
Theoretical

ELSEVIER Theoretical Computer Science 138 (1995) 3-34

Computer Science

The algorithmic analysis of hybrid systems

R. Alur”, C. Courcoubetisb* I, N. Halbwachs”, 2, T.A. Henzingerd* 3,
P.-H. Hod* 3, X. Nicollin”, 2, A. Olivero”* 2, J. Sifakis”, 2q *, S. Yovine’* 2

“AT&T Bell Laboratories, Murray Hill, NJ, USA
bUniversity of Crete and ICS, FORTH, Heraklion. Greece

’ VERIMAG-SPECTRE, Grenoble, France
dComputer Science Department, Cornell University, Ithaca, NY, USA

Abstract

We present a general framework for the formal specification and algorithmic analysis of
hybrid systems. A hybrid system consists of a discrete program with an analog environment.
We model hybrid systems as finite automata equipped with variables that evolve continuously
with time according to dynamical laws. For verification purposes, we restrict ourselves to linear
hybrid systems, where all variables follow piecewise-linear trajectories. We provide decidability
and undecidability results for classes of linear hybrid systems, and we show that standard
program-analysis techniques can be adapted to linear hybrid systems. In particular, we consider
symbolic model-checking and minimization procedures that are based on the reachability
analysis of an infinite state space. The procedures iteratively compute state sets that are
definable as unions of convex polyhedra in multidimensional real space. We also present
approximation techniques for dealing with systems for which the iterative procedures do not
converge.

1. Introduction

A hybrid system consists of a discrete program with an analog environment. We
assume that a run of a hybrid system is a sequence of steps. Within each step the
system state evolves continuously according to a dynamical law until a transition
occurs. Transitions are instantaneous state changes that separate continuous state
evolutions.

*Corresponding author.

‘Partially supported by Esprit-BRA 6021 REACT-P.

‘VERIMAG is a joint laboratory of CNRS, INPG, UJF, and VERILOG S.A., associated with lnstitut

IMAG. SPECTRE is an INRIA project. Partially supported by Esprit-BRA 6021 REACT-P.

%upported in part by the National Science Foundation under grant CCR-9200794, by the United States

Air Force Office of Scientific Research under contract F49620-93-l-0056, and by the Defense Advanced

Research Projects Agency under grant NAG2-892.

0304-3975/95/%09.50 0 1995-Elsevier Science B.V. All rights reserved

SsD10304-3975(94)00202-9

4 R. Alur et al. / Theoretical Computer Science 138 (1995) 3-34

We model a hybrid system as a finite automaton that is equipped with a set of
variables. The control locations of the automaton are labeled with evolution laws. At
a location the values of the variables change continuously with time according to the
associated law. The transitions of the automaton are labeled with guarded sets of
assignments. A transition is enabled when the associated guard is true, and its
execution modifies the values of the variables according to the assignments. Each
location is also labeled with an invariant condition that must hold when the control
resides at the location. This model for hybrid systems is inspired by the phase
transition systems of [21,23], and can be viewed as a generalization of timed safety
automata [4,15].

The purpose of this paper is to demonstrate that standard program-analysis
techniques can be adapted to hybrid systems. For verification purposes we restrict
ourselves to linear hybrid systems. In a linear hybrid system, for each variable the rate
of change is constant -though this constant may vary from location to location -and
the terms involved in the invariants, guards, and assignments are required to be linear.
An interesting special case of a linear hybrid system is a timed automaton [4]. In
a timed automaton each continuously changing variable is an accurate clock whose
rate of change with time is always 1. Furthermore, in a timed automaton all terms
involved in assignments are constants, and all invariants and guards only involve
comparisons of clock values with constants. Even though the reachability problem for
linear hybrid systems is undecidable, it can be solved for timed automata. In this
paper, we provide new decidability and undecidability results for classes of linear
hybrid systems, and we show that some algorithms for the analysis of timed automata
can be extended to linear hybrid systems to obtain semidecision procedures for
various verification problems.

In particular, we consider the symbolic model-checking method for timed automata
presented in [lS], and the minimization procedure for timed automata presented in
[2]. Both methods perform a reachability analysis over an infinite state space. The
procedures compute state sets by iterative approximation such that each intermediate
result is definable by a linear formula, that is, each computed state set is a finite union
of convex polyhedra in multidimensional real space. The termination of the proced-
ures, however, is not guaranteed for linear hybrid systems. To cope with this problem,
approximate analysis techniques are used to enforce the convergence of iterations by
computing upper approximations of state sets. Approximate techniques yield either
necessary or sufficient verification conditions.

The paper is essentially a synthesis of the results presented in [3,13,22]. Section
2 presents a general model for hybrid systems. Section 3 defines linear hybrid systems,
and presents decidability and undecidability results for the reachability problem of
subclasses of linear hybrid systems. The verification methods are presented in Section
4. Some paradigmatic examples are specified and verified to illustrate the application
of our results. These examples are analyzed using the KRONOS tool [22,23] (available
from Grenoble), a symbolic model checker for timed automata, and the HYTECH tool
[6,14] (available from Cornell), a symbolic model checker for linear hybrid systems.

R. A fur et at. / Theoretical Computer Science 138 (1995) 3-34 5

2. A model for hybrid systems

We specify hybrid systems by graphs whose edges represent discrete transitions and
whose vertices represent continuous activities.

A hybrid system H = (Lot, Vur, Lab, Edg, Act, Inv) consists of six components.
l A finite set Lot of vertices called locations.

l A finite set Vur of real-valued variables. A valuation v for the variables is a function
that assigns a real-value v(x)~R to each variable XE Var. We write V for the set of
valuations.
A state is a pair (/, v) consisting of a location 8~ Lot and a valuation VE V. We write
C for the set of states.

l A finite set Lab of synchronization labels that contains the stutter label

ze Lab.

l A finite set Edg of edges called transitions. Each transition e = (a, a, p, e’) consists of
a source location ~CYLOC, a target location d’~ Lot, a synchronization label aE Lab,

and a transition relation p G V2. We require that for each location e~Loc, there is
a stutter transition of the form (L’, r, Id, e) where Id = {(v, v) 1 VE V}.

The transition e is enabled in a state (L’, v) if for some valuation V’E V, (v, v’)E~. The
state (e’, v’), then, is a transition successor of the state (e, v).

l A labeling function Act that assigns to each location eg Lot a set of activities. Each
activity is a function from the nonnegative reals R 2 O to V. We require that the
activities of each location are time-invariant: for all locations [bloc, activities
feAct(e), and nonnegative reals tell3 2 ‘, also (f+ t)EAct(f), where (f+ t)(t’) =

f(t + t’) for all t’e[W 2 O.

For all locations &ELOC, activities fEAct(/), and variables XE Vur, we write f” the
function from IR > O to [w such that f”(t) =f(t)(x).

l A labeling function Inv that assigns to each location ~IZLOC an invariant Inv(8) _c V.

The hybrid system H is time-deterministic if for every location k~Loc and every
valuation YE V, there is at most one activity fEAct(d) with f(0) = v. The activity f,
then, is denoted by cpe[v].

The runs of a hybrid system

At any time instant, the state of a hybrid system is given by a control location and
values for all variables. The state can change in two ways.
l By a discrete and instantaneous transition that changes both the control location

and the values of the variables according to the transition relation.
l By a time delay that changes only the values of the variables according to the

activities of the current location.
The system may stay at a location only if the location invariant is true, that is, some
discrete transition must be taken before the invariant becomes false.

A run of the hybrid system H, then, is a finite or infinite sequence

6 R. Alur et al. / Theoretical Computer Science I38 (1995) 3-34

Of states (Ti = (r!, , Vi)EC, nonnegative reals ti~[W ’ O, and activities hEACt(such that
for all i b 0.

1. f;(O) = Vi,

2. for all 0 d t < ti, fi(t)EZno(ei),
3. the state or+ 1 is a transition successor of the state o: = (~?~,fi(t;)).
The state ai is called a time successor of the state Oi; the state bi+ 1, a successor of pi.

We write [H] for the set of runs of the hybrid system H.
Notice that if we require all activities to be smooth functions, then the run p can be

described by a piecewise smooth function whose values at the points of higher-order
discontinuity are sequences of discrete state changes. Also notice that for time-
deterministic systems, we can omit the subscripts .f;: from the next relation I-+.

The run p diverges if p is infinite and the infinite sum xi a o tj diverges. The hybrid
system H is nozeno if every finite run of H is a prefix of some divergent run of H.
Nonzeno systems can be executed [S].

Hybrid systems as transition systems
With the hybrid system H, we associate the labeled transition system YH =
(&Lab u [w”‘, -P), where the step relation + is the union of the transition-step
relations +“, for aeLab,

(v, V’)E,u vElnu(l) v’Elnv(J’)

(e, v) -+a(e’, v’)

and the time-step relations -+‘, for tE[W a O,

fEAct(e) f(0) = v VO < t’ d t.f(t’)EInu(k)

([3 v) +t (eJ-(G)

Notice that the stutter transitions ensure that the transition system YH is reflexive.
There is a natural correspondence between the runs of the hybrid system H and the

paths through the transition system Y H: for all states 0, c’EC, where 0 = (e, v), and for
all tE[W”O.

3f~Act(e), 0 H>CJ’ iff W’EC,aELab. 0 +* 0” +“o’.

It follows that for every hybrid system, the set of runs is closed under prefixes, suffixes,
stuttering, and fusion [15].

For time-deterministic hybrid systems, the rule for the time-step relation can be
simplified. Time can progress by the amount ~E[W a’ from the state (4, v) if this is
permitted by the invariant of location /, that is,

tcpJv](t) iff VO < t’ < t. q3Ju](t’)EInu(f!).

Now we can rewrite the time-step rule for time-deterministic systems as

tcPJvl(r)

(et v) -‘V, cPeCvl(r))

R. Alur et al. J Theoretical Computer Science 138 (1995) 3-34

z=M

Fig. 1. Thermostat

Example: thermostat
The temperature of a room is controlled through a thermostat, which continuously

senses the temperature and turns a heater on and off. The temperature is governed by
differential equations. When the heater is off, the temperature, denoted by the variable
x, decreases according to the exponential funtion x(t) = OeeK*, where t is the time, 8 is
the initial temperature, and K is a constant determined by the room; when the heater
is on, the temperature follows the function x(t) = OemK’ + h(1 - ewK*), where h is
a constant that depends on the power of the heater. We wish to keep the temperature
between m and M degrees and turn the heater on and off accordingly.

The resulting time-deterministic hybrid system is shown in Fig. 1. The system has
two locations: in location !,,, the heater is turned off and in location L1 , the heater is
on. The transition relations are specified by guarded commands, the activities by
differential equations, and the location invariants by logical formulas.

The parallel composition of hybrid systems

Let HI = (Loci, Var,Lab,,Edg,,Act,,InvI) and H2 =(Locz, Var,Lab,,Edg,,
Act2, Inu2) be two hybrid systems over a common set Var of variables. The two hybrid
systems syhchronize on the common set Lab1 n Lab, of synchronization labels, that
is, whenever HI performs a discrete transition with the synchronization label
aE Lab, n Lab2, then so does HZ.

The product HI x H2 is the hybrid system (Loci x Loc2, Var, Lab, u Lab,,

Edg, Act, Inv) such that

l ((C,,e,),a,~,(e;,e;))EEdg iff
(1) (~i,ai,~l,C’i)~Edgr and (~2,a2,~2,C)EE&2.
(2) either a, = a2 = a, or either a, = a $ (Lab1 n Lab2) and a2 = t, or ai = T and

a2 = a $ (Lab1 n Lab,),

(3) P = p1 n p2;
l Act(eI,e2) = ActI n Act2(e2);
0 Znu(e,,e,) = Znvl(81) n Znu,(e,).

It follows that all runs of the product system are runs of both component systems:

CHr x HzL 5 CHII and [HI x H2L2 E CHZI,

where CHl x H21~oe, is the projection of [H, x H2] on Loci.
Notice also that the product of two time-deterministic hybrid systems is again

time-deterministic.

8 R. A fur ef af. / Theoretical Computer Science 138 i 3995) 3-34

3. Linear hybrid systems

A linear term over the set Var of variables is a linear combination of the variables in
Var with integer coefficients. A linearformula over Var is a boolean combination of
inequalities between linear terms over Var.

The time-deterministic hybrid system H = (Lot, Var, Lab, Edg, Act, Inv) is linear if
its activities, invariants, and transition relations can be defined by linear expressions
over the set Var of variables:
1. For all locations 1eLoc, the activities Act(f) are defined by a set of differential

equations of the form i = k,, one for each variable XE Var, where k,~iZ is an integer
constant: for all valuations YE V, variables XE Var, and nonnegative reals CER a O,

&v](t) = v(x) + k;t.

We write Act(l,x) = k, to refer to the rate of the variable x at location e.
2. For all locations /E Lot, the invariant Znv(L’) is defined by a linear formula $ over

Var:

vEZnu(d) iff v($).

3. For all transitions eEEdg, the transition relation 1(is defined by a guarded set of
nondeterministic assignments

ti *ix:= Cch,PJ I xc Var},

where the guard II/ is a linear formula and for each variable XE Var, both interval
boundaries LX, and /3, are linear terms:

(v, v’)Ep iff v($) A VXE Var. v((x,) d v’(x) < v(px).

If ~1, = B,., we write p(e, x) = CC, to refer to the updated value of the variable x after
the transition e.

Notice that every run of a linear hybrid system can be described by a piecewise
linear function whose values at the points of first-order discontinuity are finite
sequences of discrete state changes.

Special cases of linear hybrid systems
Various special cases of linear hybrid systems are of particular interest.
l If Act(8, x) = 0 for each location ~YeLoc, then x is a discrete variable. Thus,

a discrete variable changes only when the control location changes. A discrete

system is a linear hybrid system all of whose variables are discrete.
l A discrete variable x is a proposition if p(e, x)E{O, l} for each transition eeEdg.

A jinite-state system is a linear hybrid system all of whose variables are proposi-
tions.

l If Act(L’, x) = 1 for each location / and p(e, x)E{O, x} for each transition e, then x is
a clock. Thus, (1) the value of a clock increases uniformly with time, and (2)
a discrete transition either resets a clock to 0, or leaves it unchanged. A timed

R. Alur et al. / Theoretical Computer Science I38 (1995) 3-34 9

automaton [4] is a linear hybrid system all of whose variables are propositions or
clocks, and the linear expressions are boolean combinations of inequalities of the form
x#corx-y#cwherecisanonnegativeintegerand #E{<, 6, =, >, b}.

l If there is a nonzero integer constant kEiZ such that Act(e,x) = k for each location
e and p(e,x)E(O,x} for each transition e, then x is skewed clock. Thus, a skewed
clock is similar to a clock except that it changes with time at some fixed rate
different from 1. A multirate timed system is a linear hybrid system all of whose
variables are propositions and skewed clocks. An n-rate timed system is a multirate
timed system whose skewed clocks proceed at n different rates.

l If Act(e, x)E{O, l} for each location e and p(e, x)E{O, x j for each transition e, then
x is an integrator. Thus, an integrator is a clock that can be stopped and restarted; it
is typically used to measure accumulated durations. An integrator system is a linear
hybrid system all of whose variables are propositions and integrators.

l A discrete variable x is a parameter if p(e,x) = x for each transition eEEdg. Thus,
a parameter is a symbolic constant. For each of the subclasses of linear hybrid
systems listed above, we obtain parametrized versions by admitting parameters.
Notice that linear hybrid systems, and all of the subclasses of linear hybrid systems

listed above, are closed under parallel composition.

3.1. Examples of hybrid systems

A water-level monitor

The water level in a tank is controlled through a monitor, which continuously
senses the water level and turns a pump on and off. The water level changes as
a piecewise-linear function over time. When the pump is off, the water level, denoted
by the variable y, falls by 2 in per second; when the pump is on, the water level rises by
1 in per second. Suppose that initially the water level is 1 in and the pump is turned on.
We wish to keep the level between 1 and 12in. But from the time that the monitor
signals to change the status of the pump to the time that the change becomes effective,
there is a delay of 2s. Thus, the monitor must signal to turn the pump on before the
water level falls to 1 in, and it must signal to turn the pump off before the water level
reaches 12 in.

The linear hybrid system of Fig. 2 describes a water-level monitor that signals
whenever the water level passes 5 and loin, respectively. The system has four
locations: in locations 0 and 1, the pump is turned on; in locations 2 and 3, the pump is
off. The clock x is used to specify the delays: whenever the control is in location 1 or 3,
the signal to switch the pump off or on, respectively, was sent xseconds ago. In the
next section, we will prove that the monitor indeed keeps the water level between
1 and 12in.

A mutual-exclusion protocol

This example describes a parametrized multirate timed system. We present a
timing-based algorithm that implements mutual exclusion for a distributed system

10 R. Alur et al. / Theoretical Computer Science I38 (1995) 3-34

Fig. 2. Water-level monitor.

with skewed clocks. Consider the asynchronous shared-memory system that consists
of two processes Pi and P2 with atomic read and write operations. Each process has
a critical section and at each time instant, at most one of the two processes is allowed
to be in its critical section. Mutual exclusion is ensured by a version of Fischer’s
protocol [lS], which we describe first in pseudocode. For each process Pi, where
i = 1,2:

repeat

repeat

await k = 0

k:= i

delay b

until k = i

Critical section

k:= 0

forever

The two processes PI and P2 share a variable k and process Pi is allowed to be in its
critical section iff k = i. Each process has a private clock. The instruction delay

b delays a process for at least b time units as measured by the process’s local clock.
Furthermore, each process takes at most a time units, as measured by the process’s
clock, for a single write access to the shared memory (i.e., for the assignment k:= i).
The values of a and b are the only information we have about the timing behavior of
instructions. Clearly, the protocol ensures mutual exclusion only for certain values of
a and b. If both private processor clocks processed at precisely the same rate, then
mutual exclusion is guaranteed iff a < b.

To make the example more interesting, we assume that the two private clocks of the
processes PI and P2 proceed at different rates, namely, the local clock of P2 is 1.1

R. AIur et al. / Theoretical Computer Science 138 (1995) 3-34 I1

x>br\k#l

k=O

.fz := 0

k:=O

k:=O

Fig. 3. Mutual-exclusion protocol.

x=0

y=o
:=o

Fig. 4. Leaking gas burner

times faster than the clock of Pi. The resulting system can be modeled by the product
of the two hybrid systems presented in Fig. 3.

Each of the two graphs models one process, with the two critical sections being
represented by the locations 4 and D. The private clocks of the processes Pi and P2
determine the rate of change of the two skewed-clock variables x and y, respectively.

A leaking gas burner

Now we consider an integrator system. In [9], the duration calculus is used to prove
that a gas burner does not leak excessively. It is assumed that (1) any leakage can be
detected and stopped within 1 s and (2) the gas burner will not leak for 30s after
a leakage has been stopped. We wish to prove that the accumulated time of leakage is
at most 1/20th of the time in any interval of at least 60 s. The system is modeled by the
hybrid system of Fig. 4. The system has two locations: in location 1, the gas burner

12 R. Alur et al. 1 Theoretical Computer Science I38 (199.5) 3-34

A s, < T A x! < T

Fig. 5. Temperature control system.

leaks; location 2 is the nonleaking location. The integrator z records the cumulative
leakage time, that is, the accumulated amount of time that the system has spent in
location 1. The clock x records the time the system has spent in the current location; it
is used to specify properties (1) and (2). The clock y records the total elapsed time. In
the next section, we will prove that y 2 60 =S 202 d y is an invariant of the system.

A temperature control system
This example appears in [16]. The system controls the coolant temperature in

a reactor tank by moving two independent control rods. The goal is to maintain the
coolant between the temperatures 8, and diu. When the temperature reaches its
maximum value 8,,,, the tank must be refrigerated with one of the rods. The temper-
ature rises at a rate u, and decreases at rates v, and v2 depending on which rod is being
used. A rod can be moved again only if T time units have elapsed since the end of its
previous movement. If the temperature of the coolant cannot decrease because there is
no available rod, a complete shutdown is required. Fig. 5 shows the hybrid system of
this example: variable 8 measures the temperature, and the values of clocks xl and x2
represent the times elapsed since the last use of rod 1 and rod 2, respectively.

A game of billiards
Consider a billiard table of dimensions 1 and h, with a grey ball and a white ball

(Fig. 6).
Initially, the balls are placed at positions b, = (x,, y,) and b, = (x,, y,). The grey

ball is knocked and starts moving with constant velocity v. If the ball reaches a vertical
side then it rebounds, i.e. the sign of the horizontal velocity component v, changes.
The same occurs with the vertical velocity component vY when the ball reaches

R. Alur et al. / Theoretical Computer Science 138 (1995) 3-34 13

Fig. 6. Billiards game.

y=h y=h y=o

Fig. 7 Movement of the grey ball

a horizontal side. The combination of signs of velocity components gives four different
directions of movement.

The hybrid system shown in Fig. 7 describes the movement of the grey ball for the
billiards game. Each posible combination of directions is represented by a location.
The rebounds correspond to the execution of transitions between locations.

3.2. The reachability problem for linear hybrid systems

Let cs and cr’ be two states of a hybrid system H. The state 0’ is reachable from the
state (r, written 0 w+* u’, if there is a run of H that starts in CJ and ends in 6’. The

14 R. Alur et al./ Theoretical Computer Science 138 (1995) 3-34

reachability question asks, then, if c b* a’ for two given states a and a’ of a hybrid
system H.

The reachability problem is central to the verification of hybrid systems. In
particular, the verification of invariance properties is equivalent to the reachability
question: a set R c C of states is an invariant of the hybrid system H iff no state in
C - R is reachable from an initial state of H.

A decidability result

A linear hybrid system is simple if all linear atoms in location invariants and
transition guards are of the form x < k or k < x, for a variable XE Var and an integer
constant kEZ. In particular, for multirate timed systems the simplicity condition
prohibits the comparison of skewed clocks with different rates.

Theorem 3.1. The reachability problem is decidable for simple multirate timed systems.

Proof. Let H be a simple multirate timed system. We translate H into a timed
automaton SC(H): (1) adjust the rates of all skewed clocks to 1, and (2) replace all
occurrences of each skewed clock x in location invariants and transition guards with
k, . x. Given a valuation v of H, let the valuation SC(V) be such that SC(V)(X) = k, . v(x)

for all skewed clocks x and SC(V)(P) = v(p) for all propositions p; moreover,
sc(8, v) = (e, SC(V)). It is not difficult to check that there is a run of H from a to a’ iff
there is a run of SC(H) from se(a) to sc(a’). The reachability problem for timed
automata is solved in Cl]. 0

Two undecidability results

Theorem 3.2. The reachability problem is undecidable for 2-rate timed systems.

Proof. The theorem follows from the undecidability of the halting problem for
nondeterministic 2-counter machines. Given any two distinct clock rates, a 2-rate
timed system can encode the computations of the given 2-counter machine M. For the
2-rate timed system H, we use accurate clocks of rate 1 and skewed clocks of rate 2.
We use an accurate clock y to mark intervals of length 1: the clock y is zero initially,
and is reset whenever it reaches 1. The ith configuration of the machine M is encoded
by the state of H at time i. The location of H encodes the program counter of M, and
the values of two accurate clocks x1 and x2 encode the counter values: the counter
value n is encoded by the clock value l/2”.

Encoding the program counter, setting up the initial configuration, and testing
a counter for being 0, is straightforward. Hence, it remains to be shown how to update
the counter values. Suppose at time i the value of an accurate clock x is l/2”, that is,
suppose that the clock x is reset to 0 at time i - l/2”. Suppose the value of the counter
encoded by x stays unchanged. Then simply reset x to 0 when its value reaches 1 (that
is, at time (i + 1 - l/2”)); the value of x at time i + 1 will then be l/2”. To increment

R. Alur et al. / Theoretical Computer Science 138 f 1995) 3-34 15

the counter represented by x, reset an accurate clock z when the value of x reaches 1,
then nondeterministically reset both x and a skewed clock z’ in the interval
(i + 1 - l/2”, i + 1) and test z:= z’ at time i + 1. The equality test ensures that the
value of the skewed clock z’ is l/2” at time i + 1, and hence, the value of x is l/2”+ ’ at
time i + 1. To decrement the counter represented by x, nondeterministically reset an
accurate clock z in the interval (i - 1, i - l/2”), reset a skewed clock z’ simultaneously
with x at time i - l/2”, and test the condition z = z’ at time i. This ensures that the
value of z at time i is l/2”- ‘. Then resetting the clock x when the value of z reaches
1 ensures that the value of x is l/2”-’ at time i + 1.

Thus, the runs of H encode the runs of M, and the halting problem for M is reduced
to a reachability problem for H. 0

Theorem 3.3. The reachability problem is undecidable for simple integrator systems.

Proof. This is proved in [8]. 0

4. The verification of linear hybrid systems

We present a methodology for analyzing linear hybrid systems that is based on
predicate transformers for computing the step predecessors and the step successors of
a given set of states. Throughout this section, let H = (Lot, Vur, Lab, Edg, Act, Znu) be
a linear hybrid system.

4.1. Forward analysis

Given a location /bloc and a set of valuation P G V, the forward time closure

(P): of P at C! is the set of valuations that are reachable from some valuation VEP by
letting time progress:

V’E(P)f iff 3veV, tE[W”O .VEP A tcpJv](t) A v’ = cpJv](t).

Thus, for all valuations V’E (P): , there exist a valuation veP and a nonnegative real
&IW”O such that (8, v) -‘(e, v’).

Given a transition e = (e, a, p, k’) and a set of valuations P E V the postcondition

post,[P] of P with respect to e is the set of valuations that are reachable from some
valuation veP by executing the transition e:

v’Epost,[P] iff 3~ V. vEP n In@) A (v, v’)E~ A v’Elnu(/).

Thus, for all valuations v’Eposte[P], there exists a valuation VEP such that
(4, v) +a(e’, v’).

A set of states is called a region. Given a set P c V of valuations, by (4, P) we

denote the region ((8, v) 1 VEP n Znu(f)); we write (8, v)E(/, P) iff VEP n In@). The

16 R. Alur et al. / Theoretical Computer Science 138 (1995) 3-34

forward time closure and the postcondition can be naturally extended to regions: for

R = UmcV~&),

CR)” = u V,(R,):L
LELOC

wstCR1 = u (f, wsL[R,l).
e=(l,l’)eEdg

A symbolic run of the linear hybrid system H is a finite or infinite sequence

&?I (e,,P,)(d,,P,)...(e,,Pi)...

of regions such that for all i 2 0, there exists a transition ei from /i to ei+ 1 and

pi+I = P”ste~C(Pi)~lt

that is, the region (ei+ i, Pi+ i) is the set of states that are reachable from a state
(e,,, v,,)E(/~, P,) after executing the sequence e,, . . . , ei of transitions. There is a natural
correspondence between the runs and the symbolic runs of the linear hybrid system H.
The symbolic run Q represents the set of all runs of the form

such that (/, , vi)E(ei, Pi) for all i > 0. Besides, every run of H is represented by some
symbolic run of H.

Given a region I E C, the reachable region (I F+*) c z of I is the set of all states that
are reachable from states in I:

rr~(Z I+*) iff WEI. cr’ ~--+*a.

Notice that Z c (I I-+*).
The following proposition suggests a method for computing the reachable region

(I I+*) of I.

Proposition 4.1. Let Z = ULELoc (/,Z,) be a region of the linear hybrid system H. The

reachable region (I I+*) = ULELoc (8, R,) is the least jxpoint of the equation

x = (I u post[X]);.

or, equivalently, for all locations 8~ Lot, the set Rc of valuations is the least jixpoint of

the set of equations

Let $ be a linear formula over Var. By [$I we denote the set of valuations
that satisfy $. A set P E V of valuations is linear if P is definable by a linear
formula, that is, P = [tj] for some linear formula $. If Var contains n variables,
then a linear set of valuations can be thought of as a union of polyhedra in
n-dimensional space.

R. Alur et al. / Theoretical Computer Science 138 (1995) 3-34 17

Lemma 4.1. For all linear hybrid systems H, ifP c V is a linear set of valuations, then
for all locations {bloc and transitions eE Edg, both (P): and post,[P] are linear sets

of valuations.

Given a linear formula tj, we write (9): and post,[+] for the linear formulas that
define the set as valuations ([$I): and post,[[11/1], respectively.

Let pc $ Var be a control variable that ranges over the set Lot of locations and let

R = Ues~oc (f, RL) be a region. The region R is linear if for every location [E Lot, the set
R, of valuations is linear. If the sets Rc are defined by the linear formulas tjr, then the
region R is defined by the linear formula

I(/ = v (PC = e A $L);
/ELOC

that is [$I = R. Hence, by Lemma 4.1, for all linear hybrid systems, if R is a linear
region, then so are both (R)’ and post[R].

Using Proposition 4.1, we compute the reachable region (I H*) of a region I by
successive approximation. Lemma 4.1 ensures that all regions computed in the
process are linear. Since the reachability problem for linear hybrid systems is undecid-
able, the successive-approximation procedure does not terminate in general. The
procedure does terminate for simple multirate timed systems (Theorem 3.1) and for
the following example.

Example: the leaking gas burner
Let I be the set of initial states defined by the linear formula

I), = (pc = 1 A x = y = 2 = 0).

The set (I ++*) of reachable states is characterized by the least fixpoint of the two
equations

$1 = (x = Y = z = 0 ” Po%,I,C~zl>:~

+2 = (false v Post~I,2~C~11)~r

which can be iteratively computed as

ll/I,i = +l,i-1 ” (PoSf(2.1)C~Z,i-11):,

$Z,i = h,i-1 ” (Post(l,2)CJ/1,i-ll):,

where tj1,0 = (x = y = z = 0): = (x < 1 A y = x = z) and $2,0 =false. For i = 1, we
have

$1.1 = $1.0 ” <PO~t(Z,I)C$Z,Ol);

18 R. AIur et al. / Theoretical Computer Science 138 (1995) 3-34

I//2,1 = *2,0 ” (Post(L2)C~LIlx

= (post(r,2,[x Q 1 A y = x = z = 01);

= ((x = 0 A y < 1 A z = y));

=(z<l/Yy=z+x).

Now, it is easy to show by induction that for all i 2 2.

ll/l,i = ~l,i_l V X < 1 A O < Z - X < i A 3Oi + Z < y

and

~2.i = ~2.i-1 V y < i-k 1 A 3oi -k X -k Z < y

Hence, the least solution of the equations above is the linear formula

$R = (PC = 1 A $1) ” (PC = 2 A $21,

where

IL1 =x~1Ax=y=zv3i~l.(x~1AO~z-x<iA30i+z<y)

= (X < 1 A X = y = Z) V (X < 1 A X < Z A y + 30X 2 31Z),

49,=z,<1Ay=x+zAx~ov3i~1.(z~i+1A3oi+x+z~y)

=(Z<1Ay=X+ZAX~o)Vy~X+31Z-30.

This characterization of the reachable states can be used to verify invariance proper-
ties of the gas burner system (tiR is the strongest invariant of the system). For instance,
the formula tiR implies the design requirement y > 60 = 202 < y.

4.2. Backward analysis

The forward time closure and the postcondition define the successor of a region R.

Dually, we can compute the predecessor of R.
Given a location C’ELOC and a set of valuation P c V, the backward time closure of

P at 8’ is the set of valuations from which it is possible to reach some valuation VE P by
letting time progress:

V’E(P); iff E&V, tElllao. V = &=[V’](t) A VEP A tC&[V’](t).

Thus, for all valuations V’E(P)J , there exist a valuation VE P and a nonnegative real

tEIR”” such that (e, v’) -‘(L’ v).

Given a transition e = (e, a, p, /‘) and a set of valuations P E V, the precondition
pre,[P] of P with respect to e is the set of valuations from which it is possible to reach

a valuation VEP by executing the transition e:

v’Epre,[P] iff 3~ V. vGP n Inu(f’) A (v’, V)E~ A vGlnu(l).

R. Alur et al. 1 Theoretical Computer Science 138 (1995) 3-34 19

Thus, for all valuations v’Epre,[P], there exists a valuation VEP such that
(8, v’) -“(e’, v).

The backward time closure and the precondition can be naturally extended to
regions: for R = UcELoC(/, R,),

CR)=‘ = u (e,(R,)t),
ee Lot

wCR1 = i.) V’, weC&l).
e=(C’.C)EEdg

Given a region R C_ Z, the initial region (t+* R) c C of R is the set of all states from
which a state in R is reachable:

CTE(H* R) iff 3o’~R. 0 I+*cJ’.

Notice that R G (w*R).
The following proposition suggests a method for computing the initial region

(H*R) of R.

Proposition 4.2. Let R = UCELOC (/,R,) be a region of the linear hybrid system H. The
initial region I = ULELoc (e, Ze) is the least fixpoint of the equation

X = (R u pre[X])“,

or, equivalently, for all locations ~~Loc, the set I(of valuations is the leastjxpoint of the set

I(
X, = R, u

(
u wQ&l

e=(L,a,r,1’)EEdg > e
of equations.

Lemma 4.2. For all linear hybrid systems H, ifP G V is a linear set of valutions, then for

all locations /bloc and transitions eEEdg, both (P): and pre,[P] are linear sets of
valuations.

It follows that for all linear hybrid systems, if R is a linear region, then so are both
(R) / and pre [R]. Given a linear formula $, we write ($)f and pree [J/] for the
linear formulas that define the sets of valuations ([tjj): and pre,[[[$I 1, respectively.

Example: the leaking gas burner
We apply backward analysis to prove that the design requirement y >/ 60

= 202 < y is an invariant of the gas burner system, that is, the region R defined by the
linear formula

tiR = (y > 60 A 202 > y)

is not reachable from the set Z of initial states defined by the linear formula

$, = (pc = 1 A x = y = z = 0).

20 R. Alur et al. / Theoretical Computer Science I38 (1995) 3-34

The set (H*R) of states from which it is possible to reach a state in R is
characterized by the least fixpoint of the two equations

11/r = ((Y 2 60 A 202 > Y) v wcI,2jC$21>f~

b = ((Y 2 60 A 202 > Y) v or+, dhl >i 2

which can be iteratively computed as

$l.i = (Pr%,2~C~2,i-~l)~~

+2,i = (P%,1~C+~,i-~l>~,

where $I,0 = ((y 2 60 A 202 > y)): and tjz,,, = ((y 2 60 A 202 > y));. Then

lj$r,o = (- 19 < 202 - 19X - y A 59 < - X + y A X < 1).

I,I$~,o = (0 < 202 + X - y A 0 < 202 - y A 3 < Z),

@i,r = (- 19 < 202 - y - 19X A 2 < Z - X A X < 1),

$,,,=(-19<20z-y/\2<ZA11<20z+x-y),

$r,* = (- 8 < 202 - 19x - y A 1 < z - x A x < 1)

Ic/z,z = (- 19 < 202 - y A 2 < Z A 11 < 202 + X - y),

$1,3 = (- 8 < 202 - 19x - y A 1 < z - x A x < 1)

1j~,~=(-8<20~-y~ l<z~22<2Oz+x-y),

l/1,4 = (3 < 202 - 19X - y A 0 < Z - X A X 6 1)

$z,d = (- 8 < 202 - y A l < z A 22 < 202 + x - y),

+i,5 = (3 < 202 - 19X - y A 0 < Z - X A X < 1),

t,G2,5=(3<20z-y~O<ZA33<20z+x-y),

lji.6 = (14 < 202 - 19X - y A - 1 < Z - X A X < 1),

ljz,h = (3 < 202 - y A 0 < Z A 33 < 202 + X - y).

Since *i,7 * ti1.6 and I+G~,~ * I++~,~, the solution $ is

o <J/< 6 (PC = 1 A ‘J’1.i) V (PC = 2 A I//z,i)t
. .

which contains no initial states, that is, ll/I A $ =false. It follows that the design
requirement is an invariant.

4.3. Approximate analysis

In this section, we briefly present an approximate technique for dealing with
systems where the (forward or backward) iterative procedure does not converge.

R. Alur et al. 1 Theoretical Computer Science I38 (1995) 3-34

(a). C’onves llUl1

Fig. 8. Approximation operators.

(h). \\~idwing

For more details, see [13,14-J. We will compute upper approximations of the

sets:

l (I H*) of states which are reachable from the initial states I (forward analysis)

l (H* R) of states from which the region R is reachable (backward analysis).

We focus on forward analysis, backward analysis is similar. Let us come back to the

system of fixpoint equations whose least solution gives, for each location 6, the set XL

of reachable states at location 8:

>
7

x, = I,u U post, LX,,1 .
e=(C’.a,~,f)~Edg c

Two problems arise in the practical resolution of such a system.

l Handling disjunctions of systems of linear inequalities; for instance, there is no easy

way for deciding if a union of polyhedra is included into another.

l The fixpoint computation may involve infinite iteration.

An approximate solution to these problems is provided by abstract interpretation

techniques [10,111.

First, union of polyhedra is approximated by their convex hull, i.e., the least convex

polyhedron containing the operands of the union. Let LJ denote the convex hull

operator:

Pu P'= {lx + (1 - A)X'IXEP,X'EP',k[O, 11).

Fig. 8(a) shows an example of convex hull. See [11,20] for efficient algorithms to

compute the convex hull. The system of equations becomes

22 R. Ah et al. / Theoretical Computer Science 138 (1995) 3-34

To enforce the convergence of iterations, we apply Cousot’s “widening technique”
[lo, 111. The idea is to extrapolate the limit of a sequence of polyhedra in such a way
that an upper approximation of the limit be always reached in a finite number of
iterations. We define a widening operator, noted K on polyhedra, such that
l For each pair (P, P’) of polyhedra, P u P’ E P VP’,

l For each infinite increasing sequence (PO, PI, . . . , P,, . . .) of polyhedra, the sequence

defined by Q. = PO, Qn+ 1 = Qn VP,+ 1 is not strictly increasing (i.e., remains
constant after a finite number of terms).

A widening operator on polyhedra has been defined in [l 1,121. Intuitively, the system
of linear constraints of P VP’ is made of exactly those constraints of P which are also
satisfied by P’. So it is built by removing constraints from P and sine we cannot
remove infinitely many constraints, the finiteness property follows. Fig. 8b illustrates
the widening operation. Now, this operator is used as follows: Choose, in each loop of
the graph of the hybrid system, at least one location, and call them “widening

locations” (so, removing these locations would cut each loop in the graph). Let
X$“) = F(X’“-“) be the nth step computation at location /, that is, F(X’“-“) =

(1, l-l Ue=(C’,C)EEdg post,[IX F- ‘)])f. Instead, for each widening location e and each
step n > 1, compute Xp) = Xp- ‘) VF(X (“-l)). Then, the new iterative computation
converges after a finite number of steps toward an upper approximation of the least
solution of the original system.

Example: the leaking gas burner

With I defined by $e = (pc = 1 A x = y = z = 0), we have (I H*) = Xi u X2, with
Xi = lim Xl”’ (i = 1,2) and (choosing location 1 as the only widening location)

x?’ = x’;-” V((x = y = z = 0)u pOSt(2,J)[X2 ‘“-“lx

(n+l’ 7
XY = (Post(L2)CXl 12 .

The successive iterations are as follows:
Step 1:

x’l~=x=y=z*o<x< 1 1 . .,

x~l’=y=x+zAo~xAo~z~l,

Step 2:

x’:’ = 312 < 30x + y A x < z A 0 < x < 1,

x~2’=x+zdy/\o~x*odz*x+31z~y+30,

Step 3: Shows the convergence

x(3’ = x(2’
1 1 >

x(3’ = x(2’
2 2 .

R. AIur et al. 1 Theoretical Computer Science I38 (1995) 3-34 23

So the final results are

X,=O<x<l AxdzA31z~Y+3Ox7

These results are obtained in 0.2s on SUN 4 Spare Station. Notice that, in this case,
the results are almost exact, and have been obtained automatically, without the
induction step used in Section 4.1.

Other examples

Water-level monitor. Choosing location 0 as the only widening location, we get (in
0.4 s) the following results:

X2 = 2x + y = 16 A 4 < 2x < 11,

We can easily check that Xi implies 1 < y f 12 for 0 d i < 3. So, the water level is
kept between 1 and 2in as required.

Fischer’s mutual-exclusion protocol. In this example, we can consider delays a and
b as symbolic constants, letting the analysis discover sufficient conditions for the
algorithm to work. With two processes, the results (obtained in 0.3 s) show that the
locations where the mutual exclusion is violated can only be reached when a 2 b

(resp., lla > lob when P,‘s local clock runs 1.1 faster than Pi’s).

4.4. Minimization

We extend the next relation H to regions: for all regions R and R’, we write R I-+ R’

if some state O’ER’ is a successor of some state CER, that is

RHR’ iff 3aeR,a’ER’.a++a’.

We write H * for the reflexive-transitive closure of H.
Let 7~ be a partition of the state space C. A region REX is stable if for all R’ETC,

R ++ R’ implies VaeR. {a} H R’

or, equivalently,

R n pre[(R’)/] = 8 implies R c pre[(R’)/].

The partition K is a bisimulation if every region RER is stable. The partition 71 respects
the region RF if for every region REX, either R E RF or R n RF = 0.

24 R. Alur e! al. / Theoretical Computer Science 138 (199.5) 3-34

If a partition rt that respects the region RF is a bisimulation, then it can be used to
compute the initial region (t+* RF): for all regions REX, if R I-#* RF then R E (H* RF);

otherwise, R n (H* RF) = 8. Thus, our objective is to construct the coarsest bisimula-
tion that respects a given region RF, provided there is a finite bisimulation that
respects RF.

If we are given, in adition to RF, an initial region I that restricts our interest to the
reachable region (I H*), then it is best to use an algorithm that performs a simulta-
neous reachability and minimization analysis of transition systems [7,19].

The minimization procedure of [7] is given below. Starting from the initial partition
{RF,C - RF} that respects R,, the procedure selects a region R and checks if R is
stable with respect to the current partition; if not, then R is split into smaller sets.
Additional book-keeping is needed to record which regions are reachable from the
initial region I. In the following procedure, n is the current partition, ct c rc contains
the regions R that have been found reachable from I, and /3 E n contains the regions
R that have been found stable with respect to 7~. The function split[rr](R) splits the
region REX into subsets that are “more” stable with respect to rr:

if 3R”m.R‘= pre[(R”)“] n R A R’cR,

otherwise.

The minimization procedure returns YES iff Z H* RF.

State-space minimization:
7t:= {R~,c - ~,};a:= {RIR n z zfq;p:= 0

while a # j? do

choose RE(a - /?)

let a’:= split[rr](R)
if a’ = (R} then

fi:=/lu {R}

a:=au {R’EIcIRHR’}

else

a:= a - {R}

if 3R’Ea’ such that R’ n Z # 0 then a:= a u {R’} fi

p:=p-{Rk7qR++~}

TC:=(Z- {R})ua’

fi

od

return there is Rca such that R c RF.

If the regions RF and Z are linear, from Lemma 4.2 it follows that all regions that are
constructed by the minimization procedure are linear. The minimization procedure
terminates if the coarsest bisimulation has only a finite number of equivalence classes.
An alternative minimization procedure is presented in [19] which can also be
implemented using the primitives ()” and pre.

R. Ah et al. J Theoretical Computer Science 138 (1995) 3-34 25

Example: the water-level monitor

Let H be the hybrid automaton defined in Fig. 2. We use the minimization
procedure to prove that the formula 1 < y < 12 is an invariant of H. It follows that the
water-level monitor keeps the water level between 1 and 12in.

Let the set I of initial states be so defined by the linear formula

and let the set RF of “bad” states be defined by the linear formula

ljf = (y < 1 v y > 12).

The initial partition is

?r[1 = {&)o = (pc = 0 A 1 d y < 12), $01 = (pc = 0 A (y < 1 v y > 12)),

$lo=(pC= 1 A l<y< 12), $11 = (PC = 1 A (J’ < 1 V y > 12)),

$2,~ = (PC = 2 A 1 d y < 12), $21 = (PC = 2 A (y < 1 V y > 12)),

$30 = (PC = 3 A 1 < y < 12), $31 = (PC = 3 A (J’ < 1 V y > 12))).

The bad states are represented by ll/ii, for k{O, 1,2,3}. Since the set I of initial states is
contained in +0,, , that is $I * tiOO, let M = {lLOO). Considering $ = $,,,+a, we find that

wW~4h0) = ($ 000 = (PC = 0 A 1 d y < lo), $001 = (PC = 0 A lo < JJ < 12)).

Therefore, rc2 = {II/ ooo~~oo~~Il/o~~~~o~~~~,ll/zo~~~~~~~o,~~~~. Now $1 *$OOO, so
take GI = { ijooO} and /l = 8. Considering + = tiOOO, we find that it is stable with
respect to 7~~. Thus, CI = c(u { R’E~ 1 R HR’J = {~ooo~~I~~Io} and B= {&,,I.
Since ij = $OOi is also stable in 7t2 and is not reaching any new states not in CL,
c(remains the same and /I = { $ OOO,~,,,,l}. However, considering $ = $i,,, we obtain

wWdWIo) = {ti 10,~ = (PC = 1 A 0 < X d 2 A 1 < J’ d 12)

Il/ioi = (PC = 1 A X > 2 A 1 < y < 12)).

Now, $U,O and Il/iOl together with 7c2, except for $i,,, constitute 7~~. The new /? is
obtained by removing { R’E~ 1 R’ H R) = I,$,,,,,, from the old b. The new c(becomes

{~C~OOO,~~OO~). Now II/ = $000 is stable in 7r3. Hence c(= { ~000, tiOO1r$lOO} and
D = {$ooo,$oo~}. Since II/ = $MO is stable in 7r3, we have c(= {~000,~001,~~00,
$101~~920) and B= ($ooo,&xM,+~oo). ti = $UX is also stable in 7r3, so
B = (~000,~001,~100,IC/101) an u remains unchanged. Considering II/ = I,G~~, we d
obtain

wW~31(IC120) = {$ 200 = (PC = 2 A 5 < J’ < 12), $201 = (PC = 2 A 1 < y < 5)).

Now n4 contains $200 and +201, and thus i,GiOO must be reconsidered. It is split into

wWnJ(ll/lOO) = {4Q 1ooo = (PC = 1 A 0 < X < 2 A 3 < y < 12 A 3 < Y - X < 12),

II/ lool=(pC=lAO~X<2A1~y<3A1$~-X<3)},

26 R. Ahr et al. / Theoretical Computer Science 138 (1995) 3-34

Thus n5 contains +iOOO and $lOO1. After finding that $OOo, $1000 and 1(/2,,0 all are
stable, we finally have a = { tj 000, $001 y +IOOO, $200, $zo~, $SO> and B = (tiooo, lcIool,

ti 1o~~T *ZOO>. So let * = +201. It is stable, so /I = B u { tjZoo} and a does not change.
Then Ic/ = $30 is partitioned into

(i+& = (pc = 3 A 0 < x d 2 A 1 d y d 12), +3or = (pc = 3 AX > 2 A 1 < y < 12)).

i+GZoo has to be considered again. It is stable with respect to the current partition. Then
$ = tiSoo is considered and

wW61(~300) = {Ic/ 3000=(p~=3AO<X<2A5<y< 12~5<y+2x< 14),

~3001=(pC=3A\~X~2Al<y<5A1~y+2x<5)}.

We must consider tiZoo again. It turns out that it is still stable. After considering

ti = ti3000, we have B = { tioooll//~~~, $1000, $200, $ZOI, $,OOO> and a= a u (~ooo}.

Now the partition is

Since $000 is stable in x7, we have u= P = {$OOO, ~oo~,I~~,ooo,IC/ZOO,~~O~,~~OOO}.

Notice that c(contains no bad states from RF, that is $ A It/f = false for all $ECZ.
Therefore, the invariant property has been verified.

4.5. Model checking

Previously, we presented three semidecision procedures for the reachability prob-
lem of linear hybrid systems. Now we address the more general problem of whether
a given nonzero linear hybrid system H satisfies a requirement that is expressed in the
real-time temporal logic TCTL [l, 151.

Timed computation tree logic
Let C be a set of clocks not in Vur, that is, C n Vur = 8. A state predicate is a linear

formula over the set I/ar u C of variables,
The formulas of TCTL are built from the state predicates by boolean connectives,

the two temporal operators 34 and V%, and the reset quantifier for the clocks in C.
The formulas of TCTL, then, are defined by the grammar

where $ is a state predicate and ZEC. The formula 4 is closed if all occurrences of
a clock ZEC are within the scope of a reset quantifier z.

The closed formulas of TCTL are interpreted over the state space C of the nonzero
linear hybrid system H. Intuitively, a state r~ satisfies the TCTL-formula $r 3&42 if
there exists a run of H from o to a state 6’ satisfying & such that 4r v 42
continuously holds along the run. Dually, the state o satisfies the TCTL-formula
+lV%~z if every divergent run from r~ leads to a state G’ satisfying & such that

R. A fur et al. / Theoretical Computer Science 138 (199s) 3-34 27

d1 v & continuously holds along from (r to 0’. Clocks can be used to express timing
constraints. For instance, the TCTL-formula z. (true342(4 A z < 5)) asserts that there
is a run on which 4 is satisfied within 5 time units.

We use the standard abbreviations such as V o 4 for truetf&$, 3 o 4 for true394,
3 q #I for 1 V 014, and V q 4 for 13 o 14. We also put timing constraints as
subscripts on the temporal operators. For example, the formula z. 3 o (I$ A z < 5) is
abbreviated to 3 o < s 4.

Let p = fro H’Ocrr I-+‘* . . . be a run of the linear hybrid system H, with di = (ei, vi) for
all i 2 0. A position n of p is a pair (i, t) consisting of a nonnegative integer i and
a nonnegative real t d ti. The positions of p are ordered lexicographically, that is,
(i t) 6 (j, t’) iff i < j, or i = j and t < t’. For all positions rr = (i, t) of p,
l the state p(n) at the position n of p is (ei, cpci[vi](t)), and
l the time 6,(n) at the position rc of p is t + &<itj.

A clock oaluation 5 is a function from C to R a ‘. For any nonnegative real ~E[W a O,
by 5 + t we denote the clock valuation 5’ such that r’(z) = t(z) + t for all clocks ZEC.
For any clock ZEC, by r[z:= OJ we denote the valuation <’ such that t’(z) = 0 and
i_‘(z’) = ((z’) for all clocks z‘ # z.

An extended state (cI,<) consists of a state OEC and a clock valuation l. The
extended state (o,t) satisfies the TCTL-formula I$, denoted (c,c) I= 4, if

(a, 5) + #1 ??A!& iff there is a run p of H with p(O,O) = (T,
and a position rr of p such that (1) (p(n),< + 6,(x))+ &,
and (2) for all positions 7~’ < TC of p,

(P(Q 5 + &(n’)) I= 41 ” 42;

(0, <)k 41V’43$2 iff for all divergent runs p of H with p(O,O) = 0
thereisaposition~ofPsuchthat(l)(p(n),~+6,(n))+ $I~,
and (2) for all positions 71’ < rc of p,

(P(r47 r + d,(n’)) I= (6, ” 42.

Let 4 be a closed formula of TCTL. A state FEZ satisfies $, denoted a+ 4, if
(a, 5) k $J for all clock valuations 5. The nonzero linear hybrid system H satisfies 4,
denoted H k 4, if all states of H satisfy 4. The characteristic set [c#J] c C of 4 is the
set of states that satisfy 6.

The model-checking algorithm
Given a closed TCTL-formula 4, a model-checking algorithm computes the char-

acteristic set [da. We present the symbolic model-checking algorithm for timed

28 R. Alur et al. / Theoretical Computer Science I38 (1995) 3-34

automata [151, which is a semidecision procedure for model checking TCTL-formulas
over linear hybrid systems.

The procedure is based on fixpoint characterizations of the TCTL-modalities in
terms of a binary next operator D. Given two regions R, R’ E Z, the region R D R’ is
the set of states (r that have a successor C’E R’ such that all states between 4 and rr’ are
contained in R u R’: (e, v)E(R D R’) iff

3(c!‘,v’)~R’, &lW”‘. ((4,~) H’(l’,v’) A VO < t’ < t. (/,cp,[v](t’)@R u R’));

that is, the D operator is a “single-step until” operator.
To define the D operator syntactically, we introduce some notation. For a linear

formula Ic/, we extend the tcp operator such that

tcpc[$][v](t) iff VO < t’ < t. cpc[v](t’)E(Ino(f) n I+]);

that is, all valuations along the evolution by time t from the state (e, v) satisfy not only
the invariant of location / but also II/. For a state 0 = (e, V)EC we write (~[a] for the
function cpc[v], and for a region R = UCELoc(er Rd) we write

Now, for two regions R, R’ c C, we define the region R D R’ as

OE(RDR’) iff 3teR’“. (cPC~l(tkweCR’l A twCR u R’lCal(t)).

Lemma 4.3. For all linear hybrid systems H, if R and R’ are two linear regions of H,

then so is R D R’.

In [lS] it is shown that for nonzeno timed automata, the meaning of both
TCTL-modalities 39 and VQ can be computed iteratively as fixpoints, using the
D operator. While for multirate timed systems, the iterative fixpoint computation
always terminates, this is no longer the case for linear hybrid systems in general.
Lemma 4.3, however, ensures that all regions that are computed by the process are
linear and each step of the procedure is, therefore, effective.

Here, we present the method for some important classes of TCTL-formulas:
l Let R and R’ be the characteristic sets of the two TCTL-formulas 4 and $‘,

respectively. The characteristic set of the formula $344’ can be iteratively com-
puted as IJi Ri with
- R. = R’, and
- forallia0, Ri+l = RiU(RDRi).

l To check if the TCTL-formula 4 is an invariant of H, we check if the set of initial
states is contained in the characteristic set of the formula V q 4. This characteristic
set can be iteratively computed as ni Ri with
- R. = [c$j, and
- for all i 2 0, Ri+l = Ri n 1 (truebl Ri).

R. Alur et al. / Theoretical Computer Science 138 (1995) 3-34 29

l The real-time response property asserting that a given event occurs within a certain
time bound is expressed in TCTL by a formula of the form Vo <&, whose
characteristic set can be iteratively computed as 1 Ui Ri [z = 0] with
_ R0 = [z > cl, and
- for all i > 0, Ri+ 1 = Ri u ((1 R) b Ri),

where R = [c#J~ and ZEC.

Example: the temperature control system

The goal is to maintain the temperature of the coolant between lower and upper
bounds 8, and BM. If the temperature rises to its maximum OM and it cannot decrease
because no rod is available, a complete shutdown is required.

Now, let A8 = f3M - 8,. Clearly, the time the coolant needs to increase its temper-
ature from 8, to 8, is 7, = AB/u,, and the refrigeration times for rods 1 and 2 are
z1 = A@,$ and 72 = A0,k2, respectively.

The question is whether the system will ever reach the shutdown state. Clearly, if
temperature rises at a rate slower than the time of recovery for the rods, i.e., z, > T,

shutdown is unreachable. Moreover, it can be seen that 27, + z1 2 T A 2s, + r2 B T is
a necessary and sufficient condition for never reaching the shutdown state (see
Fig. 9).

The property stating that state 3 (shutdown) is always unreachable corresponds to
the following TCTL formula:

or equivalently,

l Let v, = 6, u1 = 4, u2 = 3, 8, = 3, OM = 15 and T = 6. In this case the condition
22, + tl > T A 22, + 72 2 T holds. Using KRONOS, we compute the characteristic Set

30 R. Alur et al. / Theoretical Computer Science 138 (1995) 3-34

of 3 o pc = 3. The results obtained at each iteration are shown below, where each r,Gi
has been computed according to the method described above.

*o = pc = 3,

$r= (pC=o A 8~ 15 A 6X1 <e+21)A 6x,< e+21) V pc= 3,

tj2 = (PC = o A 8 G 15 A 6x1 < 8 + 21 A 6x2 -C 8 + 21) V

(PC = 1 A 3 < 6 6 15 A 4X2 + 8 < 19) V

(PC = 2 A 3 < 8 G 15 A 3x1 i- o < 15) V pC = 3,

$3 = (PC = o A 8 d 15 A (6x1 -C e + 21 A 6x2 -C 8 + 21 V 6x2 + 3 < 0)) V

(PC = 1 A 3 G 8 s 15 A 4x2 + 8 < 19) V

(PC = 2 A 3 G I? d 15 A 3X1 i- 8 < 15) V PC = 3,

*4 = +3.

The state predicate 1 Vf= 0 llti[Z + 0] representing the meaning of 13 o (pc = 3) is

pc = 0 A 8 < 15 A (0 + 21 < 6x, A 8 < 6x, + 3 v 8 + 21 < 6x2) v

pC=iA3d8Qi5A19~4X,+8V

pC = 2 A 3 < e < 15 d 3x1 i- 8.

Since the state predicate pc = 0 A 13 < 15 A x1 2 6 A x2 2 6 characterizing the set of
initial states implies the predicate above, the system satisfies the invariant as required.

l Suppose that we change the time of recovery to T= 8. Now, the condition
22, + rr > T A 22, + ‘t2 > Tis no longer satisfied. Again, we compute using KRONOS
the characteristic set of 3 opt = 3. The results obtained at each iteration are the
following:

$0 = pc = 3,

$1 = (PC = 0 A 8 d 15 A 6x1 < 6 -t 33 A 6x2 < 0 + 33) V pC = 3,

$2 = (PC = 0 A o G 15 A 6~~ < e + 33 A 6x2 < 8 + 33) V

(pc = 1 A 3 < 0 < 15 A 4x2 + 0 < 27) v

(PC = 2 A 3 < 8 6 15 A 3x1 + 8 < 21) V pC = 3,

t,b3 = (pc = 0 A 8 < 15 A (6x, + 3 < b’ v 6x2 < 0 + 3 v

(6x1 < 8 + 33 A 6x2 < 8 + 33))) v

(pc=lA3<~,<15A4~,+8<27)v

(PC = 2 A 3 < 8 < 15 A 3X, + 0 < 21) V PC = 3,

R. Alur et al. / Theoretical Computer Science 138 (199.5) 3-34 31

rj4 = (PC = 0 h 8 G 15 A (6x1 + 3 < e V 6~~ < 8 + 3 V

(6x1 < 8 + 33 A 6x2 < 8 + 33))) V

(pc = 1 A 3 Q e < 15 A 4x2 + e < 27) v

(pc = 2 A 3 G e G 15) v PC = 3,

& = (pc = 0 A o G 15 A (6 + 33 G 6x2 V 6x1 -C 8 + 33 V 6X2 < 8 + 3)) V

(PC = 1 A 3 G 8 G 15 A 4x2 + 8 < 27) V (PC = 2 A 3 < 6 < 15) V

pc = 3,

$k6 = (PC = 0 A 8 G 15 A (6 + 33 d 6X2 V 6x1 < 8 + 33 V 6x2 < 8 f 3)) V

(PC = 1 A 3 s 6 d 15) V (PC = 2 A 3 < 8 d 15) V PC = 3,

$7 = (PC = o A 8 d 15) V (PC = 1 A 3 d 8 6 15) V (PC = 2 A 3 d 8 G 15) V

pc = 3,

The state predicate 1 V,!=, Il/i[z : = 0] representing the meaning of 1 3 o (pc = 3) is

PC = 1 A (0 < 3 V 6 > 15) V

and since the state predicate pc = 0 A 8 6 15 A x1 2 6 A x2 2 6 characterizing the
set of initial states does not imply the predicate above we have that shutdown is
reachable.
Table 1 shows the number of iterations and the running times (measured in seconds)

obtained with KRONOS on a SUN 4 Spare Station for verifying the formula on the
system for different values of the parameters. (Performance figures for HYTECH can be
found in [6,14].)

Table 1

Performance for the temperature control system

Parameters

& e&f 0, T

Number of

iterations

Running

times

3 15 6 4 3 6 4 0.033

3 15 6 4 3 8 4 0.033

10 190 45 30 18 20 6 0.083

250 1100 34 25 10 80 4 0.033

32 R. Alur et al. 1 Theoretical Computer Science 138 (1995) 3-34

Table 2

Performance for the billards game

Parameters

I h 0, vy xg yg x, Y,

Formula Number of Running

iterations times

13 10 2 1 0 0 10 8 [periodT]
[touch]
[touchT]

55

55

55

7.71

6.69

8.17

4 25 100 II [periodT] 24 1.97

[touch] 24 1.58

[touchT] 24 1.90

3 81 2 0 0 16 [periodT] 10 0.56

[touch] IO 0.40

[touchT] 10 0.48

Example: the billiards game
Consider the movement of the grey ball on the billiard table. It is possible that the

grey ball returns to the initial position with the initial direction. In this case the
movement is periodic. A sufficient condition for the periodicity is that 1, h, u, and u,, are
integers. The period T is calculated as follows:

.

Now, since the movement of the grey ball has period T, the first collision with the white
ball, if it takes place, will occur before time T. We can express this property in TCTL as
follows: l

[period T] 1(1(x = x, A y = Yw)39>T(X =x, A y = yw)).

We would like to characterize also all the positions where the grey baI1 may be placed
in order to be able to touch the white ball. This set of points is characterized by the
formula:

[touch] 30(x=x,Ay=yw).

Since the movement of the grey ball has period T, this property can also be specified by
the formula

[touch] 3o<T(X=XwAy=JL).

Table 2 shows the number of iterations and the running times (measured in
seconds) obtained with KRONOS on a SUN 4 Spare Station for verifying the formula

‘If T is not an integer, but is rational p/q, we have to multiply I, h, xg, y,, x, and y, by q to make it an integer.

R. Alur et al. / Theoretical Computer Science 138 (1995) 3-34 33

[periodT], [touch] and [to&T] on the billiards game for different values of the
parameters.

5. Conclusion

We showed that the verification problem for hybrid systems is intrisically difficult
even under severe restrictions. Then we identified linear hybrid systems as a class of
hybrid systems for which algorithmic analysis techniques exist and perform reasonably
well. For general hybrid systems our analysis methods can be applied modulo limita-
tions that concern the effective computation of boolean operations, time closures,
preconditions, and postconditions of state sets.

Future work is necessary to improve both the cost and the scope of our approach.
The cost can be improved by designing efficient algorithms for representing, comparing,
manipulating, and approximating state sets. The scope can be improved by identifying
other classes of hybrid systems to which semidecision procedures based on reachability
analysis apply. For example, our results have recently been extended to a more general
model, where the rates of variables are not constant in each location, but vary
arbitrarily between given constant lower and upper bounds [6,25]. In that case the state
sets that are computed by the verification procedures are also definable by linear
formulas. The more general case is interesting for the approximation of nonlinear
hybrid systems.

We did not discuss any analysis techniques that cannot be formulated within the
framework of reachability analysis. Most of these techniques are based on digitization
methods that reduce verification problems for hybrid systems to verification problems
for discrete systems, which are decidable [17,26].

References

[1] R. Alur, C. Courcoubetis and D.L. Dill, Model checking in dense real time, Inform. and Comput. 104
(1993) 2-34.

[2] A. Alur, C. Courcoubetis, D. Dill, N. Halbwachs and H. Wong-Toi, Minimization of timed transition

systems, in: W.R. Cleaveland, ed. CONCUR 92: Theories of Concurrency, Lecture Notes in Computer

Science, Vol. 630 (Springer, Berlin, 1992) 34&354.

[3] R. Alur, C. Courcoubetis, T.A. Henzinger and P.-H. Ho, Hybrid automata: an algorithmic approach to

the specification and verification of hybrid systems, in: R.L. Grossman, A. Nerode, A.P. Ravn and

H. Rischel, eds, Workshop on Theory ofHybrid Systems, Lecture Notes in Computer Science, Vol. 736

(Springer, Berlin, 1993) 209229.

[4] R. Alur and D.L. Dill, A theory of timed automata, Theoret. Comput. Sci. 126 (1994) 183-235.
[S] R. Alur and T.A. Henzinger, Real-time system = discrete system + clock variables, in: T. Rus, ed. Proc.

1st AMAST Workshop on Real-time Systems, to appear. Available as Tech. Report CSD-TR-94-1403,

Cornell University, January 1994.

[6] R. Alur, T.A. Henzinger and P.-H. Ho, Automatic symbolic verification of embedded systems, in: Proc.
14th Ann. Real-time Systems Symposium (IEEE Computer Sot. Press, Silver Spring, MD, 1993) 2-l 1.

[7j A. Bouaijani, J.-C. Fernandez and N. Halbwachs, Minimal model generation, in: E.M. Clarke and R.P.

Kurshan, eds., Proc. 2nd Ann. Workshop on Computer-Aided Verijication, Lecture Notes in Computer

Science, Vol. 531 (Springer, Berlin, 1990) 197-203.

34 R. Alur et al. / Theoretical Computer Science 138 (1995) 3-34

[S] K. Cerlns, Decidability of bisimulation equivalences for parallel timer processes, in: G.v. Bochman and

D.K. Probst, eds., Proc. 4th Ann. Workshop on Computer-Aided Verification, Lecture Notes in Computer

Science, Vol. 663 (Springer, Berlin, 1992) 269300.

[9] Z. Chaochen, C.A.R. Hoare and A.P. Ravn, A calculus of durations, Inform. Processing Lett. 40 (1991)
269-276.

[IO] P. Cousot and R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints, in: Proc. 4th Ann. Symp. on Pmctptes of Programming
Languages (ACM Press, New York, 1977).

[l l] P. Cousot and N. Halbwachs, Automatic discovery of linear constraints among variables of a program,

in: Proc. 5th Ann. Symp. on Principles of Programming Languages (ACM Press, New York, 1978).

[12] N. Halbwachs, Delay analysis in synchronous programs, in: C. Courcoubetis ed., Proc. 5th Ann. Conf on
Computer-Aided Verification, Lecture Notes in Computer Science, Vol. 697 (Springer, Berlin, 1993)

333-346.

[13] N. Halbwachs, Y.-E. Proy and P. Raymond, Verification of linear hybrid systems by means of convex

approximations, in: Proc. Internat. Symp. on Static Analysis, Lecture Notes in Computer Science,

Vol. 818 (Springer, Berlin, 1994) 223-237.

[I43 T.A. Henzinger and P.-H. Ho, Model-checking strategies for linear hybrid systems, Presented at the 7th
Internat. Conf on Industrial and Engineering Applications of Artiftcial Intelligence and Expert Systems,
May 1994. Available as Technical Report CSD-TR-94-1437, Cornell University, July 1994.

[IS] T.A. Henzinger, X. Nicollin, J. Sifakis and S. Yovine, Symbolic mode1 checking for real-time systems,

Inform. and Comput. 111 (1994) 193-244.

[16] M. Jaffe, N. Leveson, M. Heimdahl and B. Melhard, Software requirements analysis for real-time

process-control systems, IEEE Trans. Software Eng. 17 (1991) 241-258.

[17] Y. Kesten, A. Pnueli, J. Sifakis and S. Yovine, Integration graphs: a class of decidable hybrid systems, in:

R.L. Grossman, A. Nerode, A.P. Ravn and H. Rischel, eds, Hybrid Systems, Lecture Notes in Computer

Science, Vol. 736 (Springer, Berlin, 1993) 179-208.

[18] L. Lamport, A fast mutual-exclusion algorithm, ACM Trans. Comput. Systems 5 (1987) l-l 1.

[19] D. Lee and M. Yannakakis, Online minimization of transition systems, In: Proc. 24th Ann. Symp. on
Theory of Computing (ACM Press, New York, 1992) 264-274.

[20] H. LeVerge, A note on Chernikova’s algorithm, Research Report 635, IRISA, February 1992.

[21] 0. Maler, Z. Manna and A. Pnueli, From timed to hybrid systems, in: J.W. de Bakker, K. Huizing, W.-P.

de Roever and G. Rozenberg, eds, Proc. REX Workshop Real-Time: Theory in Practice, Lecture Notes in

Computer Science, Vol. 600 (Springer, Berlin, 1992) 447-484.

[22] X. Nicollin, A. Olivero, J. Sifakis and S. Yovine, An approach to the description and analysis of hybrid

systems, in: R.L. Grossman, A. Nerode, A.P. Ravn and H. Rischel, eds, Hybrid Systems, Lecture Notes in

Computer Science, Vol. 736 (Springer, Berlin, 1993) 149-178.

[23] X. Nicollin, J. Sifakis and S. Yovine, Compiling real-time specifications into extended automata, IEEE
Trans. Software Eng. 18 (1992) 794-804.

[24] X. Nicollin, J. Sifakis and S. Yovine, From ATP to timed graphs and hybrid systems, Acta Inform. 30
(1993) 181-202.

[25] A. Olivero, J. Sifakis and S. Yovine, Using abstractions for the verification of linear hybrid systems, in:

D. Dill, ed, Proc. 6th Ann. Conf on Computer-Aided Verijcation, Lecture Notes in Computer Science,

Vol. 818 (Springer, Berlin, 1994) 81-94.

[26] A. Puri and P. Varaiya, Decidability of hybrid systems with rectangular differential inclusions, in:

D. Dill, ed., Proc. 6th Ann. Conf on Computer-Aided Verification, Lecture Notes in Computer Science,

Vol. 818 (Springer, Berlin, 1994) 95104.

