Dynamics & Verification Workshop, July 2001

What are Hybrid Systems?

State machines + Dynamical systems

x>08 off
dx=-k’x
< x>60
X<63

Hybrid Systems in Applications

Computer control systems

e continuous + discrete sensors/actuators

e continuous + discrete control functions
(>80% of typical feedback control software is logic)

* mode-switching control strategies

Less than 1% of all microprocessorsarein PC -- most

miCroprocessors are implementing embedded control.

Embedded software in cars, airplanes, chemical plants, medical devices.

Unified Modeling paradigm

Discrete
Control
Actuators
Sensors
\ Physical /
Plant

(Hybrid Dynamics)

Motivation

d Formal foundations for design
¢+ Rich modeling constructs
+ Rigorous analysis and controller design
+ Powerful debugging -> improved reliability
+ Model based design -> greater design automation

d Why now?
¢ UML-based tools -> greater model-based software
¢+ Confluence of control theory and computer science

¢ Software in embedded control systems getting complex
-> need for better software engineering

¢ Advances in formal verification tools and techniques

Hybrid Dynamic Systems

Dynamic systems with both
continuous- & discrete- state variables

Continuous-Sate Discrete-Sate
Systems Systems
Models differential equations, automata, Petri nets,
transfer functions, etc. Statecharts, etc.
Analytical L yapunov functions, Boolean algebra, formal
Tools eigenvalue analysis, etc. logics, verification, etc.
Software Matlab, Matrix,, Statemate, Rational Rose,

Tools VisSim, etc., SMV, etc.

Course Overview

1 Modeling and Semantics
+ Timed automata, Hybrid automata
+ Modularity, Compositionality, Hierarchy

1 Decidability and Verification
¢ Decidable classes, Quotients, Undecidability

 Symbolic Reachability
¢+ Timed Automata, Linear Hybrid Automata
¢ Approximations of reachable sets

O Applications
¢+ Embedded Control Systems
¢ Robotics
¢+ Biological systems

Hybrid Systems Group at Penn

Acknowledgements

d Thanks for providing powerpoint slides
+ Colleagues at Penn
+ Bruce Krogh at CMU
+ Kim Larsen at Aalborg

 Caution:
¢+ Only a partial coverage area
+ Mostly computer-science centric
+ Biased towards my current interests

+ Apologies for incomplete references and notational
variations

Lecture 1.
Modeling and Semantics

Talk Outline

& Timed Automata
d Hybrid Automata

Jd CHARON: Hierarchical Specification
d Modular Analysis

Simple Light Control

press?

— e
Off press? ‘ Press? ‘

Press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

Simple Light Control

press?

X<=3
press? X2=0m Press? :
* Light *Brigh
Press?

X=>3

Solution: Add real-valued clock Xx

Adding continuous variables to state machines

Timed Automata

Clocks: X, y

n Guard

oolean combination of comparisons with
integer bounds

Action —— - Reset
used X S &Yy=3 Action performed on clocks
for synchronization
_a State
(location , x=v, y=u) where v,u are in R
xX:=0 Transitions
1
(n,x=2.4, y=3.1415) a >
(m, x=0, y=3.1415)
e N e(1.1)
\ (n, x=2.4, y=3.1415) >

(n,x=35, y=4.2415)

Adding Invariants

/ Clocks: x, y
X<=5 & y>3 Transitions %{2)
Location (n,x=2.4,y=31415) —A—>
Invariants a

e(1.1
(n,x=2.4, y=3.1415) (11)
(n, x=3.5, y=4.2415)

Invariants ensure progress!!

Clock Constraints

For set C' of clocks with ¢,y € C, the set of clock constraints over C, ¥(C), is
defined by

o:::=m—<c‘m—y—<c‘ —no:‘(o:;\ @)

where c € N and < € {<, <}

What can you express:
Constant lower and upper bounds on delays
Why the restricted syntax:
slight generalizations (e.g. allowing x=2y)
lead to undecidable model checking problems

Timed Automata

A timed automaton A is a tuple (L, Iy, E, Label, C, clocks, guard, inv) with

L, a non-empty, finite set of locations with initial location Iy € L
E CLx L, aset of edges

Label : L — 247 a function that assigns to each location | € L a set
Label(l) of atomic propositions

C, a finite set of clocks

clocks : E —» 2¢, a function that assigns to each edge e € E a set of clocks
clocks(e)

guard : E — ¥(C), a function that labels each edge e € F with a clock
constraint guard(e) over C, and

inv : L — ¥(C), a function that assigns to each location an énvariant.

Light Switch

Tz 2
push {z,y} « Switch may be turned
: z329 on whenever at least 2
@ @ {2} time units has elapsed
" since last “turn off”
click y=9 push
{z} * Light automatically

switches off after 9
time units.

clock valuations:
state:

Semantics

V(C) vVv:C - R=o0
(I,v) where UL and vLIV(C)

Operational semantics of timed automaton is a /labeled

transition system

action transition

delay Transition

(S -)

where S is the set of all states

(I,v)

- (V) iff Daar g

g(v) and v'=Vr] and Inv(l")(V')

(I,v)

4 (1, v+d) iff

Inv(l)(v+d') whenever d'<dR=o0

Semantics: Example

(off, x=y=0)0O (off,x=y=35 00
(onx=y=0)IF (onx=y=m) 0K
(on,x=0,y=mIE® (onx=3y=m+3) O
(on,x=9-(r+3),y=9) 0% (off,x=0,y=9)...

|

Talk Outline

v Timed Automata

< Hybrid Automata

d CHARON: Hierarchical Specification
d Compositionality and Refinement

Hybrid Automata

|locations or modes ®
(discrete states) edge guard

JCX, X)

X O Inv(l o
() \
X [Init(l) dX O Flow(l) jump transformation
/ Invariant. hybrid automaton may
nitial : remaininl aslong as X L Inv(l)
condition J continuous dynamics

Switched Dynamic Systems

continuous dynamics

flow
constraints . .
- discrete dynamics
! integrator
dot(t (\
——> F, > xdot® > discrete| M(V)
state
e(t) 1 1 |x@® | lcont.
o > >
© Fs S state discrete e(t)
even
. " - W,
m(t) initial threshold-driven
mode condition X(t) discrete dynamics
select e
Je
. . —
jump dynamics omp €0
mapping

Hybrid Automata

 Set L of of locations, and set E of edges
 Set X of k continuous variables
d State space: L x RX, Region: subset of Rk

1 For each location I,
¢+ Initial states: region Init(l)

+ Invariant: region Inv(l)
+ Continuous dynamics: dX in Flow(l)(X)

d For each edge e from location | to location I’
+ Guard: region Guard(e)

¢ Update relation over Rk X Rk

¢ Synchronization labels (communication information)

(Finite) Executions of Hybrid Automata

d State: (I, X) such that x satisfies Inv(l)
d Initialization: (I,x) s.t. x satisfies Init(l)
d Two types of state updates

 Discrete switches: (I,x) -a-> (I',x’) If there is an a-
labeled edge e from | to I' s.t. X satisfies Guard(e)
and (x,x’) satisfies update relation Jump(e)

4 Continuous flows: (I,x) -f-> (I,x’) where T is a
continuous function from [0,9] s.t. f(0)=X, f(0)=X,
and for all t<=9, f(t) satisfties Inv(l) and df(t)
satisties Flow(l)(f(t))

Refined Modeling

d Issues coming up
¢ Adding hierarchy for structured modeling
¢ Observational semantics
¢ Compositionality and refinement
 Issues not covered
¢ Infinite trajectories, divergence, non-Zenoness

¢ Concurrency and synchronization

Talk Outline

v Timed Automata

v' Hybrid Automata

< CHARON: Hierarchical Specification
d Compositionality and refinement

Trends in Software Design

d Emerging notations: UML-RT,Stateflow
+ Visual
¢+ Hierarchical modeling of control flow
¢ ODbject oriented

d Prototyping/modeling but no analysis
¢ Ad-hoc, informal features
¢ No support for abstraction

CHARON: Formal, hierarchical, hybrid
state-machine based modeling language

CHARON Language Features

d Individual components described as agents
+ Composition, instantiation, and hiding

A Individual behaviors described as modes
¢ Encapsulation, instantiation, and Scoping

d Support for concurrency
¢+ Shared variables as well as message passing

d Support for discrete and continuous behavior
¢ Differential as well as algebraic constraints

¢+ Discrete transitions can call Java routines

Robot Team Approaching a Target

f:.a.:-_!H | i A
|

—

-

FEy

Architectural Hierarchy

write diff analog position pos,, pos,

class position { float x; float y;}

Variables Specifiers

POS; POS, :
Range: discrete/analog

_ Computation: diff/alg

Access: read/write/local

Architectural Hierarchy

POS, POS,

Behavioral Hierarchy

@cal diff analog timer

IA Wayi
_ Fay
U -
N

4)

atTarget

ﬁ)os Se targea\

g
aWTargeq arrive

adStop
IAt

.)

—

0S.X = Vv * cos(phi)

poS.y =V sm(phL

" sense 4) \\
JUGANLY .| sensing
dSteer ®
comega [95t
e move

.7 _ Y,

/

arrive

Powertrain modeling

agent Powertrain

throttle

agent Driver

—13

agent Controller

engine
ALY

automatic
fransmiss

agent Actuator

gent PowerTrain

clutch
pressures

brake

agent External

1

current_gear

crank_pulse, maf, Oxygen,
coolant_temp, vehicle speed

grade

—

agent DriveTrain

= !

Velocity

Ts (shaft torque)

]

g
R
o
=
3
O

agent Sensor

engine_0,, dMai, Pm

throttle pos|

w_cr

agent PowerTrain
const :
P agent Engine
atm .
i) 8., dMai, Pm, Tm
throttle L mass of air: m, = f,(m,,w,,a,P,) B .senso'rs
> -
a - e _ L
A, injected fuel rate: dMmf, = ;(dec —dMf))
dMf _
eng| ne= -eng| ne S:)eed me = f2 (mel ma sTp 1 9\)
actuators
'agent AutomaticTransmission W T . |
: e agent Transmission !
agent TorqueConverter T, T
i /’m B8 (mode gear =1) (mode gear = || Wy
: 1 <09 0 =0T | o =0,0.T) :
| (mode Converte mode Coupling O =0T | o =0T T ' arive
i Tp = a]g t = -(_('0[. W, = let W, = NZ(‘ot ' trai n_
XPaly T B alg
i exp_2 “ 509 exp_3 i
: W, mode gear = mode gear =3 :
Shalt @ =0,0.T) | [=017
q > : wcr = N4(‘ot wcr = NS(‘Ot i
> ! Ts : N i
clutch i PCy- PC4, Pby, i
actuators | T

Charon Summary

1 Structured hierarchical modeling

1 Formal compositional semantics with a
notion of refinement

d Hierarchy can be exploited during analysis
(e.g. multi-rate simulation)

 Analysis such as model checking and
runtime monitoring to be supported

Exploiting hierarchy: Modular Simulation

-

X 0, XInv
7

~

dt, ylnv

y
g

Z

N
Y

~

1. Get integration time o and invariants from
the supermode (or the scheduler).

2. While (time t=0; t <= 0) do:
- Simplify all invariants.

- Predict integration step dt based on & and the
iInvariants.

- Execute time round of the active submode and get
state s and time elapsed .

- Integrate for time € and get new state s.

- Return s and t+¢ if invariants were violated.

- Increment t = t+¢.

3. Return s and o

Modular Multi-rate Simulation

T
7| T .. RN .1 SRR, SO, SRR PR SRR SOOI oo -
o] S R R —
2_ .. : .. —
a 1
a 001 .0z 0.0 0.04 .06 .08 .07 .08 o009 aA
4 T
i i
a 0.01 0.0z Q.03 Q.04 Q.08 0.08 Q.07 0.08 a0g a
B|‘ ________ R N I o Lol]] N]
i '
A i e T S AR T R 2 Rk LR T T TR TP PP PP AL P PP PR FIP PP .
T T T .. .
R SO o PR g o A i
a i
a Q.01 0.0z a.03 0.04 Q.08 0.08 Q.07 0.08 fajiulr] a

“Slowest-first” order of integration

Coupling is accommodated by using
interpolants for slow variables

Tight error bound: O(hm?)

Use a different time
step for each
component to exploit
multiple time scales, to
Increasing efficiency.

ratio of largest to
smallest step size

\ |

constant

\ Ha 5 ¥
error = hm+1C§ﬁ(R—l)E

10X,
/ ’\
step size
coupling

Increasing

Computations for Modular Systems

Efficiency gain increases dramatically when
simulating systems with complex right-hand sided
or tight error tolerances

3k

L Hicenoy
o =
- -

efficiency

] TH 180 00 =5l 10 B0 L) L] EOi

Fla bl moo ey

Increasing Higher
complexity tolerances

Talk Outline

v Timed Automata

v' Hybrid Automata

v CHARON: Hierarchical Specification
< Compositionality and Refinement

Motivation

Which properties are preserved?
Can we restrict reasoning to modified parts of design?

Component should have precise interface specification

Components differing only in internal details are equivalent

Observational Semantics

 Classical programming language concept of
denotational semantics: two programs are
“equivalent” If they compute the same function

 For reactive systems, ongoing interaction
(behavior over time) must be accounted for
1 Observational semantics of a hybrid component:

e Signature (static interface): Set of input/output
variables

e Behavioral interface: Set of traces

d Trace: Projection of an execution onto
observable parts (e.g. sequence of Iinput/outputs)

Compositional Semantics

 Traces should retain all (but no more) information
needed to determine interaction of a component
with other components

] Desired theorems

e IT C and C' are equivalent, then in any context C must
be substitutable by C

 Traces of a system with multiple components can be
computed from traces of its components

e.g. traces (P]|Q) = traces(P) intersect traces(Q)
 Typically, we can project out information about

private variables and modes, but not about timing,
and even flows, of communication variables

J
- A 117

Mode A
B

Sample Execution Time

v

Sample Trace Time

v

Refinement

L Component I refines component S if they have same static
signhatures, and every trace of I is also a trace of S

O Implementation I is more constrained than specification
model S

d Implementation I inherits properties of S
O Multiple implementations of S possible

O Desired: Proof calculus for decomposing refinement goals
Into subgoals

O Typical rules: Compositionality, Assume-guarantee
O Foundation for formal top-down design

 Caution: Details of these general principles are highly
sensitive to specifics of a modeling language

Semantics of Charon modes

d Semantics of a mode consists of:
+ entry and exit points
+ global variables
* traces

d Key Thm: Semantics Is compositional

#+ traces of a mode can be computed
from traces of its sub-modes

Refinement

Refinement Is trace inclusion

Normal Normal’

O o)
de

® l. l
O O
Maintain dx Maintain
{t<10} {t<10} dx

de

Sub-mode refinement

Controller’

de
leveld[4,8]
) dx
leveld[2,10]
dx de

Refines

Controller

de
leveld[4,8]
) dx
leveld[2,10]
dx de

Compositional Reasoning

<)

i <| @ v <

M M M

Sub-mode refinement Context refinement

