
Network Traffic Classification by Program
Synthesis

Lei Shi1B, Yahui Li2, Boon Thau Loo1, and Rajeev Alur1

1 University of Pennsylvania, Philadelphia PA 19104, USA
{shilei,boonloo,alur}@seas.upenn.edu

2 Tsinghua University, Beijing, China
li-yh15@mails.tsinghua.edu.cn

Abstract. Writing classification rules to identify interesting network
traffic is a time-consuming and error-prone task. Learning-based classi-
fication systems automatically extract such rules from positive and neg-
ative traffic examples. However, due to limitations in the representation
of network traffic and the learning strategy, these systems lack both ex-
pressiveness to cover a range of applications and interpretability in fully
describing the traffic’s structure at the session layer. This paper presents
Sharingan system, which uses program synthesis techniques to generate
network classification programs at the session layer. Sharingan accepts
raw network traces as inputs and reports potential patterns of the target
traffic in NetQRE, a domain specific language designed for specifying
session-layer quantitative properties. We develop a range of novel op-
timizations that reduce the synthesis time for large and complex tasks
to a matter of minutes. Our experiments show that Sharingan is able
to correctly identify patterns from a diverse set of network traces and
generates explainable outputs, while achieving accuracy comparable to
state-of-the-art learning-based systems.

Keywords: Program synthesis · Network traffic analysis · Supervised
learning.

1 Introduction

Network monitoring systems are essential for network infrastructure manage-
ment. These systems require classification of network traffic at their core. Today,
network operators and equipment vendors write classification programs or pat-
terns upfront in order to differentiate target flows such as attacks or undesired
application traffic from normal ones. The process of writing these classification
programs often requires deep operator insights, can be error prone, and is not
easy to extend to handle new scenarios.

There have been many recent attempts at automated generation of classifiers
for malicious traffic using machine learning[16,38,5,12] and data mining[6,28,34,39,19]
techniques. These classifiers have not gained much traction in production sys-
tems, in part due to unavoidable false positive reports and the gap between the

2 L. Shi et al.

learning output and explainable operational insights[31]. The challenges call for
a more expressive, interpretable and maintainable learning-based classification
system.

To be specific, such challenges first come from the extra difficulties learning-
based systems face in network applications compared to traditional use cases
such as recommendation systems, spam mail filtering or OCR [31]. Misclassi-
fications in network systems have tangible cost such as the need for operators
to manually verify potential false reports. Due to the diverse nature and large
data volumes of networks in production environments, entirely avoiding these
costly mistakes by one training stage is unlikely. Therefore explainability and
maintainability plays a core role in a usable learning system.

Properly representing network traffic and learnt patterns is another major
difficulty. As a data point for classification purposes, a network trace is a se-
quence of packets of varying lengths listed in increasing timestamp order. Ex-
isting approaches frequently compress it into a regular expression or a feature
vector for input. Such compression will eliminate session-layer details and inter-
mediate states in network protocols, making it hard to learn application-layer
protocols or multi-stage transactions. These representations also require labo-
rious task-specific feature engineering to get effective learning results, which
undermines the systems’ advantages of automation. It can also be hard to in-
terpret the learning results to understand the intent and structure of the traffic,
due to the blackbox model of many machine-learning approaches and the lack
of expressiveness in the inputs and outputs to these learning systems.

To address the above limitations, we introduce Sharingan, which uses pro-
gram synthesis techniques to auto-generate network classification programs from
labeled examples of network traffic traces. Sharingan aims to bridge the gap be-
tween learning systems and operator insights, by identifying properties of the
traffic that can help inform the network operators on its nature, and provide a ba-
sis for automated generation of the classification rules. Sharingan does not aim
to outperform state-of-the-art learning systems in accuracy, but rather match
their accuracy, while generating output that is more explainable and easier to
maintain.

To achieve these goals, we adopt techniques from syntax guided program syn-
thesis [1] to generate a NetQRE [37] program that distinguishes the positive and
negative examples. NetQRE, which stands for Network Quantitative Regular
Expressions, enables quantitative queries for network traffic, based on flow-level
regular pattern matching. Given an input network trace, a NetQRE program
generates a numerical value that quantifies the matching of the trace with the
described pattern. The classification is done by comparing the synthesized pro-
gram’s output for each example with a learnt threshold T . Positive examples fall
above T . The synthesized NetQRE program serves the role of network classifier,
identifying flows which match the program specifications.

Sharingan has the following key advantages over prior approaches, which
either rely on keyword and regular expression generation [6,28,34,39,19] or sta-
tistical traffic analysis [16,38,5,12].

Network Traffic Classification by Program Synthesis 3

Requires minimal feature engineering: NetQRE [37] is an expressive lan-
guage, and allows succinct description of a wide range of tasks ranging from
detecting security attacks to enforcing application-layer network management
policies. Sharingan can synthesize any network task on raw traffic expressible
as a NetQRE program, without any additional feature engineering. This is an
improvement over systems based on manually extracted feature vectors. Also,
one outstanding feature of search-based program synthesis is that the only a pri-
ori knowledge it needs is information about the language itself. No task-specific
heuristics are required.

Efficient implementation: The NetQRE program synthesized by Sharingan
can be compiled, as has been shown in prior work [37], to efficient low-level
implementations that can be integrated into routers and other network devices.
On the other hand, traditional statistical classifiers are not directly usable or
executable in network filtering systems.

Easy to decipher and edit: Finally, Sharingan generates NetQRE programs
that can be read and edited. Since they are generic executable programs with
high expressiveness, the patterns in the program reveal the stateful protocol
structure that is used for the classification, which blackbox statistical models,
packet-level regular expressions and feature vectors have difficulty describing.
The programs are also amenable to calibration by a network operator, for ex-
ample, to mix in local policies or debug.

The key technical challenge in design and implementation of Sharingan is
the computationally demanding problem of finding a NetQRE expression that is
able to separate positive network traffic examples from the negative ones. This
search problem is an instance of the syntax-guided synthesis. While this problem
has received a lot of attention in recent years, no existing tools and techniques
can solve the instances of interest in our context due to the unique semantics
of NetQRE programs, the complexity of the expressions to be synthesized and
the scale of the data set of network traffic examples used in training. To address
this challenge, we devised two novel techniques for optimizing the search – par-
tial execution and merge search, which effectively achieve orders of magnitude
reduction in synthesis time. We summarize our key contributions:

Synthesis-based classification architecture. We propose the methodology
of reducing a network traffic classification problem to a synthesis from examples
instance.

Efficient synthesis algorithm We devise two efficient algorithms: partial
execution and merge search, which efficiently explore the program space and
enable learning from very large data sets. Independent of our network traffic
classification use cases, these algorithms advance the state-of-the-art in program
synthesis.

Implementation and evaluation. We have implemented Sharingan and eval-
uated it for a rich set of metrics using the CICIDS2017 [25,7] intrusion detection
benchmark database. Sharingan is able to synthesize a large range of network
classification programs in a matter of minutes with accuracy comparable to
state-of-the-art systems. Moreover, the generated NetQRE program is easy to

4 L. Shi et al.

interpret, tune, and can be compiled into configurations usable by existing net-
work monitoring systems.

2 Overview

Sharingan’s workflow is largely similar to a statistical supervised learning system,
although the underlying mechanism is different. Sharingan takes labeled positive
and negative network traces as input and outputs a classifier that can classify
any new incoming trace. To preserve most of the information from input data
and minimize the need for feature engineering, Sharingan considers three kinds
of properties in a network trace: (1) all available packet-level header fields, (2)
position information of each packet within the sequence, and (3) time information
associated with each packet.

Specifically, Sharingan represents a network trace as a stream of feature vec-
tors: S = v0, v1, v2, Each vector represents a packet. Vectors are listed in
timestamp order. Contents of the vector are parsed field values of that packet.
For example, we can define

v[0] = ip.src, v[1] = tcp.sport , v[2] = ip.dst ,
Depending on the information available, different sets of fields can be used

to represent a packet. By default, we extract all header fields at the TCP/IP
level. To make use of the timestamp information, we also append time interval
since the previous packet in the same flow to a packet’s feature vector. Feature
selection is not necessary for Sharingan.

The output classifier is a NetQRE program p that takes in a stream of feature
vectors. Instead of giving a probability score that the data point is positive, it
outputs an integer that quantifies the matching of the stream and the pattern.
The program includes a learnt threshold T . Sharingan aims to ensure that p’s
outputs for positive and negative traces fall on different sides of the threshold
T . Comparing p’s output for a data point with T generates a label. It is possible
to translate p and T into executable rules using a compilation step.

Given the above usage model, a network operator can use Sharingan to gen-
erate a NetQRE program trained to distinguish normal and suspected abnormal
traffic generated from unsupervised learning systems. The synthesized programs
themselves, as we will later show, form the basis for deciphering each unknown
trace. Consequently, traces whose patterns look interesting can be subjected to
a detailed manual analysis by the network operator. Moreover, the generated
NetQRE programs can be further refined and compiled into filtering system’s
rules.

3 Background on NetQRE

NetQRE [37] is a high-level declarative language for querying network traffic.
Streams of tokenized packets are matched against regular expressions and ag-
gregated by multiple types of quantitative aggregators. The NetQRE language
is defined by the BNF grammar in Listing 1.1.

Network Traffic Classification by Program Synthesis 5

1 <classifier >::= <program> > <value>
2 <program> ::= <group-by>
3 <group-by> ::= (<group-by>)<op>|<

feats>
4 | <qre>
5 <qre> ::= (<qre> <qre>)<op>
6 | (<qre>)*<op>
7 | <unit>
8 <unit> ::= /<re>/
9 <re> ::= <re> <re>

10 | (<re>)*
11 | <pred>

12 | _
13 <pred> ::= <pred> && <pred>
14 | <pred> || <pred>
15 | [<feat> == <value>]
16 | [<feat> >= <value>]
17 | [<feat> <= <value>]
18 | [<feat> -> <prefix >]
19 <feats> ::= <feat>
20 | <feats>, <feat>
21 <feat> ::= 0 | 1 | 2 |
22 <op> ::= max | min | sum

Listing 1.1: NetQRE Grammar

As an example, if we want to find out if any single source is sending more than
100 TCP packets, the following classifier based on a NetQRE program describes
the desired classifier:

1 ((/ [ip.type = TCP] /)*sum)max|ip.src_ip > 100

At the top level, there are two parts of the classifier. A processing program on
the left that maps a network trace to an output number, and a threshold against
which this value is compared on the right. They together form the classifier.
Inputs fall into different classes based on the results of the comparison.

Group-by expression (<group-by>) splits the trace into sub-flows based on the
value of the specified field (source IP address in this example):

1 (............)max|ip.src_ip

Packets sharing the same value in the field will be assigned to the same sub-flow.
Sub-flows are processed individually, and the outputs of which are aggregated
according to the aggregation operator (<op>) (maximum in this example).

In each sub-flow, we want to count the number of TCP packets. This can be
broken down into three operations: (1) specifying a pattern that a single packet
is a TCP packet, (2) specifying that this pattern repeats arbitrary number of
times, and (3) adding 1 to a counter each time this pattern is matched.

(1) is achieved by a plain regular expression involving predicates. A predicate
describes properties of a packet that can match or mismatch one packet in the
trace. Four types of properties frequently used in networks can be described:

1. It equals a value. For example: [tcp.syn == 1]
2. It is not less than a value. For example: [ip.len >= 200]
3. It is not greater a value. For example: [tcp.seq <= 15]
4. It matches a prefix. For example: [ip.src_ip -> 192.168]

Predicates combined by concatenation and Kleene-star form a plain regular ex-
pression, which matches a network trace considered as a string of packets.

A unit expression indicates that a plain regular expression should be viewed
as atomic for quantitative aggregation (in this case a single TCP packet):

1 / [ip.type = TCP] /

It either matches a substring of the trace and outputs the value 1, or does not
match.

To achieve (2) and (3), we need a construct to both connect the regular
patterns to match the entire flow and also aggregate outputs bottom up from

6 L. Shi et al.

units at the same time. We call it quantitative regular expression (<qre>). In this
example, we use the iteration operator:

1 (/ [ip.type = TCP] /)*sum

It matches exactly like the Kleene-star operator, and at the same time, for each
repetition of the sub-pattern, the sub-expression’s output is aggregated by the
aggregation operator. In this case, the sum is taken, which acts as a counter for
the number of TCP packets. The aggregation result for this expression will in
turn be returned as an output for higher-level aggregations.

The language also supports the concatenation operator:

1 (<qre> <qre>)<op>

which works analogous to concatenation for regular matching. It aggregates the
quantity by applying the <op> on the outputs of two sub-expressions that match
the prefix and suffix.

In addition to this core language, there is a specialization for the synthesis
purpose. We observe that comparing a field with values that do not appear in any
of the given examples is expensive but will not produce any meaningful informa-
tion. Therefore we use the relative position in the examples’ value space instead
of a specific value, for example, 50% instead of 3 in value space {1, 3, 12, 15}.

4 Synthesis Algorithm

Given a set of positive and negative examples Ep and En, respectively, the goal
of our synthesis algorithm is to derive a NetQRE program pf and a threshold T
that differentiates Ep apart from En. We start with notations to be used in this
section:
Notation. p and q denote individual programs, and P and Q denote sets of
programs. p1 → p2 denotes it is possible to mutate p1 following production rules
in NetQRE’s grammar to get p2. The relation → is transitive. We assume the
starting symbol is always <program>.

p(x) denotes program p’s output on input x, where x is a sequence of packets
and p(x) is a numerical value. If p is an incomplete program, i.e., if p contains
some non-terminals, then p(x) = {q(x) | p → q} is a set of numerical values,
containing x’s output through all possible programs p can mutate into. We de-
fine p(x).max to be the maximum value in this set. Similarly, p(x).min is the
minimum value.

The synthesis goal can be formally defined as: ∀e ∈ Ep, pf (e) > T and
∀e ∈ En, pf (e) < T .

4.1 Overview

Our design needs to address two key challenges. First, NetQRE’s rich grammar
allows a large possible program space and many possible thresholds for search.
Second, the need to check each possible program against a large data set collected
from network monitoring tasks poses scalability challenge to the synthesis.

Network Traffic Classification by Program Synthesis 7

Oracle

Execu�on
Engines

Execu�on
Engines

Po
ssib

ly Sa�
sfy?

Yes/N
o

Enumerator Search Planner

Search Tree

Data Set

Subset 1 Subset 2

Total Set

Sub-
subset 1

Sub-
subset 2

Sub-
subset 3

Sub-
subset 4

Lo
cal Search

M
erge Search

Par�al

Complete

Output Query

Fig. 1: Synthesizer Overview

We propose two techniques for addressing these challenges: partial execution
(Section 4.2) and merge search (Section 4.3). Figure 1 shows an overview of the
synthesizer.

The top-level component is the search planner, that assigns search tasks over
subsets of the entire training data to the enumerator in a divide-and-conquer
manner. Each such task is a search-based synthesis instance, where the enu-
merator enumerates all possible programs starting from s0, expanded using the
productions in NetQRE grammar, until one that can distinguish the assigned
subset of Ep and En is found.

The enumerator optimizes for the first challenge by querying the distributed
oracle about each partial program’s feasibility and doing pruning early. The
oracle evaluates partial programs using partial execution. The search planner
optimizes for the second challenge by merging search results from subsets of the
large training data, so as to save unnecessary checking, which we call the merge
search strategy.

We next explain each technique in detail in the rest of this section.

4.2 Partial Execution

A partial program is an incomplete program with non-terminals. Similar to prior
work making overestimation on regular expressions and imperative languages
for early pruning in the search process [14,29,30], we want to evaluate a partial
NetQRE program for the feasibility of all possible completions of it, so as to
decide early if any of them can serve as a proper classifier for Ep and En.

This process includes three main steps: (1) finding an equivalent completion
p̂ of a partial program p so that evaluating p̂ on any input x is equivalent to
evaluating the combination of all possible completions of p on x, (2) efficiently
evaluating p̂(x), (3) deciding whether to discard p based on the evaluation result.

Equivalent Completion: Recall that we define p(x) of a partial program p to
be the union of all q(x) such that p → q. Since we mainly care about outputs

8 L. Shi et al.

of positive and negative examples on different sides of a threshold, the essential
information is the upper and lower bounds for p(x). Therefore, the criterion for
finding an equivalent completion is the bounds of p̂(x) should include p(x) for
any input x.

Many non-terminals have a straightforward equivalent completion. We re-
place (1) any uncertain numerical value with the largest or smallest possible
value depending on the context, (2) any unknown predicate with unknown, (3)
any unknown regular expression with _* and (4) any unknown quantitative reg-
ular expression with (/_ _*/)*sum. We skip the formal proof of correctness of
this approach. Intuitively, the first two include all possible values at the position,
and the latter two include all possible matching and aggregation strategies for a
trace.

There are some non-terminals that do not have an equivalent completion,
such as <group-by> and <op>. While doing enumeration, we put a complexity
penalty over these non-terminals if they are not expanded, therefore encouraging
earlier expansion of them so that partial execution is possible.

Computing Ambiguity: Notice that regular patterns naturally allow multiple
matching strategies if a character(packet) in the input can match more than
one predicate in the program, which is why we can estimate a set of NetQRE
programs by one equivalent completion p̂. The goal and also the major challenge
in evaluating p̂(x) on arbitrary input x is to compute the quantitative outputs
from all valid matching strategies, which can grow exponentially with the input
trace’s length.

A A

B
𝐶1 𝐶2

𝐶3 𝐶4

𝐷5

iter iter

concat
max = 0 max = 2 max = 2

sum = 0 sum = 2sum +1
sum +1

sum +1
sum = 0 sum = 1

Fig. 2: Illustration of an unambiguous program.
Predicate A matches packet C’s while predicate
B matches packet D.

A A

_

𝐶1
𝐶2

𝐶3

iter iter

concat
max = 0 max = 0

sum = 0 sum = 0

sum +1
sum +1

sum +1
sum = 0

Fig. 3: Illustration of the first 3 steps of strategy
one when predicate B is not yet explored.

To solve the problem of too many matching strategies, we use an approxi-
mation: merging “close” matching strategies. Two strategies are defined to be
“close” if at some step of their matching process (1) they have matched the same
number of packets in the trace and (2) the last predicate they have matched is
exactly the same. We explore all matching strategies simultaneously and do a
merging whenever two strategies can be identified to be close. Notice that each
matching strategy maintains a distinct copy of aggregation states for every <qre>
expression. States for a same expression as well as the final results are merged
into one interval.

As an example, Figure 2,3,4,5 illustrates the evaluation process of a partial
program during the search for the following pattern with CCCCD as input:

1 ((/AA/)*sum (/B/)*sum)max

Network Traffic Classification by Program Synthesis 9

A A

_
𝐶1 𝐶2

𝐶3

iter iter

concat
max = 0 max = 1

sum = 0 sum = 1sum +1 sum +1
sum = 0

Fig. 4: Illustration of the first 3 steps of strategy
two

A A

_

𝐷5

iter iter

concat
max = [0,1] max = [3,5]

sum +[1,1]

sum = [1,3]

sum = [3,5]

sum +[1,1]

𝐶4

Fig. 5: Illustration of the last 2 steps of merged
strategy one & two

By the properties of interval arithmetic and regular expressions, it can be
proven that the approximation result strictly contains the true output range. Or
more formally, p̂(x).min ≤ p(x).min ≤ p(x).max ≤ p̂(x).max.

Intuitively, the proposed evaluation scheme works well because we only care
about the boundary of outputs, which are represented by intervals as the abstract
data type. We implement the execution and approximation process by the Data
Transducer model proposed by [2], which consumes a small constant memory
and linear time to the input trace’s length given a specific program.

Make Decision: To make a decision regarding a partial program p, let q be
a complete program and assume there is only one pair of examples ep and en.
For q to accept ep and en, there must be a threshold T such that q(en).max <
T < q(ep).min. Therefore, given a pair of examples ep and en, a program q
is correct if and only if q(en).max < q(ep).min. When this holds, any value
between q(en).max and q(ep).min can be used as the threshold.

Lemma 1: There exists a correct program q such that p→ q only if p̂(en).min <
p̂(ep).max
Lemma 2: If p̂(en).max < p̂(ep).min then any program q such that p → q is
correct.

From Lemma 1, we can decide if p must be rejected. From Lemma 2, we can
decide if p must be accepted. These criteria can be extended to more than 1
pair of examples. We will not give formal proof to the lemmas. Figures 6 and
7 show two intuitive examples for explanations of the decision making process.
(but do not necessarily represent properties of real data sets). Each vertical bar
represents the output range of the corresponding data point produced by the
program under investigation.

0

1

2

3

4

5

6

7

8

9

10

11

12

neg1 neg2 neg3 pos1 pos2 pos3

Lowerbound Upperbound

Fig. 6: A correct program found. No negative
output can ever be greater than any positive out-
put. 5.5 can be used as a threshold

0

1

2

3

4

5

6

7

8

9

10

11

12

neg1 neg2 neg3 pos1 pos2 pos3

Lowerbound Upperbound

Fig. 7: A bad program. pos 1 can never be
greater than neg 3.

10 L. Shi et al.

4.3 Merge Search

In the rest of this subsection, we describe three heuristics for scaling up synthesis
to large data sets, namely divide and conquer, simulated annealing, and parallel
processing. We call the combination of these the merge search technique.

Divide and Conquer. Enumerating and verifying programs on large data sets
is expensive. Our core strategy to improve performance is to learn patterns on
small subsets and merge them into a global pattern with low overhead.

It is based on two observations: First, the pattern of the entire data set is
usually shaped by a few extreme data points. Looking at these extreme data
points locally is enough to figure out critical properties of the global pattern.
Second, conflicts in local patterns are mostly describing different aspects of a
same target rather than fundamental differences, thus can be resolved by simple
merge operations such as disjunction, truncation or concatenation.

This divide and conquer strategy is captured in the following algorithm:

1 def d&c(dataset)

2 if dataset.size > threshold

3 subsetL,subsetR = split(dataset)

4 candidateL = d&c(subsetL)

5 candidateR = d&c(subsetR)

6 return merge(dataset, candidateL , candidateR)

7 else

8 return synthesize(dataset, s0)

The “split” step corresponds to evenly splitting positive and negative ex-
amples. Then sub-patterns are synthesized on smaller subsets. The conquer, or
“merge” step requires synthesizing the pattern again on the combined dataset.
But sub-patterns are reused in two ways to speedup this search.

First, if we see a sub-pattern as an AST, then its low-level sub-trees up to
certain depth threshold are added to the syntax as a new production option for
the corresponding non-terminal at the sub-tree’s root. They can then serve as
shortcuts for likely building blocks. Second, the sub-patterns’ skeletons left after
removing these sub-trees are used as seeds for higher-level searches, which serve
as shortcuts for likely overall structures. Both are given complexity rewards to
encourage the reuse.

In practice, many search results can be directly reused from cached results
generated from previous tasks on similar subsets. This optimization can further
reduce the synthesis time.

Simulated Annealing When searching for local patterns at lower levels, we
require the Enumerator to find not 1 but t candidate patterns for each subset.
Such searches are fast for smaller data sets and can cover a wider range of possible
patterns. As the search goes to higher levels for larger data sets, we discard the
least accurate local patterns and also reduce t. The search will focus on refining
the currently optimal global pattern. This idea is based on traditional simulated
annealing algorithms and helps to improve the synthesizer’s performance in many
cases.

Network Traffic Classification by Program Synthesis 11

Parallelization. Most steps in the synthesis process are inherently paralleliz-
able. They include (1) doing synthesis on different subsets of data, (2) exploring
different programs in the enumeration, (3) verifying different programs found so
far, (4) executing a program on different data points during the verification.

We focus less on optimizing (1) and (2) since they are not the performance
bottlenecks. We instead focus on parallelizing (3) and (4) over multiple cores. In
our implementation, using 5 machines with 32 cores each, we devote one thread
each to run task (1) and (2) on one machine, 64 threads on the same machine to
run task (3), and 512 threads distributed over the remaining four machines to
run task (4). The distributed version is approximately two orders of magnitude
faster than the single-threaded version for complex tasks. Given more computing
power, a proportional speedup can be expected.

5 Evaluation

We implemented Sharingan in 10K lines of C++ code. Our experiments are
carried out in a cluster of five machines directly connected by Ethernet cables,
each with 32 Intel(R) Xeon(R) E5-2450 CPUs. The frequency for each core is
2.10GHz. Arrangements of tasks are explained in the last part of Sec 4.3. We
will evaluate the minimal feature engineering(5.1), accuracy(5.2), interpretabil-
ity and editability(5.3), efficient implementation(5.4), and synthesis algorithm
efficiency(5.5) aspects of Sharingan in order.

5.1 Data Preparation

We utilize eight types of attacks from the CICIDS2017 database[25,7], a public
repository of benign and attack traffic used for evaluating intrusion detection
systems. They cover a wide range of attack traffic including botnets, Denial of
service (DoS), port scanning, and password cracking.

The data is labelled per flow by an attack type or “Benign”. We learn each
type of attack against benign traffic separately. To use as much data as possible,
for each attack type, we use 1500 positive (attack) flows and 10000 negative (be-
nign) flows for training, and another distinct data set of similar size for testing.

The main benefit of Sharingan in this step is the minimal need for feature
engineering. We simply use all header fields of TCP and IP, and the inter-packet
arrival time between adjacent packets in the same flow as features. In total, there
are 19 features per packet and N × 19 features per trace of length N .

In contrast, other state-of-the-art systems rely on a carefully designed fea-
ture extraction step to work well. For example, the feature vectors included in
CICIDS2017 database contain 84 features extracted by the CICFlowMeter [9,13]
tool for each flow, characterizing performance metrics of the entire flow such as
duration, mean forward packet length, min activation time, etc. Kitsune [16]
extracts bandwidth information over the past short periods as packet-level fea-
tures. DECANTeR [6] uses HTTP-level properties such as constant header fields,
language, amount of outgoing information, etc. as flow-level features.

12 L. Shi et al.

5.2 Learning Accuracy

We next validate Sharingan’s learning accuracy using the following evaluation
methodology. For each individual attack type, we use the training data (attack
and normal traffic) as input to Sharingan to learn a NetQRE program. The
NetQRE program is then validated on the corresponding testing set for accu-
racy. The output of Sharingan includes a NetQRE program that maps a network
trace to an integer output and a recommended range for the threshold. By mod-
ifying the threshold, true positive rate (TP) and false positive rate (FP) can
be adjusted, as we will later explain in Section 5.3. We use AUC (Area under
Curve) - ROC (Receiver Operating Characteristics) metric, which is a standard
statistical measure of classification performance.

1

0

0.84

0 0 0

1

0

1

0.186

1 1 1

0

1 11 1 1 1 1

0

1 11 0.985 0.999 0.997 0.994

0.88

1 0.9941 0.997 0.998 0.97 0.988 0.997 1 0.99

0

0.2

0.4

0.6

0.8

1

Slowloris Slowhttps DoS Hulk SSH Patator FTP Patator Botnet ARES DDoS Port Scan

True Positive - 0.001 True Positive - 0.01 True Positive - 0.03 AUC-ROC Learning Rate

Fig. 8: Sharingan’s true positive rate under low false positive rate, AUC-ROC and learning rate for
8 attacks in CICIDS2017 (higher is better)

Figure 8 contains results for eight types of attacks. Apart from AUC-ROC
values, we also show the true positive rates when false positive rate is adjusted to
3 different levels: 0.001, 0.01, and 0.03. Given that noise is common in most net-
work traffic, the last metric shown in Figure 8 is the highest achievable learning
rate.

Overall, we observe that Sharingan performs well across a range of attacks
with accuracy numbers on par with prior state-of-the-art systems such as Kit-
sune, which has an average AUC-ROC value of 0.924 on nine types of IoT-based
attacks, and DECANTeR, which has an average detection rate of 97.7% and a
false positive rate of 0.9% on HTTP-based malware. In six out of eight attacks,
Sharingan achieves above 0.994 of AUC-ROC and 100% of true positive rate at
1% false positive rate. The major exception is Botnet ARES, which consists of a
mix of malicious attack vectors. Handling such multi-vector attacks is an avenue
for our future work.

5.3 Post-processing and Interpretation

One of the benefits of Sharingan is that it generates an actual classification
program that can be further adapted and tuned by a network operator. The
program itself is also close to the stateful nature of session-layer protocols and
attacks, and thus is readable and provides a basis for the operator to understand
the attack cause. We briefly illustrate these capabilities in this section.
FP-TP Tradeoff Network operators need to occasionally tune a classifier’s
sensitivity to false positives and true positives. Sharingan generates a NetQRE
program with a threshold T . This threshold can be adjusted to vary the false

Network Traffic Classification by Program Synthesis 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Positive Density Negative Density

AB

Fig. 9: Output distribution of
training set(DoS Hulk)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Positive Density Negative Density

AB

Fig. 10: Output distribution of
test set(DoS Hulk)

0.7

0.75

0.8

0.85

0.9

0.95

1

0.001 0.01 0.1 1

Fig. 11: ROC Curve, logarithmic
scale(DoS Hulk)

positive and true positive rate. Figures 9 and 10 show the output distribution
from positive and negative examples in the DoS Hulk attack. A denotes the
largest negative output and B denotes the smallest positive output. When A >
B, there is some unavoidable error. We can slide the threshold T from B to A
and obtain an ROC curve for the test data, as illustrated in Figure 11.

Interpretation We describe a learnt NetQRE program to demonstrate how a
network operator can interpret the classifiers. 3 The NetQRE program synthe-
sized by Sharingan for DDoS task above is:

1 ((/_* A _* B _*/)*sum /_* C _*/)sum > 4

2 Where

3 A = [ip.src_ip ->[0%,50%]] B = [tcp.rst==1]

4 C = [time_since_last_pkt <=50%]

DDoS is a flood attack from a botnet of machines to exhaust memory re-
sources on the victim server. The detected pattern consists of packets that start
with source IP in a certain range, followed by a packet with the reset bit set to
1, and then a packet with a short time interval from its predecessor. Finally, the
program considers the flow a match if the patterns show up with a total count
of over 4.

The range of source IP addresses specified in the pattern possibly contains
botnet IP addresses. Attack flows are often reset when the load cannot be han-
dled or the flows’ states cannot be recognized, which indicates the attack is suc-
cessfully launched. Packets with short intervals further support a flood attack.
Unique properties of DDoS attack are indeed captured by this program!

Refinement by Human Knowledge Finally, an advantage of generating a
program for classification is that it enables the operator to augment the gener-
ated NetQRE program with domain knowledge before deployment. For example,
in the DDoS case, if they know that the victim service is purely based on TCP,
they can append [ip.type = TCP] to all predicates. Alternatively, if they know
that the victim service is designed for 1000 requests per second, they can ex-
plicitly replace the arrival time interval with 1ms. The modified program then
is:

1 ((/_* A _* B _*/)*sum /_* C _*/)sum > 4

2 Where

3 A full list of learnt NetQRE programs can be found in our tech report https:
//arxiv.org/abs/2010.06135.

https://arxiv.org/abs/2010.06135
https://arxiv.org/abs/2010.06135

14 L. Shi et al.

3 A = [ip.type = TCP]&&[ip.src_ip ->[0%,50%]]

4 B = [ip.type = TCP]&&[tcp.rst==1]

5 C = [ip.type = TCP]&&[time_since_last_pkt <=1ms]

5.4 Deployment Scenarios

We now describe three ways for network operators to deploy the output of
Sharingan: (1) taking action hinted by the interpretation; (2) directly executing
the NetQRE program as a monitoring system; and (3) translating the NetQRE
program to rules in other monitoring systems.

Revisiting the DDoS example in Section 5.3, in the first case, the operator
may refine the source IP part to find out the accurate range of attacker machines
and block them.

If the NetQRE program itself is to be used as a monitoring system, its runtime
system can be directly deployed on any general purpose machine. Prior work [37]
has shown that NetQRE generates performance that is comparable to optimized
low-level implementations. Moreover, these programs can be easily compiled into
other formats acceptable to existing monitoring systems.

5.5 Program Synthesis Performance

Synthesis time: In our final experiment, we measure the performance of Sharingan,
in terms of time needed for program synthesis.

Figure 12 shows the program complexity (Y-axis) and synthesis (learning)
time (in minutes). Not surprisingly, complex programs require more time to
synthesize. We further observe that Sharingan is able to synthesize complex
programs with at least 20-30 terms, mostly within minutes to an hour, which
is practical for many real-world use cases and can be further reduced through
parallelism over more machines. As a comparison, Kitsune reports training times
between 8 minutes and 52 minutes on individual attacks [16], and DECANTeR
reports training times between 5 hours and 10 hours on individual users’ data
[6].

Slowloris

Slowhttp

DoS Hulk

SSH Patator

FTP Patator

Botnet ARES
DDoS

Port scan

y = 4.9012ln(x) + 8.5798
R² = 0.752

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350

P
ro

gr
am

 C
o

m
p

le
xi

ty

Learning Time (minutes)

Fig. 12: Time-complexity relation

314654

15

8679508

124

53384

192

1

10

100

1000

10000

100000

1000000

10000000

Programs Searched Running Time (minutes)

Full Power No Partial Execution No Merge Search

Fig. 13: Impact of optimizations on synthesis
performance

Effectiveness of Optimizations. We explore the effectiveness of the indi-
vidual optimization strategies described in Section 4. In Figure 13, we compare

Network Traffic Classification by Program Synthesis 15

the synthesis time and the number of programs searched for a fully optimized
Sharingan against results from disabling each optimization. SSH Patator is used
as the demonstrating example since it is moderately complex.

We observe that disabling partial execution optimization makes both metrics
significantly worse. Being able to prune early can indeed greatly reduce time
wasted on unnecessary exploration and checking. By disabling merge search,
although the number of programs searched decreases, the total synthesis time
increases given the overhead of having to check each program against the entire
data set. The synthesis cannot finish within reasonable time if both are disabled.

In summary, all optimization strategies are effective to speed up the synthesis
process. A synthesis task that is otherwise impossible to finish within practical
time can now be done in less than 15 minutes.

6 Related Work

Automatic Generation of Network Configurations. Broadly speaking,
network traffic classification rule is a type of network configuration. There are
other lines of research that aim at the automatic generation of different cate-
gories of network configurations. EasyACL [15] aims at synthesis of access control
lists(ACL) from natural language descriptions. NetGen [24], NetComplete [10]
and Genesis [32] synthesize data plane routing configurations based on SMT
solvers given policy specifications. NetEgg [36] instead takes examples provided
by user to generate routing configurations in an interactive way. Sharingan fo-
cuses on network traffic classification and has a different target from them.
Other Learning-based Systems. Apart from competing systems we explic-
itly compared to above, there are other learning-based systems under different
settings from Sharingan.

Unsupervised learning systems are useful for recognizing outliers and other
types of “abnormal” flows [17,38,35], most notably in intrusion detection sys-
tems. Its ability to differentiate unknown types of traffic from the known cannot
be replaced by Sharingan. Sharingan can augment unsupervised learning systems
by reducing the effort required for analyzing the reported traces.

Learning systems using state machine[18] or payload-level regular expression[34]
as models both share the advantage of requiring minimal feature engineering.
The former generates less succinct models compared to Sharingan and is typ-
ically used for verification of network protocols. The latter learns patterns at
individual packet level rather than session level.

There are state-of-the-art point solutions focusing on specific scenarios rather
than general-purpose network traffic classification. For example, PrivateEye fo-
cuses on detecting privacy breaches in the cloud[4]. RFDIDS solves intrusion
detection challenges unique to power systems[26].
Syntax-Guided Synthesis. Sharingan builds on a large body of work on
syntax-guided synthesis [11,21,23,20,22,29,27]. However, synthesis techniques pro-
posed in this paper go beyond the state of the art, and have the potential to be
applied to other applications of program synthesis.

16 L. Shi et al.

Partial execution share similarity to the overestimation idea in [14] (see also
follow-ups [29,30,33]), where the system learns plain regular expressions and
overestimates the feasibility of a non-terminal with a Kleene-star. But no prior
work proposed an overestimation algorithm for quantitative stream query lan-
guages similar to NetQRE. Nor do they consider the specification format for a
classifier program with unknown numerical thresholds.

[3] proposed a divide-and-conquer strategy similar to merge search for opti-
mizing program synthesis. It is focused on standard SyGuS tasks based on logical
constraints and uses decision tree to combine sub-patterns instead of trying to
merge them into one compact program. Merge search proposed in this work is
not specific to Sharingan, and can be used in other synthesis tasks to allow the
handling of large data sets.

Finally, there is no prior work that solely uses program synthesis to perform
accurate real-world large-scale classification. The closest work concerns simple
low-accuracy programs synthesized as weak learners [8], and requires a separate
SVM to assemble them into a classifier.

7 Conclusion

This paper presents Sharingan, which develops syntax-guided synthesis tech-
niques to automatically generate NetQRE programs for classifying session-layer
network traffic. Sharingan can be used for generating network monitoring queries
or signatures for intrusion detection systems from labeled traces. Our results
demonstrate three key value propositions for Sharingan, namely minimal fea-
ture engineering, efficient implementation, and interpretability as well as ed-
itability. While achieving accuracy comparable to state-of-the-art statistical and
signature-based learning systems, Sharingan is significantly more usable and re-
quires synthesis time practical for real-world tasks. 4

Acknowledgements

We thank the anonymous reviewers for their feedback. This research was sup-
ported in part by NSF grant CCF 1763514, CNS 1513679, and Accountable
Protocol Customization under the ONR TPCP program with grant number
N00014-18-1-2618.

References

1. Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. Syntax-guided synthesis. In 2013 Formal Methods
in Computer-Aided Design, pages 1–8. IEEE, 2013.

4 Sharingan’s code is publicly available at https://github.com/SleepyToDeath/
NetQRE.

https://github.com/SleepyToDeath/NetQRE
https://github.com/SleepyToDeath/NetQRE

Network Traffic Classification by Program Synthesis 17

2. Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. Modular quantitative
monitoring. Proceedings of the ACM on Programming Languages, 3(POPL):50,
2019.

3. Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative pro-
gram synthesis via divide and conquer. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 319–336. Springer,
2017.

4. Behnaz Arzani, Selim Ciraci, Stefan Saroiu, Alec Wolman, Jack Stokes, Geoff
Outhred, and Lechao Diwu. Privateeye: Scalable and privacy-preserving compro-
mise detection in the cloud. In 17th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 20), pages 797–815, 2020.

5. Przemys law Bereziński, Bartosz Jasiul, and Marcin Szpyrka. An entropy-based
network anomaly detection method. Entropy, 17(4):2367–2408, 2015.

6. Riccardo Bortolameotti, Thijs van Ede, Marco Caselli, Maarten H Everts, Pieter
Hartel, Rick Hofstede, Willem Jonker, and Andreas Peter. Decanter: Detection
of anomalous outbound http traffic by passive application fingerprinting. In Pro-
ceedings of the 33rd Annual Computer Security Applications Conference, pages
373–386, 2017.

7. Canadian Institute for Cybersecurity. Ids 2017 — datasets — research — canadian
institute for cybersecurity — unb, 2020. [Online; accessed 15-October-2019].

8. Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Using program syn-
thesis for social recommendations. arXiv preprint arXiv:1208.2925, 2012.

9. Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and
Ali A Ghorbani. Characterization of encrypted and vpn traffic using time-related.
In Proceedings of the 2nd international conference on information systems security
and privacy (ICISSP), pages 407–414, 2016.

10. Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. Net-
Complete: Practical Network-Wide Configuration Synthesis with Autocompletion.
In NSDI. USENIX Association, 2018.

11. Sumit Gulwani. Automating string processing in spreadsheets using input-output
examples. ACM Sigplan Notices, 46(1):317–330, 2011.

12. Donghwoon Kwon, Hyunjoo Kim, Jinoh Kim, Sang C Suh, Ikkyun Kim, and
Kuinam J Kim. A survey of deep learning-based network anomaly detection.
Cluster Computing, pages 1–13, 2017.

13. Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and
Ali A Ghorbani. Characterization of tor traffic using time based features. In
ICISSP, pages 253–262, 2017.

14. Mina Lee, Sunbeom So, and Hakjoo Oh. Synthesizing regular expressions from
examples for introductory automata assignments. In ACM SIGPLAN Notices,
volume 52, pages 70–80. ACM, 2016.

15. Xiao Liu, Brett Holden, and Dinghao Wu. Automated synthesis of access con-
trol lists. In 2017 International Conference on Software Security and Assurance
(ICSSA), pages 104–109. IEEE, 2017.

16. Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: an
ensemble of autoencoders for online network intrusion detection. arXiv preprint
arXiv:1802.09089, 2018.

17. Preeti Mishra, Vijay Varadharajan, Uday Tupakula, and Emmanuel S Pilli. A de-
tailed investigation and analysis of using machine learning techniques for intrusion
detection. IEEE Communications Surveys & Tutorials, 21(1):686–728, 2018.

18 L. Shi et al.

18. Soo-Jin Moon, Jeffrey Helt, Yifei Yuan, Yves Bieri, Sujata Banerjee, Vyas Sekar,
Wenfei Wu, Mihalis Yannakakis, and Ying Zhang. Alembic: automated model
inference for stateful network functions. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages 699–718, 2019.

19. James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generat-
ing signatures for polymorphic worms. In 2005 IEEE Symposium on Security and
Privacy (S&P’05), pages 226–241. IEEE, 2005.

20. Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program
synthesis. ACM SIGPLAN Notices, 50(6):619–630, 2015.

21. Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis. arXiv preprint
arXiv:1611.01855, 2016.

22. Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis
from polymorphic refinement types. ACM SIGPLAN Notices, 51(6):522–538, 2016.

23. Oleksandr Polozov and Sumit Gulwani. Flashmeta: a framework for inductive
program synthesis. In ACM SIGPLAN Notices, volume 50, pages 107–126. ACM,
2015.

24. Shambwaditya Saha, Santhosh Prabhu, and P Madhusudan. Netgen: Synthesizing
data-plane configurations for network policies. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, pages 1–6, 2015.

25. Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating
a new intrusion detection dataset and intrusion traffic characterization. In ICISSP,
pages 108–116, 2018.

26. Tohid Shekari, Christian Bayens, Morris Cohen, Lukas Graber, and Raheem Beyah.
Rfdids: Radio frequency-based distributed intrusion detection system for the power
grid. In NDSS, 2019.

27. Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. Learning a meta-
solver for syntax-guided program synthesis. In International Conference on Learn-
ing Representations, 2018.

28. Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated
worm fingerprinting. In OSDI, volume 4, pages 4–4, 2004.

29. Sunbeom So and Hakjoo Oh. Synthesizing imperative programs from examples
guided by static analysis. In International Static Analysis Symposium, pages 364–
381. Springer, 2017.

30. Sunbeom So and Hakjoo Oh. Synthesizing pattern programs from examples. In
IJCAI, pages 1618–1624, 2018.

31. Robin Sommer and Vern Paxson. Outside the closed world: On using machine
learning for network intrusion detection. In 2010 IEEE symposium on security
and privacy, pages 305–316. IEEE, 2010.

32. Kausik Subramanian, Loris D’Antoni, and Aditya Akella. Genesis: Synthesizing
forwarding tables in multi-tenant networks. In Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages, pages 572–585, 2017.

33. Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly ex-
pressive sql queries from input-output examples. In ACM SIGPLAN Notices, vol-
ume 52, pages 452–466. ACM, 2017.

34. Yu Wang, Yang Xiang, Wanlei Zhou, and Shunzheng Yu. Generating regular
expression signatures for network traffic classification in trusted network manage-
ment. Journal of Network and Computer Applications, 35(3):992–1000, 2012.

35. Guowu Xie, Marios Iliofotou, Ram Keralapura, Michalis Faloutsos, and Antonio
Nucci. Subflow: Towards practical flow-level traffic classification. In 2012 Proceed-
ings IEEE INFOCOM, pages 2541–2545. IEEE, 2012.

Network Traffic Classification by Program Synthesis 19

36. Yifei Yuan, Rajeev Alur, and Boon Thau Loo. Netegg: Programming network
policies by examples. In Proceedings of the 13th ACM Workshop on Hot Topics in
Networks, pages 1–7, 2014.

37. Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and Boon Thau
Loo. Qantitative network monitoring with NetQRE. In SIGCOMM, 2017.

38. Jun Zhang, Xiao Chen, Yang Xiang, Wanlei Zhou, and Jie Wu. Robust network
traffic classification. IEEE/ACM Transactions on Networking (TON), 23(4):1257–
1270, 2015.

39. Zhuo Zhang, Zhibin Zhang, Patrick PC Lee, Yunjie Liu, and Gaogang Xie. Toward
unsupervised protocol feature word extraction. IEEE Journal on Selected Areas in
Communications, 32(10):1894–1906, 2014.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Network Traffic Classification by Program Synthesis

