
Syntax-Guided Synthesis

Rajeev Alur

Marktoberdorf Summer School 2014

1

Program Verification

2

Verifier

Proof of
correctness or

Witness of a bug

Specification S Program P

Classical Program Synthesis

3

Synthesizer

Specification S
High Level
 “WHAT”

Program P
Low Level
“HOW”

Syntax-Guided Synthesis

4

Synthesizer

Program P

Specification S
given by

logical constraints

Syntactic restrictions R
on the

space of programs

www.sygus.org

References

 Syntax Guided Synthesis
 R. Alur, R. Bodik, G. Juniwal, M. Martin, M. Raghothaman,
 S.Seshia, R. Singh, A. Solar-Lezama, E. Torlak, A. Udupa

 Proc. FMCAD, 2013

 TRANSIT: Specifying protocols with concolic snippets
 A. Udupa, A. Raghavan, J. Deshmukh, S. Mador-Haim,
 M. Martin, R. Alur

 Proc. PLDI 2013

5

Outline of Lectures

 Program Verification and SMT Solvers

 Motivation for Syntax-Guided Synthesis (SyGuS)

 Formalization of SyGuS

 Solving SyGuS

 TRANSIT for Protocol Specification

6

Software Design

 Platform

Compiler

Program Libraries Specifications

Executable

Analysis Tool

Tests

7

Programming Technology

 Platform

Compiler

Program Libraries

Executable

High-level programming abstractions

(object-oriented, declarative, domain-specific..)

Semantics-preserving transformations

(low-level optimizations, type inference ..)

8

Verification Technology

 Platform

Specifications

Executable

Analysis Tool

Tests Program

Automated verification

(model checking, static analysis,
specification-based testing ..)

9

Program Verification

 Does a program P meet its specification ϕ ?

 Historical roots: Hoare logic for formalizing correctness of

structured programs (late 1960s)

 Early examples: sorting, graph algorithms

 Provides calculus for pre/post conditions of structured programs

10

Sample Proof: Selection Sort

SelectionSort(int A[],n) {
 i := 0;
 while(i < n−1) {
 v := i;
 j := i + 1;
 while (j < n) {
 if (A[j]<A[v])
 v := j ;
 j++;
 }
 swap(A[i], A[v]);
 i++;
 }
 return A;
}

post: ∀k : 0 ≤ k <n ⇒ A[k] ≤ A[k + 1]

Invariant:
∀k1,k2. (0≤k1<k2<n) ∧ (k1<i)
 ⇒ A[k1] ≤ A[k2]

Invariant:
i<j ∧
i≤v<n ∧
(∀k1,k2. (0≤k1<k2<n) ∧ (k1<i)
 ⇒ A[k1] ≤ A[k2]) ∧
(∀k. (i≤k<j) ∧ (k≥0)
 ⇒ A[v] ≤ A[k])

11

Towards Practical Program Verification

1. Focus on simpler verification tasks:
 Not full functional correctness, just absence of specific errors
 Success story: Array accesses are within bounds

2. Provide automation as much as possible

 Program verification is undecidable
 Programmer asked to give annotations when absolutely needed
 Consistency of annotations checked by SMT solvers

3. Use verification technology for synergistic tasks

 Directed testing
 Bug localization

12

Selection Sort: Array Access Correctness

SelectionSort(int A[],n) {
 i := 0;
 while(i < n−1) {
 v := i;
 j := i + 1;
 while (j < n) {
 assert (0 ≤ j < n) & (0 ≤ v < n)
 if (A[j]<A[v])
 v := j ;
 j++;
 }
 assert (0 ≤ i <n) & (0 ≤ v < n)
 swap(A[i], A[v]);
 j++;
 }
 return A;
} 13

Selection Sort: Proving Assertions

SelectionSort(int A[],n) {
 i := 0;
 while(i < n−1) {
 v := i;
 j := i + 1;
 while (j < n) {
 assert 0≤j<n & 0≤v<n
 if (A[j]<A[v])
 v := j ;
 j++;
 }
 assert (0 ≤ i < n) & 0 ≤ v<n
 swap(A[i], A[v]);
 i++;
 }
 return A;
}

14

Check validity of formula

(i = 0) & (i < n-1) ⇒ (0 ≤ i <n)

And validity of formula

(0 ≤ i < n) & (i’ = i+1) & (i’ < n-1)
 ⇒ (0 ≤ i’ < n)

Discharging Verification Conditions

 Check validity of
 (i = 0) & (i < n-1) ⇒ (0 ≤ i < n)

 Reduces to checking satisfiability of
 (i = 0) & (i < n-1) & ~(0 ≤ i < n)

 Core computational problem: checking satisfiability

Classical satisfiability: SAT
 Boolean variables + Logical connectives

SMT: Constraints over typed variables
 i and n are of type Integer or BitVector[32]

15

A Brief History of SAT

2001
Chaff

≈10k var

1986
BDDs

≈ 100 var

1992
GSAT

≈ 300 var

1996
Stålmarck
≈ 1000 var

1996
GRASP
≈1k var

1960
DP

≈10 var

1988
SOCRATES

≈ 300 var

1994
Hannibal
≈ 3k var

1962
DLL

≈ 10 var

1952
Quine

≈ 10 var
1996
SATO

≈1k var

2002
Berkmin
≈10k var

 Fundamental Thm of CS: SAT is NP-complete (Cook, 1971)
 Canonical computationally intractable problem
 Driver for theoretical understanding of complexity

 Enormous progress in scale of problems that can be solved

 Inference: Discover new constraints dynamically
 Exhaustive search with pruning
 Algorithm engineering: Exploit architecture for speed-up

 SAT solvers as the canonical computational hammer!

2005
MiniSAT
≈20k var

16

SMT: Satisfiability Modulo Theories

 Computational problem: Find a satisfying assignment to a formula

Boolean + Int types, logical connectives, arithmetic operators
Bit-vectors + bit-manipulation operations in C
Boolean + Int types, logical/arithmetic ops + Uninterpreted functs

 “Modulo Theory”: Interpretation for symbols is fixed

Can use specialized algorithms (e.g. for arithmetic constraints)

 Progress in improved SMT solvers

17

Little Engines of Proof

 SAT; Linear arithmetic; Congruence closure

SMT Success Story
SMT Solvers Verification Tools

18

SMT-LIB Standardized Interchange Format (smt-lib.org)
 Problem classification + Benchmark repositories
 LIA, LIA_UF, LRA, QF_LIA, …

+ Annual Competition (smt-competition.org)

Z3 Yices CVC4 MathSAT5

CBMC SAGE VCC Spec#

Synthesis Puzzle 1: Prisoners and a switch

There are N prisoners who get together initially to decide on a strategy.
Then, each prisoner is taken to own isolated cell. A guard goes to a cell
and brings its occupant to a room with a switch. The switch can be either
up or down. The prisoner can inspect the switch, then can decide to leave
it as it is or flick it, and is then taken back to the cell. The guard repeats
this process infinitely often. The order in which the prisoners are
brought to the cell is arbitrary. However, the guard assures fairness:
every prisoner will visit the room infinitely often. At any time, a prisoner
can declare “I know for sure that every prisoner has visited the room
with the switch at least once.” When the guard hears this declaration, if
the statement is indeed correct, all prisoners are set free, but if the
statement is false, all prisoners are destined to stay imprisoned forever.

What strategy should the prisoners use to ensure their eventual
freedom?

Reference: Cartalk Puzzler (see also Rustan Leino’s page of puzzles)

19

Outline of Lectures

 Program Verification and SMT Solvers

 Motivation for Syntax-Guided Synthesis (SyGuS)

 Formalization of SyGuS

 Solving SyGuS

 TRANSIT for Protocol Specification

20

Verification Technology

 Platform

Specifications

Executable

Analysis Tool

Tests Program

Automated verification

(model checking, static analysis,
specification-based testing ..)

21

Challenges

 Software development still remains expensive and error-prone…

 What it means to “code” hasn’t changed…

 Verification/testing done after design
Costly system design cycle
Many reported bugs not fixed

 Computing power is transforming many engineering disciplines with the

notable exception of programming itself

22

Opportunities

 Enormous computing power available on desktops of today’s
programmers

 Impressive strides in formal verification technology
Highly optimized SAT solvers that can solve real-world problems
Off-the-shelf tools for static analysis, machine learning…

 Demand for new software development approaches

Receptive industry
Shifting goal of system design from performance to predictability

23

Synthesis: A Plausible Solution?

 Classical: Mapping a high-level (e.g. logical) specification to an
executable implementation

 Benefits of synthesis:

Make programming easier: Specify “what” and not “how”
Eliminate costly gap between programming and verification

 Impressive progress, but …

High computational complexity
Writing complete logical specifications is a challenging task

 Recent shift in focus: simpler synthesis tasks

24

Parallel Parking by Sketching
 Ref: Chaudhuri, Solar-Lezama (PLDI 2010)

Err = 0.0;
for(t = 0; t<T; t+=dT){
 if(stage==STRAIGHT){
 if(t > ??) stage= INTURN;
 }
 if(stage==INTURN){
 car.ang = car.ang - ??;
 if(t > ??) stage= OUTTURN;
 }
 if(stage==OUTTURN){
 car.ang = car.ang + ??;
 if(t > ??) break;
 }
 simulate_car(car);
 Err += check_collision(car);
}
Err += check_destination(car);

Backup straight

Straighten

Turn

When to start turning?

How much to turn?

25

Autograder: Feedback on Programming Homeworks
 Singh et al (PLDI 2013)

Student Solution P
+ Reference Solution R
+ Error Model

26

Find min no of edits to P so
as to make it equivalent to R

Paraglide: From Sequential to Parallel Code
 Ref: Vechev et al (POPL 2010)

Target: Highly concurrent work queue in C/C++
Infers minimal number of fences needed for synchronization
Unexpected, correct, minimal solutions now deployed in IBM

Paraglide



bool add(int key){
 atomic
 Entry *pred,*curr,*entry
 locate(pred,curr,key);
 k = (curr->key == key)
 if (k) return false
 entry = new Entry()
 entry->next = curr
 pred->next = entry
 return true
}

Sequential Program

Architecture Description

bool add(int key) {
 Entry *pred,*curr,*entry
restart:
 locate(pred,curr,key)
 k = (curr->key == key)
 if (k) return false
 entry = new Entry()
 entry->next = curr
 val= CAS(&pred->next,<curr,0>,<entry,0>)
 if (!val) goto restart
 return true
}

Minimal Synchronization

27

Input Output
(425)-706-7709 425-706-7709
510.220.5586 510-220-5586
1 425 235 7654 425-235-7654
425 745-8139 425-745-8139

FlashFill: Programming by Examples
 Ref: Gulwani (POPL 2011)

Infers desired Excel macro program
Iterative: user gives examples and corrections
Incorporated in commercial version of Microsoft Excel

28

Superoptimizing Compiler

 Given a program P, find a “better” equivalent program P’

 multiply (x[1,n], y[1,n]) {
 x1 = x[1,n/2];
 x2 = x[n/2+1, n];
 y1 = y[1, n/2];
 y2 = y[n/2+1, n];
 a = x1 * y1;
 b = shift(x1 * y2, n/2);
 c = shift(x2 * y1, n/2);
 d = shift(x2 * y2, n);
 return (a + b + c + d)
}

Replace with equivalent code
with only 3 multiplications

29

Automatic Invariant Generation

SelectionSort(int A[],n) {
 i := 0;
 while(i < n−1) {
 v := i;
 j := i + 1;
 while (j < n) {
 if (A[j]<A[v])
 v := j ;
 j++;
 }
 swap(A[i], A[v]);
 i++;
 }
 return A;
}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant: ?

Invariant: ?

30

Constraint solver

Template-based Automatic Invariant Generation

SelectionSort(int A[],n) {
 i :=0;
 while(i < n−1) {
 v := i;
 j := i + 1;
 while (j < n) {
 if (A[j]<A[v])
 v := j ;
 j++;
 }
 swap(A[i], A[v]);
 i++;
 }
 return A;
}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant:
∀k1,k2. ? ∧ ?

Invariant:
? ∧ ? ∧
(∀k1,k2. ? ∧ ?) ∧ (∀k. ? ∧ ?)

31

Template-based Automatic Invariant Generation

SelectionSort(int A[],n) {
 i :=0;
 while(i < n−1) {
 v := i;
 j := i + 1;
 while (j < n) {
 if (A[j]<A[v])
 v := j ;
 j++;
 }
 swap(A[i], A[v]);
 i++;
 }
 return A;
}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant:
∀k1,k2. 0≤k1<k2<n ∧
 k1<i ⇒ A[k1]≤A[k2]

Invariant:
i<j ∧
i≤v<n ∧
(∀k1,k2. 0≤k1<k2<n ∧
 k1<i ⇒ A[k1]≤A[k2]) ∧
(∀k. i1≤k<j ∧
 k≥0 ⇒ A[v]≤A[k])

32

Syntax-Guided Program Synthesis

 Core computational problem: Find a program P such that
 1. P is in a set E of programs (syntactic constraint)
 2. P satisfies spec ϕ (semantic constraint)

 Common theme to many recent efforts

Sketch (Bodik, Solar-Lezama et al)
FlashFill (Gulwani et al)
Super-optimization (Schkufza et al)
Invariant generation (Many recent efforts…)
Genetic programming + model checking (Peled et al)
TRANSIT for protocol synthesis (Udupa et al)
Oracle-guided program synthesis (Jha et al)
Implicit programming: Scala^Z3 (Kuncak et al)
Auto-grader (Singh et al)

33

SyGuS Solvers Synthesis Tools

34

SYNTH-LIB Standardized Interchange Format
 Problem classification + Benchmark repository

+ SyGuS-COMP (Competition for solvers) held at FLoC 2014

Program
optimization

Program
sketching

Programming
by examples

Invariant
generation

Potential Techniques for Solvers:
 Learning, Constraint solvers, Enumerative/stochastic search

Little engines of synthesis ?

Prisoners and a switch: Solution

Suppose the switch is initially ON, and all know this fact.

Initially prisoners elect a leader.

Strategy for non-leader:
 If the switch is OFF, leave it as it is,
 else turn it OFF, provided you have never done this before.

Strategy for leader:
 Leader maintains a counter, initially 0
 If the switch is ON, leave it as it is,
 else turn it ON and increment counter.
 If counter equals N-1, declare “everyone has visited at least once”

Exercise: what if the initial state of switch is not known?

35

Outline of Lectures

 Program Verification and SMT Solvers

 Motivation for Syntax-Guided Synthesis (SyGuS)

 Formalization of SyGuS

 Solving SyGuS

 TRANSIT for Protocol Specification

36

Syntax-Guided Synthesis (SyGuS) Problem

 Fix a background theory T: fixes types and operations

 Function to be synthesized: name f along with its type
 General case: multiple functions to be synthesized

 Inputs to SyGuS problem:

Specification ϕ
 Typed formula using symbols in T + symbol f

Set E of expressions given by a context-free grammar
 Set of candidate expressions that use symbols in T

 Computational problem:
 Output e in E such that ϕ[f/e] is valid (in theory T)

37

SyGuS Example

 Theory QF-LIA (Quantifier-free linear integer arithmetic)
 Types: Integers and Booleans
 Logical connectives, Conditionals, and Linear arithmetic
 Quantifier-free formulas

 Function to be synthesized f (int x, int y) : int

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

 Candidate Implementations: Linear expressions
 LinExp := x | y | Const | LinExp + LinExp | LinExp - LinExp

 No solution exists

38

SyGuS Example

 Theory QF-LIA

 Function to be synthesized: f (int x, int y) : int

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

 Candidate Implementations: Conditional expressions without +

 Term := x | y | Const | If-Then-Else (Cond, Term, Term)
 Cond := Term <= Term | Cond & Cond | ~ Cond | (Cond)

 Possible solution:
 If-Then-Else (x ≤ y, y, x)

39

Let Expressions and Auxiliary Variables

 Synthesized expression maps directly to a straight-line program

 Grammar derivations correspond to expression parse-trees

 How to capture common subexpressions (which map to aux vars) ?

 Solution: Allow “let” expressions

 Candidate-expressions for a function f(int x, int y) : int
 T := (let [z = U] in z + z)
 U := x | y | Const | (U) | U + U | U*U

40

Optimality

 Specification for f(int x) : int
 x ≤ f(x) & -x ≤ f(x)

 Set E of implementations: Conditional linear expressions

 Multiple solutions are possible
 If-Then-Else (0 ≤ x , x, 0)
 If-Then-Else (0 ≤ x , x, -x)

 Which solution should we prefer?
 Need a way to rank solutions (e.g. size of parse tree)

41

From SMT-LIB to SYNTH-LIB

(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int
 ((Start Int (x y 0 1
 (+ Start Start)
 (- Start Start)
 (ite StartBool Start Start)))
 (StartBool Bool ((and StartBool StartBool)
 (or StartBool StartBool)
 (not StartBool)
 (<= Start Start))))
 (declare-var x Int)
 (declare-var y Int)
 (constraint (>= (max2 x y) x))
 (constraint (>= (max2 x y) y))
 (constraint (or (= x (max2 x y)) (= y (max2 x y))))
 (check-synth)

42

Invariant Generation as SyGuS

43

bool x, y, z
int a, b, c

 while(Test) {
 loop-body
 ….

}

 Goal: Find inductive loop invariant automatically

 Function to be synthesized
 Inv (bool x, bool z, int a, int b) : bool

 Compile loop-body into a logical predicate
 Body(x,y,z,a,b,c, x’,y’,z’,a’,b’,c’)

 Specification:
 Inv & Body & Test’ ⇒ Inv’

 Template for set of candidate invariants
 Term := a | b | Const | Term + Term | If-Then-Else (Cond, Term, Term)
 Cond := x | z | Cond & Cond | ~ Cond | (Cond)

Safety Verification of Transition Systems

 Symbolic Transition System S
1. Set X of typed state variables
2. Initial states given by formula Init(X)
3. Transition relation given by formula Trans(X,X’)

 Safety verification problem: Given a property ϕ(X), show that every

reachable state of S satisfies ϕ

 Solution 1: Compute set of reachable states of S by iterated fixpoint

 Solution 2: Find inductive invariant separating initial and bad states

 Formalized as SyGuS problem: Synthesize Inv(X) s.t.
1. Init(X) -> Inv(X)
2. Inv(X) -> ~ϕ(X)
3. Inv(X) & Trans(X,X’) -> Inv(X’)

44

Program Optimization as SyGuS
 Type matrix: 2x2 Matrix with Bit-vector[32] entries
 Theory: Bit-vectors with arithmetic

 Function to be synthesized f(matrix A, B) : matrix

 Specification: f(A,B) is matrix product
 f(A,B)[1,1] = A[1,1]*B[1,1] + A[1,2]*B[2,1]
 …
 Set of candidate implementations
 Expressions with at most 7 occurrences of *
 Unrestricted use of +
 let expressions allowed

 Benefit of saving this one multiplication: Strassen’s O(n2.87) algorithm

for matrix multiplication

 Can we use only 6 multiplication operations? 45

Program Sketching as SyGuS

 Sketch programming system
 C program P with ?? (holes)
 Find expressions for holes so as to satisfy assertions

 Each hole corresponds to a separate function symbol

 Specification: P with holes filled in satisfies assertions
 Loops/recursive calls in P need to be unrolled fixed no of times

 Set of candidate implementations for each hole:
 All type-consistent expressions

 Not yet explored:
 How to exploit flexibility of separation betn syntactic and
 semantic constraints for computational benefits?

46

SyGuS Benchmarks

 Over 500 benchmarks (see www.sygus.org)

 Hacker’s Delight: Tricky bit-vector manipulation programs

 Invariant generation: From software verification competition

 Robotic controller: Autonomous vehicle routing

 ICFP Programming competition

 Competition of solvers (held at FLoC 2014)

47

http://www.sygus.org/

Synthesis Puzzle 2: Cinderella v. stepmother

There are five buckets arranged in a circle. Each bucket can hold upto B
liters of water. Initially all buckets are empty. The wicked stepmother
and Cinderella take turns playing the following game:

Stepmother brings 1 liter of additional water and splits it into 5 buckets.
If any of the buckets overflows, stepmother wins the game.
If not, Cinderella gets to empty two adjacent buckets. If the game goes
on forever, Cinderella wins.

Find B* such that if B < B* the stepmother has a winning strategy, and if
B = B*, Cinderella has a winning strategy.
And give a proof that your strategies work!

Reference: Bodlaender et al, IFIP TCS 2012

48

Outline of Lectures

 Program Verification and SMT Solvers

 Motivation for Syntax-Guided Synthesis (SyGuS)

 Formalization of SyGuS

 Solving SyGuS

 TRANSIT for Protocol Specification

49

Solving SyGuS

 Is SyGuS same as solving SMT formulas with quantifier alternation?

 SyGuS can sometimes be reduced to Quantified-SMT, but not always

Set E is all linear expressions over input vars x, y
 SyGuS reduces to Exists a,b,c. Forall X. ϕ [f/ ax+by+c]

Set E is all conditional expressions
 SyGuS cannot be reduced to deciding a formula in LIA

 Syntactic structure of the set E of candidate implementations can be

used effectively by a solver

 Existing work on solving Quantified-SMT formulas suggests solution
strategies for SyGuS

50

SyGuS as Active Learning

51

Learning
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate
Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values

Counter-Example Guided Inductive Synthesis

 Concrete inputs I for learning f(x,y) = { (x=a,y=b), (x=a’,y=b’), ….}

 Learning algorithm proposes candidate expression e such that ϕ[f/e]

holds for all values in I

 Check if ϕ [f/e] is valid for all values using SMT solver

 If valid, then stop and return e

 If not, let (x=α, y=β, ….) be a counter-example (satisfies ~ ϕ[f/e])

 Add (x=α, y=β) to tests I for next iteration

52

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

53

Learning
Algorithm

Verification
Oracle

Examples = { }
Candidate
f(x,y) = x

Example
(x=0, y=1)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

54

Learning
Algorithm

Verification
Oracle

Examples =
{(x=0, y=1) } Candidate

f(x,y) = y

Example
(x=1, y=0)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) =x | f(x,y)=y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

55

Learning
Algorithm

Verification
Oracle

Examples =
{(x=0, y=1)
 (x=1, y=0)
 (x=0, y=0)
 (x=1, y=1)}

Candidate
ITE (x ≤ y, y,x)

Success

SyGuS Solutions

 CEGIS approach (Solar-Lezama et al, ASPLOS’08)

 Similar strategies for solving quantified formulas and invariant
generation

 Learning strategies based on:
Enumerative (search with pruning): Udupa et al (PLDI’13)
Symbolic (solving constraints): Gulwani et al (PLDI’11)
Stochastic (probabilistic walk): Schkufza et al (ASPLOS’13)

56

Enumerative Learning

 Find an expression consistent with a given set of concrete examples

 Enumerate expressions in increasing size, and evaluate each expression
on all concrete inputs to check consistency

 Key optimization for efficient pruning of search space:
 Expressions e1 and e2 are equivalent
 if e1(a,b)=e2(a,b) on all concrete values (x=a,y=b) in Examples
 Only one representative among equivalent subexpressions needs
 to be considered for building larger expressions

 Fast and robust for learning expressions with ~ 15 nodes

57

Enumerative CEGIS

58

x (x=0, y =1)

y (x=1, y =0)

1 (x=0, y =0)

x + y (x=1, y =1)

ITE(x<y,y,x) Verified

200 expressions searched
4 verifier calls, 80 stored expressions

Synthesized Expr. Counter-Example

Symbolic Learning

 Use a constraint solver for both the synthesis and verification step.

59

 Each production in the grammar is thought of as a component.
 Input and Output ports of every component are typed.

 A well-typed loop-free program comprising these component
corresponds to an expression DAG from the grammar.

ITE

Term

Term

Term

Cond
>=

Term Term

Cond

+

Term Term

Term

x
Term

y
Term

0
Term

1
Term

Symbolic Learning

60

x
n1

x
n2

y
n3

y
n4

0
n5

1
n6

+
n7

+
n8

>=
n9

ITE
n10

 Synthesis Constraints:
 Shape is a DAG, Types are consistent
 Spec ϕ[f/e] is satisfied on every concrete input values in I

 Use an SMT solver (Z3) to find a satisfying solution.

 If synthesis fails, try increasing the number of occurrences of
components in the library in an outer loop

 Start with a library consisting of some number of occurrences of each
component.

Symbolic CEGIS

61

o1 = x (x=-1, y =0)

o1 = x < x
o2 = ITE(o1,y,x)

(x=0, y =-1)

o1 = y > x
o2 = ITE(o1,y,x) Verified

1 instance of each library operator

Synthesized Expr. Counter-Example

Stochastic Learning

 Idea: Find desired expression e by probabilistic walk on graph where
nodes are expressions and edges capture single-edits

 Metropolis-Hastings Algorithm: Given a probability distribution P over
domain X, and an ergodic Markov chain over X, samples from X

 Fix expression size n. X is the set of expressions En of size n. P(e)
∝Score(e) (“Extent to which e meets the spec φ”)

 For a given set I of concrete inputs, Score(e) = exp(- 0.5 Wrong(e)),
where Wrong(e) = No of examples in I for which ~ ϕ [f/e]

 Score(e) is large when Wrong(e) is small. Expressions e with Wrong(e) =
0 more likely to be chosen in the limit than any other expression

62

 Initial candidate expression e sampled uniformly from En

 When Score(e) = 1, return e

 Pick node v in parse tree of e uniformly at random. Replace subtree
rooted at e with subtree of same size, sampled uniformly

Stochastic Learning

63

+

z

e

+

y x

+

z

e’

-

1 z

 With probability min{ 1, Score(e’)/Score(e) }, replace e with e’

 Outer loop responsible for updating expression size n

Stochastic CEGIS

64

e = ITE(x<0, y, x)

Let n = 6 (786 possible expressions of size 6)

CEXs = {(-1,-4), (-1,-3), (-1,-2), (1,1), (1,2)}

pI(e) = 1/768

e’ = ITE(y<0, y, x) pC(e’) = 1/6 * 1/48

pM(e  e’) = min(1,Score(e’)/Score(e))
= exp(-0.5)

e’’ = ITE(x<y, y, x) pC(e’’) = 1/6 * 1/48

pM(e  e’’) = min(1,Score(e’’)/Score(e))
= 1

Benchmarks and Implementation

 Prototype implementation of Enumerative/Symbolic/Stochastic CEGIS

 Benchmarks:
Bit-manipulation programs from Hacker’s delight
Integer arithmetic: Find max, search in sorted array
Challenge problems such as computing Morton’s number

 Multiple variants of each benchmark by varying grammar

 Results are not conclusive as implementations are unoptimized, but

offers first opportunity to compare solution strategies

65

Evaluation

 Enumerative CEGIS has best performance, and solves many benchmarks
within seconds

 Potential problem: Synthesis of complex constants

 Symbolic CEGIS is unable to find answers on most benchmarks
 Caveat: Sketch succeeds on many of these

 Choice of grammar has impact on synthesis time
 When E is set of all possible expressions, solvers struggle

 None of the solvers succeed on some benchmarks

 Bottomline: Improving solvers is a great opportunity for research !

66

Stepmother wins if B<2

Round 1:
 Stepmother: Add 0.5 lit to buckets 1 and 3
 Cinderella: Empty one of the buckets, say third

Round 2:
 Stepmother: Add 0.25 lit to bucket 1 and 0.75 lit to bucket 3
 Cinderella: Empty bucket 3
…

After n rounds, bucket 1 contains 1 – 1/2n lit of water

If B < 2, then after some N rounds bucket 1 contains more than B-1 lit of
water, stepmother can win in (N+1)th round by adding 1 lit to it

67

Cinderella wins if B=2

Cinderella maintains the following invariant:
 (a1 + a3 < 1) & (a2 <= 1) & (a4 = 0) & (a5 = 0)
 a1, a2, a3, a4, a5: water quantities starting at some bucket

If this condition holds after n rounds, stepmother cannot win in the next
round. Thus, if this is an invariant, then Cinderella wins.

Invariant holds initially.

Assume the invariant holds at the beginning of a round.

Goal: Cinderella can enforce the invariant, no matter what the stepmother
does, after her own turn.

68

Cinderella wins if B=2

At the beginning of the round, we have:
 (a1 + a3 < 1) & (a2 <= 1) & (a4 = 0) & (a5 = 0)

 b1, b2, b3, b4, b5: water quantities after stepmother’s turn

Claim: b1 + b3 + b4 + b5 < 2

Either (b1 + b4 < 1) or (b3 + b5 < 1)

Suppose (b1 + b4 < 1). Other case similar.

Cinderella strategy: empty buckets 2 and 3.
We have: (b4 + b2 < 1) & (b5 <= 1) & (b2 = 0) & (b3 = 0)

69

SyGuS Recap

 Contribution: Formalization of syntax-guided synthesis problem
 Not language specific such as Sketch, Scala^Z3,…
 Not as low-level as (quantified) SMT

 Advantages compared to classical synthesis

1. Set E can be used to restrict search (computational benefits)
2. Programmer flexibility: Mix of specification styles
3. Set E can restrict implementation for resource optimization
4. Beyond deductive solution strategies: Search, inductive inference

 Prototype implementation of 3 solution strategies

 Initial set of benchmarks, competition (held in FLoC 2014), and

evaluation (Winner: Enumerative CEGIS)
70

www.sygus.org

Outline of Lectures

 Program Verification and SMT Solvers

 Motivation for Syntax-Guided Synthesis (SyGuS)

 Formalization of SyGuS

 Solving SyGuS

 TRANSIT for Protocol Specification

71

Protocols

 Design challenging due to asynchronous model of communication

 Examples: Cache coherence protocols, Distributed coordination
algorithms

 Successful application domain for model checking
SPIN: Distributed algorithms
Murphi, SMV: Hardware protocols
Industrial adoption (Intel, IBM, …)

 Correctness involves both safety and liveness properties

72

73

Traditional Specifications

74

Traditional Specifications

Rule
State = D_BUSY & InMsg.MType = UNBLOCK_S ==>
Begin
 State = D_M;
 sharers = SetUnion(Sharers, SetOf(InMsg.Sender));
 SendMsg({Type = ACK,
 Acks = 1,
 InMsg.Sender});
EndRule;

75

Traditional Specifications

Invariants

Model Check/
Verify

Counter-
example

Verified
Protocol

76

Invariants

Model Check/
Verify

Counter-
example

Verified
Protocol

I know exactly what to do
in this particular scenario!!

BUT…
Need to figure out how to

fix the code

77

Can we make the process of specifying
distributed protocols easier?

TRANSIT Specification

78

Scenarios

Scenarios:
• Describe execution traces
• Translated from informal specs
• Can be symbolic
• Can be concrete

Scenarios

79

TRANSIT Specification

80

Protocol Skeleton:
• Communication architecture
• Message types
• Set of processes
• State variables for processes

Scenarios

TRANSIT Specification

TRANSIT Specification

81

Scenarios

Invariants

TRANSIT

Programmer
Inputs

Model Check/
Verify

Counter-
example

Verified
Protocol

I know exactly what to do in this
particular scenario!!

AND…
That’s EXACTLY what I’m going to
specify with additional snippets!!

82

Goal

Protocol Skeleton
+

Scenarios
+

Invariants

Completed Protocol Specification

Example Scenario

Directory Cache1 Cache2 Cache3

Shared Invalid

GetM

Inv-M Busy

Inv

Inv

Acks=1

83

84

Snippets and Scenarios

 Scenarios:
Sequence of message exchanges/transitions
Transcribed from informal specs
A collection of snippets

 Snippets:

Describe actions on a single transition
Relate current values of variables to updated values
Can be concrete or symbolic (Concolic)

Scenarios

Concolic Snippet Example 1

Process Directory
Transition
 From Shared
 To Busy
 Input channel: ReqMsg
 Output channels: RespMsg, InvMsg

 Guard:
 ReqMsg.Sender = 1 & ReqMsg.Type = GetM & Sharers ={2,3}

 Update:
 RespMsg.Acks = 2;
 RespMsg.Destination = 1;
 InvMsg.Destination = {2,3}

 Values of all variables can be concrete

85

Concolic Snippet Example 2

Process Directory
Transition
 From Shared
 To Busy
 Input channel: ReqMsg
 Output channels: RespMsg, InvMsg

 Guard:
 ReqMsg.Type = GetM & ReqMsg.Sender = 1

 Update:
 RespMsg.Acks = Size (Sharers);
 RespMsg.Destination = 1;
 InvMsg.Destination = Sharers

 Same snippet can mix concrete and symbolic values

86

Concolic Snippet Example 3

Process Directory
Transition
 From Shared
 To Busy
 Input channel: ReqMsg
 Output channels: RespMsg, InvMsg

 Guard:
 ReqMsg.Type = GetM

 Update:
 RespMsg.Acks = Size (Sharers);
 RespMsg.Destination = ReqMsg.Sender;
 InvMsg.Destination = Sharers – ReqMsg.Sender

 Values of all variables can be symbolic:

Classical EFSM description maps directly to such snippets 87

88

 To generate a completed protocol TRANSIT needs to:
 Find guards and updates consistent with given snippets

 Expression grammar: Int, Bool, BitVector types
 Arithmetic, bit-vector and conditional operations
 Finding desired expressions exactly the SyGuS problem
 Enumerative CEGIS solver

From Snippets to Transition Code

Rule

==>
Begin
 State =
 sharers =
 SendAck({ });
EndRule;

Iterative Design

From Shared To Busy
 Input channel: ReqMsg
Output channels: RespMsg, InvMsg
 Guard:
 ReqMsg.Sender = 1 & ReqMsg.Type = GetM & Sharers ={2,3}
 Update:
 RespMsg.Acks = 2;
 InvMsg.Destination = {2,3}

Based on this single example, synthesis tool computes update:

 RespMsg.Acks = Size(Sharers);
 InvMsg.Destination = Sharers

But this is incorrect, and protocol deadlocks
89

Iterative Design Continued

From Shared To Busy
 Input channel: ReqMsg
Output channels: RespMsg, InvMsg
 Guard:
 ReqMsg.Sender = 1 & ReqMsg.Type = GetM & Sharers ={1,2}
 Update:
 RespMsg.Acks = 1;
 InvMsg.Destination = {2}

Based on two snippets, synthesis tool computes update:

 RespMsg.Acks = Size(Sharers + ReqMsg.Sender) - 1;
 InvMsg.Destination = Sharers – ReqMsg.Sender

Designer adds another concrete example
 (corresponds to case when Sender is a Sharer)

90

Implementation Evaluation

 Starting point: cache coherence protocols described in
 A Primer on memory Consistency and Cache Coherence
 Sorin, Hill, Wood, 2011
 Translated EFSMs for 2 protocols into (mostly concrete) snippets

VI Protocol MSI Protocol

Snippets used 19 77

Update expressions synthesized 49 157

Guard expressions synthesized 17 45

Expressions explored 3.1K 44.5K

Synthesis time 5 sec 134 sec

States explored by Murphi 140K 154K

91

Methodology Evaluation

 Case study: Can a user with no
 prior experience in designing
 cache coherence protocol build
 a correct protocol from
 textbook description?

 Case study A: Version of MSI protocol with non-blocking directory

progress

 Case study B: Augmenting MSI protocol with E state to obtain MESI

92

Sample Transitions

93

Sample Scenarios

Transition from I to S

94

Experience Report

Case study A Case study B

Snippets used in first version 19 96

Time to implement first version 2 hrs 6 hrs

Snippets used in final version 86 108

Number of iterations 13 8

Total manual effort 6 hrs 13 hrs

Number of counterexamples examined 5 6
Synthesis time in last iteration 52 min 15 min

Number of update expressions synthesized 175 260

Number of guard expressions synthesized 80 74

States explored in final protocol 7.7 million 1.5 million

95

96

Usability: SGI Origin

 Specified the protocol used in SGI Origin (complex, industrial
protocol)

 Intermixed concrete and symbolic snippets

 Successfully converged to a correct protocol

 Computational effort: final synthesis took 30 minutes of CPU time

Recap: TRANSIT for Protocol Design

 Specification: Protocol skeleton + Scenarios (with concolic snippets) +

Invariants

 Computational effort needed to “complete” the protocol is not high

 Case studies suggest that, at least to translate text-book descriptions
to working implementations, the proposed methodology helps designer

 “Model checker and SyGuS solver in the loop” is plausible for design
environments

 Work in Progress:
Incorporate liveness properties
Improved solvers for completion
Infer auxiliary states
Better feedback to designers

97

 Paradigm shift in synthesis:
 Old: Allow more concise, high-level description
 New: Designer uses multiple, natural formats,
 Synthesis tool assists in discovering tricky logic

 Paradigm shift in design tools:
 Old : Any compiler transformation must be polynomial-time
 New: Computational intractability not a show-stopper

 Common theme: Guided search in a space of programs to find one that

meets multiple design goals
 A bit like model checking, but can be interactive!

98

Synthesis 2.0

	Slide Number 1
	Program Verification
	Classical Program Synthesis
	Syntax-Guided Synthesis
	References
	Outline of Lectures
	Software Design
	Programming Technology
	Verification Technology
	Program Verification
	Sample Proof: Selection Sort
	Towards Practical Program Verification
	Selection Sort: Array Access Correctness
	Selection Sort: Proving Assertions
	Discharging Verification Conditions
	A Brief History of SAT
	SMT: Satisfiability Modulo Theories
	SMT Success Story�SMT Solvers 		Verification Tools
	Synthesis Puzzle 1: Prisoners and a switch
	Outline of Lectures
	Verification Technology
	Challenges
	Opportunities
	Synthesis: A Plausible Solution?
	Parallel Parking by Sketching�				Ref: Chaudhuri, Solar-Lezama (PLDI 2010)
	Autograder: Feedback on Programming Homeworks�						Singh et al (PLDI 2013)
	Paraglide: From Sequential to Parallel Code�					Ref: Vechev et al (POPL 2010)
	FlashFill: Programming by Examples�					Ref: Gulwani (POPL 2011)
	Superoptimizing Compiler
	Automatic Invariant Generation
	Template-based Automatic Invariant Generation
	Template-based Automatic Invariant Generation
	Syntax-Guided Program Synthesis
	SyGuS Solvers 		Synthesis Tools
	Prisoners and a switch: Solution
	Outline of Lectures
	Syntax-Guided Synthesis (SyGuS) Problem
	SyGuS Example
	SyGuS Example
	Let Expressions and Auxiliary Variables
	Optimality
	From SMT-LIB to SYNTH-LIB
	Invariant Generation as SyGuS
	Safety Verification of Transition Systems
	Program Optimization as SyGuS
	Program Sketching as SyGuS
	SyGuS Benchmarks
	Synthesis Puzzle 2: Cinderella v. stepmother
	Outline of Lectures
	Solving SyGuS
	SyGuS as Active Learning
	Counter-Example Guided Inductive Synthesis
	CEGIS Example
	CEGIS Example
	CEGIS Example
	SyGuS Solutions
	Enumerative Learning
	Enumerative CEGIS
	Symbolic Learning
	Symbolic Learning
	Symbolic CEGIS
	Stochastic Learning
	Stochastic Learning
	Stochastic CEGIS
	Benchmarks and Implementation
	Evaluation
	Stepmother wins if B<2
	Cinderella wins if B=2
	Cinderella wins if B=2
	SyGuS Recap
	Outline of Lectures
	Protocols
	Traditional Specifications
	Traditional Specifications
	Traditional Specifications
	Slide Number 76
	Slide Number 77
	TRANSIT Specification
	TRANSIT Specification
	TRANSIT Specification
	TRANSIT Specification
	Goal
	Example Scenario
	Snippets and Scenarios
	Concolic Snippet Example 1
	Concolic Snippet Example 2
	Concolic Snippet Example 3
	From Snippets to Transition Code
	Iterative Design
	Iterative Design Continued
	Implementation Evaluation
	Methodology Evaluation
	Slide Number 93
	Slide Number 94
	Experience Report
	Usability: SGI Origin
	Recap: TRANSIT for Protocol Design
	Slide Number 98

