
Streamable Regular Transductions

Rajeev Alura, Dana Fismanb, Konstantinos Mamourasa, Mukund
Raghothamana, Caleb Stanforda

aUniversity of Pennsylvania, Philadelphia, PA, USA
bBen-Gurion University, Be’er Sheva, Israel

Abstract

Motivated by real-time monitoring and data processing applications, we de-
velop a formal theory of quantitative queries for streaming data that can be
evaluated efficiently. We consider the model of unambiguous Cost Register
Automata (CRAs), which are machines that combine finite-state control (for
identifying regular patterns) with a finite set of data registers (for comput-
ing numerical aggregates). The definition of CRAs is parameterized by the
collection of numerical operations that can be applied to the registers. These
machines give rise to the class of streamable regular transductions (SR), and
to the class of streamable linear regular transductions (SLR) when the register
updates are copyless, i.e. every register appears at most once the right-hand-
side expressions of the updates. We give a logical characterization of the
class SR (resp., SLR) using MSO-definable transformations from strings to
DAGs (resp., trees) without backward edges. Additionally, we establish that
the two classes SR and SLR are closed under operations that are relevant for
designing query languages. Finally, we study the relationship with weighted
automata (WA), and show that CRAs over a suitably chosen set of oper-
ations correspond to WA, thus establishing that WA are a special case of
CRAs.

Keywords: Cost Register Automata, MSO transductions, regular
functions, quantitative automata, stream processing

1. Introduction

Finite-state automata, and the associated class of regular languages, have
many appealing properties. In particular, the class of regular languages has
robust, and well understood, expressiveness with multiple characterizations,

Preprint submitted to Elsevier June 22, 2018

and is closed under a variety of language operations. Furthermore, a finite-
state automaton processes an input string in a single left-to-right pass using
only constant space, in compliance with the streaming model of computation.
This forms the basis of practical applications of automata in design and
implementation of query languages for pattern matching in strings.

In a diverse range of applications such as financial tickers, network traffic
monitoring, and click-streams of web usage, the core computational problem
is to map a stream of data items to a numerical value. For example, suppose
the monitoring software at a network router wants to compute the average
number of packets per VoIP (Voice over IP) session in the incoming stream of
packets. This requires detection of VoIP sessions, which can be characterized
by regular patterns in the input stream, and computing numerical aggregates
in a hierarchical manner, where the cost of a VoIP session is the number
of packets it contains, and the cost of a stream is the average of costs of
VoIP sessions it contains. Recent work on Quantitative Regular Expressions
(QRE) provides a declarative query language for specifying such computation
in a modular fashion, and has led to prototype implementations StreamQRE
and NetQRE [1, 2, 3]. These quantitative queries involve a mix of regular
patterns and numerical aggregates, and crucially, all queries can be evaluated
in a streaming manner. In this paper we develop an understanding of the
class of streaming transductions definable by such queries: the streamable
regular transductions.

A natural starting point for this study is the model of cost register au-
tomata (CRA) and the associated class of regular transductions [4]. A CRA
processes a data word, that is, a sequence over Σ × D, where Σ is a finite
set of tags and D is a set of data values, and outputs a value in D that is
computed using a given set of operations over D (for example, D can be
the set of natural numbers, and the set of operations can include addition,
minimum, and maximum). A CRA has a finite-state control that is updated
based only on the tag values of the input string, and a finite set of (write-
only) registers that are updated at each step using the given operations. The
partial functions from (Σ × D)∗ to D computed by the CRAs are called
regular with respect to the allowed set of operations. The computation of a
regular transduction can be viewed as, first mapping a data word to a tree
whose nodes are labeled with the allowed operations, and then evaluating
the resulting term, where the former mapping is an MSO-definable string-to-
tree transformation. This gives an alternative logical characterization of the
class of regular transductions, and allows us to draw upon the well developed

2

theory of regular tree transformations [5, 6, 7].
The original CRA model is a deterministic machine that processes its

input in a single pass. Its registers can hold data values as well as func-
tions represented by terms with parameters, and the update at each step
is required to be copyless , that is, a register can appear at most once in
the right-hand-side expressions of the updates. The CRA model we study
in section 2 differs in three ways. First, since our focus is on streamability,
and terms can grow linearly with the size of the input stream, we require
registers to hold only values. Second, we allow the finite-state control to be
updated nondeterministically based on the input tags, but it is required to
be unambiguous (that is, any accepted data word has exactly one accepting
run). While it is known that when registers can hold terms, unambiguous
machines are no more expressive than deterministic ones [7], we prove that
when registers can hold only values that are updated in a copyless manner,
unambiguous machines are strictly more expressive than their deterministic
counterparts. The complexity of evaluation for unambiguous CRAs is only a
constant (equal to the number of states of the machine) factor more than the
deterministic ones. Finally, we consider both copyless and copyful (that is,
unrestricted) updates since a CRA has a constant number of registers that
hold data values and get updated by executing a constant number of oper-
ations while processing each data item. The number of bits needed to store
data values can grow with the length of the input stream when the data do-
main is unbounded, and the exact complexity of the streaming algorithm for
evaluation depends on the nature of operations and implementation details.

We call the class of transductions over data words defined by such unam-
biguous CRAs with registers containing only values and copyful updates as
streamable regular transductions (SR), and the subclass when updates are re-
quired to be copyless as streamable linear regular transductions (SLR). Both
these classes turn out to be closed under operations relevant for design of
query languages. For instance, consider the split operation, the quantita-
tive analog of the (unambiguous) language concatenation: given two partial
transductions f and g over data words and a binary data operation op,
split(f, g, op) is defined on an input string w if it can be split uniquely into
two parts w = w1w2 such that both f(w1) and g(w2) are defined, and if so
returns op(f(w1), g(w2)). Both classes SR and SLR are closed under this op-
eration. It is worth noting that the class of general streaming algorithms is
not closed under this operation (that is, it is possible that both f and g can
be computed in a streaming fashion using memory that is logarithmic in the

3

size of the input string, but split(f, g, op) requires memory that grows lin-
early with the length of the input string). This justifies the role of regularity
in design of streaming algorithms in a modular fashion.

In section 3, we give a logical characterization of the streamable regular
transductions. Recall that the class of regular transductions corresponds to
MSO-definable string-to-tree transformations. We show that streamability
corresponds to the requirement that in the output graph edges cannot go
backwards: the output graph has multiple copies corresponding to an index
position i in the input string, and the children of each such node must be
copies corresponding to input positions less than or equal to i. Furthermore,
allowing updates in a CRA to be copyful corresponds to allowing sharing in
the output graph as long as no cycles are created. More precisely, the class SR
corresponds to MSO-definable transformations from string graphs to directed
acyclic graphs without backward edges, and the class SLR corresponds to
MSO-definable transformations from string graphs to trees without backward
edges. The proof builds on ideas developed in [5, 6, 7], but is self contained.

In section 4, we study the relationship with weighted automata, an exten-
sively studied quantitative extension of automata [8]. A weighted automaton
defines a (total) function from Σ∗ to a set D equipped with two operations,
product and sum, that form a semiring. Such an automaton is a nondeter-
ministic finite-state machine whose each transition is labeled with a tag in Σ
and a weight in D. The cost of a run of the automaton is the product of all
the weights of the transitions in the run, and the cost associated with a string
is the sum of the costs of all the corresponding runs of the automaton. If we
choose the set of operations to contain only multiplication by constants, for
each value in D, then we show that the two classes SR and SLR coincide, and
correspond exactly to unambiguous weighted automata. If we choose the set
of operations to contain multiplication by constants, for each value in D, and
sum, then we show that the class SR corresponds exactly to transductions
definable by weighted automata.

2. Cost Register Automata

Cost Register Automata (CRAs) were introduced in [4] with the goal of
providing a machine-based characterization of the class of regular transduc-
tions (called regular cost functions in [4]) from strings to costs. To capture
precisely the class of transductions considered in [4], it is sufficient to restrict
the updates so that they are “copyless” (each variable is used at most once

4

on the right-hand size of a parallel update), but it is necessary to allow vari-
ables to hold terms with at most one “hole” (parameter that can be used for
substitution). For the classes of functions that we consider here, we consider
CRAs that can hold only values and the copylessness restriction is dropped
to accommodate string-to-DAG transformations (defined later in section 3).

We will start by introducing the semantic objects of data transductions,
which represent stream transformations, and several regular combinators on
these objects. Then, we will present the formal computational model of
Cost Register Automata (CRAs) and illustrate its use with several examples.
We define the class of streamable regular (resp., streamable linear regular)
transductions, denoted SR (resp., SLR), as the class of transductions that are
computed by copyful (resp., copyless) unambiguous CRAs. The restriction
of “copylessness” essentially says that it is not allowed to copy the contents
of registers. A key feature of the CRA model is that it is parameterized by
the operations on data values that are allowed when updating the registers.

We will also show that in the case of copyless CRAs, unambiguous ma-
chines are more expressive than their deterministic counterparts. It will then
be established that both classes SR and SLR are closed under regular combi-
nators that are straightforward analogs of the familiar regular combinators
for word languages. We will conclude with a short discussion of the complex-
ity of evaluation in the CRA model.

2.1. Data Transductions and Combinators

We fix a finite alphabet Σ whose elements are called tags, a data set D
of data values. A data word is a sequence of tagged values, i.e. a word over
the alphabet Σ×D. A data transduction is a partial function of type

(Σ×D)∗ ⇀ D.

For a data word w ∈ (Σ × D)∗, we write w|Σ to denote the elementwise
projection of w to the tag component. More formally,

(a1, d1) (a2, d2) · · · (an, dn) |Σ = a1a2 · · · an.

We will only consider transductions f that satisfy the following property: for
all input sequences u, v with u|Σ = v|Σ, f(u) is defined iff f(v) is defined.
The rate of f is the language R(f) ⊆ Σ∗ defined as follows:

R(f) = {σ ∈ Σ∗ | for every α and w with w|Σ = σ, f(w) is defined}.

5

So, the domain of a transduction is equal to

dom(f) = {w ∈ (Σ×D)∗ | w|Σ ∈ R(f)}.

A transduction f : (Σ×D)∗ ⇀ D is said to be value-oblivious if for all input
sequences u, v with u|Σ = v|Σ it satisfies f(u) = f(v). So, a value-oblivious
transduction f can be represented by a function f̂ : Σ∗ ⇀ D whose domain
is equal to the rate of f and which satisfies f(w) = f̂(w|Σ) for every input
sequence w.

Now, we also fix a family O of constants and operations on the data set D.
We write On to denote the set of n-ary operations that are contained in O.
In particular, O0 is the set of constants of O. We will consider below several
combinators for composing data transductions. Before we give the definitions
of these combinators, we need to introduce some additional notation. The
operation � is unambiguous concatenation of strings and �∗ is unambiguous
iteration, which are defined as follows:

A�B = {w | there are unique u ∈ A and v ∈ B with w = uv}
A�∗ = {w | there are unique n ≥ 0 and w1, . . . , wn ∈ A

with w = w1 · · ·wn}

The left fold combinator fold : (B ×A→ B)×B ×A∗ is defined as follows:

fold(f, b, ε) = b

fold(f, b, a · w) = fold(f, f(b, a), w)

for all f : B × A→ B, b ∈ B, a ∈ A, and w ∈ A∗. For example,

fold(f, b, a1) = f(b, a1)

fold(f, b, a1a2) = f(f(b, a1), a2)

fold(f, b, a1a2a3) = f(f(f(b, a1), a2), a3)

Table 1 contains the typing rules and the definitions of several combinators
for data transductions: output combination, choice (else), quantitative con-
catenation (split), and quantitative iteration (iter). These combinators
are quantitative analogs of the familiar combinators for string languages: in-
tersection, union, concatenation, and iteration. These regular operations on
data transductions are relevant for the design of query languages for stream

6

processing, since they enable the modular description of complex streaming
computations.

The work [1] introduces a family of regular combinators that captures
a class of transductions that is defined in terms of CRAs whose registers
use terms with variables instead of values. The StreamQRE language of
[2] extends the combinators of Table 1 with additional constructs (such as
streaming composition and key-based partitioning) that are useful in practi-
cal stream processing applications.

2.2. Syntax and Semantics of CRAs

A Cost Register Automaton (CRA) is a machine that maps data words,
i.e. strings over an input alphabet of tagged values, to output values. It uses
a finite-state control and a finite set of registers that contain values. At each
step, the machine reads an input tag and an input value, updates its control
state, and updates its registers using a parallel assignment. The definition
of the machine is parameterized by the set of expressions that can be used
in the assignments. For example, a CRA with increments can use multiple
registers to compute alternative costs, perform updates of the form x := y+c,
where x and y are registers and c is a constant, at each step, and commit to
the cost computed in one of the registers at the end.

Let X be a set of variables, and suppose that O is the family of available
constants and operations on the data set D. The set of expressions over X,
denoted EO[X] is defined by the following rules:

constant c ∈ O
c : EO[X]

variable x ∈ X
x : EO[X]

n-ary operation op ∈ O ti : EO[X] for all i = 1, . . . , n

op(t1, . . . , tn) : EO[X]

A function α : X → D is called a variable assignment, and it extends uniquely
to a homomorphism (i.e., operation-preserving mapping) α̂ : EO[X] → D.
An expression t ∈ EO[X] denotes a function JtK : DX → D, defined as
follows: for a variable assignment α : X → D, we put JtK(α) = α̂(t). That is,
JtK(α) is the result of evaluating the variable-free expression that is obtained
from t by replacing each variable x by α(x).

In the development that follows, we will also consider a special symbol val,
which should be assumed to be always distinct from all variables in X. The
symbol val is meant to be used as a reference to the value of the current data

7

op : Dn → D fi : (Σ×D)∗ ⇀ D for all i
(output combination)

op(f1, . . . , fn) : (Σ×D)∗ ⇀ D

R(op(f1, . . . , fn)) = R(f1) ∩ · · · ∩ R(fn)

op(f1, . . . , fn)(w) = op(f1(w), . . . , fn(w))

f, g : (Σ×D)∗ ⇀ D
(choice)

f else g : (Σ×D)∗ ⇀ D

R(f else g) = R(f) ∪ R(g)

(f else g)(w) =

{
f(w), if w|Σ ∈ R(f)

g(w), otherwise

f, g : (Σ×D)∗ ⇀ D op : D ×D → D (quantitative

concatenation)split(f, g, op) : (Σ×D)∗ ⇀ D

R(split(f, g, op)) = R(f)� R(g)

split(f, g, op)(uv) = op(f(u), g(v)), if u|Σ ∈ R(f) and v|Σ ∈ R(g)

f : (Σ×D)∗ ⇀ D c ∈ D op : D ×D → D (quantitative

iteration)iter(f, c, op) : (Σ×D)∗ ⇀ D

R(iter(f, c, op)) = R(f)�∗

iter(f, c, op)(w1 · · ·wn) = fold(op, c, [f(w1), . . . , f(wn)]),

if wi|Σ ∈ R(f) for all i = 1, . . . , n

Table 1: Some regular combinators for data transductions: output combination, choice,
quantitative concatenation, and quantitative iteration.

8

value. An expression t ∈ EO[X ∪{val}] that potentially contains occurrences
of val denotes a function JtK : DX ×D → D, given by

JtK(α, d) = β̂(t) where β = α[val 7→ d] : X ∪ {val} → D

for every variable assignment α : X → D and every value d ∈ D. We use the
notation α[val 7→ d] to mean the extension of α that maps val to d.

Definition 1 (CRA). A (nondeterministic, copyful) Cost Register Automa-
ton (CRA) over the tag alphabet Σ, data values D, and data operations O
is a tuple

A = (Q,X,∆, I, F),

where

• Q is a finite set of states

• X is a finite set of registers

• ∆ ⊆ Q×Σ×UO×Q is the set of transitions with UO the set of register
updates X → EO[X ∪ {val}]

• I : Q ⇀ (X → O0) is the initialization function

• F : Q ⇀ EO[X] is the finalization function

The domain of I is the set of initial states, and the domain of F is the
set of final or accepting states. A CRA is said to be unambiguous (resp.,
deterministic) if the underlying NFA is unambiguous (resp., deterministic).
We use the abbreviations NCRA, UCRA, and DCRA to indicate that an
automaton is nondeterministic, unambiguous, and deterministic respectively.

A CRA is said to be copyless if it satisfies the following restrictions:
(1) for every transition (p, a, θ, q) ∈ ∆ and every register x, there is at most
one occurrence of x in the list of expressions θ(x1), . . . , θ(xn), where x1, . . . , xn
is an enumeration of X, and (2) for every final state q and every register x,
there is at most one occurrence of x in the expression F (q).

A CRA is said to be trim if the satisfies the properties: (1) every state
of the automaton is reachable from an initial state, and (2) some final state
is reachable from every state.

9

Semantics of CRAs. A CRA computes like a classical finite-state au-
tomaton, but the configuration consists of both a current state and a register
assignment X → D. A transition specifies the next state, as well as the
update of the variables using their current values and the current data value
from the input. For an input sequence w = (a1, d1) (a2, d2) · · · (an, dn) in
(Σ×D)∗, we define a w-run in A to be a sequence

(q0, α0)
(a1,d1)−−−−→ (q1, α1)

(a2,d2)−−−−→ (q2, α2)
(a3,d3)−−−−→ · · · (an,dn)−−−−→ (qn, αn)

with qi ∈ Q and αi : X → D for all i so that the following hold:

1. Initialization: q0 is an initial state and α0 = I(q0).

2. Transition: for every transition (p, α) →(a,d) (q, β) of the run there is
a register update function θ ∈ UO with (p, a, θ, q) ∈ ∆ s.t.

β(x) = Jθ(x)K(α, d) for every register x ∈ X.

3. Finalization: qn is a final state.

The value of the run is JF (qn)K(αn). A nondeterministic CRA implements
a multi-valued transduction (Σ × D)∗ → P(D), where P is the powerset
operator. The value of this transduction on an input sequence w is the set
of values of all w-runs. An unambiguous CRA has at most one run for each
input sequence, and therefore implements a transduction (Σ×D)∗ ⇀ D.

Definition 2 (Streamable Regular Transductions). Fix a tag alphabet Σ,
a set D of values, and a family O of operations over D. We define the
class of streamable regular transductions (over O), denoted SR(O), to be
the class of data transductions that can be computed by some UCRA (over
O). Similarly, we define the class of streamable linear regular transductions,
denoted SLR(O), to be the class of data transductions that can be computed
by some copyless UCRA. Table 2 summarizes these definitions.

2.3. Examples

We present in this subsection several examples that illustrate how CRAs
compute. We consider both deterministic and unambiguous variants, and we
give examples of copyless and copyful (i.e., unrestricted) register updates.

10

CRA Class of transductions
copyless over O SLR(O): Streamable Linear Regular
copyful over O SR(O): Streamable Regular

Table 2: Classes of transductions computed by unambiguous CRAs.

Whenever convenient, we will allow the use of ε-transitions for the unam-
biguous variants. This is w.l.o.g. because ε-transitions can be eliminated
with a straightforward variant of the ε-elimination procedure for classical
finite-state automata (assuming there are no ε-cycles).

Example 3 (Copyless DCRA). Suppose the tag alphabet is Σ = {a, b}, the
type of values is D = N (the set of natural numbers), and O consists of
the constant 0 and the binary addition operation. Consider the following
transduction f : (Σ×D)∗ ⇀ D, which is defined on all nonempty sequences.
If a sequence ends with an a-labeled value, then f outputs the sum of all a-
labeled values in the sequence. Similarly, if a sequence ends with a b-labeled
value, then f outputs the sum of all b-labeled values in the sequence. Then
f is implemented by the following copyless CRA:

p

qa | x qb | y

θ

a | θa b | θb

a | θa b | θb
b | θb

a | θa

where the initialization θ and the register updates θa, θb are defined as follows:

θ =

{
x := 0

y := 0
θa =

{
x := x+ val

y := y
θb =

{
x := x

y := y + val

The register x holds the sum of all a-labeled values seen so far, and the
register y holds the sum of all b-labeled values seen so far. The state p is active
only upon initialization, and qa (resp., qb) is active when the input sequence
ends with an a-labeled (resp., b-labeled) value. The CRA is deterministic.

11

Moreover, it is copyless, since every register is used at most once in the
right-hand side of the updates θa and θb.

Example 4 (Copyless UCRA). In Example 3, it was shown how to imple-
ment the transduction f using a copyless DCRA with two registers. We will
show now how to implement the same transduction using a copyless UCRA
with one register. Informally, the idea is to employ unambiguous nondeter-
minism in order to guess whether the input data word will end with the tag
a or the tag b. We assume additionally that ε-transitions are allowed.

p

paqa | x pb qb | x

x := 0

ε | x := 0 ε | x := 0

a | x := x+ val

b | x := x

a | x := x+ val

b | x := x+ val

a | x := x

b | x := x+ val

The register x holds the sum of all a-labeled values at the states pa and qa,
and the sum of all b-labeled values at the states pb and qb. The automaton
is copyless, since the register x is used at most once in the right-hand side of
the updates.

Example 5. Suppose the tag alphabet is Σ = {a,#}, the type of values is
D = N (the set of natural numbers), and O consists of the constant 0, the
binary addition operation, and max. Consider the following transduction
f : (Σ ×D)∗ ⇀ D, whose rate is given by the regex (a+ ·#)∗. A maximal
subsequence of the input that is of the form aa . . . a# is called a block. The
transduction f outputs that maximum cost over all input blocks, where the
cost of a block is the sum of the a-labeled values. This is implemented by
the following two-register copyless CRA:

p | y qθ
a | θa

| θ#

a | θa

12

where the initialization θ and the register updates θa, θ# are given by:

θ =

{
x := 0

y := 0
θa =

{
x := x+ val

y := y
θ# =

{
x := 0

y := max(y, x)

The register x holds the sum of all a-labeled values in the current block, and
the register y holds the maximum cost over all complete blocks seen so far.
The CRA is deterministic and copyless (every register is used at most once
in the right-hand side of the updates θa and θ#).

Example 6 (Copyful UCRA). Suppose the tag alphabet is Σ = {a, b}, the
type of values is D = N (the set of nonnegative integers), and O consists of
the constant 0 and the binary operations max and 	 (which is defined as
x	 y = max(x− y, 0) for all x, y ∈ N). Consider the following transduction
f : (Σ×D)∗ ⇀ D, which is defined on sequences that contain at least one a-
labeled value. For these sequences, the value of f is the maximum drawdown
(the maximum loss from a peak to a trough) in the input signal after the last
occurrence of a b-labeled value. The transduction f is implemented by the
following copyful CRA:

p q | yθ0 b | θ0

a, b | θ0 a | θ

where the initialization θ0 and the register update θ are defined as follows:

θ0 =

{
x := 0

y := 0
θ =

{
x := max(x, val)

y := max(y,max(x, val)	 val)

The numerical computation on the values concerns the part of the input after
the last occurrence of a b-labeled value. The register x holds the maximum
value, and the register y holds the maximum drawdown. The state p is always
active, and q is active when at least one b-labeled value is seen in the input.
The CRA is unambiguous. Moreover, it is not copyless, since the register x
is used twice in the right-hand sides of the register update θ.

Example 7. Suppose the tag alphabet is Σ = {a}, the type of values is
D = Q (the set of rational numbers), and O consists of the constant 0 and

13

the binary operation op given by op(x, y) = λ · x + y, where λ is a fixed
rational constant in the open interval (0, 1). The transduction f maps a
data word w with w|D = d1d2 . . . dn ∈ D∗ to λn−1 · d1 + · · · + λ · dn−1 + dn.
We write w|D to denote the elementwise projection of the data word to the
value component. The transduction can be computed by the following CRA:

p | xx := 0
a | x := op(x, val) = λ · x+ val

Define now the transduction g as g(w1w2 . . . wn) = f(wn . . . w2w1). The
transduction g cannot be computed by a CRA (over O), because the reg-
isters can only hold values. However, if the registers were allowed to hold
terms with a hole � (a placeholder that can be substituted later in the com-
putation), then g could be expressed.

p | x[0/�]
x := �

a | x := x[op(�, val)/�]

In the machine shown above the register is meant to hold a term (with
potential occurrences of �), and the operation x[t/�] denotes the result
of substituting t for � in the contents of x. For example, if the input is
w = (a, d1) (a, d2) (a, d3), then the successive contents of the register x (after
3 steps of computation) are shown below:

� op(�, d1) op(op(�, d2), d1) op(op(op(�, d3), d2), d1)

So, the ability to use the holes � and substitute terms into it provides addi-
tional computation power. The disadvantage of using terms is that in some
cases their size can grow linearly in the size of the input.

2.4. Choice of Operations on Data Values

The definition of CRAs is parameterized by the choice of operations that
are allowed when updating the registers. We will see now that seemingly
inconsequential variations of the available operations can change what can be
computed by a CRA. Suppose that (D, ·, 1) is a monoid, i.e. · is an associative
binary operation on D and 1 is a left and right identity for the · operation.
Define O to be the family of operations that contains 1 and ·, and O′ to
contain the identity 1 and the unary operation (− · d) for every d ∈ D.

14

Lemma 8. The class of transductions SR(O′) is equal to SLR(O′).

Proof. It suffices to see that a copyful UCRA over O′ can be simulated by a
copyless UCRA over O′. The key observation is that in a copyful UCRA at
most one register can contribute to the final output. So, at every step of the
computation the machine can guess the register x that will contribute to the
output (using unambiguous nondeterminism) and proceed by updating only
x. Notice that this construction produces a UCRA with a single register.

In general, the class of transductions SR(O) may be strictly larger than
SLR(O). For example, consider the case where (D, ·, 1) is the free monoid
generated by the alphabet Σ. That is, D is the set of finite words over Σ,
· is word concatenation, and 1 is the empty word. For all transductions on
SLR(O), the output is of size linear in the size of the input. This property
does not hold, however, for the transductions of SR(O). The copyful single-
state single-register CRA

q | xx := a
a, b | x := x · x

emits outputs that are of size exponential in the input. Lemma 8 and the
preceding discussion establish that the precise choice of O can affect the class
of functions that can be computed.

Another important point about the set O of operations is that it can
incorporate tests on values. The definition of CRAs does not allow tests
on registers as guards on the transitions, which means that the control of
the automaton depends only on the observed sequence of input tags. It is
possible, however, to compute a transduction such as

f(w) =

{
sum of a-tagged values, if |w|a = |w|b
sum of b-tagged values, if |w|a 6= |w|b

(where |w|a is the number of occurrences of the tag a in the data word w)
by including in O an if-then-else operation such as:

ITE (x, y, z, w) =

{
z, if x = y

w, if x 6= y

15

2.5. Unambiguity Versus Determinism

In this section we explore the relationship between unambiguous and
deterministic CRAs. The first result is a kind of subset construction for
transforming a copyful UCRA to an equivalent copyful DCRA. This means
that unambiguous nondeterminism is not essential when the automata are
allowed to copy values. In the case of copyless CRAs, however, we will see
that unambiguity is essential. That is, there are data transductions that can
be computed by copyless UCRAs but not by copyless DCRAs.

To get an intuitive understanding of why copyless DCRAs are weaker,
suppose that a copyless DCRA has a register x which can contribute to the
output in two different ways, depending on some regular property of the
future input. Because the automaton is not allowed to copy the value of x, it
cannot commit to any of the two different eventualities in order to update x
appropriately. If this situation can only arise a fixed number of times in the
computation, a solution can be given by blowing up the number of registers:
create from the outset two copies of the register x, one for each possible
eventuality and update them separately. We will see, however, that there are
examples where this situation can arise an arbitrary number of times. Such
examples witness the power of unambiguity in the model of copyless CRAs.

Theorem 9 (Copyful UCRA to Copyful DCRA). Every copyful un-
ambiguous CRA over O is equivalent to a copyful deterministic CRA over O
(assuming O contains at least one constant).

Proof. Let A = (Q,X,∆, I, F) be an arbitrary copyful unambiguous CRA.
W.l.o.g. we assume that A is trim. We define the deterministic CRA B using
a modified subset construction. The automaton B has registers Q ×X and
its state space is equal to

{∆(dom(I), w) | w ∈ Σ∗},

where ∆(P,w) for P ⊆ Q is the set of states reachable from a state in P via
a path that is labeled with the word w.

The initial state of B is equal to the set of initial states of A, and a
register (q, x) of B is initialized to I(q)(x) if q is initial. The initialization of
the rest of the registers can be chosen arbitrarily.

A state P of B is final if P contains a final state q of A. Since A is
unambiguous, each state of B contains at most one final state of A. The

16

finalization term for P is defined to be the term that results from F (q) by
substituting (q, x) for every register x.

Consider now a state P of B and a tag a ∈ Σ. Then, R = ∆(P, a) =⋃
p∈P∆(p, a) is also a state of B. We include a transition P →a R in B. It

remains to specify the register update function η for this transition. Since
A is unambiguous and trim, for every q ∈ R there is a unique p ∈ P with
q ∈ ∆(p, a). For a register (q, x) of B we put

η(q, x) = the term resulting from t by replacing every register y by (p, y),

where t = θ(x) and θ is the register update function of the unique transition
p →a,θ q in the automaton A. The update for registers not covered by the
above description can be set arbitrarily.

In order to show that B is equivalent to A it suffices to establish that for a
given input sequence w ∈ (Σ×D)∗, the configurations {(q, αq) | q ∈ X}, that
are w-reachable from some initial state of A are encoded in the configuration
(X, β) of B that results after consuming w: β(q, x) = αq(x) for all q ∈ X.

Theorem 9 establishes the expressive equivalence of copyful UCRAs and
copyful DCRAs. Now, we will show (Theorem 13) that copyless UCRAs are
strictly more expressive than copyless DCRAs (for a fixed family of data
operations). To establish this separation result, it suffices to focus on CRAs
that do not make use of the input data values in their computations. We
say that a CRA is value-oblivious if its register update function contains no
occurrence of the val symbol. In this case the denotation of the CRA is
a value-oblivious transduction, since the only the input tags are used and
the input data values do not affect the computation. For the rest of this
subsection, we will be dealing exclusively with value-oblivious CRAs. For this
reason, a data transduction is taken here to be a function of type Σ∗ ⇀ D,
and a CRA is implicitly assumed here to not contain any occurrence of the
val symbol. For the special case where D = Γ∗ for some finite alphabet Γ,
a transduction Σ∗ ⇀ D is also called a string transduction (the term word
transduction is often used in the relevant literature).

As an example of this, consider the following string transduction f : Σ∗ ⇀
Σ∗ with domain dom(f) = {a, b}+#, where the alphabet is Σ = {a, b,#}:

f(u#) =

{
ai#, if |u| = i and u ends with a

bi#, if |u| = i and u ends with b

17

for all u ∈ {a, b}+. We assume that the only data operation that is allowed
is to concatenate string constants to the registers. An unambiguous CRA
can compute this transduction with a single register by guessing the letter
that will precede the # symbol. A deterministic CRA, on the other hand,
requires at least two registers: one register for the case where the input ends
in a#, and one register for the case where the input ends in b#.

This situation extends to the case where the computation of f is iterated
several times. That is, let us define the string transduction fk : Σ∗ ⇀ Σ∗
that iterates f sequentially k times. The domain of fk is equal to dom(fk) =
({a, b}+#)k, and fk is given by

fk(u1# · · ·uk#) = f(u1#) · · · f(uk#)

for all u1, . . . , uk ∈ {a, b}+. In order to compute fk, an unambiguous CRA
requires just one register: for every block of the input (where a block is a
sequence of letters that ends with a # symbol), the automaton guesses the
last letter of the block and extends the unique register with the appropriate
letter. A copyless DCRA, however, requires at least 2k registers: a separate
register is needed for each possible combination of ending letters for the k
input blocks. For example, if k = 2 then there are 2k = 4 different cases for
the form of the input strings in the domain of fk:

. . . a# . . . a# . . . a# . . . b# . . . b# . . . a# . . . b# . . . b#

A copyless DCRA can only compute fk by using one separate register for
each one of these 2k possibilities.

In the previous paragraph, we discussed how the iteration of f a fixed
number k of times creates the need for 2k registers in the model of copy-
less DCRAs. An immediate consequence of that is that in this model, the
iteration of f a finite (but arbitrary) number of times cannot be computed
with a finite number of registers. This establishes the result that UCRAs are
more expressive than DCRAs in the copyless case. Establishing this result
formally is rather involved and requires a sequence of constructions on CRAs:

1. Every CRA over unary data operations is equivalent to the disjoint
union of single-register CRAs.

2. A copyless DCRA can be modified in a way that suppresses a prefix of
the output.

18

3. If a string transduction g requires at least k registers to be computed by
a copyless DCRA, then the string transduction that computes f (defined
previously) and then g in sequence requires at least 2k registers in this
model.

Lemma 12 is the heart of the argument. It establishes that the computation
of the sequential iteration fk (defined previously) requires at least 2k registers
in the model of copyless DCRAs.

We start the technical development with Lemma 10 below, which de-
scribes a construction for simplifying CRAs that use only unary operation
on the values. For this special case, it is shown that the register updates
are w.l.o.g. of the form x := δ(c) or x := δ(x), where x is a register, c is
a constant, and δ is a unary operation. In other words, the CRA can be
decomposed into the disjoint union of several single-register CRAs.

Lemma 10 (Separable Updates). Suppose that the collection of operations
O consists only of unary operations and constants. Then, every copyless
NCRA (resp., UCRA/DCRA) over O is equivalent to some copyless NCRA
(resp., UCRA/DCRA) over O (with the same set of registers) whose register
updates are of one of the following forms: x := δ(c) or x := δ(x), where c is
a constant and δ is the composition of unary operations.

Proof. We use the symbol δ in order to indicate an arbitrary composition of
unary operation symbols. In a CRA A = (Q,X,∆, I, F) over O the register
updates can be of any of the forms: x := δ(c), or x := δ(x), or x := δ(y) for
x 6= y. We will employ a product construction in order to eliminate updates
of the form x := δ(y) with x 6= y. If the assignment x := δ(y) is part of a
parallel update, then y cannot flow into another register due to the copyless
restriction.

We will describe now the construction of the CRA B, which has the same
registers as A. The idea is that B computes like A, but also maintains some
extra information in the finite control that allows to “rename” the registers.
A renaming function σ is a bijection on the set X of registers, and the state
space of B is the cartesian product of the state space of A with the function
space of bijections X → X. The intuition is that when the computation is in
a state (q, σ) of B, the value that A would hold in the register x is contained
in the register σ(x) of B.

If q is an initial state of A, then (q, idX) is an initial state of B with
the same initialization. The renaming function idX is the identity, which

19

essentially means that the registers are not renamed.
If q is a final state of A, then (q, σ) is a final state of B. The finalization

term for (q, σ) in B is defined to be equal to σ(F (q)).
Since A is copyless, every register update function θ induces at least one

bijection υ : X → X, where υ(x) is the register that appears on the right-
hand side of the assignment to x (if such a register exists). If no register is
used (i.e., x is set to δ(c) for a constant c), then υ(x) can be set arbitrarily
to one of the registers that does not appear in the right-hand side of θ at
all. Thus, there will be multiple possible bijections υ, and we choose one
arbitrarily. For a transition from state p to state q in A with label λ and
register update θ, we put for all renaming functions σ a transition from (p, σ)
to (q, τ) in B with label λ and register update η, where:

τ = υ;σ η(x) = σ(θ(τ−1(x)))

and ; is function composition in diagrammatic order. In other words, if
x := δ(y) is a register update of A, then we put τ(x) := δ(σ(y)) for the
corresponding register update in B. Moreover, notice that υ(x) = y and
therefore τ(x) = (υ;σ)(x) = σ(υ(x)) = σ(y). So, the update in B has the
same register appearing in both the left-hand and right-hand side.

The main claim is that the possible runs in B correspond to the runs of
A modulo the variable renaming described by the renaming functions.

For an alphabet Σ that contains the symbol #, we define the prefix re-
moval operation ∂# : Σ∗ → Σ∗ as follows:

∂#(w) =

{
ε, if # does not appear in w;

v, if w = u#v.

That is, ∂# removes the prefix of the string until the first occurrence of a #.
Suppose now that Σ and Γ are finite alphabets, and that Γ contains the

symbol. For a string transduction of type Σ∗ ⇀ Γ∗, we define the output
prefix removal operation ∂# as follows:

∂#(f)(w) =

{
undefined, if f(w) is undefined;

∂#(f(w)), if f(w) is defined.

We show below that there is a construction on CRAs that corresponds to the
output prefix removal operation on string transductions.

20

Lemma 11 (Remove Output Prefix). Suppose that Σ and Γ are tag alpha-
bets with # ∈ Γ, Γ∗ is the set of values, and O consists of the constant ε
and the unary operations (− · a) for every a ∈ Γ. If the string transduction
f : Σ∗ ⇀ Γ∗ is implementable by a UCRA (resp., DCRA) over O, then
∂#(f) is implementable by a UCRA (resp. DCRA) with the same number
of registers.

Proof. Suppose that the UCRA A = (Q,X,∆, I, F) implements f . We will
describe a UCRA B that implements ∂#(f). The idea is to employ a product
construction that records some additional information in the finite control:
whether the first # symbol would have already been added to a register in
the execution of A or not. Additionally, we modify the updates of A so that
no tags are appended to registers until after the first # would have been
appended in the execution of A.

The state space of B is Q × (X → {0, 1}). A run of A that ends in a
configuration (q, α) ∈ Q× (X → Γ∗) corresponds to a run of B that ends in
a configuration (q, ρ, β) ∈ Q× (X → {0, 1})× (X → Γ∗) that satisfies

β(x) = ∂#(α(x)) and ρ(x) =

{
0, if α(x) does not contain #

1, if α(x) contains #

for every register x. Notice that the construction that is outlined here pre-
serves determinism.

Lemma 12. Suppose that Σ = {a, b,#} and Γ is the tag alphabet, Γ∗ is
the set of values, and O consists of the constant ε and the unary operations
(− · a) and (− · b). Let f : Σ∗ ⇀ Σ∗ be a string transduction, and define the
string transduction g : Σ∗ ⇀ Σ∗ as follows:

dom(g) = {a, b}+ ·# · dom(f)

g(u#v) =

{
ai ·# · f(v) where i = |u|, if u ends with a

bi ·# · f(v) where i = |u|, if u ends with b

for all u ∈ {a, b}+ and v ∈ dom(f). If the transduction g can be implemented
by a copyless DCRA with k registers, then f can be implemented by a
copyless DCRA with at most k/2 registers.

Proof. Let A be a DCRA with k registers that implements g. By Lemma 10,
we can assume without loss of generality that every register update of A is

21

of the form x := u or x := x · u for some u ∈ Σ∗. Consider all register up-
dates that are enabled when the automaton A consumes the input sequences
{a, b}∗. Let Ra (resp., Rb) be the set of registers that are eventually only
contain and are extended with a tags (resp., b tags) in these updates. The
registers that are not among Ra and Rb cannot contribute to the output of
the computation for sufficiently long input prefixes before the first occurrence
of #. One of Ra, Rb is of cardinality at most k/2. W.l.o.g. we can assume
that |Ra| is at most k/2. Then, consider the product B of A with an au-
tomaton that accepts a+ ·# ·dom(f). In the automaton B, only the registers
of Ra contribute nontrivially to the output, so we can assume that Ra is the
register set of B. Notice that B computes the transduction h : Σ∗ ⇀ Σ∗,
given by:

dom(h) = a+ ·# · dom(f) h(ai#v) = ai ·# · f(v)

for all i ≥ 1 and v ∈ dom(f). Now, Lemma 11 implies that a DCRA C with
at most k/2 registers can compute the transduction k : Σ∗ ⇀ Σ∗, given by:

dom(k) = a+ ·# · dom(f) k(ai#v) = f(v)

for all i ≥ 1 and v ∈ dom(f). Let (q, α) be the configuration of C after
consuming a#. The DCRA that results from C by setting the start state to
be q and the initialization function to α computes the transduction f and
has at most k/2 registers.

Theorem 13. There is a string transduction that can be computed by a
copyless UCRA but not by a copyless DCRA.

Proof. Suppose that Σ = {a, b,#} and f : Σ∗ ⇀ Σ∗ is the string transduc-
tion with domain dom(f) = {a, b}+ ·# that is defined as follows:

f(u#) =

{
ai#, if |u| = i and u ends with a

bi#, if |u| = i and u ends with b

for all u ∈ {a, b}+. Any copyless DCRA that computes f needs at least
two registers. Indeed, if there is only one register, then on any input string
it either contains an a or it contains a b or it contains neither; if we take
the input string to be sufficiently large and then read in a b or an a, there
is not enough information stored in the state to know the value of |u| = i

22

and output bi or ai. Define fn to be the string transduction with domain
dom(fn) = ({a, b}+ ·#)n and

fn(u1#u2# · · ·un#) = f(u1#)f(u2#) · · · f(un#)

where every ui is an element of {a, b}+. A consequence of Lemma 12 is that
any copyless DCRA that computes fn requires at least 2n registers.

Now, consider the string transduction f∗ with domain ({a, b}+ · #)∗
defined as f∗(u1# · · ·un#) = fn(u1# · · ·un#). The transduction f∗ can
be computed by a copyless UCRA that guesses the last letter of each block
(maximal segment of letters that ends with a # symbol).

Assume for the sake of contradiction that there exists a copyless DCRA
A with m ≥ 1 registers that computes f∗. The product of A with a DFA
that accepts the language ({a, b}+ · #)k has m registers and computes the
transduction fk. But we have already discussed that such a DCRA would
need at least 2k registers, hence taking k large enough that 2k > m gives us
the desired contradiction.

2.6. Closure Under Regular Combinators

We will now show both classes SR (streamable regular) and SLR (stream-
able linear regular) of transductions are closed under operations that are rel-
evant for the design of streaming query languages. In particular, we already
presented a collection of some regular combinators for data transductions, in
Table 1.

Theorem 14. The classes of transductions SR and SLR (see Definition 2
and Table 2) are closed under the regular combinators of Table 1.

Proof. The proof of the theorem relies on constructions that are variants of
well-known constructions on classical finite-state automata. We will present
the proofs only for the cases op(f, g) and iter(f, c, op) and leave the rest of
the cases as exercises for the reader. For the cases that we present, we will
only give the main ingredients of the construction.

Suppose that A and B are CRAs. We will construct a CRA C that
computes op(JAK, JBK), where op is a binary operation on D. The state
space of C is the product of the state space of A and the state space of B.
The registers of C is the union of the registers of A and the registers of B.
The automaton C simulates the parallel execution of A and B, where the
registers of the two machines are updated separately. When a state (p, q) of

23

C consists of a final state p of A and a final state q of B, the finalization term
is defined so that it combines the output values of the two automata A and
B. This construction preserves the “copylessness” property: if the automata
A and B are copyless, then so is C.

Suppose thatA is a CRA, c is a data value, and op is a binary operation on
values. We will construct a CRA C that computes iter(JAK, c, op). W.l.o.g.
we assume that we can use ε-transitions, and therefore A has a unique initial
state and a unique final state. We will also assume that ε /∈ R(JAK), because
this special case can be handled separately to avoid ε-cycles. We will describe
the construction of C as a sequence of modifications on A.

− First, add a new register y to A that is meant to hold the aggregate value
computed in the iteration. The register y stays unchanged in the old
transitions of A.

− Add an ε-transition from the unique final state to the unique initial state.
In this transition, update the aggregate value of y to reflect one more step
of the iteration.

− Add a new initial and final state for computing the initial aggregate c.

− Since the NCRA that has resulted from the previous steps could poten-
tially be ambiguous, take the product with a (register-free) DFA that
accepts the language R(JAK)�∗.

The last step of the construction removes the ambiguity. So, the resulting
CRA is unambiguous and computes the transduction iter(f, c, op). This
construction preserves the property of “copylessness”: if A is copyless then
so is C.

One can show that the class of all streaming algorithms with an appro-
priate streaming complexity bound is not closed under these regular combi-
nators. For instance, suppose the algorithm must have log(n) space in the
input stream and log(n) time to process each element. Let Σ = {a, b}. De-
fine data transductions f, g where f is equal to 1 on all sequences with the
same number of as and bs, and undefined otherwise, and g is equal to 1 on
sequences with twice as many as as bs, and undefined otherwise. Then, f
and g can be given as streaming algorithms, but split(f, g, op) cannot, thus
justifying the role of regularity in guaranteeing modular composition, as we
mentioned in the introduction.

24

2.7. Complexity of Evaluation

We are interested in evaluation in the streaming model of computation.
The main resources in this model are: 1) the total space required by the
algorithm, and 2) the time needed to process each data item. Both these
resources are given as a function of the length of the stream that has been seen
so far. Ideally, both these key parameters should be constant or logarithmic
in the length of the stream.

Suppose that A = (Q,X,∆, I, F) is a trim UCRA. The computation
of the semantics of A in the streaming model of computation is similar to
the deterministic simulation of classical NFAs, in which the set of active
states is maintained and updated at every step of the computation. The
difference for CRAs is that we need to maintain for every active state q a
register assignment αq : X → D. Unambiguity guarantees that at every
step of the computation we need to store at most one register assignment for
every state. This property does not hold for ambiguous machines, as there
are several different paths that could lead to the same state. So, the total
number of values that are needed to store is bounded above by |Q| · |X|.
For deterministic CRAs, the corresponding upper bound is |X|. Analogous
upper bounds can be obtained for the time needed per element for both the
unambiguous and the deterministic case.

A more precise accounting of the used computational resources requires
looking at the number of bits that are needed to store each value during the
computation. In order to make such finer distinctions, we need to take into
account the operations that are allowed in O. For example, suppose that
the values are the natural numbers and that O contains numerical constants,
binary addition, max and min. In the copyless case, the contents of registers
can grow only linearly in the length of the input and therefore a logarithmic
numbers of bits is required for each register. In the copyful case, however,
even if we restrict O to contain only 0 and binary addition, the contents of
registers can grow exponentially and therefore a linear number of bits may
be needed.

In some applications, the data values range over a finite domain (e.g.,
32-bit integers, 64-bit floating-point numbers, and so on), and therefore the
space needed to store each register is constant. Moreover, the operations on
such bounded values require constant time. In this setting, the space and
time-per-element resource requirements for evaluating CRAs is constant.

25

3. MSO-Definable Transductions

In this section, we give logical characterizations of the classes of trans-
ductions defined by the Cost Register Automata of Definition 1:

(1) streamable regular or SR(O) (computed by copyful UCRAs),

(2) streamable linear regular or SLR(O) (computed by copyless UCRAs).

These logical characterizations are in terms of word-to-DAG transformations
which are given by formulas written in the language of monadic second-order
logic (MSO).

The MSO-definable transductions that we consider here specify output
graphs with no backward edges. This restriction for the output DAGs to
only have forward edges is crucial so that the function is implementable
by an automaton which maintains values (as opposed to maintaining terms
which may have “holes”, as in [9]). Indeed, we will show that the forward-
only MSO-definable transductions are exactly the transformations that are
implementable by the value-based UCRAs of Definition 1.

This class of transductions has previously arisen in the study of attribute
grammars [5] under the name of direction preserving MSO graph transduc-
tions (page 11 in [5]). An important difference here compared to [5] is the
characterization of the transduction classes in terms of automata ([5] uses
attribute grammars) whose efficient evaluation in the streaming model of
computation is obvious. Another technical difference is that the transduc-
tions in the present paper involve data values, and we use a special symbol
val and the position of a val-labeled vertex in order the semantics of an MSO
transduction. Our proof is self-contained, and exhibits a pleasant uniformity
due to the translation from forward-only MSO transductions to unambiguous
CRAs. Recall that unambiguity is essential in order to capture the class SLR
in the copyless CRA model (Theorem 13). In the word-to-DAG case, the
output graphs can have more than one edge emanating from a vertex, which
corresponds to copying a register in the machine model. It the word-to-tree
case, each vertex of the output graph has at most one edge emanating from
it, which implies that registers are used is a copyless manner in the machine
model.

An MSO transduction specifies the output DAG using MSO formulas for
the vertices and edges that are interpreted over the entire input stream. The

26

challenge is to convert this global description of the output into local com-
putation rules for the automaton. In particular, the existence of a vertex or
edge depends on a regular property of the future of the input (regular look-
ahead). To deal with this regular look-ahead, we make use of unambiguously
nondeterministic CRAs. The unambiguous nondeterminism conveniently al-
lows us to make guesses regarding a regular property of the future of the
input.

The crucial intermediate result for obtaining equivalence between MSO
transductions and CRAs asserts that every MSO transduction can be trans-
formed equivalently into a single-step MSO transduction, namely one where
the edges of the output DAG extend over at most one input element. To
implement a single-step MSO transduction it is then sufficient to maintain
as many data registers as the maximum number of DAG vertices that appear
in some position. In this section, we will allow the use of ε-transitions for
unambiguous CRAs. This is w.l.o.g. because ε-transitions can be eliminated
with a straightforward variant of the ε-elimination procedure for classical
finite-state automata.

Let Σ be the finite alphabet of tags, D a (possibly infinite) set of data
values, and O a collection of constants and operations on D. Recall that
we only consider transductions f : (Σ×D)∗ ⇀ D that satisfy the following
condition: whether f(w) is defined or not depends only on the sequence of
tags w|Σ.

3.1. MSO Transductions

An MSO-definable graph transduction [10] specifies a partial function
from labeled graphs to labeled graphs. The nodes, edges and labels of the
output graph are described in terms of MSO formulas over the nodes, edges
and labels of the input graph.

The tag projection of a data word w = (a1, d1) (a2, d2) . . . (an, dn) of
length n over Σ × D can be represented as a labeled directed graph G(w)
with n + 1 vertices {0, 1, . . . , n} and n Σ-labeled edges (i − 1, ai, i) for all
i = 1, . . . , n. For example, we visualize the graph G(w) of the word w =
(A, 1) (B, 2) (A, 3) (B, 4) (A, 1) over the alphabet with tags Σ = {A, B} and val-
ues that are natural numbers as follows:

A B A B A

A graph G(w) specifies a relational structure whose domain is the set of
vertices and which has a binary predicate edgewa for every tag a ∈ Σ consisting

27

of the a-labelled edges. We use the monadic second-order language MSO(Σ)
to express properties of words when represented as graphs. For every tag
a of the alphabet Σ, the language has a binary predicate symbol edgea.
Informally, edgea(x, y) means that there is an edge from x to y labeled with
the tag a. The language also contains the equality predicate = (i.e., x = y
means that the vertices x and y are equal) and the containment predicate
∈ (i.e., x ∈ X means that the vertex x belongs to the set of vertices X).
The formulas of MSO(Σ) are built from atomic formulas using the Boolean
connectives, first-order quantification (over vertices of G(w)), and second-
order monadic quantification (over sets of vertices of G(w)). We do not need
to include ≤, because we can introduce it as an abbreviation using edgea.

Note that we use binary predicates edgea(x, y) to encode tags, instead of
the more commonly used unary predicates [11]. That is, G(w) has labeled
edges instead of labeled vertices. The reason for this encoding is that we
want to allow transductions that map the empty input word into some output
graph (as is done, for example, in page 232 of [12]). In any case, this difference
is inconsequential for the definable class of functions.

We write Word(Σ) for the class of graph structures over the signature of
MSO(Σ) that correspond to finite words over Σ. If φ is a sentence of MSO(Σ)
and w is a word over Σ, then we write w |= φ to denote that the graph G(w)
satisfies φ. The abbreviation edge(x, y) :=

∨
a∈Σedgea(x, y) says there is an

edge from x to y. In turn, we abbreviate ≤ as

(x ≤ y) := ∀X.x ∈ X ∧ (∀u∀v.u ∈ X ∧ edge(u, v)→ v ∈ X)→ y ∈ X.

A ranked alphabet Γ is a finite set with assignment of a natural number
to each element, call its arity. A directed acyclic graph (DAG) over a set
of ranked symbols Γ has Γ-labeled vertices, a single sink vertex (its root),
and edges indexed between 1 and the maximum arity, such that the graph
respects the arity of the symbols of Γ. For example, suppose Γ = {a, b, f},
where a and b are constants (arity 0) and f is binary (arity 2). The following
graph is a DAG over Γ, where we use arrows → for the first argument of f ,
and arrows →→ for the second argument of f :

b f f f f f f

a a a b

28

Definition 15 (Forward-only word-to-DAG MSO transductions). Let Γ =
O ∪ {val} be the (finite) set of ranked operation symbols that includes the
operations O on the data values D as well as a fresh constant symbol val.
Let imax denote the maximum arity of a symbol in Γ. A forward-only MSO-
definable word-to-DAG transduction from (Σ×D)∗ to D consists of:

1. An MSO(Σ) sentence φdom, called the domain sentence.

2. A finite copy set C.

3. For every copy element c ∈ C and every symbol γ ∈ Γ, an MSO(Σ)
vertex formula φcγ(x) with one free variable x.

4. For all copy elements c, d ∈ C and for all argument indices i from 1 to
imax, an MSO(Σ) edge formula (for the i-th argument) ψc,di (x, y) with
two free variables x and y s.t. |= ∀x∀y. ψc,di (x, y)→ x ≤ y.

such that all of the well-formedness conditions shown in Observation 16 hold.
These conditions assert that the formulas define a properly structured DAG
over the symbols Γ in the output structure (which consists of C copies of the
vertices of G(w)).

Semantics : The MSO transduction denotes a partial function τ : (Σ×
D)∗ ⇀ D whose domain is the set of models JφdomK of the domain sentence.
For every data word w satisfying JφdomK, the transduction specifies a single
DAG over the symbols O ∪ {val}. Every symbol in O is interpreted as an
operation on D, and val is a special symbol for the data value of the input
string at the corresponding position. The DAG therefore can be evaluated
to a value in D, which is defined to be the value of τ on w.

Note that while the formulas above define an output-graph, they are only
logically interpreted over an input graph G(w). This is why they define a
single output structure (not, e.g., a set of output structures or a relation
between input and output structures). The well-formedness conditions then
guarantee this output structure has the correct form. The conditions are
stated as MSO formulas, but it is not actually necessary for our results that
they are expressible in MSO; rather, we only use the fact that the output of
every forward-only MSO transduction is a properly-structured DAG, and we
have baked this condition into the definition of such transductions. However,
the fact that they are MSO(Σ) formulas means the conditions are effectively
checkable (decidable).

29

Observation 16 (Well-formedness). We list here the well-formedness con-
ditions for the forward-only MSO-definable transductions of Definition 15.
Note that all conjunctions and disjunctions (

∨
,
∧

) are finite, and there
are finitely many formulas overall. Logical validity is over all structures in
Word(Σ). I.e., for every input graph G(w) ∈ Word(Σ) (and all interpretations
of the free variables), the formula should be true.

(1) At most one vertex label:
∧
γ

∧
δ 6=γ¬φcγ(x)∨¬φcδ(x) is valid for every

c ∈ C.

(2) Edges connect active vertices: ψc,di (x, y)→ φc(x)∧ φd(y) is valid for
all c, d ∈ C and i = 1, 2, . . . , imax, where φc(x) :=

∨
γ∈Γφ

c
γ(x) abbreviates

that the c-vertex at x is active.

(3) (Non)existence of output: The formulas φdom → ∃x∨cφ
c(x) and

¬φdom → ∀x
∧
c¬φc(x) are valid.

(4) No local cycle at any position: For every potential cycle c1 →i1

c2 →i2 · · · →ik−1 ck →ik c1 of length k ≤ |C|, where cj ∈ C and 1 ≤ ij ≤
imax are edge labels, the following formula is valid:

¬∃x. ψc1,c2i1
(x, x) ∧ ψc2,c3i2

(x, x) ∧ · · · ∧ ψck,c1ik
(x, x).

(5) The arity of labels is respected: For every symbol γ ∈ Γ of arity n,
every i = 1, . . . , n, and every c ∈ C, the following formula is valid:

φdγ(y)→ ∃x.
(∨

c(ψ
c,d
i (x, y) ∧∧ĉ 6=c¬ψĉ,di (x, y)) ∧

∀x̂∧ĉ(ψ
ĉ,d
i (x̂, y)→ x̂ = x)

)
.

(6) Global uniqueness of sink: For all c ∈ C, the formula

sinkc(x)→ ∧
d 6=c¬sinkc(x) ∧ ∀y.(y 6= x→ ∧

d¬sinkd(y))

is valid, where sinkc(x) := ∀y∧d

∧
i¬ψc,di (x, y) abbreviates that there is

no outgoing edge from copy c at position x.

(7) No value at first position: first(x) → ∧
c¬φcval(x) is valid, where

first(x) := ∀y. x ≤ y abbreviates the very first position. The constant
symbol val, which is meant to refer to the input data value immediately
before the point of occurrence, should not appear in this position.

30

Output graph Class of transductions
Tree Streamable Linear Regular
DAG Streamable Regular

Table 3: Classes of MSO-definable transductions with forward-only edges.

Example 17 (MSO Transduction). The tag alphabet is Σ = {A, B} and the
data domain D is the set of natural numbers. The collection O of operations
on D contains the constant 0 and addition.

B A B B A A

V: val val val

0S: + + +

We will describe the transduction that sums up all data values that are
tagged with A. The copy set is taken to be C = {V, S}. The domain sentence
is φdom = true and the vertex formulas are:

φVval(x) = φS+(x) = edgeA(x−1, x) φS0(x) = first(x)

where edgeA(x − 1, x) is notation for ∃y.edgeA(y, x). The edge formulas are
given as follows:

ψV,S
2 (x, y) = (x = y) ∧ edgeA(x−1, x)

ψS,S
1 (x, y) = (first(x) ∨ edgeA(x−1, x)) ∧ edgeA(y−1, y) ∧

∀z. x < z < y → ¬edgeA(z−1, z)

All omitted vertex and edge formulas are equal to false.

As we will see later, the data transductions that are definable by forward-
only word-to-DAG MSO-transductions are exactly the streamable regular
transductions. Similarly, the data transductions that are definable by forward-
only word-to-tree MSO-transductions will be shown to be exactly the stream-
able linear regular transductions. See Table 3. The condition that the output
graph is a tree can be guaranteed by requiring that every vertex of the graph
has at most one outgoing edge. This condition can be expressed by an MSO
formula, and therefore its validity can be effectively checked.

31

Definition 18 (Models of Open Formulas). Let φ(x) be an MSO(Σ) formula
with one free individual variable. The set of models of φ(x), denoted Jφ(x)K,

· · · x · · ·a1 a2 ak a′1 a′2 a′`

is defined to be the set of pairs (u, v) ∈ Σ∗ × Σ∗ such that the word u · v
satisfies φ(x) under the variable assignment x 7→ |u|.

Let ψ(x, y) be an MSO(Σ) formula with two free individual variables such
that |= ψ(x, y)→ x ≤ y. The set of models of ψ(x, y), denoted Jψ(x, y)K,

· · · x · · · y · · ·a1 ak a′1 a′` ā1 ām

is defined to be the set of triples (u, v, w) ∈ Σ∗×Σ∗×Σ∗ such that the word
u · v · w satisfies ψ(x, y) under the variable assignment x 7→ |u|, y 7→ |uv|.

Lemma 19 ([13], Lemma 5). Let φ(x) be an MSO(Σ) formula with one free
individual variable. The set of models Jφ(x)K is a finite disjoint union of sets
of the form Jr1K× Jr2K, where r1 and r2 are regular expressions over Σ.

Similarly, suppose that ψ(x, y) is an MSO(Σ) formula with two free indi-
vidual variables such that |= ψ(x, y)→ x ≤ y. The set of models Jψ(x, y)K is
a finite disjoint union of sets of the form Jr1K× Jr2K× Jr3K, where r1, r2 and
r3 are regular expressions over Σ.

Proof sketch. This is a folklore result for regular languages (see, for example,
Lemma 5 of [13]). For the first part of the lemma, the idea is to construct the
DFA A that accepts the models of φ(x). The annotation with x is performed
by the automaton by allowing some states to be labeled with x. For every
state q of A that is labeled with x, we include the regular expression for the
set Lq · Rq, where Lq is the set of strings that lead from the initial state to
q, and Rq is the set of strings that lead from q to a final state of A. The
construction for the second part of the lemma is similar.

Using Lemma 19 an MSO transduction can be transformed into a set of
rules that are expressed equivalently with regular expressions instead of MSO
formulas. The domain sentence φdom can be given as a regular expression. A
vertex formula φcγ(x) can be given as a finite set of pairwise disjoint vertex
rules of the form

label γ at c : r1; r2,

32

where r1 and r2 are regular expressions. The rule specifies a prefix (from
start to x) with r1 and a suffix (from x to end) with r2 so that the copy c of
the output DAG is active at position x. Similarly, an edge formula ψc,di (x, y)
of the transduction can be presented as a finite set of pairwise disjoint edge
rules of the forms

edge c→i d : r1; r2; r3 [forward edges]

where r1, r2 and r3 are regular expressions. The rule specifies a prefix (from
start to x) with r1, a middle part (from x to y) with r2, and a suffix (from y
to end) with r3 so that the output DAG has an edge from copy c at position
x to copy d at position y. We have required in the definition that edges be
forward-only, so there are no models in which y comes before x in ψc,di (x, y).

Example 20. Using Lemma 19 we will present the MSO transduction of
Example 17 equivalently with regular expressions. We have: φdom = Σ∗ and

φVval = φS+ = (Σ∗A); Σ∗ ψV,S
2 = (Σ∗A); ε; Σ∗

φS0 = ε; Σ∗ ψS,S
1 = (ε ∪ Σ∗A); (B∗A); Σ∗

The vertex rule φS+, for example, says that the copy S is active with label +
at every position immediately after the occurrence of a letter A in the input
string. Note that here, each formula becomes a single rule; in general, each
formula will become a set of pairwise disjoint rules.

A MSO transduction is said to be single-step if the edges that it specifies
are restricted so that they refer to positions that are at most 1 apart: the
formula

ψc,di (x, y)→ (x = y) ∨ edge(x, y)

is valid for all c, d ∈ C and every argument index i.

Lemma 21 (Single-Step Decomposition). Let Σ be a finite tag alphabet,
and D be a set of data values with operations O. A forward-only MSO-
definable word-to-DAG transduction over Σ, D,O can be transformed into
an equivalent single-step transduction over Σ, D,O∪{id}, where id : D → D
is the identity function on D.

Proof. Suppose that the transduction is presented in the form using regular
expressions instead of MSO formulas, as described earlier. We will show how

33

to eliminate rules that violate the single-step constraint by replacing them
with rules that are either ε-transitions or single-letter transitions.

Consider a rule ψc,di = c →i d : r1; r2; r3 for i-edges from copy c to copy
d which is not an ε-transition, i.e. r2 6= ε. The idea is to decompose an edge
specified by the rule, which spans a substring matching r2, by simulating the
execution of an automaton for the expression r2. Take the minimal DFA for
r2 and prune it into an equivalent partial DFA so that every state has a path
to some final state. Suppose this automaton is (Q,Σ, I,∆, F). For a state
q ∈ Q define the regular set

Lq = {w ∈ Σ∗ | ∆(I, w) = q},

that is, Lq is the set of strings over Σ that lead from the initial state I to q.
Moreover, define the regular set

Rq = {w ∈ Σ∗ | ∆(q, w) ∈ F},

that is, Rq is the set of strings over Σ that lead from q to some final state.
Notice that Lq · Rq ⊆ r2 for every state q, and additionally r2 =

⋃{Lq | q ∈
F}.

For every state q of the automaton, we introduce a fresh copy element vq.

We can replace the rule ψc,di by the following set of vertex and edge rules:

label id at vq : (r1 · Lq); (Rq · r3)

edge c→1 vI : r1; ε; (r2 · r3)

edge vq →i d : (r1 · Lq); ε; r3, for every q ∈ F
edge vp →1 vq : (r1 · Lp); a; (Rq · r3), for every (p, a, q) ∈ ∆.

Since the automaton is deterministic, we are guaranteed that all of these
rules are disjoint, and moreover that the modified transduction satisfies all
the well-formedness conditions. In addition, it preserves the property of the
output DAG being a tree.

The construction is iterated until there is no edge rule left that violates the
single-step condition. The resulting transduction can then be equivalently
presented using MSO formulas.

Example 22 (Single-step). We will apply now the construction of the proof
of Lemma 21 to the transduction of Example 17. Using the presentation
of Example 20 we see that the only edge rule that violates the single-step
condition is ψS,S

1 . Now, the pruned partial DFA for B∗A is the following:

34

p qA
B

Lp = B∗ Rp = B∗A
Lq = B∗A Rq = ε

The initial state is indicated with a gray background. We introduce fresh
copy elements p and q, one for every state of the automaton for B∗A. So,
the new copy set is C ′ = {V, S, p, q}. The following figure illustrates how
the edges defined by ψS,S

1 are decomposed into ε-transitions and single-letter
transitions.

B A B B A A

V: val val val

0S: + + +

idp: id id id id id

q: id id id

So, the transduction is specified by the following rules:

φdom = Σ∗

φVval = (Σ∗A); Σ∗

φS0 = ε; Σ∗

φS+ = (Σ∗A); Σ∗

φpid = (ε ∪ Σ∗A)B∗; B∗AΣ∗

φqid = (ε ∪ Σ∗A)B∗A; Σ∗

ψV,S
2 = (Σ∗A); ε; Σ∗

ψS,p
1 = (ε ∪ Σ∗A); ε; B∗AΣ∗

ψp,p1 = (ε ∪ Σ∗A)B∗; B; B∗AΣ∗

ψp,q1 = (ε ∪ Σ∗A)B∗; A; Σ∗

ψq,S1 = (ε ∪ Σ∗A)B∗A; ε; Σ∗

The ε-transitions ψS,p
1 , ψq,S and the single-letter transitions ψp,p1 , ψq,S1 expand

the edges of ψS,S
1 according to the automaton for B∗A.

Theorem 23. Every single-step word-to-dag (resp., word-to-tree) forward-
only MSO transduction can be implemented by a copyful (resp., copyless)
UCRA.

Proof. Suppose we are given an MSO transduction, presented in the form
with regular expressions instead of formulas. Given an input string, a position
x in the string and a copy element c, in order to decide whether the vertex
(c, x) of the output DAG is labeled with f we have to check if the suffix

35

(from x to the end) satisfies the regular expression r2, where φcf = r1; r2 is a
vertex rule of the transduction. Similarly, to decide whether an edge c→i d
emanates from copy c at position x we have to check if the suffix (from x to
end) satisfies the expressions r2 · r3, where ψc,di = r1; r2; r3 is an edge rule of
the transduction. Finally, to decide whether an edge d →i c has the vertex
(c, x) as destination we have to check if the suffix (from x to end) satisfies
the expression r3, where ψd,ci = r1; r2; r3 is an edge rule of the transduction.

Let R be the collection of all regular sets needed for these suffix tests,
that is, Jr2K from every vertex rule r1; r2, as well as both Jr2 · r3K and Jr3K
from every edge rule r1; r2; r3. Now, define R′ to be the smallest collection
of regular sets that contains R and is closed under derivatives. It can be seen
that R′ = ⋃S∈RR′S, where R′S is the collection of regular sets obtained in the
following way: take the collection of all derivatives of S, which correspond to
the unique minimal automaton for S. Finally, define AtR to be the collection
of atoms (nonempty minimal elements) of the Boolean algebra generated
by R′. The elements of AtR partition Σ∗ (they are pairwise disjoint and
their union is equal to Σ∗), and they define an unambiguous NFA, where
the language accepted from every state S ∈ AtR is equal to S. To see
how the transitions of the NFA AtR are calculated, consider a state (atom)
S = S1 ∩ ∼S2 ∩ S3 where each of Si is an element of R′. For a letter a ∈ Σ
the derivative of S is

Da(S) = Da(S1) ∩Da(∼S2) ∩Da(S3)

= Da(S1) ∩ ∼Da(S2) ∩Da(S3),

and it is partitioned by some atoms T1, . . . , T` of AtR because every Da(Si)
belongs to R′. So, S →a Ti are all the transitions from S on letter a in
the unambiguous NFA AtR. The automaton AtR thus constructed is called
the future automaton for the transduction, because every state specifies the
possible future suffixes.

Similarly, the application of the rules of the MSO transduction depends
on regular properties of the input prefix seen so far. For a vertex rule r1; r2,
an ε-transition rule r1; ε; r2, and a letter transition rule r1; a; r2, we need to
check whether the input prefix satisfies the pattern r1. To perform all these
tests we construct the past automaton, which simulates the parallel execution
of automata for all these prefix patterns.

The product of the future automaton and the past automaton is an un-
ambiguous NFA, which we call the future-past automaton where every state

36

specifies exactly which rules of the MSO transduction apply at the current
position. So, every state of the future-past automaton specifies precisely the
shape of a position: which copy elements are active, which ε-edges are en-
abled, and which outgoing letter-edges are enabled. A state only needs to
specify values for variables whose values are going to be used in the next
step of the computation. The expressions for these outgoing variables can be
read off immediately from the shape. For example, suppose the state T of
the future-past automaton specifies the following active vertices and edges:

valV:

+S:

idp:

idq:

A

We know that any incoming transition S → T from some state S must
specify a value for the variable xq (for the copy q), because it has to be used.
The state T has to specify a new value for xq, because the only outgoing
letter-edge points to the copy q. So, the variable update for the transition
S → T must be xq := xq + val. If a state is initial, then it must be possible
to calculate the values for the variables without relying on any incoming
value from a previous state. If the shape has an active copy without an
incoming/outgoing edge (on the right), then its value is a potential final
value for the computation and is stored in a special variable xF . For the
particular case where no vertex is active, we have to propagate the value of
the final variable with the update xF := xF .

It is easy to check that if the transduction is word-to-tree (that is, every
vertex in a shape has at most one outgoing edge), then the constructed CRA
is copyless.

Example 24 (Future Automaton). For the single-step MSO transduction
of Example 22 we will construct the future automaton, as described in the
proof of Theorem 23. The collection of regular sets needed for suffix tests is:

R = {Σ∗, B∗AΣ∗, B+AΣ∗, AΣ∗}.

After closing under derivatives we obtain the collection

R′ = {Σ∗, B∗AΣ∗, B+AΣ∗, AΣ∗, ∅}.

37

The set B∗AΣ∗ consists of all words that contain at least one A, so its com-
plement is B∗. The set B+AΣ∗ consists of all words that start with B and
contain at least one A, so its complement is AΣ∗ ∪ B∗. The complement of
AΣ∗ is ε ∪ BΣ∗. The elements of AtR are therefore the minimal nonempty
intersections of elements from B∗AΣ∗, B+AΣ∗, AΣ∗, B∗, and ε ∪ BΣ∗. We
claim that the Boolean atoms generated by this list are

AtR = {AΣ∗, B+AΣ∗, B∗}.

Indeed, AtR partitions Σ∗ and moreover we have:

B∗AΣ∗ = AΣ∗ ∪ B+AΣ∗

ε ∪ BΣ∗ = B∗ ∪ B+AΣ∗

The unambiguous NFA AtR is illustrated below:

B+AΣ∗ AΣ∗ B∗B

B
A

A

A

B

All the states are marked as initial (with the gray background) because the
domain of the transduction is Σ∗.

Example 25 (Past Automaton). The expression (ε ∪ Σ∗A)B∗ is equivalent
to Σ∗, hence the rules of the single-step transduction of Example 22 can be
simplified:

φVval = Σ∗A; Σ∗

φS0 = ε; Σ∗

φS+ = Σ∗A; Σ∗

φpid = Σ∗; B∗AΣ∗

φqid = Σ∗A; Σ∗

ψV,S
2 = Σ∗A; ε; Σ∗

ψS,p
1 = (ε ∪ Σ∗A); ε; B∗AΣ∗

ψp,p1 = Σ∗; B; B∗AΣ∗

ψp,q1 = Σ∗; A; Σ∗

ψq,S1 = Σ∗A; ε; Σ∗

The regular expressions Σ∗A, ε, Σ∗, ε∪Σ∗A are relevant for checking whether
the input prefix seen so far satisfies the left-hand expression of a rule. The
automaton that simulates the parallel execution of DFAs for these expressions

38

is the following:
Σ∗A ε

ε ∪ Σ∗A Σ∗

ε ∪ Σ∗A ∅
ε ∪ Σ∗A Σ∗

Σ∗A ∅
Σ∗A Σ∗

A B

B

A

A B

The labels are computed by taking derivatives of the expressions. It is more
convenient to label a state q with the regular expression that denotes the set
of strings that lead from the initial state to q.

ε

Σ∗A Σ∗B

A B

B

A

A B

The label of each state determines if the automaton accepts for each one of
the “past” expressions Σ∗A, ε, Σ∗, ε ∪ Σ∗A.

Example 26 (Future-Past Automaton, CRA). The product of the future
automaton from Example 24 and the past automaton from Example 25 is
the future-past automaton of Figure 1. Every state q is labeled with Lq
(top), the set of strings that lead from some initial state to q, and with Rq

(bottom), the set of strings that lead from q to some final state. The purpose
of these labelings is that they specify exactly which rules of the transaction
are enabled at a particular state. In Figure 2 every state of the future-past
automaton is annotated with a shape that indicates the active copies and
the edges (ε-edges and letter-edges) that are enabled. From these shapes
we can immediately read off the variable updates for the transitions, and
the initialization of the variables in the initial states. The resulting CRA is
shown in Figure 3. Every state qi of the CRA is annotated with the set of
variables that have to be set when the computation reaches qi.

Corollary 27. Forward-only word-to-DAG (resp., word-to-tree) MSO trans-
ductions can be implemented by copyful (resp., copyless) UCRAs.

Proof. Suppose we are given an MSO transduction. By virtue of Lemma 19
we can present it equivalently using regular expressions instead of MSO for-
mulas. Lemma 21 says that the transduction can be transformed into an

39

ε

AΣ∗

Σ∗A
AΣ∗

Σ∗A
B+AΣ∗

Σ∗A
B∗

Σ∗B
AΣ∗

Σ∗B
B+AΣ∗

Σ∗B
B∗

ε

B+AΣ∗
ε

B∗

A
A

A

B
B

A

A

A

B

B

B

A A
A

B

B
B B

Figure 1: The future-past automaton for the single-step transduction of Example 22.

equivalent one, with potentially more copy elements, in which edges are ei-
ther ε-edges or single-letter edges. From this modified transduction we can
construct an unambiguous CRA that computes the transduction, as shown
in Theorem 23.

Theorem 28. The transductions of the class SR (resp., SLR) can be defined
in forward-only word-to-DAG (resp., word-to-tree) MSO.

Proof. With a construction that is a simple variant of the classical transfor-
mation of an automaton into a MSO formula defining the same language, we
can convert an unambiguous CRA into a single-step MSO transduction. We
need one copy element per register, as well as sufficient copies to construct
the algebraic terms that appear in all variable updates of the CRA. The
resulting MSO transduction may specify vertices labeled with the identity
function id. Sequences of edges of the form f →1 id→1 · · · →1 id→i g can
be specified with an MSO formula, and can therefore be replaced by a single
edge of the form f →i g. This results in a (not necessarily single-step) MSO
transduction that specifies the desired function. This construction handles
copyful and copyless UCRAs uniformly: i.e., on a copyless UCRA it produces
a word-to-tree MSO transduction. The well-formedness conditions for MSO
transductions hold, including that all edges are forward-only.

40

V:

0S:

idp:

q:

A

q1

valV:

+S:

idp:

idq:

A

q3valV:

+S:

idp:

idq:

B

q2 valV:

+S:

p:

idq:

q4

V:

S:

idp:

q:

A

q6V:

S:

idp:

q:

B

q5 V:

S:

p:

q:

q7

V:

0S:

idp:

q:

B

q8 V:

0S:

p:

q:

q9

A
A A

B
B

A

A

A

B

B

B

A
A A

B

B
B B

Figure 2: The future-past automaton for the single-step transduction of Example 22,
annotated with “shapes” that show the enabled rules.

41

q1 : xq

xq = 0

q3 : xqq2 : xp q4 : xF

q6 : xqq5 : xp q7 : xF

q8 : xp

xp = 0

q9 : xF

xF = 0

A/xp = xq + v

A/xq = xq + v

A/xF = xq + v

B/xp = xp B/xq = xp

A/xp = xq + v

A/xq = xq + v

A/xF = xq + v

B/xF = xF

B/xp = xp

B/xq = xp

A/xp = xq + v

A/xq = xq + v

A/xF = xq + v

B/xF = xF

B/xp = xp

B/xq = xp B/xF = xF

Figure 3: Unambiguous CRA for the single-step transduction of Example 22.

4. Relation to Weighted Automata

In this section we investigate the relationship between weighted automata
and CRAs. We will show, in particular, that there are CRAs for suitable
choice of O that correspond precisely to unambiguous and nondeterministic
weighted automata respectively. This means that CRAs are a more general
model of quantitative automata.

The model of weighted automata is a widely studied quantitative exten-
sion of nondeterministic finite-state automata [8] that describe (total) func-
tions from Σ∗ to a set of data values D. The set D is typically equipped
with two operations, product and sum, that form a semiring. In a weighted
automaton every transition is labeled with a tag in Σ and a weight in D.
The weight of a run of the automaton is the product of all transition weights
in the run. The weight associated with a input string w is the sum of the
weights of all the runs that are labeled with w.

Formally, a semiring (also called a rig) is D = (D,+, ·, 0, 1) where +

42

is a commutative, associative binary operation on D with identity 0, · is
an associative binary operation on D with identity 1 and absorbing element
0, and · distributes over +. A weighted automaton over D is a tuple A =
(Q,Σ,∆, I, F), where Q is the set of states, Σ is the input alphabet, ∆ : Q×
Σ×Q→ D is the transition function, I : Q→ D is the initial weight function,
and F : Q→ D is the final weight function. For a word u = a1a2 · · · an ∈ Σ∗,
a u-path in A is a sequence

π = q0
a1/d1−−−→ q1

a2/d2−−−→ q2 · · ·
an/dn−−−→ qn,

where ∆(qi−1, ai, qi) = di for all i = 1, 2, . . . , n. The weight of the path π is
weight(π) = d1 · d2 · · · dn. We denote by first(π) and last(π) the first state q0

and the last state qn of the path π respectively. Finally, the weight of a word
u ∈ Σ∗ in A is given by

weight(u) =
∑

u-path πI(first(π)) · weight(π) · F (last(π)).

The weighted automaton A computes the function JAK : Σ∗ → D, where
JAK(u) is the weight of u in A.

The set of initial states of A is {q ∈ Q | I(q) 6= 0}, and similarly the set of
final states of A is {q ∈ Q | F (q) 6= 0}. A path π in A is successful if first(π)
is initial and last(π) is final. A path is unsuccessful if it is not successful.
Observe that the weight of an unsuccessful path is equal to 0. A weighted
automaton A is said to be unambiguous if for every word u ∈ Σ∗ there is at
most one successful u-path in A.

An unambiguous weighted automaton can be over a monoid, instead of
a semiring: modify I and F to be partial functions instead of total, where
their domains are the initial and final states, respectively. Then removing +
and 0, we are left a single associative operation · on D with identity 1. The
following theorem shows a correspondence between unambiguous weighted
automata over the monoid (D, ·, 1) and copyless UCRAs that can use the
multiplication operation · in a certain restricted way: only multiplying by
constants on the right.

Theorem 29. Suppose that (D, ·, 1) is a monoid, i.e. · is an associative
binary operation on D and 1 is a left and right identity for ·. Moreover,
assume that O consists of the constant 1 and the family of unary operations
(−·d) where d ∈ D. Then, the class of total transductions in SLR(O) is equal
to the class of functions computed by unambiguous weighted automata over
(D, ·, 1).

43

Proof. It is easy to see that every unambiguous weighted automaton over
(D, ·, 1) can be simulated by a copyless single-register UCRA over O.

It remains to show that the computation of a copyless UCRA A over O
can be simulated by an unambiguous weighted automaton B over (D, ·, 1).
The idea is that at every step of the computation of A, the content of at most
one register can contribute to the final output. So, B is defined to have state
space Q×X, where Q is the state space ofA and X is the set of registers ofA.
We also may need additional states to compute the finalization function.

Similarly to Theorem 29 we now establish a correspondence between (po-
tentially ambiguous) weighted automata over a semiring (D,+, ·, 0, 1) and
copyful CRAs that can use the multiplication operation · only to right-
multiply by constants.

Theorem 30. Suppose thatD is the type of data values andD = (D,+, ·, 0, 1)
is a semiring. Moreover, assume that O consists of the constants 0, 1, the
binary operation +, and the family of unary operations (− · d) for every
d ∈ D. The class of total transductions of SR(O) is equal to the class of
transductions computed by weighted automata over D.

Proof. Every weighted automaton (Q,Σ,∆, I, F) can be simulated by a copy-
ful single-state CRA by considering one register xq for each state q of the
weighted automaton. The registers are used to encode the configuration of
the weighted automaton, which is a mapping from the state space to D. For
every tag a, we include an a-labeled transition in the CRA that updates the
variable xq with the assignment xq :=

∑
p∈Q xp ·∆(p, a, q).

It remains to show that the computation of a (copyful, total) CRA can be
simulated by a weighted automaton. Given a CRA A, let us describe now a
weighted automaton B that computes the same transduction as A. We may
algebraically simplify every update of A to be of the form

x = x1 · d1 + · · ·+ xn · dn + d,

where x1, . . . , xn is an enumeration of the registers of A. The state space
of B consists of states q and pairs (q, x), where q is a state of A and x is a
register of A. The register update function of a transition q →a q′ of A can

44

be presented in the following form:
x1

x2
...
xn

>

=

x1

x2
...
xn

>

·

d11 d12 · · · d1n

d21 d22 · · · d2n
...

...
. . .

...
dn1 dn2 · · · dnn

+

d1

d2
...
dn

>

.

The above matrix equation can be reformulated as follows:

xj = (
∑n

i=1xi · dij) + dj for all j = 1, . . . , n.

The update function is simulated in the weighted automaton B by defining
the following transitions:

∆((q, xi), a, (q
′, xj)) = dij ∆(q, a, (q′, xj)) = dj ∆(q, a, q′) = 1

If q is a final state of A with finalization function x1 · d1 + · · ·+ xn · dn + d,
we define the final weight function F of B by F (q) = d and F ((q, xi)) = di.
If q is not a final state, then we put F (q) = 0 and F (q, x) = 0.

It is important that we have restricted the allowed operations of the CRA
to include only right-multiplication by a constant, a unary operation. If a
(copyful) CRA can use the binary · operation of the semiring (D,+, ·, 0, 1),
then it can compute the function ai 7→ d2i (where a ∈ Σ and d ∈ D), which
is not implementable by a weighted automaton.

5. Related Work

Weighted automata and extensions. Weighted Automata, which were
introduced in 1961 by Schützenberger [14] (see also the more recent mono-
graph [8]), extend classical nondeterministic automata by annotating transi-
tions with weights and can be used for the computation of simple quantitative
properties on finite or infinite strings of symbols [15]. Weighted automata
have found applications in speech and language processing [16], and they have
been extended for modeling systems and verifying quantitative properties of
these systems [17]. The studied models for the latter purpose include Nested
Weighted Automata [18], a two-level variant of weighted automata for infinite
strings. The computational problems that are relevant for quantitative ver-
ification are analysis questions such as universality and equivalence. These

45

questions are decidable only when the weights and the operations used on
them are very simple [19, 20], so the studied models are usually equipped with
a very limited set of primitive operations that are insufficient for expressing
realistic computations over streaming data. We have shown in Section 4 that
CRAs generalize the weighted automata. In particular, when the family O
of available operations is chosen appropriately, CRAs correspond precisely
to unambiguous and nondeterministic weighted automata respectively.

Register automata. Another approach to augment classical automata with
quantitative features has been with the addition of registers that can store
values from a potentially infinite set. These models are typically varied in
two aspects: by the choice of data types and operations that are allowed for
register manipulation, and by the ability to perform tests on the registers for
control flow.

The literature on data words, data/register automata and their associated
logics [21, 22, 23, 24, 25] studies models that operate on words over an infinite
alphabet, which is typically of the form Σ×N, where Σ is a finite set of tags
and N is the set of the natural numbers. They allow comparing data values
for equality, and these equality tests can affect the control flow. Due to this
feature many interesting decision problems become undecidable [22].

Cost register automata. Cost Register Automata (CRAs) [4, 26] and
Streaming String Transducers (SSTs) [27, 28, 9] have recently been proposed
as models to permit more complex operations over the cost domain. Un-
like the case of register automata, which traditionally only allow checking
for equality, CRAs are parameterized by the set of permissible operations
O over the values of the registers. On the other hand, CRAs and SSTs
also enforce a strict separation between data and control, so that data val-
ues from the input sequence can only affect the contents of the registers
but not determine the state transitions. These models have robust expres-
sive power [27, 4], including equivalent characterizations in MSO and closure
under various transformations, and have been used in applications such as
verifying list processing programs [28]. Work has been devoted to study the
circuit complexity of the functions being computed [29, 30], and on anal-
ysis problems such as determining the register complexity [26, 31]. Unlike
the present paper, these papers allow registers whose contents may include
syntactic terms rather than concrete values from the data domain, but limit
themselves to the copyless setting [32].

46

MSO-definable graph transformations. An important goal for lan-
guage theorists has been to characterize operational models such as automata
and transducers using properties and functions expressible in various logical
theories. The earliest of these results includes the seminal work of Büchi [33]
and Elgot [34], establishing the equivalence between regular languages and
properties expressible using monadic second-order logic (MSO). Courcelle
considered the notion of MSO-definable graph transductions [10]: Engel-
friet and Hoogeboom [13] showed the equivalence of string-to-string trans-
formations expressible in this framework with those computable using two-
way finite state transducers, and Alur and Černy equated their expressive
power with the deterministic one-way model of streaming string transduc-
ers (SSTs) [27]. These have also been extended to transformations of infinite
strings [35]. Streaming tree transducers [9] and CRAs [4] are similar char-
acterizations of tree-to-tree and string-to-tree transformations respectively.
With this background, the present paper shows that copyful CRAs over O
can compute exactly those functions which can expressed as word-to-DAG
transformations in MSO, i.e. the class of streamable regular transductions,
SR(O).

Quantitative regular expressions. The connection between finite au-
tomata and regular expressions has motivated research into identifying sim-
ilar linguistic characterizations of the transductions computable by CRAs
and SSTs [1, 36]. The resulting formalisms, Quantitative Regular Expres-
sions (QREs) and DReX respectively, have subsequently been applied in
processing streaming data (StreamQRE) [2], expressing string transforma-
tions [37], and monitoring network traffic (NetQRE) [3]. The closure of the
transduction classes SR and SLR under the regular combinators naturally
facilitates the design of these declarative languages. These papers are then
largely concerned with twin problems of expressiveness—providing transla-
tion algorithms to and from CRAs and SSTs—and fast query evaluation. As
with previous research on CRAs, they focus on copyless models, and exploit
these for time- and memory-efficient one-pass query evaluation. An impor-
tant technical challenge is the design of a type system which constrains the
rate of the transduction and the composition rules to permit efficient modu-
lar evaluation. The combinators of Table 1, for example, have been refined
in [2] with a type system that eliminates sources of complexity. When the
registers of CRAs maintain terms, an important consideration is term simpli-
fication, so that the contents of each register may be maintained in constant

47

space, regardless of the length of the input stream seen so far [1]. In this
context, developing a regular expression-like characterization of the class of
streamable regular transductions, SR(O), which we consider in this paper, is
a problem for future work.

6. Conclusion

We have studied the class of streamable regular transductions (SR), which
are partial functions from input streams of tagged values to output values
that can be computed by unambiguous Cost Register Automata (UCRAs).
The subclass of streamable linear regular transductions (SLR) consists of
those transductions that are computed by copyless UCRAs, where the reg-
ister updates are restricted so that each register appears at most once in
the right-hand side of a parallel update. We have shown that the classes
SR and SLR have appealing logical characterizations: SR (resp., SLR) cor-
responds to MSO-definable transformations from strings to DAGs (trees)
without backward edges. A precise relationship with the classical model of
weighted automata has also been established.

Acknowledgements

This work was supported by NSF award CCF 1763514.

References

[1] R. Alur, D. Fisman, M. Raghothaman, Regular programming for quan-
titative properties of data streams, in: Proceedings of the 25th Eu-
ropean Symposium on Programming (ESOP ’16), 2016, pp. 15–40.
doi:10.1007/978-3-662-49498-1_2.

[2] K. Mamouras, M. Raghothaman, R. Alur, Z. G. Ives, S. Khanna,
StreamQRE: Modular specification and efficient evaluation of quanti-
tative queries over streaming data, in: Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’17, ACM, New York, NY, USA, 2017, pp. 693–708.
doi:10.1145/3062341.3062369.

48

http://dx.doi.org/10.1007/978-3-662-49498-1_2
http://dx.doi.org/10.1145/3062341.3062369

[3] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, B. T. Loo, Quantita-
tive network monitoring with NetQRE, in: Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication, SIG-
COMM ’17, ACM, 2017, pp. 99–112. doi:10.1145/3098822.3098830.

[4] R. Alur, L. D’Antoni, J. Deshmukh, M. Raghothaman, Y. Yuan, Regular
functions and cost register automata, in: Proceedings of the 28th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS ’13), 2013,
pp. 13–22. doi:10.1109/LICS.2013.65.

[5] R. Bloem, J. Engelfriet, A comparison of tree transductions defined
by monadic second order logic and by attribute grammars, Journal of
Computer and System Sciences 61 (1) (2000) 1–50. doi:10.1006/jcss.
1999.1684.

[6] J. Engelfriet, S. Maneth, Macro tree transducers, attribute grammars,
and MSO definable tree translations, Information and Computation
154 (1) (1999) 34–91. doi:10.1006/inco.1999.2807.

[7] R. Alur, L. D’Antoni, Streaming tree transducers, Journal of the ACM
64 (5) (2017) 31:1–31:55. doi:10.1145/3092842.

[8] M. Droste, W. Kuich, H. Vogler (Eds.), Handbook of Weighted Au-
tomata, Springer, 2009. doi:10.1007/978-3-642-01492-5.

[9] R. Alur, L. D’Antoni, Streaming tree transducers, in: Proceed-
ings of the 39th International Colloquium on Automata, Languages,
and Programming (ICALP ’12), 2012, pp. 42–53. doi:10.1007/

978-3-642-31585-5_8.

[10] B. Courcelle, Monadic second-order definable graph transductions: A
survey, Theoretical Computer Science 126 (1) (1994) 53–75. doi:10.

1016/0304-3975(94)90268-2.

[11] W. Thomas, Languages, Automata, and Logic, Springer, 1997, pp. 389–
455. doi:10.1007/978-3-642-59126-6_7.

[12] J. Engelfriet, H. J. Hoogeboom, MSO definable string transductions and
two-way finite-state transducers, ACM Transactions on Computational
Logic 2 (2) (2001) 216–254. doi:10.1145/371316.371512.

49

http://dx.doi.org/10.1145/3098822.3098830
http://dx.doi.org/10.1109/LICS.2013.65
http://dx.doi.org/10.1006/jcss.1999.1684
http://dx.doi.org/10.1006/jcss.1999.1684
http://dx.doi.org/10.1006/inco.1999.2807
http://dx.doi.org/10.1145/3092842
http://dx.doi.org/10.1007/978-3-642-01492-5
http://dx.doi.org/10.1007/978-3-642-31585-5_8
http://dx.doi.org/10.1007/978-3-642-31585-5_8
http://dx.doi.org/10.1016/0304-3975(94)90268-2
http://dx.doi.org/10.1016/0304-3975(94)90268-2
http://dx.doi.org/10.1007/978-3-642-59126-6_7
http://dx.doi.org/10.1145/371316.371512

[13] J. Engelfriet, H. J. Hoogeboom, MSO definable string transductions and
two-way finite-state transducers, ACM Transactions on Computational
Logic 2 (2) (2001) 216–254. doi:10.1145/371316.371512.

[14] M. P. Schützenberger, On the definition of a family of automata,
Information and control 4 (2) (1961) 245–270. doi:10.1016/

S0019-9958(61)80020-X.

[15] K. Chatterjee, L. Doyen, T. A. Henzinger, Quantitative languages, ACM
Transactions on Computational Logic (TOCL) 11 (4) (2010) 23. doi:

10.1145/1805950.1805953.

[16] M. Mohri, Finite-state transducers in language and speech processing,
Computational Linguistics 23 (2) (1997) 269–311.

[17] K. Chatterjee, T. A. Henzinger, J. Otop, Quantitative monitor au-
tomata, in: X. Rival (Ed.), Proceedings of the 23rd International Sym-
posium on Static Analysis (SAS ’16), Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016, pp. 23–38. doi:10.1007/978-3-662-53413-7_2.

[18] K. Chatterjee, T. A. Henzinger, J. Otop, Nested weighted automata,
in: Proceedings of the 30th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS ’15), IEEE Computer Society, 2015, pp.
725–737. doi:10.1109/LICS.2015.72.

[19] D. Krob, The equality problem for rational series with multiplic-
ities in the tropical semiring is undecidable, International Journal
of Algebra and Computation 4 (3) (1994) 405–425. doi:10.1142/

S0218196794000063.

[20] S. Almagor, U. Boker, O. Kupferman, What’s decidable about weighted
automata?, in: T. Bultan, P.-A. Hsiung (Eds.), Proceedings of the 9th
International Symposium on Automated Technology for Verification an-
Analysis (ATVA ’11), Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 482–491. doi:10.1007/978-3-642-24372-1_37.

[21] M. Kaminski, N. Francez, Finite-memory automata, Theoretical Com-
puter Science 134 (2) (1994) 329–363. doi:10.1016/0304-3975(94)

90242-9.

50

http://dx.doi.org/10.1145/371316.371512
http://dx.doi.org/10.1016/S0019-9958(61)80020-X
http://dx.doi.org/10.1016/S0019-9958(61)80020-X
http://dx.doi.org/10.1145/1805950.1805953
http://dx.doi.org/10.1145/1805950.1805953
http://dx.doi.org/10.1007/978-3-662-53413-7_2
http://dx.doi.org/10.1109/LICS.2015.72
http://dx.doi.org/10.1142/S0218196794000063
http://dx.doi.org/10.1142/S0218196794000063
http://dx.doi.org/10.1007/978-3-642-24372-1_37
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1016/0304-3975(94)90242-9

[22] F. Neven, T. Schwentick, V. Vianu, Finite state machines for strings over
infinite alphabets, ACM Transactions on Computational Logic (TOCL)
5 (3) (2004) 403–435. doi:10.1145/1013560.1013562.

[23] S. Demri, R. Lazić, LTL with the freeze quantifier and register automata,
ACM Transactions on Computational Logic (TOCL) 10 (3) (2009) 16:1–
16:30. doi:10.1145/1507244.1507246.

[24] H. Björklund, T. Schwentick, On notions of regularity for data lan-
guages, Theoretical Computer Science 411 (4) (2010) 702–715, funda-
mentals of Computation Theory. doi:10.1016/j.tcs.2009.10.009.

[25] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin, Two-
variable logic on data words, ACM Transactions on Computational Logic
(TOCL) 12 (4) (2011) 27:1–27:26. doi:10.1145/1970398.1970403.

[26] R. Alur, M. Raghothaman, Decision problems for additive regular
functions, in: F. V. Fomin, R. Freivalds, M. Kwiatkowska, D. Pe-
leg (Eds.), Proceedings of the 40th International Colloquium on Au-
tomata, Languages, and Programming, Part II (ICALP 2013), Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 37–48. doi:10.1007/

978-3-642-39212-2_7.

[27] R. Alur, P. Cerný, Expressiveness of streaming string transducers,
in: K. Lodaya, M. Mahajan (Eds.), IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2010), Vol. 8 of Leibniz International Proceedings in In-
formatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2010, pp. 1–12. doi:10.4230/LIPIcs.FSTTCS.

2010.1.

[28] R. Alur, P. Černý, Streaming transducers for algorithmic verification of
single-pass list-processing programs, in: Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’11, ACM, New York, NY, USA, 2011, pp. 599–610.
doi:10.1145/1926385.1926454.

[29] E. Allender, I. Mertz, Complexity of regular functions, in: A.-H. Dediu,
E. Formenti, C. Mart́ın-Vide, B. Truthe (Eds.), Language and Au-
tomata Theory and Applications, Springer International Publishing,
Cham, 2015, pp. 449–460.

51

http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1016/j.tcs.2009.10.009
http://dx.doi.org/10.1145/1970398.1970403
http://dx.doi.org/10.1007/978-3-642-39212-2_7
http://dx.doi.org/10.1007/978-3-642-39212-2_7
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://dx.doi.org/10.1145/1926385.1926454

[30] E. Allender, A. Krebs, P. McKenzie, Better Complexity Bounds for Cost
Register Automata, in: K. G. Larsen, H. L. Bodlaender, J.-F. Raskin
(Eds.), 42nd International Symposium on Mathematical Foundations
of Computer Science (MFCS 2017), Vol. 83 of Leibniz International
Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 2017, pp. 24:1–24:14. doi:10.

4230/LIPIcs.MFCS.2017.24.

[31] L. Daviaud, P.-A. Reynier, J.-M. Talbot, A generalised twinning prop-
erty for minimisation of cost register automata, in: Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS ’16, ACM, New York, NY, USA, 2016, pp. 857–866. doi:

10.1145/2933575.2934549.

[32] F. Mazowiecki, C. Riveros, On the expressibility of copyless cost register
automata, CoRR abs/1504.01709.

[33] B. J. Richard, Weak secondorder arithmetic and finite automata,
Mathematical Logic Quarterly 6 (16) 66–92. doi:10.1002/malq.

19600060105.

[34] C. C. Elgot, Decision problems of finite automata design and related
arithmetics, Transactions of the American Mathematical Society 98 (1)
(1961) 21–51.

[35] R. Alur, E. Filiot, A. Trivedi, Regular transformations of infinite strings,
in: Proceedings of the 2012 27th Annual IEEE/ACM Symposium on
Logic in Computer Science, LICS ’12, IEEE Computer Society, Wash-
ington, DC, USA, 2012, pp. 65–74. doi:10.1109/LICS.2012.18.

[36] R. Alur, A. Freilich, M. Raghothaman, Regular combinators for string
transformations, in: Proceedings of the Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS), CSL-LICS ’14, ACM, New York, NY, USA, 2014,
pp. 9:1–9:10. doi:10.1145/2603088.2603151.

[37] R. Alur, L. D’Antoni, M. Raghothaman, Drex: A declarative language
for efficiently evaluating regular string transformations, in: Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

52

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.24
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.24
http://dx.doi.org/10.1145/2933575.2934549
http://dx.doi.org/10.1145/2933575.2934549
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1109/LICS.2012.18
http://dx.doi.org/10.1145/2603088.2603151

of Programming Languages, POPL ’15, ACM, New York, NY, USA,
2015, pp. 125–137. doi:10.1145/2676726.2676981.

53

http://dx.doi.org/10.1145/2676726.2676981

	Introduction
	Cost Register Automata
	Data Transductions and Combinators
	Syntax and Semantics of CRAs
	Examples
	Choice of Operations on Data Values
	Unambiguity Versus Determinism
	Closure Under Regular Combinators
	Complexity of Evaluation

	MSO-Definable Transductions
	MSO Transductions

	Relation to Weighted Automata
	Related Work
	Conclusion

