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Program Verification 

 
 Does a program P meet its specification ϕ ? 

 
 Historical roots: Hoare logic for formalizing correctness of 

structured programs (late 1960s) 
 

 Early examples: sorting, graph algorithms 
 

 Provides calculus for pre/post conditions of structured programs 
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Sample Proof: Selection Sort 

SelectionSort(int A[],n) { 
  i := 0; 
  while(i < n−1) { 
    v := i; 
    j := i + 1; 
    while (j < n) { 
      if (A[j]<A[v]) 
        v := j ; 
      j++; 
    } 
    swap(A[i], A[v]); 
    i++; 
  } 
  return A; 
} 

post:  ∀k : 0 ≤ k <n ⇒ A[k] ≤ A[k + 1]  

Invariant: 
∀k1,k2. (0≤k1<k2<n)  ∧  (k1<i) 
  ⇒ A[k1] ≤ A[k2] 

Invariant: 
i<j ∧ 
i≤v<n ∧ 
(∀k1,k2. (0≤k1<k2<n) ∧ (k1<i)  
 ⇒ A[k1] ≤ A[k2]) ∧ 
(∀k. (i≤k<j) ∧  (k≥0) 
 ⇒ A[v] ≤ A[k]) 
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Towards Practical Program Verification 

1. Focus on simpler verification tasks: 
 Not full functional correctness, just absence of specific errors 
 Success story: Array accesses are within bounds 

 
2. Provide automation as much as possible 

 Program verification is undecidable 
 Programmer asked to give annotations when absolutely needed 
 Consistency of annotations checked by SMT solvers 

 
3. Use verification technology for synergistic tasks 

  Directed testing 
 Bug localization 
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Selection Sort: Array Access Correctness 

SelectionSort(int A[],n) { 
  i := 0; 
  while(i < n−1) { 
    v := i; 
    j := i + 1; 
    while (j < n) { 
      assert (0 ≤ j < n) & (0 ≤ v < n) 
      if (A[j]<A[v]) 
        v := j ; 
      j++; 
    } 
    assert (0 ≤ i <n) & (0 ≤ v < n) 
    swap(A[i], A[v]); 
    j++; 
  } 
  return A; 
} 13 



Selection Sort: Proving Assertions 

SelectionSort(int A[],n) { 
  i := 0; 
  while(i < n−1) { 
    v := i; 
    j := i + 1; 
    while (j < n) { 
      assert 0≤j<n & 0≤v<n 
      if (A[j]<A[v]) 
        v := j ; 
      j++; 
    } 
    assert (0 ≤ i < n) & 0 ≤ v<n 
    swap(A[i], A[v]); 
    i++; 
  } 
  return A; 
} 
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Check validity of formula 
 
(i = 0) & (i < n-1) ⇒ (0 ≤ i <n) 

And validity of formula 
 
(0 ≤ i < n) & (i’ = i+1) & (i’ < n-1) 
  ⇒ (0 ≤ i’ < n) 



Discharging Verification Conditions 

 Check validity of  
 (i = 0) & (i < n-1) ⇒ (0 ≤ i < n) 

 
 Reduces to checking satisfiability of 
 (i = 0) & (i < n-1) & ~(0 ≤ i < n) 
 
 Core computational problem: checking satisfiability 
 

Classical satisfiability: SAT  
 Boolean variables + Logical connectives  
 

SMT: Constraints over typed variables 
 i and n are of type Integer or BitVector[32] 
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A Brief History of SAT  

2001 
Chaff 

≈10k var 

1986 
BDDs 

≈ 100 var 

1992 
GSAT 

≈ 300 var 

1996 
Stålmarck 
≈ 1000 var 

 

1996 
GRASP 
≈1k var 

1960 
DP 

≈10 var 

1988 
SOCRATES 

≈ 300 var 

1994 
Hannibal 
≈ 3k var 

1962 
DLL 

≈ 10 var 

1952 
Quine 

≈ 10 var 
1996 
SATO 

≈1k var 

2002 
Berkmin 
≈10k var 

 Fundamental Thm of CS: SAT is NP-complete (Cook, 1971) 
 Canonical computationally intractable problem 
 Driver for theoretical understanding of complexity 

 
 Enormous progress in scale of problems that can be solved 

 Inference: Discover new constraints dynamically   
 Exhaustive search with pruning  
 Algorithm engineering: Exploit architecture  for speed-up 

 
 SAT solvers as the canonical computational hammer! 

2005 
MiniSAT 
≈20k var 
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SMT: Satisfiability Modulo Theories 

 Computational problem: Find a satisfying assignment to a formula 
 

Boolean + Int types, logical connectives, arithmetic operators 
Bit-vectors + bit-manipulation operations in C 
Boolean + Int types, logical/arithmetic ops + Uninterpreted functs 

 
 “Modulo Theory”: Interpretation for symbols is fixed 
 

Can use specialized algorithms (e.g. for arithmetic constraints) 
 

 Progress in improved SMT solvers 
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Little Engines of Proof 
 
 SAT; Linear arithmetic; Congruence closure 



SMT Success Story 
SMT Solvers   Verification Tools 
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SMT-LIB Standardized Interchange Format (smt-lib.org) 
 Problem classification + Benchmark repositories 
 LIA, LIA_UF, LRA, QF_LIA, … 
  
+ Annual Competition (smt-competition.org) 

Z3 Yices CVC4 MathSAT5 

CBMC SAGE VCC Spec# 



Synthesis Puzzle 1: Prisoners and a switch 

There are N prisoners who get together initially to decide on a strategy. 
Then, each prisoner is taken to own isolated cell. A guard goes to a cell 
and brings its occupant to a room with a switch. The switch can be either 
up or down. The prisoner can inspect the switch, then can decide to leave 
it as it is or flick it, and is then taken back to the cell. The guard repeats 
this process infinitely often. The order in which the prisoners are 
brought to the cell is arbitrary. However, the guard assures fairness: 
every prisoner will visit the room infinitely often. At any time, a prisoner 
can declare “I know for sure that every prisoner has visited the room 
with the switch at least once.” When the guard hears this declaration, if 
the statement is indeed correct, all prisoners are set free, but if the 
statement is false, all prisoners are destined to stay imprisoned forever. 
 
What strategy should the prisoners use to ensure their eventual 
freedom? 
 
Reference: Cartalk Puzzler (see also Rustan Leino’s page of puzzles) 
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Outline of Lectures 

 
 Program Verification and SMT Solvers 
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Executable 
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Challenges 

 Software development still remains expensive and error-prone… 
 

 What it means to “code” hasn’t changed… 
 

 Verification/testing done after design  
Costly system design cycle 
Many reported bugs not fixed 

 
 Computing power is transforming many engineering disciplines with the 

notable exception of programming itself 
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Opportunities 

 Enormous computing power available on desktops of today’s 
programmers 
 

 Impressive strides in formal verification technology  
Highly optimized SAT solvers that can solve real-world problems 
Off-the-shelf tools for static analysis, machine learning… 

 
 Demand for new software development approaches 

Receptive industry 
Shifting goal of system design from performance to predictability 
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Synthesis: A Plausible Solution? 

 Classical: Mapping a high-level (e.g. logical) specification to an 
executable implementation 

 
 Benefits of synthesis: 

Make programming easier: Specify “what” and not “how” 
Eliminate costly gap between programming and verification 

 
 Impressive progress, but … 

High computational complexity 
Writing complete logical specifications is a challenging task 

 
 Recent shift in focus: simpler synthesis tasks 
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Parallel Parking by Sketching 
    Ref: Chaudhuri, Solar-Lezama (PLDI 2010) 

Err = 0.0; 
for(t = 0; t<T; t+=dT){ 
  if(stage==STRAIGHT){ 
    if(t > ??) stage= INTURN;        
  } 
  if(stage==INTURN){ 
    car.ang = car.ang - ??; 
    if(t > ??) stage= OUTTURN; 
  } 
  if(stage==OUTTURN){ 
    car.ang = car.ang + ??; 
    if(t > ??) break; 
  } 
  simulate_car(car); 
  Err += check_collision(car); 
} 
Err += check_destination(car); 

Backup straight 

Straighten 

Turn 

When to start turning? 

How much to turn? 
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Autograder: Feedback on Programming Homeworks 
      Singh et al (PLDI 2013) 

Student Solution P 
+ Reference Solution R 
+ Error Model 
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Find min no of edits to P so 
as to make it equivalent to R 



Paraglide: From Sequential to Parallel Code 
     Ref: Vechev et al (POPL 2010) 

Target: Highly concurrent work queue in C/C++ 
Infers minimal number of fences needed for synchronization 
Unexpected, correct, minimal solutions now deployed in IBM 

Paraglide 

 

bool add(int key){  
 atomic 
   Entry *pred,*curr,*entry                  
   locate(pred,curr,key);                       
   k = (curr->key == key)  
   if (k) return false 
   entry = new Entry() 
   entry->next = curr 
   pred->next = entry 
   return true 
} 

Sequential Program 

Architecture Description 

bool add(int key) { 
 Entry *pred,*curr,*entry                  
restart:  
 locate(pred,curr,key)                       
 k = (curr->key == key)  
 if (k) return false 
 entry = new Entry() 
 entry->next = curr 
 val= CAS(&pred->next,<curr,0>,<entry,0>) 
 if (!val) goto restart 
 return true 
} 
 

Minimal Synchronization 
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Input  Output 
(425)-706-7709 425-706-7709 
510.220.5586 510-220-5586 
1 425 235 7654 425-235-7654 
425 745-8139 425-745-8139 

FlashFill: Programming by Examples 
     Ref: Gulwani (POPL 2011) 

Infers desired Excel macro program 
Iterative: user gives examples and corrections 
Incorporated in commercial version of Microsoft Excel 
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Superoptimizing Compiler 

 Given a program P, find a “better” equivalent program P’  
 
 multiply (x[1,n], y[1,n]) { 
   x1 = x[1,n/2]; 
   x2 = x[n/2+1, n]; 
   y1 = y[1, n/2]; 
   y2 = y[n/2+1, n]; 
   a = x1 * y1; 
   b = shift( x1 * y2, n/2); 
   c = shift( x2 * y1, n/2); 
   d = shift( x2 * y2, n); 
   return ( a + b + c + d) 
} 

Replace with equivalent code 
with only 3 multiplications 
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Automatic Invariant Generation 

SelectionSort(int A[],n) { 
  i := 0; 
  while(i < n−1) { 
    v := i; 
    j := i + 1; 
    while (j < n) { 
      if (A[j]<A[v]) 
        v := j ; 
      j++; 
    } 
    swap(A[i], A[v]); 
    i++; 
  } 
  return A; 
} 

post:  ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]   

Invariant: ? 

Invariant: ? 
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Constraint solver 

Template-based Automatic Invariant Generation 

SelectionSort(int A[],n) { 
  i :=0; 
  while(i < n−1) { 
    v := i; 
    j := i + 1; 
    while (j < n) { 
      if (A[j]<A[v]) 
        v := j ; 
      j++; 
    } 
    swap(A[i], A[v]); 
    i++; 
  } 
  return A; 
} 

post:  ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]  

Invariant: 
∀k1,k2. ? ∧ ? 

Invariant: 
? ∧ ? ∧ 
(∀k1,k2. ? ∧ ?) ∧ (∀k. ? ∧ ?) 
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Template-based Automatic Invariant Generation 

SelectionSort(int A[],n) { 
  i :=0; 
  while(i < n−1) { 
    v := i; 
    j := i + 1; 
    while (j < n) { 
      if (A[j]<A[v]) 
        v := j ; 
      j++; 
    } 
    swap(A[i], A[v]); 
    i++; 
  } 
  return A; 
} 

post:  ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]  

Invariant: 
∀k1,k2. 0≤k1<k2<n ∧ 
     k1<i ⇒ A[k1]≤A[k2] 

Invariant: 
i<j ∧ 
i≤v<n ∧ 
(∀k1,k2. 0≤k1<k2<n ∧ 
   k1<i ⇒ A[k1]≤A[k2]) ∧ 
(∀k. i1≤k<j ∧ 
   k≥0 ⇒ A[v]≤A[k]) 
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Syntax-Guided Program Synthesis 

 Core computational problem: Find a program P such that 
 1. P is in a set E of programs (syntactic constraint) 
 2. P satisfies spec ϕ (semantic constraint) 

 
 Common theme to many recent efforts 

Sketch (Bodik, Solar-Lezama et al) 
FlashFill (Gulwani et al) 
Super-optimization (Schkufza et al) 
Invariant generation (Many recent efforts…) 
Genetic programming + model checking (Peled et al) 
TRANSIT for protocol synthesis (Udupa et al) 
Oracle-guided program synthesis (Jha et al) 
Implicit programming: Scala^Z3 (Kuncak et al) 
Auto-grader (Singh et al) 
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SyGuS Solvers   Synthesis Tools 

34 

SYNTH-LIB Standardized Interchange Format 
 Problem classification + Benchmark repository 
  
+ SyGuS-COMP (Competition for solvers) held at FLoC 2014 

Program 
optimization 

Program 
sketching 

Programming 
by examples 

Invariant 
generation 

Potential Techniques for Solvers: 
      Learning, Constraint solvers, Enumerative/stochastic search 
       
Little engines of synthesis ? 



Prisoners and a switch: Solution 

Suppose the switch is initially ON, and all know this fact. 
 
Initially prisoners elect a leader. 
 
Strategy for non-leader: 
 If the switch is OFF, leave it as it is, 
 else turn it OFF, provided you have never done this before. 
 
Strategy for leader: 
 Leader maintains a counter, initially 0 
 If the switch is ON, leave it as it is, 
 else turn it ON and increment counter. 
 If counter equals N-1, declare “everyone has visited at least once” 
 
Exercise: what if the initial state of switch is not known? 

35 



Outline of Lectures 

 
 Program Verification and SMT Solvers 

 
 Motivation for Syntax-Guided Synthesis (SyGuS) 

 
 Formalization of SyGuS 

 
 Solving SyGuS 

 
  TRANSIT for Protocol Specification 
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Syntax-Guided Synthesis (SyGuS) Problem 

 Fix a background theory T: fixes types and operations 
 

 Function to be synthesized: name f along with its type 
 General case: multiple functions to be synthesized 

 
 Inputs to SyGuS problem: 

Specification ϕ  
 Typed formula using symbols in T +  symbol f  

Set E of expressions given by a context-free grammar 
 Set of candidate expressions that use symbols in T 

 
 Computational problem:  
 Output e in E such that ϕ[f/e] is valid (in theory T) 
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SyGuS Example 

 Theory QF-LIA (Quantifier-free linear integer arithmetic) 
 Types: Integers and Booleans 
 Logical connectives, Conditionals, and Linear arithmetic 
 Quantifier-free formulas 
 
 Function to be synthesized  f (int x, int y) : int 

 
 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y) 

 
 Candidate Implementations: Linear expressions 
 LinExp := x | y | Const | LinExp + LinExp | LinExp - LinExp 

 
 No solution exists 
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SyGuS Example 

 Theory QF-LIA 
 

 Function to be synthesized: f (int x, int y) : int 
 

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y) 
 

 Candidate Implementations: Conditional expressions without + 
 

 Term := x | y | Const | If-Then-Else (Cond, Term, Term) 
 Cond := Term <= Term | Cond & Cond | ~ Cond | (Cond) 

 
 Possible solution: 
 If-Then-Else (x ≤ y,  y, x) 

 

 
39 



Let Expressions and Auxiliary Variables 

 Synthesized expression maps directly to a straight-line program 
 

 Grammar derivations correspond to expression parse-trees 
  
 How to capture common subexpressions (which map to aux vars) ? 

 
 Solution: Allow “let” expressions  
 
 Candidate-expressions for a function f(int x, int y) : int 
 T := (let [z = U] in  z + z) 
 U := x | y | Const | (U) | U + U | U*U 
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Optimality 

 Specification for f(int x) : int 
 x ≤ f(x) &  -x ≤ f(x) 
 
 Set E of implementations: Conditional linear expressions  

 
 Multiple solutions are possible 
 If-Then-Else (0 ≤ x , x, 0) 
 If-Then-Else (0 ≤ x , x, -x) 

 
 Which solution should we prefer?  
 Need a way to rank solutions (e.g. size of parse tree) 
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From SMT-LIB to SYNTH-LIB 

(set-logic LIA)  
(synth-fun max2 ((x Int) (y Int)) Int  
     ((Start Int (x y 0 1  
                     (+ Start Start)  
                     (- Start Start)  
       (ite StartBool Start Start)))  
    (StartBool Bool ((and StartBool StartBool)  
                             (or StartBool StartBool)  
                              (not StartBool)  
                              (<= Start Start))))  
 (declare-var x Int)  
 (declare-var y Int)  
 (constraint (>= (max2 x y) x))  
 (constraint (>= (max2 x y) y))  
 (constraint (or (= x (max2 x y)) (= y (max2 x y))))  
 (check-synth) 
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Invariant Generation as SyGuS 

43 

 
 
bool x, y, z 
int  a, b, c 
 
  while( Test ) { 
    loop-body 
    …. 
 
} 

 Goal: Find inductive loop invariant automatically 

 Function to be synthesized 
   Inv (bool x, bool z, int a, int b) : bool 

 Compile loop-body into a logical predicate 
     Body(x,y,z,a,b,c, x’,y’,z’,a’,b’,c’) 

 Specification: 
   Inv & Body & Test’ ⇒ Inv’ 

 Template for set of candidate invariants 
       Term := a | b | Const | Term + Term | If-Then-Else (Cond, Term, Term) 
        Cond := x | z | Cond & Cond | ~ Cond | (Cond) 
 



Safety Verification of Transition Systems 

 Symbolic Transition System S 
1. Set X of typed state variables 
2. Initial states given by formula Init(X) 
3. Transition relation given by formula Trans(X,X’) 

 
 Safety verification problem: Given a property ϕ(X), show that every 

reachable state of S satisfies ϕ 
 

 Solution 1: Compute set of reachable states of S by iterated fixpoint 
 

 Solution 2: Find inductive invariant separating initial and bad states 
 

 Formalized as SyGuS problem: Synthesize Inv(X) s.t. 
1. Init(X) -> Inv(X) 
2. Inv(X) -> ~ϕ(X) 
3. Inv(X) & Trans(X,X’) -> Inv(X’) 
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Program Optimization as SyGuS 
 Type matrix: 2x2 Matrix with Bit-vector[32] entries 
 Theory: Bit-vectors with arithmetic 
 
 Function to be synthesized f(matrix A, B) : matrix 

 
 Specification: f(A,B) is matrix product 
 f(A,B)[1,1] = A[1,1]*B[1,1] + A[1,2]*B[2,1] 
 … 
 Set of candidate implementations 
 Expressions with at most 7 occurrences of * 
 Unrestricted use of + 
 let expressions allowed 
 
 Benefit of saving this one multiplication: Strassen’s O(n2.87) algorithm 

for matrix multiplication 
 

 Can we use only 6 multiplication operations? 45 



Program Sketching as SyGuS 

 Sketch programming system 
 C program P with ?? (holes) 
 Find expressions for holes so as to satisfy assertions 
 
 Each hole corresponds to a separate function symbol 

 
 Specification: P with holes filled in satisfies assertions 
 Loops/recursive calls in P need to be unrolled fixed no of times 

 
 Set of candidate implementations for each hole: 
 All type-consistent expressions 

 
 Not yet explored:  
 How to exploit flexibility of separation betn syntactic and  
 semantic constraints for computational benefits? 
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SyGuS Benchmarks 

 Over 500 benchmarks (see www.sygus.org) 
 

  Hacker’s Delight: Tricky bit-vector manipulation programs 
 

 Invariant generation: From software verification competition 
 

  Robotic controller: Autonomous vehicle routing  
 

  ICFP Programming competition 
 

 Competition of solvers (held at FLoC 2014) 

47 
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Synthesis Puzzle 2: Cinderella v. stepmother 

There are five buckets arranged in a circle. Each bucket can hold upto B 
liters of water. Initially all buckets are empty. The wicked stepmother 
and Cinderella take turns playing the following game: 
 
Stepmother brings 1 liter of additional water and splits it into 5 buckets. 
If any of the buckets overflows, stepmother wins the game. 
If not, Cinderella gets to empty two adjacent buckets. If the game goes 
on forever, Cinderella wins. 
 
Find B* such that if B < B* the stepmother has a winning strategy, and if 
B = B*, Cinderella has a winning strategy. 
And give a proof that your strategies work! 
 
 
Reference: Bodlaender et al, IFIP TCS 2012 
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Solving SyGuS 

 Is SyGuS same as solving SMT formulas with quantifier alternation? 
 
 SyGuS can sometimes be reduced to Quantified-SMT, but not always 

Set E is all linear expressions over input vars x, y 
 SyGuS reduces to Exists a,b,c. Forall X. ϕ [ f/ ax+by+c] 

Set E is all conditional expressions 
 SyGuS cannot be reduced to deciding a formula in LIA 

 
 Syntactic structure of the set E of candidate implementations can be 

used effectively by a solver 
 

 Existing work on solving Quantified-SMT formulas suggests solution 
strategies for SyGuS 
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SyGuS as Active Learning 

51 

Learning  
Algorithm 

Verification  
Oracle 

Initial examples I 

Fail Success 

Candidate 
Expression 

Counterexample 

Concept class: Set E of expressions 
 
Examples: Concrete input values  



Counter-Example Guided Inductive Synthesis 

 Concrete inputs I for learning f(x,y) = { (x=a,y=b),  (x=a’,y=b’), ….} 
 
 Learning algorithm proposes candidate expression e such that ϕ[f/e] 

holds for all values in I 
 

 Check if ϕ [f/e] is valid for all values using SMT solver 
 

 If valid, then stop and return e 
 

 If not, let (x=α, y=β, ….) be a counter-example (satisfies ~ ϕ[f/e]) 
 
 Add (x=α, y=β) to tests I  for next iteration 
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CEGIS Example 

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y) 
 

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else 
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Learning 
Algorithm 

Verification  
Oracle 

Examples = { } 
Candidate 
f(x,y) = x 

Example 
(x=0, y=1) 



CEGIS Example 

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y) 
 

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else 
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Learning 
Algorithm  

Verification  
Oracle 

Examples =  
{(x=0, y=1) } Candidate 

f(x,y) = y 

Example 
(x=1, y=0) 



CEGIS Example 

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y) 
 
 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else 
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Learning 
Algorithm  

Verification  
Oracle 

Examples =  
{(x=0, y=1)  
 (x=1, y=0) 
 (x=0, y=0) 
 (x=1, y=1)} 

Candidate 
ITE (x ≤ y, y,x) 

Success 



SyGuS Solutions 

 CEGIS approach (Solar-Lezama et al, ASPLOS’08) 
 

 Similar strategies for solving quantified formulas and invariant 
generation 
 

 Learning strategies based on: 
Enumerative (search with pruning): Udupa et al (PLDI’13) 
Symbolic (solving constraints): Gulwani et al (PLDI’11) 
Stochastic (probabilistic walk): Schkufza et al (ASPLOS’13) 
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Enumerative Learning 

 Find an expression consistent with a given set of concrete examples 
 

 Enumerate expressions in increasing size, and evaluate each expression 
on all concrete inputs to check consistency 
 

 Key optimization for efficient pruning of search space: 
 Expressions e1 and e2 are equivalent  
       if e1(a,b)=e2(a,b) on all concrete values (x=a,y=b) in Examples 
 Only one representative among equivalent subexpressions needs 
     to be considered for building larger expressions 

 
 Fast and robust for learning expressions with ~ 15 nodes 
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Enumerative CEGIS 
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x (x=0, y =1) 

y (x=1, y =0) 

1 (x=0, y =0) 

x + y (x=1, y =1) 

ITE(x<y,y,x) Verified 

200 expressions searched  
4 verifier calls, 80 stored expressions 

Synthesized Expr. Counter-Example 



Symbolic Learning 

 Use a constraint solver for both the synthesis and verification step. 
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 Each production in the grammar is thought of as a component. 
 Input and Output ports of every component are typed. 

 A well-typed loop-free program comprising these component 
corresponds to an expression DAG from the grammar. 

ITE 

Term 

Term 

Term 

Cond 
>= 

Term Term 

Cond 

+ 

Term Term 

Term 

x 
Term 

y 
Term 

0 
Term 

1 
Term 



Symbolic Learning 
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x 
n1 

x 
n2 

y 
n3 

y 
n4 

0 
n5 

1 
n6 

+ 
n7 

+ 
n8 

>= 
n9 

ITE 
n10 

 Synthesis Constraints: 
 Shape is a DAG, Types are consistent 
 Spec ϕ[f/e] is satisfied on every concrete input values in I 

 Use an SMT solver (Z3) to find a satisfying solution. 

 If synthesis fails, try increasing the number of occurrences of 
components in the library in an outer loop 

 Start with a library consisting of some number of occurrences of each 
component.  
 



Symbolic CEGIS 
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o1 = x  (x=-1, y =0) 

o1 = x < x 
o2 = ITE(o1,y,x)  
  
 

(x=0, y =-1) 

o1 = y > x 
o2 = ITE(o1,y,x)  Verified 

1 instance of each library operator 

Synthesized Expr. Counter-Example 



Stochastic Learning 

 Idea: Find desired expression e by probabilistic walk on graph where 
nodes are expressions and edges capture single-edits 
 

 Metropolis-Hastings Algorithm: Given a probability distribution P over 
domain X, and an ergodic Markov chain over X, samples from X 
 

 Fix expression size n. X is the set of expressions En of size n. P(e) 
∝Score(e) (“Extent to which e meets the spec φ”) 
 

 For a given set I of concrete inputs, Score(e) = exp( - 0.5 Wrong(e)), 
where Wrong(e) = No of examples in I for which ~ ϕ [f/e] 
 

 Score(e) is large when Wrong(e) is small. Expressions e with Wrong(e) = 
0 more likely to be chosen in the limit than any other expression 
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 Initial candidate expression e sampled uniformly from En 
 

 When Score(e) = 1, return e 
 

 Pick node v in parse tree of e uniformly at random. Replace subtree 
rooted at e with subtree of same size, sampled uniformly 
 

Stochastic Learning 
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+ 

z 

e 

+ 

y x 

+ 

z 

e’ 

- 

1 z 

 
 With probability min{ 1, Score(e’)/Score(e) }, replace e with e’ 

 
 Outer loop responsible for updating expression size n 

 



Stochastic CEGIS 
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e = ITE(x<0, y, x)   

Let n = 6 (786 possible expressions of size 6) 

CEXs = {(-1,-4), (-1,-3), (-1,-2), (1,1), (1,2)} 

pI(e) = 1/768 

e’ = ITE(y<0, y, x)   pC(e’) = 1/6 * 1/48 

pM(e  e’) = min(1,Score(e’)/Score(e)) 
= exp(-0.5)  

e’’ = ITE(x<y, y, x)   pC(e’’) = 1/6 * 1/48 

pM(e  e’’) = min(1,Score(e’’)/Score(e)) 
= 1                                              



Benchmarks and Implementation 

 Prototype implementation of Enumerative/Symbolic/Stochastic CEGIS 
 

 Benchmarks: 
Bit-manipulation programs from Hacker’s delight 
Integer arithmetic: Find max, search in sorted array 
Challenge problems such as computing Morton’s number 

 
 Multiple variants of each benchmark by varying grammar 
 
 Results are not conclusive as implementations are unoptimized, but 

offers first opportunity to compare solution strategies 
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Evaluation 

 Enumerative CEGIS has best performance, and solves many benchmarks 
within seconds 

 Potential problem: Synthesis of complex constants 
 

 Symbolic CEGIS is unable to find answers on most benchmarks 
 Caveat: Sketch succeeds on many of these 
 
 Choice of grammar has impact on synthesis time 
 When E is set of all possible expressions, solvers struggle 
 
 None of the solvers succeed on some benchmarks 
 
 Bottomline: Improving solvers is a great opportunity for research ! 
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Stepmother wins if B<2 

Round 1:  
 Stepmother: Add 0.5 lit to buckets 1 and 3 
 Cinderella: Empty one of the buckets, say third 
 
Round 2:  
 Stepmother: Add 0.25 lit to bucket 1 and 0.75 lit to bucket 3 
 Cinderella: Empty bucket 3 
… 
 
After n rounds, bucket 1 contains 1 – 1/2n lit of water 
 
If B < 2, then after some N rounds bucket 1 contains more than B-1 lit of 
water, stepmother can win in (N+1)th round by adding 1 lit to it 
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Cinderella wins if B=2 

Cinderella maintains the following invariant: 
 (a1 + a3 < 1) & (a2 <= 1) & (a4 = 0) & (a5 = 0) 
 a1, a2, a3, a4, a5: water quantities starting at some bucket 
 
If this condition holds after n rounds, stepmother cannot win in the next 
round. Thus, if this is an invariant, then Cinderella wins. 
 
Invariant holds initially. 
 
Assume the invariant holds at the beginning of a round. 
 
Goal: Cinderella can enforce the invariant, no matter what the stepmother 
does,  after her own turn. 
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Cinderella wins if B=2 

At the beginning of the round, we have: 
 (a1 + a3 < 1) & (a2 <= 1) & (a4 = 0) & (a5 = 0) 
 
 b1, b2, b3, b4, b5: water quantities after stepmother’s turn 
 
Claim: b1 + b3 + b4 + b5 < 2 
 
Either (b1 + b4  < 1) or (b3 + b5 < 1) 
 
Suppose (b1 + b4 < 1). Other case similar. 
 
Cinderella strategy: empty buckets 2 and 3. 
We have: (b4 + b2 < 1) & (b5 <= 1) & (b2 = 0) & (b3 = 0) 
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SyGuS Recap 

 Contribution: Formalization of syntax-guided synthesis problem 
 Not language specific such as Sketch, Scala^Z3,… 
 Not as low-level as (quantified) SMT 

 
 Advantages compared to classical synthesis 

1. Set E can be used to restrict search (computational benefits) 
2. Programmer flexibility: Mix of specification styles 
3. Set E can restrict implementation for resource optimization 
4. Beyond deductive solution strategies: Search, inductive inference

  
 Prototype implementation of 3 solution strategies 

 
 Initial set of benchmarks, competition (held in FLoC 2014), and 

evaluation (Winner: Enumerative CEGIS) 
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Outline of Lectures 

 
 Program Verification and SMT Solvers 

 
 Motivation for Syntax-Guided Synthesis (SyGuS) 

 
 Formalization of SyGuS 

 
 Solving SyGuS 

 
  TRANSIT for Protocol Specification 
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Protocols 

 Design challenging due to asynchronous model of communication 
 

 Examples: Cache coherence protocols, Distributed coordination 
algorithms 
 

 Successful application domain for model checking  
SPIN: Distributed algorithms 
Murphi, SMV: Hardware protocols 
Industrial adoption (Intel, IBM, …) 

 
 Correctness involves both safety and liveness properties 
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Traditional Specifications 
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Traditional Specifications 

Rule 
State = D_BUSY & InMsg.MType = UNBLOCK_S ==> 
Begin 
    State = D_M; 
    sharers = SetUnion(Sharers, SetOf(InMsg.Sender)); 
    SendMsg({Type = ACK, 
             Acks = 1, 
             InMsg.Sender}); 
EndRule; 
 
  
 



75 

Traditional Specifications 

Invariants 

Model Check/ 
Verify 

Counter- 
example 

Verified 
Protocol 
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Invariants 

Model Check/ 
Verify 

Counter- 
example 

Verified 
Protocol 

I know exactly what to do 
in this particular scenario!! 

BUT… 
Need to figure out how to 

fix the code 
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Can we make the process of specifying 
distributed protocols easier? 



TRANSIT Specification 
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Scenarios 

Scenarios: 
• Describe execution traces 
• Translated from informal specs 
• Can be symbolic 
• Can be concrete 



Scenarios 
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TRANSIT Specification 
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Protocol Skeleton: 
• Communication architecture 
• Message types 
• Set of processes 
• State variables for processes 

Scenarios 

TRANSIT Specification 



TRANSIT Specification 
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Scenarios 

Invariants 

TRANSIT 

Programmer 
Inputs 

Model Check/ 
Verify 

Counter- 
example 

Verified 
Protocol 

I know exactly what to do in this 
particular scenario!! 

AND… 
That’s EXACTLY what I’m going to 
specify with additional snippets!! 
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Goal 

Protocol Skeleton 
+  

Scenarios 
+ 

Invariants 
 
 

Completed Protocol Specification 



Example Scenario 

Directory Cache1 Cache2 Cache3 

Shared Invalid 

GetM 

Inv-M Busy 

Inv 

Inv 

Acks=1 
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Snippets and Scenarios 

 Scenarios: 
Sequence of message exchanges/transitions 
Transcribed from informal specs 
A collection of snippets 

 
 Snippets: 

Describe actions on a single transition 
Relate current values of variables to updated values 
Can be concrete or symbolic (Concolic) 

Scenarios 



Concolic Snippet Example 1 

Process Directory 
Transition  
 From Shared  
 To Busy 
    Input channel:  ReqMsg 
 Output channels: RespMsg, InvMsg 
  
 Guard: 
     ReqMsg.Sender = 1 & ReqMsg.Type = GetM & Sharers ={2,3} 
 
 Update: 
      RespMsg.Acks = 2; 
      RespMsg.Destination = 1; 
      InvMsg.Destination = {2,3} 
 
    
  Values of all variables can be concrete  
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Concolic Snippet Example 2 

Process Directory 
Transition  
 From Shared  
 To Busy 
    Input channel:  ReqMsg 
 Output channels: RespMsg, InvMsg 
  
 Guard: 
     ReqMsg.Type = GetM & ReqMsg.Sender = 1 
 
 Update: 
      RespMsg.Acks =  Size ( Sharers ); 
      RespMsg.Destination = 1; 
      InvMsg.Destination =  Sharers 
 
    
  Same snippet can mix concrete and symbolic values  
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Concolic Snippet Example 3 

Process Directory 
Transition  
 From Shared  
 To Busy 
    Input channel:  ReqMsg 
 Output channels: RespMsg, InvMsg 
  
 Guard: 
     ReqMsg.Type = GetM 
 
 Update: 
      RespMsg.Acks =  Size ( Sharers ); 
      RespMsg.Destination = ReqMsg.Sender; 
      InvMsg.Destination =  Sharers – ReqMsg.Sender 
 
    
  Values of all variables can be symbolic: 

Classical EFSM description maps directly to such snippets  87 
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 To generate a completed protocol TRANSIT needs to: 
 Find guards and updates consistent with given snippets 

 
 
 
 
 
 
 
 

 Expression grammar: Int, Bool, BitVector types 
 Arithmetic, bit-vector and conditional operations 
 Finding desired expressions exactly the SyGuS problem 
 Enumerative CEGIS solver 

From Snippets to Transition Code 

Rule 
 
==> 
Begin 
    State =  
    sharers =  
    SendAck({             }); 
EndRule; 



Iterative Design 

From Shared  To Busy 
 Input channel:  ReqMsg 
Output channels: RespMsg, InvMsg 
    Guard: 
        ReqMsg.Sender = 1 & ReqMsg.Type = GetM & Sharers ={2,3} 
    Update: 
         RespMsg.Acks = 2; 
         InvMsg.Destination = {2,3} 

Based on this single example, synthesis tool computes update:  
 
         RespMsg.Acks = Size(Sharers); 
         InvMsg.Destination = Sharers 

But this is incorrect, and protocol deadlocks   
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Iterative Design Continued 

From Shared  To Busy 
 Input channel:  ReqMsg 
Output channels: RespMsg, InvMsg 
    Guard: 
        ReqMsg.Sender = 1 & ReqMsg.Type = GetM & Sharers ={1,2} 
    Update: 
         RespMsg.Acks = 1; 
         InvMsg.Destination = {2} 

Based on two snippets, synthesis tool computes update:  
 
         RespMsg.Acks = Size(Sharers + ReqMsg.Sender) - 1; 
         InvMsg.Destination = Sharers – ReqMsg.Sender 

Designer adds another concrete example  
 (corresponds to case when Sender is a Sharer)   
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Implementation Evaluation 
 
 Starting point: cache coherence protocols described in 
  A Primer on memory Consistency and Cache Coherence 
   Sorin, Hill, Wood,  2011 
 Translated EFSMs for 2 protocols into (mostly concrete) snippets 

VI Protocol MSI Protocol 

Snippets used 19 77 

Update expressions synthesized 49 157 

Guard expressions synthesized 17 45 

Expressions explored 3.1K 44.5K 

Synthesis time 5 sec 134 sec 

States explored by Murphi 140K 154K 
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Methodology Evaluation 
 
 Case study: Can a user with no  
     prior experience in designing  
     cache coherence protocol build  
     a correct protocol from  
     textbook description? 
 
 
 
 Case study A: Version of MSI protocol with non-blocking directory 

progress 
 

 Case study B: Augmenting MSI protocol with E state to obtain MESI 
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Sample Transitions 
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Sample Scenarios 

Transition from I to S 
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Experience Report 

Case study A Case study B 

Snippets used in first version 19 96 

Time to implement first version 2 hrs 6 hrs 

Snippets used in final version 86 108 

Number of iterations 13 8 

Total manual effort 6 hrs 13 hrs 

Number of counterexamples examined 5 6 
Synthesis time in last iteration 52 min 15 min 

Number of update expressions synthesized 175 260 

Number of guard expressions synthesized 80 74 

States explored in final protocol 7.7 million 1.5 million 
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Usability: SGI Origin 

 Specified the protocol used in SGI Origin (complex, industrial 
protocol) 
 

 Intermixed concrete and symbolic snippets 
 

 Successfully converged to a correct protocol 
 

 Computational effort: final synthesis took 30 minutes of CPU time 



Recap: TRANSIT for Protocol Design 
 
 Specification: Protocol skeleton + Scenarios (with concolic snippets) + 

Invariants 
 

 Computational effort needed to “complete” the protocol is not high 
 

 Case studies suggest that, at least to translate text-book descriptions 
to working implementations, the proposed methodology helps designer 
 

 “Model checker and SyGuS solver in the loop” is plausible for design 
environments 
 

  Work in Progress:  
Incorporate liveness properties 
Improved solvers for completion 
Infer auxiliary states 
Better feedback to designers 
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 Paradigm shift in synthesis: 
  Old: Allow more concise, high-level description 
  New: Designer uses multiple, natural formats,  
   Synthesis tool assists in discovering tricky logic 

 
 Paradigm shift in design tools: 
  Old : Any compiler transformation must be polynomial-time 
  New: Computational intractability not a show-stopper 

 
 Common theme: Guided search in a space of programs to find one that 

meets multiple design goals 
  A bit like model checking, but can be interactive! 
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Synthesis 2.0 


	Slide Number 1
	Program Verification
	Classical Program Synthesis
	Syntax-Guided Synthesis
	References 
	Outline of Lectures
	Software Design
	Programming Technology
	Verification Technology
	Program Verification
	Sample Proof: Selection Sort
	Towards Practical Program Verification
	Selection Sort: Array Access Correctness
	Selection Sort: Proving Assertions
	Discharging Verification Conditions
	A Brief History of SAT 
	SMT: Satisfiability Modulo Theories
	SMT Success Story�SMT Solvers 		Verification Tools
	Synthesis Puzzle 1: Prisoners and a switch
	Outline of Lectures
	Verification Technology
	Challenges
	Opportunities
	Synthesis: A Plausible Solution?
	Parallel Parking by Sketching�				Ref: Chaudhuri, Solar-Lezama (PLDI 2010)
	Autograder: Feedback on Programming Homeworks�						Singh et al (PLDI 2013)
	Paraglide: From Sequential to Parallel Code�					Ref: Vechev et al (POPL 2010)
	FlashFill: Programming by Examples�					Ref: Gulwani (POPL 2011)
	Superoptimizing Compiler
	Automatic Invariant Generation
	Template-based Automatic Invariant Generation
	Template-based Automatic Invariant Generation
	Syntax-Guided Program Synthesis
	SyGuS Solvers 		Synthesis Tools
	Prisoners and a switch: Solution
	Outline of Lectures
	Syntax-Guided Synthesis (SyGuS) Problem
	SyGuS Example
	SyGuS Example
	Let Expressions and Auxiliary Variables
	Optimality
	From SMT-LIB to SYNTH-LIB
	Invariant Generation as SyGuS
	Safety Verification of Transition Systems
	Program Optimization as SyGuS
	Program Sketching as SyGuS
	SyGuS Benchmarks
	Synthesis Puzzle 2: Cinderella v. stepmother
	Outline of Lectures
	Solving SyGuS
	SyGuS as Active Learning
	Counter-Example Guided Inductive Synthesis
	CEGIS Example
	CEGIS Example
	CEGIS Example
	SyGuS Solutions
	Enumerative Learning
	Enumerative CEGIS
	Symbolic Learning
	Symbolic Learning
	Symbolic CEGIS
	Stochastic Learning
	Stochastic Learning
	Stochastic CEGIS
	Benchmarks and Implementation
	Evaluation
	Stepmother wins if B<2
	Cinderella wins if B=2
	Cinderella wins if B=2
	SyGuS Recap
	Outline of Lectures
	Protocols
	Traditional Specifications
	Traditional Specifications
	Traditional Specifications
	Slide Number 76
	Slide Number 77
	TRANSIT Specification
	TRANSIT Specification
	TRANSIT Specification
	TRANSIT Specification
	Goal
	Example Scenario
	Snippets and Scenarios
	Concolic Snippet Example 1
	Concolic Snippet Example 2
	Concolic Snippet Example 3
	From Snippets to Transition Code
	Iterative Design
	Iterative Design Continued
	Implementation Evaluation
	Methodology Evaluation
	Slide Number 93
	Slide Number 94
	Experience Report
	Usability: SGI Origin
	Recap: TRANSIT for Protocol Design
	Slide Number 98

