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What are Hybrid Systems?
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Hybrid Systems in Applications

Computer control systems
• continuous + discrete sensors/actuators
• continuous + discrete control functions 

(>80% of typical feedback control software is logic)
• mode-switching control strategies

Less than 1% of all microprocessors are in PC -- most
microprocessors are implementing embedded control.

Embedded software in cars, airplanes, chemical plants, medical devices.



Unified Modeling paradigm
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Motivation

! Formal foundations for design
Rich modeling constructs
Rigorous analysis and controller design
Powerful debugging -> improved reliability
Model based design -> greater design automation

! Why now?
UML-based tools -> greater model-based software
Confluence of control theory and computer science
Software in embedded control systems getting complex 

-> need for better software engineering
Advances in formal verification tools and techniques



Hybrid Dynamic Systems
Dynamic systems with both 

continuous- & discrete- state variables

Lyapunov functions, 
eigenvalue analysis, etc.

Analytical 
Tools

Matlab, MatrixX, 
VisSim, etc.,

Software 
Tools

Continuous-State 
Systems

differential equations, 
transfer functions, etc.Models

Boolean algebra, formal 
logics, verification, etc.

Statemate,  Rational Rose, 
SMV, etc.

Discrete-State 
Systems

automata, Petri nets, 
Statecharts, etc.



Course Overview

! Modeling and Semantics
Timed automata, Hybrid automata
Modularity, Compositionality, Hierarchy

! Decidability and Verification
Decidable classes, Quotients, Undecidability

! Symbolic Reachability
Timed Automata, Linear Hybrid Automata
Approximations of reachable sets

! Applications
Embedded Control Systems
Robotics

Biological systems
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Lecture 1. 
Modeling and Semantics



Talk Outline 

" Timed Automata
! Hybrid Automata
! CHARON: Hierarchical Specification
! Modular Analysis



Off Light Bright
press? Press?

press?

Press?

WANT: if press is issued twice quickly 
then the light will get brighter; otherwise the light is 
turned off.

Simple Light Control



Simple Light Control

Off Light Bright

Solution: Add real-valued clock  x 

X:=0
X<=3

X>3

press? Press?

press?

Press?

Adding continuous variables to state machines



Timed Automata

n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Guard 
Boolean combination of comparisons with
integer bounds

Reset
Action performed on clocks

( n , x=2.4 , y=3.1415 )
( n , x=3.5 , y=4.2415 )

e(1.1)

Transitions

( n , x=2.4 , y=3.1415 )
( m , x=0 , y=3.1415 )

a

State
( location , x=v , y=u ) where v,u are in R

Action
used

for synchronization



n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Transitions

( n , x=2.4 , y=3.1415 )
( n , x=3.5 , y=4.2415 )

e(1.1)

( n , x=2.4 , y=3.1415 )
e(3.2)

x<=5

y<=10

Location
Invariants

g1
g2 g3

g4

Invariants ensure progress!!

Adding Invariants



Clock Constraints

What can you express: 
Constant lower and upper bounds on delays

Why the restricted syntax: 
slight generalizations (e.g. allowing x=2y)
lead to undecidable model checking problems



Timed Automata



Light Switch

• Switch may be turned 
on whenever at least 2 
time units has elapsed 
since last “turn off”

• Light automatically 
switches off after 9 
time units.

push

pushclick



Semantics
• clock valuations:
• state:

• Operational semantics of timed automaton is a labeled
transition system

where   S is the set of all states

• action transition

• delay Transition
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Semantics: Example
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Talk Outline 

# Timed Automata
" Hybrid Automata
! CHARON: Hierarchical Specification
! Compositionality and Refinement



Hybrid Automata

l

l’

jump transformation

edge guard

continuous dynamics
initial 
condition

invariant: hybrid automaton may 
remain in l as long as X ∈ Inv(l)

X ∈ Inv(l’)

dX ∈ Flow(l’)
X ∈ Inv(l)

dX ∈ Flow(l)X ∈ Init(l)

e : g(X)≥0

J(X, X’)

locations or modes 
(discrete states)



mode
select

integrator

m(t)

xdot(t)

flow 
constraints

x(t)

x(t)

jump 
mapping

initial 
condition

e(t)

threshold-driven
discrete dynamics

x(t)
e(t)

m(t)

cont. 
state

discrete 
state

discrete 
event

F1

F2

F3
1
S

X0

Je

e(t)

Je

jump dynamics

cont. 
state

discrete 
state

discrete 
event

discrete dynamics

Switched Dynamic Systems

F1

F2

F3

1
S

continuous dynamics



Hybrid Automata 

! Set L of of locations, and set E of edges
! Set X of k continuous variables
! State space: L X Rk, Region: subset of Rk

! For each location l,
Initial states: region Init(l)
Invariant: region Inv(l)
Continuous dynamics: dX in Flow(l)(X)

! For each edge e from location l to location l’
Guard: region Guard(e)
Update relation over Rk X Rk

Synchronization labels (communication information)



(Finite) Executions of Hybrid Automata

! State: (l, x) such that x satisfies Inv(l)
! Initialization: (l,x) s.t. x satisfies Init(l)
! Two types of state updates
! Discrete switches: (l,x) –a-> (l’,x’) if there is an a-

labeled edge e from l to l’ s.t. x satisfies Guard(e) 
and (x,x’) satisfies update relation Jump(e)

! Continuous flows: (l,x) –f-> (l,x’) where f is a 
continuous function from [0,δ] s.t. f(0)=x, f(δ)=x’, 
and for all t<=δ, f(t) satisfies Inv(l) and df(t) 
satisfies Flow(l)(f(t))



Refined Modeling 

! Issues coming up
Adding hierarchy for structured modeling

Observational semantics

Compositionality and refinement

! Issues not covered
Infinite trajectories, divergence, non-Zenoness

Concurrency and synchronization



Talk Outline 

# Timed Automata
# Hybrid Automata
" CHARON: Hierarchical Specification
! Compositionality and refinement



Trends in Software Design

! Emerging notations: UML-RT,Stateflow
Visual
Hierarchical modeling of control flow
Object oriented

! Prototyping/modeling but no analysis
Ad-hoc, informal features
No support for abstraction

CHARON: Formal, hierarchical, hybrid 
state-machine based modeling language



CHARON Language Features 

! Individual components described as agents
Composition, instantiation, and hiding

! Individual behaviors described as modes
Encapsulation, instantiation, and Scoping

! Support for concurrency
Shared variables as well as message passing

! Support for discrete and continuous behavior
Differential as well as algebraic constraints

Discrete transitions can call Java routines



Robot Team Approaching a Target

T



Architectural Hierarchy

Robots

Monitor

pos1 pos2

write diff analog position pos1, pos2

class position { float x; float y;}

Variables Specifiers
Range: discrete/analog

Computation: diff/alg

Access: read/write/local



Architectural Hierarchy 

Robot1

Robots

Robot2

pos1 pos2

r1Est1

r1Est2

r2Est1

r2Est2

Robots

Monitor

pos1 pos2



Behavioral Hierarchy

pos

r2Est1

r2Est2

r1Est1

r1Est2

Robot1
dTimer

local diff analog timer

awTarget
dPlan
iAway

atTarget
dStop
iAt

arrive

pos == target

moving
dSteer
aOmega
iFreq

sensing
dStop
iConst

sense

move

arrive

pos.x = v * cos(phi)

pos.y = v * sin(phi)

.

.



Powertrain modeling
agent  Powertrain

agent Driver agent Controller agent Actuator agent PowerTrain

agent  DriveTrainagent External agent Sensor

br
ak

e

throttle

grade

P/E_sw

engine

automatic
transmiss

engine

clutch_
pressures

cu
rr
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ge
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ω_cr
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e, 
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Velocity

Ts (shaft torque)

current_gear

crank_pulse, maf, Oxygen,
coolant_temp, vehicle_speed

throttle pos

Brake_sw



agent PowerTrain
agent Engine

agent Transmissionωe

throttle
α

Tt

engine
actuators
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Charon Summary

! Structured hierarchical modeling
! Formal compositional semantics with a 

notion of refinement
! Hierarchy can be exploited during analysis 

(e.g. multi-rate simulation)
! Analysis such as model checking and 

runtime monitoring to be supported



Exploiting hierarchy: Modular Simulation

x
.

y
.

z
.

δ, xInv

dt, 

ε, sz

yInv

t+ε, sy

2. While (time t = 0; t <= δ)  do: 

- Increment t = t+ε.

1. Get integration time δ and invariants from
the supermode (or the scheduler).  

- Predict integration step dt based on δ and the
invariants. 

- Execute time round of the active submode  and get
state s and time elapsed ε.

- Simplify all invariants. 

- Return s and t+ε if invariants were violated.

- Integrate for time ε and get new state s.

3. Return s and δ



– “Slowest-first” order of integration 
– Coupling is accommodated by using 

interpolants for slow variables 
– Tight error bound:  O( hm+1 )

Use a different time 
step for each 
component to exploit 
multiple time scales, to 
increasing efficiency.
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Modular Multi-rate Simulation



Efficiency gain increases dramatically when 
simulating systems with complex right-hand sided 
or tight error tolerances

Increasing 
complexity

Higher 
tolerances

In
cr
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ef
fi

ci
en

cy
Computations for Modular Systems
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# Timed Automata
# Hybrid Automata
# CHARON: Hierarchical Specification
" Compositionality and Refinement



Motivation

Which properties are preserved?

Can we restrict reasoning to modified parts of design?

Component should have precise interface specification

Components differing only in internal details are equivalent

Theme: Composable Behavioral Interfaces!



Observational Semantics

! Classical programming language concept of 
denotational semantics: two programs are 
“equivalent” if they compute the same function 

! For reactive systems, ongoing interaction 
(behavior over time) must be accounted for

! Observational semantics of a hybrid component:
• Signature (static interface): Set of input/output 

variables
• Behavioral interface: Set of traces

! Trace: Projection of an execution onto 
observable parts (e.g. sequence of input/outputs)



Compositional Semantics

! Traces should retain all (but no more) information 
needed to determine interaction of a component 
with other components

! Desired theorems
• If C and C’ are equivalent, then in any context C must 

be substitutable by C’
• Traces of a system with multiple components can be 

computed from traces of its components 
e.g. traces (P||Q) = traces(P)  intersect traces(Q)

! Typically, we can project out information about 
private variables and modes, but not about timing, 
and even flows, of communication variables



Global x

Local t
•

Mode A
dt = 1
dx = x
t <= 10

t=10
t:=0

Mode B
dt = 1
dx = -1
t <= 6

t > 5
t:=0

Sample Execution      Time

Mode A
B

t

x

Sample Trace      Time

x



Refinement

! Component I refines component S if they have same static 
signatures, and every trace of I is also a trace of S

! Implementation I is more constrained than specification 
model S

! Implementation I inherits properties of S
! Multiple implementations of S possible
! Desired: Proof calculus for decomposing refinement goals 

into subgoals
! Typical rules: Compositionality, Assume-guarantee
! Foundation for formal top-down design
! Caution: Details of these general principles are highly 

sensitive to specifics of a modeling language 



Semantics of Charon modes

! Semantics of a mode consists of:
entry and exit points
global variables
traces

! Key Thm: Semantics is compositional
traces of a mode can be computed 
from traces of its sub-modes



Refinement

Refinement is trace inclusion

dx

Compute

Normal

e

dedx

x

t=10 t:=0

Maintain
{t<10} dx

Compute

Normal’

e

dedx

x

t ≤≤≤≤ 10 t:=0

Maintain
{t<10}

de de
<

{t = 1}•

{ level∈∈∈∈ [2,10] }
{t = 1}•

{ level ≤≤≤≤ 10 }

• Same control 
points and 
global variables 

• Guards and 
constraints are 
relaxed

Normal Normal’



Sub-mode refinement

Normal

Controller

dx

de

Normal’

Controller’

dx

Emergency

de

level∈∈∈∈ [2,10]

level∈∈∈∈ [4,8]

dx

Emergency

de

level∈∈∈∈ [2,10]

level∈∈∈∈ [4,8]

dx

de

Refines



Compositional Reasoning

N N’< M
<

M’

N

M

N’

M
<

Sub-mode refinement

N

M
< N

M’

Context refinement


