, intersection, complementation, prefixes, suf-
fixes, concatenation, Kleene-*, and language homomorphisms. For verification, the
most relevant operation is language intersection: given two BNWAs A1 and A2, one
can construct a product BNWA A such that L(A) = L(A1)∩L(A2). If A1 captures
the set of nested words generated by an RSM, and A2 captures the set of nested
words that violate a desired correctness requirement, then verification corresponds
to checking non-emptiness of the language of A. The product construction for NWAs
is a simple extension of the product construction for finite (word) automata. A linear
state of A is a pair of linear states of A1 and A2, and a hierarchical state of A is a
pair of hierarchical states of A1 and A2. The call/internal/return transitions synchro-
nize the transitions of A1 and A2 on a common input symbol, and update the two
state components. Ensuring that Büchi acceptance conditions of both are satisfied
can be done the same way as in the product construction for Büchi automata (see
Chap. 7). It is worth noting that nested word automata can also be complemented
and determinized. Determinization requires maintaining a set of “summaries” that
capture executions of the nondeterministic automaton on the subword between a
call and its matching return, and the acceptance condition needed is a parity condi-
tion over states that repeat infinitely often at the “top-level” of the input word (see
[6] for details). The complexity of determinization as well as complementation is
exponential.

4.2.4 Decision Problems

The emptiness problem for NWAs (given a BNWA A, is L(A) = /0?) is solvable
in polynomial-time (in time cubic in the size of the automaton). The technique is
the same as the one used in solving the fair computation problem for pushdown

Model Checking Procedural Programs 23

systems discussed in Section 3.2. Problems such as universality (given a BNWA A,
is L(A) = Σ ω ?), language inclusion (given BNWAs A1 and A2, is L(A1)⊆ L(A2)?),
and language equivalence (given BNWAs A1 and A2, is L(A1) = L(A2)?) can all
be solved in EXPTIME by employing the complementation construction. Note that
these problems are undecidable for pushdown automata (or context-free languages).
Thus, given two RSMs, checking whether they generate the same sets of words is
undecidable, while checking whether they generate the same sets of nested words
is decidable. The latter is a stronger requirement which considers two executions
equivalent when the two produce the same sequences of observations, and also agree
on entries to and exits from procedural contexts.

4.2.5 MSO Equivalence

For word languages, the notion of regularity has many equivalent characterizations
using finite automata, monadic second-order logic, and regular expressions. The
notion of regularity for nested words also turns out to be robust. In particular, the
monadic second order logic (MSO) of nested words has the same expressiveness
as nested word automata. The vocabulary of nested sequences includes the linear
successor and the matching relation ;. In order to model pending edges, we will
use two unary predicates call and ret corresponding to call and return positions.
The monadic second-order logic of nested words is given by the syntax:

φ := a(x) | X(x) | call(x) | ret(x) | x = y + 1 | x ; y | φ ∨φ | ¬φ | ∃x.φ | ∃X .φ ,

where a ∈ Σ , x,y are first-order variables, and X is a second-order variable. The
semantics is defined over nested words in a natural way. The first-order variables are
interpreted over positions of the nested word, while set variables are interpreted over
sets of positions. The formula a(x) holds if the symbol at the position interpreted
for x is a, call(x) holds if the position interpreted for x is a call, x = y + 1 holds
if the position interpreted for y is (linear) next to the position interpreted for x, and
x ; y holds if the positions x and y are related by a nesting edge. For example,

∀x.(call(x) →∃y. x ; y)

holds in a nested word iff it has no pending calls;

∀x.∀y. (a(x)∧ x ; y)⇒ b(y)

holds in a nested word iff for every matched call labeled a, the corresponding return-
successor is labeled b.

For a sentence φ (a formula with no free variables), the language it defines is the
set of all nested words that satisfy φ . It turns out that: a language L of nested words
over Σ is ω-regular iff there is an MSO sentence φ over Σ that defines L.

24 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

4.3 Temporal Logics

Over infinite words, Linear Temporal Logic (LTL) has long been considered the
temporal logic of choice for program verification, not only because its temporal
operators offer the right abstraction for reasoning about events over time, but also
because it provides a good balance between expressiveness (first-order complete),
conciseness (can be exponentially more succinct compared to automata), and the
complexity of model-checking (linear time in the size of the finite transition system,
and PSPACE in the size of the temporal formula). This has motivated the study of
temporal logics over nested words such as CARET [4] and NWTL [1]. We briefly
review these logics in this section.

Let us first recall the syntax and semantics of LTL (see Chap. 2). Given a set
AP of atomic propositions, a formula of propositional LTL is built from atomic
propositions, logical connectives (such as conjunction ∧, disjunction ∨, negation ¬,
implication→), and temporal operators (such as next©, always 2, eventually 3,
and until U). An LTL formula is evaluated with respect to an infinite sequence w =
a1a2 · · · over Σ = 2AP, that is, each observation a j is an assignment of truth values
to the propositions in AP. The semantics of LTL is defined using the satisfaction
relation (w, j) |= φ , which means that the formula φ is satisfied at position j in the
model w. Example rules for evaluation are: (w, j) |= p, for an atomic proposition
p, if the observation w j assigns the value 1 to p; (w, j) |=©φ if (w, j + 1) |= φ ;
(w, j) |=2φ if (w,k) |= φ for every position k≥ j; and (w, j) |= φ1Uφ2 if there exists
a position k ≥ j such that (w,k) |= φ2 and (w, l) |= φ1 for all positions j ≤ l < k.

In the revised setting of nested words, a formula is interpreted over a nested word
w over the set Σ = 2AP of observations. To motivate the definition of new temporal
operators, let us examine the nested word shown in Fig. 7. Notice that unlike a
linear sequence, the graph-like structure of a nested word means that one can define
different kinds of paths. If we ignore the nesting edges, and focus on the linear
sequence of positions, we obtain the linear path, and we can continue to interpret
LTL operators over this linear path. In this example, the sequence 1,2,3,4, . . . ,13,14
of positions forms the linear path. Suppose we want to express the requirement that,
along a global program execution, every write to a variable is followed by a read
(see the automaton in Fig. 8 (a)). If wr and rd denote the atomic propositions that
capture write and read operations, respectively, then the requirement is expressed
by the LTL formula:

2 [wr →3rd]

4.3.1 Abstract Next

In a nested word, a call position has two successors: a linear edge to the next po-
sition, and a nesting edge to the matching return. This motivates adding, besides
the original LTL operator © corresponding to the linear successor, another next
operator, called abstract-next, denoted©a. Its semantics is defined by the rule:

Model Checking Procedural Programs 25

(w, j) |=©aφ holds if the position j is a call position, has a matching return
position l (that is, j ; l), and (w, l) |= φ .

It is easy to establish that the abstract-next operator is not definable in LTL. In the
classical verification formalisms such as Hoare logic, correctness of procedures is
expressed using pre and post conditions. Partial correctness of a procedure P spec-
ifies that if the pre-condition p holds when the procedure P is invoked, if the pro-
cedure terminates, the post-condition q is satisfied upon return. Total correctness, in
addition, requires the procedure to terminate. Assume that all calls to the procedure
P are characterized by the proposition clP. Then, the requirement

2 [(clP ∧ p) →©a q]

expresses the total correctness, while

2 [(clP ∧ p ∧ ©a True) →©a q]

expresses the partial correctness.

4.3.2 Abstract Paths

An abstract path in a nested word w is a sequence of positions i1, i2, . . . i j such that,
for each 1 ≤ l < j, either il is a call position with matching return position il+1,
or il is an internal or a return position and il+1 equals il + 1 and is not a return
position. For a nested word that models an execution of a procedural program, the
abstract path starting at a position inside a procedure P is obtained by successive
applications of internal and nesting edges, and skips over invocations of other pro-
cedures called from P. In the nested word of Fig. 7, examples of abstract paths are
1,14, and 2,3,4,12,13, and 5,6,7,10,11, and 8,9. We can now define the abstract
versions of temporal operators such as abstract-always 2a, abstract-eventually 3a,
and abstract-until Ua. The semantics of these operators is defined by interpreting
them over abstract paths. For example,

(w, j) |= φ1U
a φ2 if there exists an abstract path j = i1, i2, . . . ik such that

(w, ik) |= φ2 and (w, il) |= φ1 for all 1≤ l < k.

That is, φ1U
a φ2 holds if there is abstract path leading to a position satisfying φ2

such that at all preceding positions along this abstract path φ1 holds. We can use
these abstract modalities to specify context-bounded requirements. Let us revisit
the requirement that if a procedure writes to a variable, then it (that is, the same
invocation of the same procedure) will later read it (see the NWA of Fig. 8 (b)). The
requirement is expressed by the following formula over abstract paths:

2 [wr →3a rd]

26 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

4.3.3 Summary Paths

A summary path between positions i and j, with i < j, of a nested word w is a se-
quence i = i1, i2 . . . ik = j of positions such that for 1≤ l < k, if il is a matched call
with a matching return position r ≤ j then il+1 = r, else il+1 = il + 1. Intuitively, a
summary path between i and j is the “shortest” path from i to j that one can construct
using linear and nesting edges. For example, in the nested word of Figure 7, the
summary path between positions 2 and 14 is the sequence 2,3,4,12,13,14, while
the summary path between positions 2 and 11 is the sequence 2,3,4,5,6,7,10,11.
The summary-versions of temporal operators such as summary-until Uσ , are de-
fined by interpreting the temporal modalities over the summary paths. While not
particularly natural for specifying program requirements, the interest in the sum-
mary paths stems from their theoretical expressiveness: the expressiveness of the
logic with abstract-next, and its past dual, abstract-previous, and summary-until,
and its past dual, summary-since, coincides exactly with the first-order logic over
nested words (that is, logic with first-order variables, quantification over first-order
variables, logical connectives, binary predicates x = y + 1, x < y, x ; y, and unary
predicates corresponding to call, ret, and atomic propositions) [1]. This result is
the analog of the result that the expressiveness of LTL coincides with the first-order
logic over words. Global, abstract, and other versions of temporal modalities are
definable using first-order logic over nested words, and this implies that require-
ments about abstract paths can be defined using modalities over summary paths.
It seems unlikely that a similar completeness result holds for abstract modalities
(more specifically, it is conjectured, but not proved, that the logic CARET [4] is not
first-order complete).

4.3.4 Model Checking

Chapter 7 discusses the tableau-based approach to checking satisfiability and model
checking of LTL. This approach can be extended to temporal logics over nested
words. In the sequel, we use NWTL to denote the logic with all the connectives we
have discussed so far, and also their past duals. Given an NWTL formula ϕ , we can
construct a BNWA Aϕ such that (1) L(Aϕ) contains exactly those nested words that
satisfy ϕ , and (2) the size of Aϕ is 2O(|ϕ|). To check whether ϕ is satisfiable, we can
test whether the language of Aϕ is nonempty, and to check whether all executions
of an RSM M satisfy the NWTL specification ϕ , we can test language-emptiness
of the product of the automata AM and A¬ϕ . Both satisfiability and model checking
problems for NWTL are EXPTIME-complete.

The construction of the BNWA Aϕ corresponding to the NWTL formula ϕ fol-
lows the same recipe as the tableau construction for LTL discussed in Chap. 7. We
first define the set Closure(ϕ) of formulas; the linear and hierarchical states of Aϕ

are subsets of Closure(ϕ) that satisfy local consistency requirements; the transitions
of Aϕ are defined so that next-time requirements are correctly propagated along the
linear edges, and the abstract-next-time requirements are correctly propagated along

Model Checking Procedural Programs 27

the nesting edges; and each until-formula in the closure gives a Büchi acceptance
condition that ensures eventual fulfillment of the until obligations (this results in a
generalized Büchi acceptance condition, which can be translated to Büchi accep-
tance condition by introducing a counter as described in Chap. 7). We refer the
reader to [1] for details, but illustrate the essence of the construction by focusing on
the abstract-until formulas of the form φ1U

aφ2.
The closure contains propositions call, ret, and int, that indicate the position

types. Additionally, a proposition top is used to indicate whether the current posi-
tion is “top-level”: a position i of a nested word w is top-level if it is not within a
pair of matching call-return positions, that is, there are no positions j and k such
that j < i< k and j ; k.

The closure rule for the abstract-until formula says that if φ1U
aφ2 is in Closure(ϕ)

then so are the formulas φ1, φ2,©(φ1U
aφ2) and©a(φ1U

aφ2). The size of the clo-
sure is linear in |ϕ|.

States correspond to subsets of the closure that satisfy consistency requirements.
Sample consistency requirements on a state Φ ⊆ Closure(ϕ) are: exactly one of
call, ret, and int, belongs to Φ , and φ1U

aφ2 ∈ Φ iff either φ2 ∈ Φ , or (φ1 ∈ Φ

and call∈Φ and©a(φ1U
aφ2)∈Φ) or (φ1 ∈Φ and call 6∈Φ and©ret 6∈Φ and

©(φ1U
aφ2)∈Φ). Note this rule for the abstract-until formula captures its semantics

inductively: to satisfy the formula φ1U
aφ2 at a position either φ2 is satisfied in that

position, or at a call position, φ1 is satisfied and the formula is propagated along
the nesting edge, or at a return/internal position, φ1 is satisfied and the formula is
propagated along the linear edge, provided the linear successor is not a return.

The transitions of the automaton ensure that the desired propagation expressed by
next and abstract-next formulas in a state is enforced. If there is an internal transition
from state Φ to state Ψ , then it must be the case that top ∈ Φ iff top ∈Ψ and for
each©ψ ∈ Closure(ϕ), ψ ∈Ψ iff©ψ ∈ Φ . If there is a call transition from state
Φ to state Φl while propagating state Φh on the nesting edge, then it must be the
case that either none of Φ , Ψl and Ψh contain top, or top ∈Φ and exactly one of Ψl
and Ψh contains top; and for each©ψ ∈ Closure(ϕ), ψ ∈Ψl iff©ψ ∈Φ ; and for
each©aψ ∈Closure(ϕ), ψ ∈Ψh iff©aψ ∈Φ . Finally, if there is a return transition
to state Ψ from state Φl using the incoming hierarchical state Φh, then it must be the
case that top 6∈Φl , and top ∈Φh iff top ∈Ψ ; for each©ψ ∈ Closure(ϕ), ψ ∈Ψ

iff©ψ ∈Φl ; and for each©aψ ∈ Closure(ϕ), ψ ∈Φh iff ψ ∈Φl .
The Büchi acceptance condition to ensure the eventual fulfillment of the abstract-

until formula φ1U
aφ2 demands that some state Φ such that top ∈ Φ and either

φ2 ∈ Φ or φ1U
aφ2 6∈ Φ repeats infinitely often. This is based on the fact that the

fulfillment of an abstract-until can be delayed forever by the propagation rules only
along an abstract path that contains only top-level positions.

28 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

5 Bibliographical Remarks

5.1 Summarization

Two early papers proposing general frameworks for computing procedure sum-
maries in the context of inter-procedural program analysis are [25] by Cousot and
Cousot and [49] by Sharir and Pnueli. There is a lot of subsequent work aimed at
investigating efficient techniques for various kinds of abstract domains to account
for data manipulated by the program, and designing efficient and precise algorith-
mic techniques for special classes of properties (c.f. [44, 46, 40, 31]). In particular,
Reps et al. propose in [44] efficient algorithms for inter-procedural data-flow analy-
sis based on graph reachability that is similar to checking reachability in pushdown
systems. The tool Bebop by Ball and Rajamani [10] allows to verify sequential
Boolean programs with procedure calls using basically the reachability analysis al-
gorithm of [44]. The model of recursive state machines was defined in [2] as a gen-
eralization of the model of hierarchical state machines [7], and this work gives a de-
tailed analysis of the complexity of solving reachability, fair computation problem,
and model-checking problems for temporal logics such as LTL and CTL∗, based
on summarization. Working directly with RSMs allows an understanding of the de-
pendence of the computational complexity on the number of entry/exit nodes per
component.

5.2 Saturation

The regularity of pre∗(L) for a regular language L seems to have been first observed
by Büchi in his work on regular canonical systems (see Chap. 5 of [16]), and has
been rediscovered many times in slightly different contexts, for instance by Caucal
in [22] and by Book and Otto in [11]. Book and Otto also present the saturation
algorithms for monadic string-rewriting systems, a model closely related to PDSs.

Saturation algorithms for computing sets of forward- and backward-reachable
configurations of PDSs were presented by Bouajjani et al. and Finkel et al. [13, 30].
Efficient versions with a detailed complexity analysis were obtained by Esparza et
al. [26] (see also [47]). Symbolic versions of the algorithms were implemented in the
MOPED tool by Schwoon and applied to verification problems of Linux drivers [29,
47]. The jMOPED tool adds to MOPED a front-end that transforms Java programs
into extended pushdown systems and allows to apply MOPED [52].

The saturation technique has been extended in a number of ways. We briefly
summarize some of the contributions.

Bouajjani et al. extend the technique to alternating pushdown systems, and ap-
ply the algorithms to the global1 model-checking problem of CTL [13]. They show

1 Here global model-checking means computing the set of all states in a given model that satisfy
some given formula.

Model Checking Procedural Programs 29

how to compute for a given CTL formula φ and a PDS P the set of all configu-
rations of P satisfying φ . A different extension leading to a similar algorithm for
CTL∗ is described by Esparza et al. in [27]. An efficient algorithm for CTL model-
checking based on solving emptiness of alternating Büchi pushdown automata has
been defined in [50].

Reps et al. show how to apply saturation to weighted pushdown systems, in which
transition rules are labeled with elements of an idempotent semiring [45]. The satu-
ration algorithm is extended so that it returns not only the sets pre∗(C) and post∗(C),
but for each configuration c in them the total weight of the paths leading from c to
C or from C to c, respectively. The extensions are implemented in the Weighted
Automata Library WALi [38]. While the original motivation of this work was to
obtain a general framework for inter-procedural data-flow analysis, the developed
framework and algorithms were shown to be also useful for other applications, like
modeling and verifying trust-management systems [37].

Cachat describes a saturation algorithm for computing the attractor of a regular
set C of configurations of a pushdown game system [21]. A pushdown game system
is a PDS in whose states are partitioned into two sets under the control of two dif-
ferent players. A play is a sequence of configurations, where the successor of the
current configuration is decided by the player owning its control state. The attrac-
tor is the set of configurations such that the first player can force the play to visit
C. Hague and Ong extend Cachat’s ideas to algorithms for computing the winning
regions of a given parity game [33], and for a given PDS P and a given formula φ

of the µ-calculus the set of all configurations of P satisfying φ [34].
Higher-order pushdown systems (HPDSs) generalize PDSs by allowing nested

stacks, i.e., stacks whose elements can be stacks themselves. Bouajjani and Meyer
extend the saturation algorithm to HPDSs with one control state, also called higher-
order context-free processes [15]. Hague and Ong extend the results to general
HPDSs [32]. Seth gives an alternative construction for order 2 [48].

5.3 Temporal Logic Model Checking

Model checking of pushdown systems has been studied extensively for both linear-
and branching-time requirements (see e.g. [20, 55, 13, 30, 26, 27, 42, 2]). The decid-
ability of the model-checking problem of pushdown systems for the propositional
µ-calculus (which subsumes in expressiveness regular propositional temporal log-
ics such as LTL and CTL∗) is a consequence of [39]. However, the model-checking
algorithm derived from this result, that is based on a reduction to satisfiability prob-
lem of the monadic second order logic of two successors, has a non-elementary
complexity. In [17], an elementary algorithm is provided for the class of context-
free processes (equivalent to pushdown systems with a single control state) and the
alternation-free (branching-time) propositional µ-calculus. Basically, this algorithm
generalizes the summarization construction as it is based on computing pairs of
pre/post conditions of process. The algorithm has been extended to the full class of

30 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

pushdown systems, but still for alternation-free µ-calculus) in [18], and then later to
the full propositional µ-calculus, but only for context-free processes, in [19]. The al-
gorithms defined in this series of work have been implemented in a tool called “The
Fixpoint-Analysis Machine” [51] that has been used in practice for tackling various
problems such as intra/inter-procedural data flow analysis, model-checking, and be-
havioral equivalence checking. The first elementary model-checking algorithm for
the full class of pushdown systems and the full propositional µ-calculus has been
defined in [53].The algorithm is based on solving pushdown parity games. A global
model-checking algorithm for this general case has been provided first in [43]. In
[53], the model-checking problem of pushdown systems for the full µ-calculus is
shown to be EXPTIME-complete. In [54], the problem is shown to be EXPTIME-
complete even for CTL, and that it is PSPACE-complete for the EF fragment. In
[13], the problem is shown to be EXPTIME-complete for LTL and the linear-time
propositional µ-calculus.

Even though the general problem of checking context-free properties of push-
down automata is undecidable, algorithmic solutions have been proposed for check-
ing many different kinds of non-regular properties. For example, numerical proper-
ties have been considered in [12, 14] where model-checking algorithms are defined
for extension of temporal logics with constraints on the number of occurrences of
events/states along computations. These logics allow for instance to express proper-
ties such as “between every two pairs of events a and b, there is the same number of
c’s and d’s”. The model-checking algorithms proposed for these logics are based on
reductions to the satisfiability of Presburger arithmetics, using the fact that Parikh-
images of context-free languages are semi-linear sets [41].

Non-numerical properties have also been considered in several works. For in-
stance, access control requirements such as “a module A should be invoked only if
the module B belongs to the call-stack”, and bounds on stack size such as “if the
number of interrupt-handlers in the call-stack currently is less than 5, then a prop-
erty p holds” require inspection of the stack, and decision procedures for certain
classes of stack properties have been proposed [36, 28, 23].

The idea of explicit modalities that can reference to the matching structure of
calls and returns first appears in the temporal logic CARET [4]. Subsequently, the
model of visibly pushdown automata [5] and the theory of regular languages of
nested words [6] were proposed as a unifying basis to explain which class of prop-
erties are algorithmically checkable against pushdown models. [1] defines the tem-
poral logic NWTL, and presents a systematic study of linear temporal logics over
nested words. [24] describes a specification language called PAL that extends the
query language of the software model checker BLAST [35] for writing nested word
monitors, along with a tool to instrument C code.

The nested structure on words can be extended to trees, and automata on nested
trees are studied in [3]. A version of the µ-calculus on nested structures has been
defined in [3], and is shown to be more powerful than the standard µ-calculus, while
at the same time remaining robust and tractable.

Model Checking Procedural Programs 31

References

1. R. Alur, M. Arenas, P. Barcelo, K. Etessami, N. Immerman, and L. Libkin. First-order and
temporal logics for nested words. In Proceedings of the 22nd IEEE Symposium on Logic in
Computer Science, pages 151–160, 2007.

2. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and M. Yannakakis. Analysis of
recursive state machines. ACM Trans. Program. Lang. Syst., 27(4):786–818, 2005.

3. R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global program
flows. In Proceedings of the 33rd Annual ACM Symposium on Principles of Programming
Languages, pages 153–165, 2006.

4. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns. In
TACAS’04: Tenth International Conference on Tools and Algorithms for the Construction and
Analysis of Software, LNCS 2988, pages 467–481. Springer, 2004.

5. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th ACM
Symposium on Theory of Computing, pages 202–211, 2004.

6. R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the ACM, 56(3),
2009.

7. R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM Transac-
tions on Programming Languages and Systems, 23(3):1–31, 2001.

8. T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking with SLAM.
Commun. ACM, 54(7):68–76, 2011.

9. T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs. In SPIN
00: SPIN Workshop, LNCS 1885, pages 113–130. Springer, 2000.

10. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs. In
SPIN, volume 1885 of Lecture Notes in Computer Science, pages 113–130. Springer, 2000.

11. R. Book and F. Otto. String-Rewriting Systems. Springer, 1993.
12. A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of nonregular prop-

erties for nonregular processes. In 10th Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS), San Diego, CA, USA, pages 123–133. IEEE Computer Society, 1995.

13. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Appli-
cation to model checking. In Proc. CONCUR’97, LNCS 1243, pages 135–150, 1997.

14. A. Bouajjani and P. Habermehl. Constrained properties, semilinear systems, and petri nets. In
7th International Conference on Concurrency Theory (CONCUR), Pisa, Italy, volume 1119
of Lecture Notes in Computer Science, pages 481–497. Springer, 1996.

15. A. Bouajjani and A. Meyer. Symbolic reachability analysis of higher-order context-free pro-
cesses. In K. Lodaya and M. Mahajan, editors, FSTTCS, volume 3328 of Lecture Notes in
Computer Science, pages 135–147. Springer, 2004.

16. J. R. Büchi. Finite Automata, Their Algebras and Grammars. Springer, 1988. D. Siefkes
(ed.).

17. O. Burkart and B. Steffen. Model checking for context-free processes. In 3rd International
Conference on Concurrency Theory (CONCUR), Stony Brook, NY, USA, volume 630 of Lec-
ture Notes in Computer Science, pages 123–137. Springer, 1992.

18. O. Burkart and B. Steffen. Pushdown processes: Parallel composition and model checking. In
5th International Conference on Concurrency Theory (CONCUR), Uppsala, Sweden, volume
836 of Lecture Notes in Computer Science, pages 98–113. Springer, 1994.

19. O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite sequen-
tial processes. In 24th International Colloquium on Automata, Languages and Programming
(ICALP), Bologna, Italy, volume 1256 of Lecture Notes in Computer Science, pages 419–429.
Springer, 1997.

20. O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite sequential
processes. Theor. Comput. Sci., 221(1-2):251–270, 1999.

21. T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In P. Widmayer, F. T.
Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz, and R. Conejo, editors, ICALP, volume 2380
of Lecture Notes in Computer Science, pages 704–715. Springer, 2002.

32 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

22. D. Caucal. On the regular structure of prefix rewriting. Theor. Comput. Sci., 106(1):61–86,
1992.

23. K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T. Henzinger, and J. Palsberg. Stack size analysis
for interrupt driven programs. Information and Computation, 194(2):144–174, 2004.

24. S. Chaudhuri and R. Alur. Instrumenting C programs with nested word monitors. In
SPIN2007: 14th Internation Workshop on Model Checking Software, 2007.

25. P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures.
In IFIP WG2.2 Conference on Formal Description of Programming Concepts, pages 237–277.
North-Holland Publishing Company, 1978.

26. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model check-
ing pushdown systems. In Proceedings of CAV 2000, LNCS 1855, pages 232–247. Springer,
2000.

27. J. Esparza, A. Kucera, and S. Schwoon. Model checking ltl with regular valuations for push-
down systems. Inf. Comput., 186(2):355–376, 2003.

28. J. Esparza, A. Kucera, and S. S. Schwoon. Model-checking LTL with regular valuations for
pushdown systems. Information and Computation, 186(2):355–376, 2003.

29. J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs. In Proc.
CAV’01, LNCS 2102, pages 324–336. Springer, 2001.

30. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking push-
down systems. Electr. Notes Theor. Comput. Sci., 9:27–37, 1997.

31. S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural analysis. In
ESOP, volume 4421 of Lecture Notes in Computer Science, pages 253–267. Springer, 2007.

32. M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analysis for higher-order push-
down systems. In H. Seidl, editor, FoSSaCS, volume 4423 of Lecture Notes in Computer
Science, pages 213–227. Springer, 2007.

33. M. Hague and C.-H. L. Ong. Winning regions of pushdown parity games: A saturation
method. In M. Bravetti and G. Zavattaro, editors, CONCUR, volume 5710 of Lecture Notes
in Computer Science, pages 384–398. Springer, 2009.

34. M. Hague and C.-H. L. Ong. A saturation method for the modal -calculus over pushdown
systems. Inf. Comput., 209(5):799–821, 2011.

35. T. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre, and W. Weimer. Temporal-safety
proofs for systems code. In CAV 02: Proc. of 14th Conf. on Computer Aided Verification,
LNCS 2404, pages 526–538. Springer, 2002.

36. T. Jensen, D. L. Metayer, and T. Thorn. Verification of control flow based security properties.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 89–103, 1999.

37. S. Jha, S. Schwoon, H. Wang, and T. W. Reps. Weighted pushdown systems and trust-
management systems. In TACAS, volume 3920 of Lecture Notes in Computer Science, pages
1–26. Springer, 2006.

38. N. Kidd, A. Lal, and T. Reps. WALi: The weighted automata library. See
http://www.cs.wisc.edu/wpis/wpds/.

39. D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and second-order
logic. Theor. Comput. Sci., 37:51–75, 1985.

40. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. In
POPL, pages 330–341. ACM, 2004.

41. R. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.
42. N. Piterman and M. Y. Vardi. Global model-checking of infinite-state systems. In R. Alur and

D. Peled, editors, CAV, volume 3114 of Lecture Notes in Computer Science, pages 387–400.
Springer, 2004.

43. N. Piterman and M. Y. Vardi. Global model-checking of infinite-state systems. In 16th Inter-
national Conference on Computer Aided Verification (CAV), Boston, MA, USA, volume 3114
of Lecture Notes in Computer Science, pages 387–400. Springer, 2004.

44. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reach-
ability. In Proceedings of POPL, pages 49–61. ACM, 1995.

Model Checking Procedural Programs 33

45. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their application
to interprocedural dataflow analysis. Science of Computer Programming, 58(1–2):206–263,
October 2005. Special Issue on the Static Analysis Symposium 2003.

46. S. Sagiv, T. W. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with applica-
tions to constant propagation. Theoretical Computer Science, 167(1&2):131–170, 1996.

47. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, TU München, 2002.
48. A. Seth. An alternative construction in symbolic reachability analysis of second order push-

down systems. Int. J. Found. Comput. Sci., 19(4):983–998, 2008.
49. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In Program

flow analysis: Theory and applications, pages 189–233. Prentice-Hall, 1981.
50. F. Song and T. Touili. Efficient CTL model checking for pushdown systems. In CONCUR’11,

volume 6901 of Lecture Notes in Computer Science, pages 434–449. Springer, 2011.
51. B. Steffen, A. Claßen, M. Klein, J. Knoop, and T. Margaria. The fixpoint-analysis machine.

In 6th International Conference on Concurrency Theory (CONCUR), Philadelphia, PA, USA,
volume 962 of Lecture Notes in Computer Science, pages 72–87. Springer, 1995.

52. D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jMoped: A Java bytecode checker based
on Moped. In Proceedings of TACAS 2005, LNCS 3440, pages 541–545. Springer, 2005.

53. I. Walukiewicz. Pushdown processes: Games and model checking. In 8th International Con-
ference on Computer Aided Verification (CAV), New Brunswick, NJ, USA, volume 1102 of
Lecture Notes in Computer Science, pages 62–74. Springer, 1996.

54. I. Walukiewicz. Model checking ctl properties of pushdown systems. In 20th Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), New
Delhi, India, volume 1974 of Lecture Notes in Computer Science, pages 127–138. Springer,
2000.

55. I. Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comput., 164(2):234–
263, 2001.

