
Hybrid Systems
Modeling and Verification

Rajeev Alur

University of Pennsylvania
www.cis.upenn.edu/~alur/

Dynamics & Verification Workshop, July 2001

What are Hybrid Systems?

State machines

offon

+ Dynamical systems

dx=kx
x<70

dx=-k’x
x>60

x>68

x<63

Hybrid Systems in Applications

Computer control systems
• continuous + discrete sensors/actuators
• continuous + discrete control functions

(>80% of typical feedback control software is logic)
• mode-switching control strategies

Less than 1% of all microprocessors are in PC -- most
microprocessors are implementing embedded control.

Embedded software in cars, airplanes, chemical plants, medical devices.

Unified Modeling paradigm

Discrete
Control

(Software)

Physical
Plant

(Hybrid Dynamics)

ActuatorsSensors

Motivation

! Formal foundations for design
Rich modeling constructs
Rigorous analysis and controller design
Powerful debugging -> improved reliability
Model based design -> greater design automation

! Why now?
UML-based tools -> greater model-based software
Confluence of control theory and computer science
Software in embedded control systems getting complex

-> need for better software engineering
Advances in formal verification tools and techniques

Hybrid Dynamic Systems
Dynamic systems with both

continuous- & discrete- state variables

Lyapunov functions,
eigenvalue analysis, etc.

Analytical
Tools

Matlab, MatrixX,
VisSim, etc.,

Software
Tools

Continuous-State
Systems

differential equations,
transfer functions, etc.Models

Boolean algebra, formal
logics, verification, etc.

Statemate, Rational Rose,
SMV, etc.

Discrete-State
Systems

automata, Petri nets,
Statecharts, etc.

Course Overview

! Modeling and Semantics
Timed automata, Hybrid automata
Modularity, Compositionality, Hierarchy

! Decidability and Verification
Decidable classes, Quotients, Undecidability

! Symbolic Reachability
Timed Automata, Linear Hybrid Automata
Approximations of reachable sets

! Applications
Embedded Control Systems
Robotics

Biological systems

Hybrid Systems Group at Penn

Faculty
Rajeev Alur (CIS)
Vijay Kumar (MEAM)
Insup Lee (CIS)
George Pappas (EE)
Harvey Rubin (Medicine)

Research Associates
Thao Dang
Rafael Fiero
Oleg Sokolsky

PhD Students
Calin Belta
Joel Esposito
Yerang Hur
Franjo Ivancic
Salvatore La Torre
Pradumna Mishra
Jiaxiang Zhou

Acknowledgements

! Thanks for providing powerpoint slides
Colleagues at Penn
Bruce Krogh at CMU
Kim Larsen at Aalborg

! Caution:
Only a partial coverage area
Mostly computer-science centric
Biased towards my current interests
Apologies for incomplete references and notational

variations

Lecture 1.
Modeling and Semantics

Talk Outline

" Timed Automata
! Hybrid Automata
! CHARON: Hierarchical Specification
! Modular Analysis

Off Light Bright
press? Press?

press?

Press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

Simple Light Control

Simple Light Control

Off Light Bright

Solution: Add real-valued clock x

X:=0
X<=3

X>3

press? Press?

press?

Press?

Adding continuous variables to state machines

Timed Automata

n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Guard
Boolean combination of comparisons with
integer bounds

Reset
Action performed on clocks

(n , x=2.4 , y=3.1415)
(n , x=3.5 , y=4.2415)

e(1.1)

Transitions

(n , x=2.4 , y=3.1415)
(m , x=0 , y=3.1415)

a

State
(location , x=v , y=u) where v,u are in R

Action
used

for synchronization

n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Transitions

(n , x=2.4 , y=3.1415)
(n , x=3.5 , y=4.2415)

e(1.1)

(n , x=2.4 , y=3.1415)
e(3.2)

x<=5

y<=10

Location
Invariants

g1
g2 g3

g4

Invariants ensure progress!!

Adding Invariants

Clock Constraints

What can you express:
Constant lower and upper bounds on delays

Why the restricted syntax:
slight generalizations (e.g. allowing x=2y)
lead to undecidable model checking problems

Timed Automata

Light Switch

• Switch may be turned
on whenever at least 2
time units has elapsed
since last “turn off”

• Light automatically
switches off after 9
time units.

push

pushclick

Semantics
• clock valuations:
• state:

• Operational semantics of timed automaton is a labeled
transition system

where S is the set of all states

• action transition

• delay Transition

)(),(CVvandLlwherevl ∈∈

0:)(≥→ RCvCV

),(→S

0')')((
),(),(

≥∈≤+
+→

RddwheneverdvlInv
iffdvlvl d

g a rl l’
)')('(][')(

)','(),(
vlInvandrvvandvg

iffvlvl a

=
→

Semantics: Example

...)9,0,()9),3(9,(
)3,3,(),0,(

),()0,(
)5.3,()0,(

)3(93

5.3

==→=+−=

 →+==→==

→==→==

→==→==

+−

yxoffyxon
yxonyxon

yxonyxon
yxoffyxoff

click

push

push

π
ππ

π
π

π

push

pushclick

9≤y

Talk Outline

Timed Automata
" Hybrid Automata
! CHARON: Hierarchical Specification
! Compositionality and Refinement

Hybrid Automata

l

l’

jump transformation

edge guard

continuous dynamics
initial
condition

invariant: hybrid automaton may
remain in l as long as X ∈ Inv(l)

X ∈ Inv(l’)

dX ∈ Flow(l’)
X ∈ Inv(l)

dX ∈ Flow(l)X ∈ Init(l)

e : g(X)≥0

J(X, X’)

locations or modes
(discrete states)

mode
select

integrator

m(t)

xdot(t)

flow
constraints

x(t)

x(t)

jump
mapping

initial
condition

e(t)

threshold-driven
discrete dynamics

x(t)
e(t)

m(t)

cont.
state

discrete
state

discrete
event

F1

F2

F3
1
S

X0

Je

e(t)

Je

jump dynamics

cont.
state

discrete
state

discrete
event

discrete dynamics

Switched Dynamic Systems

F1

F2

F3

1
S

continuous dynamics

Hybrid Automata

! Set L of of locations, and set E of edges
! Set X of k continuous variables
! State space: L X Rk, Region: subset of Rk

! For each location l,
Initial states: region Init(l)
Invariant: region Inv(l)
Continuous dynamics: dX in Flow(l)(X)

! For each edge e from location l to location l’
Guard: region Guard(e)
Update relation over Rk X Rk

Synchronization labels (communication information)

(Finite) Executions of Hybrid Automata

! State: (l, x) such that x satisfies Inv(l)
! Initialization: (l,x) s.t. x satisfies Init(l)
! Two types of state updates
! Discrete switches: (l,x) –a-> (l’,x’) if there is an a-

labeled edge e from l to l’ s.t. x satisfies Guard(e)
and (x,x’) satisfies update relation Jump(e)

! Continuous flows: (l,x) –f-> (l,x’) where f is a
continuous function from [0,δ] s.t. f(0)=x, f(δ)=x’,
and for all t<=δ, f(t) satisfies Inv(l) and df(t)
satisfies Flow(l)(f(t))

Refined Modeling

! Issues coming up
Adding hierarchy for structured modeling

Observational semantics

Compositionality and refinement

! Issues not covered
Infinite trajectories, divergence, non-Zenoness

Concurrency and synchronization

Talk Outline

Timed Automata
Hybrid Automata
" CHARON: Hierarchical Specification
! Compositionality and refinement

Trends in Software Design

! Emerging notations: UML-RT,Stateflow
Visual
Hierarchical modeling of control flow
Object oriented

! Prototyping/modeling but no analysis
Ad-hoc, informal features
No support for abstraction

CHARON: Formal, hierarchical, hybrid
state-machine based modeling language

CHARON Language Features

! Individual components described as agents
Composition, instantiation, and hiding

! Individual behaviors described as modes
Encapsulation, instantiation, and Scoping

! Support for concurrency
Shared variables as well as message passing

! Support for discrete and continuous behavior
Differential as well as algebraic constraints

Discrete transitions can call Java routines

Robot Team Approaching a Target

T

Architectural Hierarchy

Robots

Monitor

pos1 pos2

write diff analog position pos1, pos2

class position { float x; float y;}

Variables Specifiers
Range: discrete/analog

Computation: diff/alg

Access: read/write/local

Architectural Hierarchy

Robot1

Robots

Robot2

pos1 pos2

r1Est1

r1Est2

r2Est1

r2Est2

Robots

Monitor

pos1 pos2

Behavioral Hierarchy

pos

r2Est1

r2Est2

r1Est1

r1Est2

Robot1
dTimer

local diff analog timer

awTarget
dPlan
iAway

atTarget
dStop
iAt

arrive

pos == target

moving
dSteer
aOmega
iFreq

sensing
dStop
iConst

sense

move

arrive

pos.x = v * cos(phi)

pos.y = v * sin(phi)

.

.

Powertrain modeling
agent Powertrain

agent Driver agent Controller agent Actuator agent PowerTrain

agent DriveTrainagent External agent Sensor

br
ak

e

throttle

grade

P/E_sw

engine

automatic
transmiss

engine

clutch_
pressures

cu
rr

en
t_

ge
ar

ω_cr

en
gi

ne
_θ

e,
dM

ai
, P

m

Velocity

Ts (shaft torque)

current_gear

crank_pulse, maf, Oxygen,
coolant_temp, vehicle_speed

throttle pos

Brake_sw

agent PowerTrain
agent Engine

agent Transmissionωe

throttle
α

Tt

engine
actuators

const
Patm

T
p

),,,(1 meaa Pmfm αω=&mass of air:

injected fuel rate:)(1
IC

f
I dMfdMffMd −

τ
=&

),,,(2 SATmf paee ω=ω&engine speed:

agent TorqueConverter

mode Converter
Tp = alg
exp_1Tt = alg
exp_2

mode Coupling
Tt =
TpTt = alg

exp_39.0≥
ω
ω

e

t

9.0<
ω
ω

e

t

SA,
dMfC

clutch
actuators

pc1- pc4, pb12

agent AutomaticTransmission

sensors

Ts

shaft
torque

ωt tcr

stt

N
TT

gear

ω=ω
ϕ=ω

=

1

1),(
1 mode

&

tcr

stt

N
TT

gear

ω=ω
ϕ=ω

=

4

4),(
4 mode

&

tcr

stt

N
TT

gear

ω=ω
ϕ=ω

=

2

2),(
2 mode

&

tcr

stt

N
TT

gear

ω=ω
ϕ=ω

=

3

3),(
3 mode

&

θe, dMai, Pm, Tm

ωcr

drive_
train

gear

Charon Summary

! Structured hierarchical modeling
! Formal compositional semantics with a

notion of refinement
! Hierarchy can be exploited during analysis

(e.g. multi-rate simulation)
! Analysis such as model checking and

runtime monitoring to be supported

Exploiting hierarchy: Modular Simulation

x
.

y
.

z
.

δ, xInv

dt,

ε, sz

yInv

t+ε, sy

2. While (time t = 0; t <= δ) do:

- Increment t = t+ε.

1. Get integration time δ and invariants from
the supermode (or the scheduler).

- Predict integration step dt based on δ and the
invariants.

- Execute time round of the active submode and get
state s and time elapsed ε.

- Simplify all invariants.

- Return s and t+ε if invariants were violated.

- Integrate for time ε and get new state s.

3. Return s and δ

– “Slowest-first” order of integration
– Coupling is accommodated by using

interpolants for slow variables
– Tight error bound: O(hm+1)

Use a different time
step for each
component to exploit
multiple time scales, to
increasing efficiency.













−
∂
∂≈ ∑

−

=

+
1

1

1)1(
i

j j

im R
x
fCherror

ratio of largest to
smallest step size

coupling
step size

constant

x1

x2

x3

time→

Modular Multi-rate Simulation

Efficiency gain increases dramatically when
simulating systems with complex right-hand sided
or tight error tolerances

Increasing
complexity

Higher
tolerances

In
cr

ea
si

ng

ef
fi

ci
en

cy
Computations for Modular Systems

Talk Outline

Timed Automata
Hybrid Automata
CHARON: Hierarchical Specification
" Compositionality and Refinement

Motivation

Which properties are preserved?

Can we restrict reasoning to modified parts of design?

Component should have precise interface specification

Components differing only in internal details are equivalent

Theme: Composable Behavioral Interfaces!

Observational Semantics

! Classical programming language concept of
denotational semantics: two programs are
“equivalent” if they compute the same function

! For reactive systems, ongoing interaction
(behavior over time) must be accounted for

! Observational semantics of a hybrid component:
• Signature (static interface): Set of input/output

variables
• Behavioral interface: Set of traces

! Trace: Projection of an execution onto
observable parts (e.g. sequence of input/outputs)

Compositional Semantics

! Traces should retain all (but no more) information
needed to determine interaction of a component
with other components

! Desired theorems
• If C and C’ are equivalent, then in any context C must

be substitutable by C’
• Traces of a system with multiple components can be

computed from traces of its components
e.g. traces (P||Q) = traces(P) intersect traces(Q)

! Typically, we can project out information about
private variables and modes, but not about timing,
and even flows, of communication variables

Global x

Local t
•

Mode A
dt = 1
dx = x
t <= 10

t=10
t:=0

Mode B
dt = 1
dx = -1
t <= 6

t > 5
t:=0

Sample Execution Time

Mode A
B

t

x

Sample Trace Time

x

Refinement

! Component I refines component S if they have same static
signatures, and every trace of I is also a trace of S

! Implementation I is more constrained than specification
model S

! Implementation I inherits properties of S
! Multiple implementations of S possible
! Desired: Proof calculus for decomposing refinement goals

into subgoals
! Typical rules: Compositionality, Assume-guarantee
! Foundation for formal top-down design
! Caution: Details of these general principles are highly

sensitive to specifics of a modeling language

Semantics of Charon modes

! Semantics of a mode consists of:
entry and exit points
global variables
traces

! Key Thm: Semantics is compositional
traces of a mode can be computed
from traces of its sub-modes

Refinement

Refinement is trace inclusion

dx

Compute

Normal

e

dedx

x

t=10 t:=0

Maintain
{t<10} dx

Compute

Normal’

e

dedx

x

t ≤≤≤≤ 10 t:=0

Maintain
{t<10}

de de
<

{t = 1}•

{ level∈∈∈∈ [2,10] }
{t = 1}•

{ level ≤≤≤≤ 10 }

• Same control
points and
global variables

• Guards and
constraints are
relaxed

Normal Normal’

Sub-mode refinement

Normal

Controller

dx

de

Normal’

Controller’

dx

Emergency

de

level∈∈∈∈ [2,10]

level∈∈∈∈ [4,8]

dx

Emergency

de

level∈∈∈∈ [2,10]

level∈∈∈∈ [4,8]

dx

de

Refines

Compositional Reasoning

N N’< M
<

M’

N

M

N’

M
<

Sub-mode refinement

N

M
< N

M’

Context refinement

