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Abstract. Recent advances in deep learning have enabled the development
of autonomous systems that use deep neural networks for perception. Formal
verification of these systems is challenging due to the size and complexity
of the perception DNNs as well as hard-to-quantify, changing environment
conditions. To address these challenges, we propose a probabilistic verification
framework for autonomous systems based on the following key concepts: (1)
Scenario-based Modeling: We decompose the task (e.g., car navigation) into a
composition of scenarios, each representing a different environment condition.
(2) Probabilistic Abstractions: For each scenario, we build a compact abstrac-
tion of perception based on the DNN’s performance on an offline dataset that
represents the scenario’s environment condition. (3) Symbolic Reasoning and
Acceleration: The abstractions enable efficient compositional verification of
the autonomous system via symbolic reasoning and a novel acceleration proof
rule that bounds the error probability of the system under arbitrary variations
of environment conditions. We illustrate our approach on two case studies:
an experimental autonomous system that guides airplanes on taxiways using
high-dimensional perception DNNs and a simulation model of an F1Tenth
autonomous car using LiDAR observations.

1 Introduction

Recent advances in deep learning have enabled the development of autonomous sys-
tems that use deep neural networks (DNNs) for perception [10–12,19,21,32] Formal ver-
ification of these systems is uniquely challenging due to the complexity of formal reason-
ing about the DNNs. The perception DNNs are massive (with millions or billions of pa-
rameters) and are also known to be very sensitive to input perturbations. For instance,
changing the light conditions in an image can lead to very different DNN outputs and
this can adversely affect the safety of the overall system. Furthermore, real-world au-
tonomous systems typically operate in an environment whose configuration is a priori
unknown (e.g., the car is navigating in a location with an unknown layout of tracks). In
this work, we propose a probabilistic verification framework to address these challenges.



2 C. Watson et al.

System Description. Consider the autonomous system from Figure 1; it con-
sists of four interacting components: Sensor, Perception DNN, Controller, and
Dynamics. The Sensor (e.g., a camera or LiDAR system) observes the current
underlying system state (potentially subject to hard-to-model environmental con-
ditions) and produces sensor readings (e.g., images or LiDAR readings).

Sensor 𝜌 DNN 𝑝

Controller 𝑔Dynamics 𝑓

𝑠 𝑦

𝑢

Learning-enabled Component

Conventional Component 

Environment
Condition

𝑒 𝑟

Fig. 1: Components of an autonomous system
with DNN-based perception.

The Perception DNN takes inputs from
the Sensor and produces state estimates
that are used by the Controller to out-
put control commands for the system. In
response to these commands, the system
state is updated as described by the Dy-
namics and the cycle repeats. This forms
a closed-loop system where the Percep-
tion DNN repeatedly receives Sensor
inputs as the system operates in its en-
vironment. Note that such systems tend
to be stochastic, even when Dynamics
and Controller are deterministic, due to the uncertainty in the Sensor readings.
Safety Properties. We analyze such systems with respect to critical safety properties
that can be framed as reachability queries. We focus on two questions: (1) given a
set of initial conditions, what is the probability of reaching an error state? and (2)
given a user-specified bound on the probability of reaching an error state, what is
the corresponding set of most permissive initial conditions? The specific notion of
error depends on the system being analyzed. In our first case study, we analyze an
autonomous airplane taxiing system that relies on Boeing’s TaxiNet perception DNN
and define error as excessive deviation from the runway’s centerline. In our simulated
F1Tenth case study, we define error to be collision with the edge of the race track or
failure to navigate a track segment within a predetermined time limit.
Modeling the Learning-enabled Components. The conventional components
(Controller and Dynamics) can be modeled using well-known techniques [29], for
instance, they can be modeled as transition systems or Discrete-time Markov Chains
(DTMCs). However, the learning-enabled components (Perception DNN and Sensor)
are difficult to model due to enormous sizes of modern DNNs and the complex nature
of the sensors as well as the changing environmental conditions in which these systems
operate. The key challenge is to analyze the learning enabled components in a way that
can be composed with traditional systems verification techniques to obtain a guarantee
for the entire closed loop system. Approaches to this challenge form three groups: (1)
those that apply neural network verification to the Perception DNN and precisely
model the Sensor mathematically [8,14,15,30] or with a learned model [1,5,22,33]
(2) those that build contracts [2, 17, 18, 24, 25, 29, 31] around the learning enabled
components, and (3) those that build probabilistic abstractions [3,4,6,7,28] around
the learning enabled component.

In general, neural network verification only scales to DNNs of modest size,
and realistic sensors are hard to model, especially when subject to environmental
disturbances. Contract-based approaches provide obligations for the learning-enabled
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components that ensure system safety, but cannot quantify system safety if the
contracts are not met. To provide a scalable, quantitative analysis of sytem-level
safety, our current work extends the technique of probabilistic abstraction, which
models the learning-enabled components’ behavior as an explicit map from each
system state to a distribution over Perception DNN outputs. The probabilities in
this map are computed from the confusion matrix that measures the performance
of the Perception DNN on a representative dataset obtained from simulations or
real-world setting. With this abstraction, the resulting system can be modeled as a
DTMC and is amenable to verification using off-the-shelf tools such as PRISM [23]
and Storm [16].

While the compact abstraction of the learning-enabled components allows the
analysis to scale to arbitrarily large DNNs and does not require modeling the Sensor,
if the offline dataset pools data from multiple distinct environment conditions the
abstraction may be too coarse, resulting in an imprecise analysis.

Fig. 2: TaxiNet achieves 91.25% accuracy
when estimating heading for a bright image
dataset but only 53.87% accuracy for a dark
image dataset.

Our Proposal. In this work, we struc-
ture the analysis of the autonomous sys-
tem as a composition of scenarios, each
of which represents the behavior of the
system under a different environment
condition for a fixed duration. In the
context of our autonomous taxiing case
study, we observe that the TaxiNet per-
ception system has dramatically different
performance in bright versus dark light-
ing conditions (see Figure 2). To perform
an analysis of system level safety that accounts for changes in lighting conditions, we
define the scenarios bright and dark. Within the bright scenario, we can accu-
rately model the behavior of the closed loop system by incorporating a probabilistic
of abstraction constructed using a dataset collected in bright light. A separate dataset
lets us accurately model the system’s behavior in the dark scenario. Similarly, to
analyze an autonomous race car, we define a separate scenario for each kind of track
segment (straight, left turn, or right turn) to efficiently analyze safety for a diverse
set of track configurations. While scenario-based decomposition is inspired by the
non-probabilistic analysis of [20], our probabilistic abstraction of the learning-enabled
component of each scenario allows our analysis to scale to arbitrarily complex sensor
and perception systems. Scenario-based decomposition also allows our approach to
efficiently compute safety guarantees for long time horizons.

Contributions. Overall, we make the following contributions: (1) we present an
approach for compactly modeling autonomous systems that accounts for changing
environment conditions via decomposition into environment-specific scenarios; (2) we
extend prior work [28] by allowing a system designer to define separate probabilistic
abstractions, representing DNN performance in different environment conditions;
we further generalize the confusion matrices to account for arbitrary state estimate
definitions, not just the underlying system state as in previous work; (3) we describe
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Fig. 3: Scenario-based compositional analysis of autonomous systems.

an efficient symbolic approach for analyzing finite sequences of scenarios with respect
to initial conditions specified as a set of distributions over the system states; (4) we
also give a novel family of compositional proof rules for accelerated analysis of finite
sequences with arbitrary interleavings of scenarios; these rules enable developers to
compute a bound on error probability even when the precise configuration of the
environment is not known a priori; (5) we illustrate our approach on two case studies:
a model of an experimental autonomous system that guides airplanes on taxiways
using high-dimensional perception DNNs and a model of an F1Tenth autonomous
car using LiDAR observations.

Related Work. We have already discussed closely related work on formal analysis of
learning-enabled systems. Other related work includes approaches based on statistical
simulation [35] that require less computation but provide a different type of guarantee
than probabilistic model checking. Moreover, statistical model checking is not suitable
for models that include nondeterminism, thus cannot be compared with the guarantees
we obtain for arbitrary interleavings of scenarios. Another related line of work is
compositional probabilistic model checking [34], which, however does not address the
central challenge of incorporating machine-learning components.

Also related is the work on probabilistic predicate transformers [26]. Each of our
scenarios can be seen as a probabilistic assignment, and the backward analysis of
Section 3.1 is a special case of the weakest precondition computation. Much work on
predicate transformers concerns general loops, which are not immediately relevant to
modeling autonomous systems over bounded horizons. To our knowledge, no analogue
of our acceleration rules exists in the literature.

2 Scenario-based Probabilistic Abstractions of Perception

Figure 3 illustrates our approach. The goal is to analyze safety properties of au-
tonomous systems, subject to changing environment conditions. We assume that a
domain expert can identify a finite set E of environment conditions, e.g. bright vs
dark lighting. For each environment condition e∈E, the domain expert provides a
dataset Re that represents the behavior of the Sensor subject to that environment
condition. This, combined with black-box access to the Perception DNN, allows us to
construct a probabilistic abstraction of perception αe for each environment condition,
which can in turn be composed with a model of the conventional components to yield
a DTMC model Me of the closed-loop system subject to each environment condition.
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For simplicity of presentation, we assume that only the behavior of learning-enabled
components changes with the environment conditions, more generally, the conven-
tional components may also change. Our techniques are applicable to this more
general setting, and in Section 4 we consider such a case.

A scenario represents the behavior of the autonomous system subject to a particular
environment condition for a fixed finite time horizon. The inputs to our compositional
analysis are a sequence of scenarios and a precondition that constrains the set of
initial state distributions. A summarization procedure allows us to efficiently compute
a worst-case error bound for a fixed scenario sequence, and our acceleration proof
rules allow us to derive a bound on error probability that is parametric with respect
to the length of a scenario sequence of unbounded length. We make these notions
precise in the following sections.

2.1 Modeling the Closed-loop Autonomous System

A discrete-time closed-loop autonomous system is composed of conventional compo-
nents Controller and Dynamics as well learning-enabled components Sensor and
Perception DNN. Given a fixed environment condition e ∈E, at each timestep t,
the Sensor ρe :S→Dist(R)5 (which may be a camera or LiDAR system) observes
the current underlying system state st∈S and probabilistically produces a sensor
reading rt∈R sampled from the distribution ρe(st) (where rt is an image, LiDAR
reading, etc). The Perception DNN p : R→ Y processes rt to yield an estimate
yt∈Y of the system state. The Controller g :Y →U receives this state estimate and
outputs a control signal ut∈U . At the start of the next timestep t+1, the Dynamics
f :S×U→S produces a new system state st+1∈S in response to the control input
ut and the cycle continues. The sets S, Y , and U are assumed to be finite.

Probabilistic Abstraction of Perception. Constructing models of the Sensor
and the Perception DNN is a central challenge given their complexity. We extend past
work [28] and build compact abstractions αe :S→Dist(Y ) of the learning-enabled
components.

The key idea is that the input-output behavior of the learning-enabled components
(as a function of type S→Dist(Y )) can be estimated using an offline dataset of sensor
readings gathered using the Sensor onboard the autonomous system. A limitation
of previous work was that they built a single abstraction, regardless of environment
conditions, leading to overly imprecise results, as illustrated in Figure 2.

In this work, we address this important limitation by building a separate proba-
bilistic abstraction of perception αe for each environment condition e. For each pair
of environment condition e and state s, we assume access to an offline dataset Re,s of
sensor readings collected while the autonomous system was in state s and subject to
condition e.

Another limitation of previous work was that the probabilistic abstraction was
based on computing confusion matrices under the restricted assumption that the
5 We write Dist(X) for the set of probability distributions over a finite set X and identify

each x∈Dist(X) with its representation as a row vector in R|X|.
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DNN outputs correspond precisely to the state definition. In practice, DNNs can
be used to estimate only some aspects of the underlying state. Thus, we generalize
confusion matrices to account for arbitrary state estimate definitions, not just the
underlying system state as in previous work.

The construction of probabilistic abstraction αe for condition e proceeds as follows.
First, for each s∈S, we apply the Perception DNN function p :R→Y to each rs
in Re,s to obtain the pair (s,p(rs)); here, rs is a sensor reading gathered in state s
because it is from Re,s. We combine all of these pairs to form a labeled dataset of
S×Y pairs that describes the behavior of the learning-enabled components subject
to e. From this dataset we can build a contingency matrix6 Ce. For any s∈S and
y∈Y , we write Ce(s,y) for the frequency of the pair (s,y) in the labeled dataset. We
define the probabilistic abstraction of perception αe :S→Dist(Y ) as

αe(s)(y):=
Ce(s,y)∑

y′∈Y (Ce(s,y′))

System Model. The probabilistic abstraction αe of the learning-enabled component
in environment condition e can be composed with the discrete models of the conven-
tional components to yield a discrete-time Markov chain (DTMC) that models the
closed-loop system as in [3,7,28]. We denote this DTMC as Me=(S,Pe) in which
S is a finite set of states (in particular, the set of states of the autonomous system)
and Pe is a |S|×|S| right-stochastic matrix. At each timestep, the probability of a
transition from some s∈S to some s′∈S is:

Pe(s,s
′):=

∑
y∈Y

αe(s)(y)[f(g(y))=s
′]

where [f(g(y))=s′] evaluates to 1 whenever f(g(y))=s′ and 0 otherwise. For our
case studies, we follow the procedure of [28] to represent this DTMC using PRISM,
see section 4.1 for details.

Without loss of generality, we assume that the autonomous system has a distin-
guished error state, which we denote serr. We assume that the conventional dynamics
ensure that the error state is absorbing, i.e., once the system reaches serr, it stays
there. This modeling assumption both reflects the natural meaning of an “error state”
and facilitates the compositional analysis.

2.2 Scenarios

We are interested in modeling the behavior of autonomous systems under changing
environmental conditions. For this purpose, we introduce the notion of scenarios.
Consider an autonomous system with states S and environment conditions E. For
each e∈E, let Me=(S,Pe) be the DTMC that models execution of the autonomous
system subject to environment condition e.

6 This is a confusion matrix when S=Y .
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A scenario is a pair (e,H)∈E×N that comprises an environment condition and a
time horizon. Semantically, each scenario induces a map J(e,H)K :Dist(S)→Dist(S)
defined as

J(e,H)K(x):=xPH
e

that maps a distribution x∈Dist(S) to the transient distribution reached after taking
H steps in Me.

To model transitions between environment conditions, we consider non-empty
sequences of scenarios. Each scenario is also a scenario sequence. Given two scenario
sequences w1 and w2, the sequential composition w1;w2 is also a scenario sequence.
Sequential composition is associative. Semantically, we define Jw1;w2K :Dist(S)→
Dist(S) inductively as:

Jw;w′K :=Jw′K◦JwK

Scenario Summary. When representing the semantics JwK of a scenario w=(e,H),
we find it useful to treat the error state serr in a special manner as this facilitates the
compositional analysis presented in Section 3.2. To treat the error state separately,
we first partition the state space S of Me as S = S ⊔{serr}. Then, our explicit
representation of J(e,H)K takes the form of the summary (A,b), such that for any
initial distribution x∈Dist(S) (we assume here that the initial distribution places
no weight on serr), executing the scenario (e,H) causes the autonomous system to
transition to the error state with probability x·b and induces the subdistribution7

xA∈SDist(S) over the non-error states. Since we assume that the error state is
absorbing, the error probability x·b is the probability that the system reaches the
error state at any timestep during the scenario. The summary (A,b) of an atomic
scenario w=(e,H) is related to the stochastic matrix Pe as follows:[

A b
0 1

]
=PH

e

We lift the definition of summary to scenario sequences inductively. If a scenario
w has summary C, then the singleton scenario sequence w also has summary C. If
the scenario sequences w1 and w2 have summaries C1=(A1,b1) and C2=(A2,b2),
respectively, then the scenario sequence w1;w2 has the summary C1C2=(A1A2,b1+
A1b2). This composition is well-defined because each summary is defined with respect
to the set of system states S, which is common to all scenarios.

3 Compositional Analysis with Scenario Summaries

We analyze the probability that the autonomous system will reach the distinguished
error state serr during the execution of a scenario sequence. We propose two types of
analysis: (1) a symbolic analysis that provides a tight analysis of the error probability
of a fixed scenario sequence with respect to a symbolic precondition and (2) a novel
acceleration rule that can be used to derive an upper bound on error probability
that is parametric with respect to the length of an arbitrary interleaving of a set of
scenarios.
7 A subdistribution x∈SDist(S) may have |x|<1.
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3.1 Symbolic Analysis of Fixed Scenarios

For a fixed scenario sequencew with summary (A,b), the expression x·b represents the
probability that the autonomous system will reach the error state when started from
an initial state distribution x. This linear expression allows us to efficiently perform
forward and backward analyses that relate preconditions over initial distributions
with bounds on error probability.

Forward Analysis. A domain expert may identify a precondition ϕ over the
set of initial state distributions and wish to compute the worst-case probability of
reaching the error state during the execution of the scenario sequence from an initial
distribution x∈Dist(S) that satisfies ϕ. Recall that we represent each distribution as
a vector in R|S|. We consider preconditions that can be expressed as an intersection of
affine constraints, i.e. of the form xa1≤θ1∧...∧xad≤θd for some coefficient vectors
a1,...,ad∈R|S| and offset scalars θ1,...,θd∈R.

The worst-case error probability is given by the following linear program:

max
x

x·b

subject to x·ai≤θi, ∀i,∈{1,...,d}
x≥0,

∥x∥1=1.

where the first d constraints encode ϕ and the last two constraints enforce that
x represents a probability distribution. This linear program can be solved using
optimization software such as Gurobi [13].

Backward Analysis. If a domain expert provides a maximum allowable error
probability ϵ for the execution of the scenario sequence, the precondition ϕ :=x·b≤ϵ
is the weakest precondition over initial state distributions that ensures the error
probability does not exceed ϵ.

Comparison with PRISM. The symbolic analyses allow the domain expert to
reason about the error probability of the autonomous system with respect to a set of
initial distributions. This complements the analyses supported by the probabilistic
model checker PRISM, which permits forward analysis from a single initial state (or
finite set of initial states).

3.2 Acceleration Rules

The aforementioned analyses are useful when the domain expert fixes a particular
scenario sequence to consider. However, such foresight is not always possible. To
address this, we introduce novel acceleration rules that allow us to bound the
probability of error without fixing the length of the scenario sequence or the order in
which the scenarios appear a priori. with respect to an unpredictable sequence of
environment conditions.



Scenario-based Compositional Verification of Autonomous Systems 9

Hoare-style Assertions. We reason about scenario sequences using Hoare-style
assertions with special treatment of error states. An assertion is a quadruple of the
form {ϕ}C{ψ}{ϵ} where C ≡ (A,b) denotes the summary of a scenario sequence,
the precondition ϕ and postcondition ψ are predicates over Dist(S) expressed as
intersections of affine constraints over R|S| and 0≤ ϵ≤1 is the required bound on
error probability. We write ϕ(x) when x satisfies ϕ. The assertion {ϕ}C{ψ}{ϵ} holds
exactly when

∀x∈Dist(S),ϕ(x)⇒x·b≤ϵ∧ψ(norm(xA))

Here norm is an operation that (L1) normalizes a subdistribution to make it a proper
distribution, i.e., norm(x)= x

|x| We normalize the output sub-distribution xA of C
as ψ is defined with respect to Dist(S). Given the explicit summary of the scenario,
such assertions can be checked efficiently using an off-the shelf solver, such as Z3 [9]
as we will show in the following example.

Example. Consider the scenario with summary C≡(A,b) shown below:

A=

[
0.6 0.2
0.2 0.7

]
b=

[
0.2
0.1

] s1 s2

serr

0.6

0.2

0.2

0.7

0.2
0.1

1

Let x = [x1,x2] denote an initial distribution over the system states s1 and s2.
Upon executing the scenario, the probability of transitioning to error state is x·b=
0.2x1+0.1x2 and the resulting distribution over the system states (conditioned on
not reaching serr) will be:

x′=norm(xA)=
xA

1−x·b
=
[0.6x1+0.2x2,0.2x1+0.7x2]

(1−(0.2x1+0.1x2))

Let us consider the precondition ϕ :=x1≤0.7∧x2≤0.7. We will show how to check
the assertion {ϕ}C{ϕ}{0.15} using Z3.

We can encode the set of distributions that satisfy ϕ as a polyhedron in R|S| with
H-representation Mϕx

⊤≤θϕ for some 6×2 matrix Mϕ and 6-dimensional vector θϕ
of offsets. The H-representation comprises 6 inequalities since four inequalities define
the subset of R|S| that represents Dist(S) and the predicate ϕ contains two additional
constraints. In order to check whether ϕ(x)⇒x·b≤ϵ∧ψ(norm(xA)) we can ask Z3
whether Mϕx

⊤≤θϕ∧¬(x·b≤0.15) and Mϕx
⊤≤θϕ∧¬(M(norm(xA))⊤≤θX) are

both unsatisfiable. If both are unsatisfiable (as they are for this example), then we
can conclude {ϕ}C{ϕ}{0.15}.

Rule for Sequential Composition. The building block for our acceleration rules is
the following compositional rule which bounds the error probability for the sequential
composition of two scenarios.
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{ϕ}C{ψ}{ϵ},{ϕ′}C′{ψ′}{ϵ′},ψ=⇒ ϕ′

{ϕ}CC′{ψ′}{1−(1−ϵ)(1−ϵ′)}
Rule 1

Rule 1 generalizes to our first acceleration rule, whereCk is shorthand for sequential
composition of C applied k∈N times

{ϕ}C{ϕ}{ϵ}
{ϕ}Ck{ϕ}{1−(1−ϵ)k}

Rule 2

Rule 2 can be seen as a family of rules (parameterized by k) that provides a recipe
for bounding the error probability of a k-ary sequential composition. A user only
needs to prove the premise of the rule once (using constraint solving as described
above) and can then apply the rule to obtain a bound on error probability for any
desired k. We are now ready to present our main acceleration rule that generalizes
the preceding rules:

{ϕ}C1{ϕ}{ϵ},...,{ϕ}Cm{ϕ}{ϵ}
{ϕ}(C1|...|Cm)k{ϕ}{1−(1−ϵ)k}

Rule 3

Using Rule 3, we can estimate the error probability for scenarios formed through
arbitrary sequential compositions of C1, C2, Cm up to length k (here we use ‘|’ to
represent choice). Like Rule 2, Rule 3 can be seen as a family of rules; it provides a
recipe for bounding the error probability for sequences of scenarios of length k that
can be generated from the regular expression (C1|...|Cm)k.

Note also that while the above rules are sound (see Appendix A for proofs) the
error bound is not tight. Nevertheless, the acceleration rules give a domain expert the
flexibility to efficiently bound the error probability for scenario sequences, without a
priori knowing the sequence length or the order of scenarios.

Choice of ϕ and ϵ. To apply Rule 3, we must find a precondition ϕ and ϵ∈R that
satisfy the rule’s premise. This ϕ needs to be “invariant” in the sense that ϕ serves
as both a pre- and post-condition. We can use Z3 to check whether a particular ϕ
satisfies the rule’s premise as described in the context of our example above. Before
introducing our heuristic search to find an invariant ϕ, we note that the vacuous
precondition ϕ=⊤ satisfies Rule 3’s premise {ϕ}C1{ϕ}{ϵ},...,{ϕ}Cm{ϕ}{ϵ} when ϵ
is chosen as:

ϵ= max
i∈{1,...,m}

(||bi||∞)

where Ci≡(Ai,bi) for each i. This ϵ is the worst-case local error probability achieved
from any initial distribution by any Ci. In practice, this ϵ may be too high to provide
a useful safety guarantee.

We describe our heuristic search for an invariant ϕ that allows us to apply Rule 3
to bound the error probability of arbitrary sequential compositions of a finite set of
scenario sequences with summaries (A1,b1),...,(Am,bm). We use the same procedure
in the context of Rule 2, which is equivalent to Rule 3 when m= 1. Our search
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TaxiNet Accuracy (Bright)

(0,0) (0,1) (0,2) (1,0)

...

(0,0) 964 44 30 18
(0,1) 4 233 0 2
(0,2) 3 1 258 0
(1,0) 45 39 3 475

···

TaxiNet Accuracy (Bright)

(0,0) (0,1) (0,2) (1,0)

...

(0,0) 499 621 14 13
(0,1) 1 473 0 3
(0,2) 188 23 84 0
(1,0) 203 765 1 125

···
Table 1: Excerpted rows and columns from the TaxiNet bright (left) and dark (right)
confusion matrices. The rows and columns are labeled by states, expressed as (cte,he) pairs.

considers only the preconditions that are weakest preconditions with respect to a
particular value of ϵ.

1. Choose desired local error probability 0≤ϵ≤1 and define ϕ :=∧i∈{1,...,m}x·bi≤ϵ.
2. Check whether ∀i∈{1,...,m},∀x∈Dist(S),ϕ(x)⇒ϕ( xAi

1−x·bi ) using a numerical
solver such as Z3.

3. If the check from the previous step succeeds, then ϕ is an invariant precondition
and we are done. Otherwise, we return to step 1 and choose a different, higher
value of ϵ.

4 Experimental Evaluation

We apply our analysis techniques to two case studies, one based on the real-world
TaxiNet perception system and another based on a simulated F1Tenth race car.

TaxiNet. TaxiNet is a neural network used for perception in an experimental system
developed by Boeing for autonomous centerline tracking on airport taxiways. It takes
as input a picture of taxiway and estimates the plane’s position with respect to the
centerline in terms of two outputs: cross track error (cte), which is the distance in
meters of the plane from the centerline and heading error (he), which is the angle
of the plane with respect to the centerline. This regression is performed by a DNN
containing 24 layers including five convolution layers and three dense layers (with
100/50/10 ELU neurons) before the output layer. The resulting state estimates are
fed to a controller, which maneuvers the plane to follow the centerline. Error is defined
as excessive deviation from the centerline. We analyze a discretized version of the
system, for details see Appendix B.1.

Prior work [28] builds a probabilistic abstraction of perception based on the
performance of TaxiNet on a dataset provided by Boeing, and performs an analysis
of the closed-loop system to estimate the probability of error In our current work,
we refine this analysis by first partitioning the dataset into a bright dataset and a
dark dataset, then building a separate probabilistic abstraction of perception for each
condition.

Table 1 shows excerpts from the confusion matrices made from the bright and
dark partitions. Interestingly, the frequency and kind of misclassifications is markedly
different between lighting conditions. To investigate how different lighting conditions
(and transitions between lighting conditions) affect system level safety, we construct
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two scenarios bright=(bright,20) and dark=(dark,20) that represent execution of
the autonomous system for 20 timesteps in bright or dark lighting, respectively and
apply the compositional analysis techniques introduced in Section 3. To provide a
point of comparison with prior work that builds a single probabilistic abstraction, [28],
we also consider a pooled environment condition, which corresponds to the lighting
condition being identically distributed at each timestep, proportionately to the
frequency of light vs. dark images in the original, unpartitioned dataset. We define the
scenario pooled=(pooled,20) to demonstrate that our bright and dark scenarios
permit a refined analysis.

F1Tenth. Our second case study is inspired by the F1Tenth autonomous racing
competition [27], in which a model race car navigates a track. In particular, we analyze
an idealized discrete-state model of driving dynamics. The car’s Sensor produces
21-dimensional LiDAR observations, which are processed by a multilayer perceptron
with ReLU activations, two hidden layers, and 128 neurons per hidden layer, to
produce state estimates. We trained the MLP using 1000 simulated observations
gathered from each system state in each track segment and evaluated its performance
using a separate, identically constructed dataset. Each simulated LiDAR observation
was constructed from a position sampled uniformly within a small L1 radius of the
discrete state’s canonical position.

Inspired by [20], we consider the set of environment conditions to be the set
of track segments, i.e. E = {left,right,straight} and define the scenarios left =
(left,30), right=(right,30), and straight=(straight,30). We allow the Dynamics
f :E×S×U→S and Controller g :E×Y →U to condition their behavior on the
current environment condition. The dependency of f on the current track segment
is necessary to model the track configuration; the dependency of g on the current
track segment corresponds to a controller equipped with a perfect mode predictor
that identifies the current scenario.

The meaning of a state (posside,posfront ,heading,τ)∈S\{serr} is defined with
respect to the current scenario and diagrammed in Figure 4. The components are:

– posside∈{−7,...,7}, which denotes sideways position.
– posfront ∈{0,...,16}, which denotes front/back position.
– heading ∈{0,...7} which denotes the car’s heading, measured in increments of
π/4 radians where heading=0 denotes facing towards the front wall.

– τ∈{1,...,30} which denotes the timesteps spent in the current scenario.

The set of control inputs are U={−1,0,1} which represent adjustments to the current
heading. At each timestep, the car’s heading is updated based on the control input u.
Then, the car moves one grid-position in the direction of the updated heading.

To model walls and the final goal of each track segment, we define the subsets of
the car positions as shown in Figure 4. During the left scenario, the car’s goal is to
reach the final region Fleft. Failure to reach the final region Fleft in 30 timesteps triggers
a transition to serr, as does attempting to enter any position not in Track∪Track left .
This is defined similarly for the other track segments, for complete details, including
technical treatment of the transitions between track segments, see Appendix B.2.
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Fig. 4: Each F1Tenth scenario corresponds to a track segment.

4.1 Implementation

We adapt the PRISM model construction of [28] to allow us to compute a summary
for each atomic scenario. The PRISM construction reflects the system decomposition
illustrated in Figure 1. In particular, the PRISM model takes three timesteps (one for
the learning-enabled components, one for the Controller, and one for the Dynamics)
to model one timestep of the autonomous system. This coordination is mediated by
bookkeeping variables, for details, see Appendix B.

Consider an autonomous system with state set S and the atomic scenarios
(e1,H1),...,(em,Hm). Our PRISM model contains a set of variables VS such that each
valuation to VS uniquely determines a system state s∈S. Our model also contains a
variable scenario that maintains the index i∈{1,...,m} of the current scenario and
a variable timer that maintains the timestep of the original autonomous system. To
model the horizon of each scenario we define the PRISM formula exit_condition as
! error & ((scenario = 0 & timer = H_i) | ... | (scenario = m & timer
= H_m)) and ensure that each PRISM state that satisfies exit_condition has no
outgoing transitions. To compute the summary (Ai,bi) of scenario (ei,Hi), we do the
following for each s∈S:

1. Modify the PRISM model so that initially scenario= i, timer= 1 and the
valuation to VS determines s.

2. For each s′∈S, execute the PRISM query P=? F[exit_condition & s′] and
fill this value into Ai(s,s

′). In the preceding PRISM query, s′ stands for the state
predicate that holds iff the valuation to VS determines s′.

3. Execute the PRISM query P=? F[error] and fill this value into bi(s).

4.2 Fixed Scenario Analysis

We apply the analysis techniques described in Section 3.1 to fixed sequences of the
scenarios bright and dark from the TaxiNet case study to explore how a shift in
lighting conditions affects system level safety. For the F1Tenth case study, we consider
sequences of the scenarios straight, left, and right that represent different track
configurations.
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TaxiNet

ϕtaxi
nominal ϕ

taxi
center ϕtaxi

right

bright;bright 0.030 0.099 0.215
bright;dark 0.323 0.371 0.452
dark;bright 0.368 0.570 0.455
dark;dark 0.551 0.694 0.613

pooled;pooled 0.307 0.462 0.399

F1Tenth

ϕf1tenth
nominal ϕ

f1tenth
center ϕf1tenth

right

l;l;l;l 0.338 0.586 0.804
r;r;r;r 0.069 0.118 0.213
s;s;s;s 0.00 0.00 0.00
r;s;s;l 0.514 0.522 0.513
r;s;s;r 0.060 0.110 0.203

Table 2: Forward analysis for TaxiNet (left) and F1Tenth (right). For each scenario
sequence, we report the worst-case error probability given a precondition over the initial state
distribution. In F1Tenth, l, r, and s abbreviate left, right, and straight, respectively.

Forward Analysis. For the forward analysis, we define preconditions over the initial
state distribution and report the worst-case error probability in Table 2. For TaxiNet,
we consider the precondition ϕtaxinominal that requires the airplane to start with heading
error and cross track error both equal to 0 with probability > 0.9, the more lax
precondition ϕtaxicenter that merely requires the airplane to start close to the center
of the runway with probability >0.9, and the precondition ϕtaxiright that requires the
airplane to start on the far right side of the runway with probability >0.9. We encode
these preconditions as affine constraints. For some boolean-valued expression ψ over
the variables cte and he we let aψ denote the indicator vector such that aψ(s)=1 iff
a valuation to PRISM variables that determines s satisfies ψ.

ϕtaxinominal=xacte≠0∨he≠0≤0.1

ϕtaxicenter =xacte>2≤0.1

ϕtaxiright=xacte≠4≤0.1

We define the analogous preconditions ϕf1tenthnominal , ϕ
f1tenth
center , and ϕf1tenthright for the F1Tenth

case study. As a technical detail, each F1Tenth precondition refines the precondition
ϕf1tenthforward , which ensures the car at the beginning of the track segment and facing
within π/4 radians of straight forward with probability 1.

ϕf1tenthforward=xa|posside|>2∨1<heading<7∨τ≠0∨posfront≠15≤0

ϕf1tenthnominal=ϕ
f1tenth
forward∧xaposside≠0∨heading≠0≤0.1,

ϕf1tenthcenter =ϕf1tenthforward∧xa|posside|>1≤0.1,

ϕf1tenthright =ϕf1tenthforward∧xaposside≠2≤0.1.

Environment Conditions. In the TaxiNet case study, the sequence bright;bright
has low error probability, which shows that the learning-enabled component and
controller work well in well-lit conditions. On the other hand, each sequence that
includes the dark scenario has extremely high error probability. This dependence
on light conditions would not have been detectable if we had not built separate
probabilistic abstractions of perception for light and dark operating conditions. We
include hypothetical results based on the naive probabilistic abstraction of perception
that pools data collected in both bright and dark conditions as the scenario sequence
pooled;pooled.
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Fig. 5: Error probability by initial point distribution for bright;bright and dark scenarios.
Initial point distributions that ensure error probability at most 0.305, 0.05 and 0.01 are
highlighted in gray, blue, and green, respectively.

Similarly, we observe that when started from an initial state distribution that
satisfies ϕf1tenthnominal , the F1Tenth car achieves low worst case error probability (0.069)
for the track configuration r;r;r;r but a relatively high worst case error probability
(0.338) for l;l;l;l. A system designer could use this information to understand
that it may be acceptable to deploy the car on a track that loops clockwise, but the
system should be retooled before deployment on a counterclockwise loop.

Initial Distributions. Our forward analysis also shows how the initial state distribu-
tion affects system-level safety. This effect is best illustrated in the F1Tenth case
study. Returning to Table 2, we observe that the precondition ϕf1tenthnominal ensures the
lowest error probability of any of the considered preconditions for each scenario that
we consider. Some scenarios, namely namely s;s;s;s and r;s;s;l are relatively
robust to less-than-ideal initial distributions and exhibit a similar worst-case error
probability for the more lax precondition ϕf1tenthcenter as they do for the strict ϕf1tenthnominal .
Interestingly, we also observe that ϕf1tenthright , which requires the car to start on the
right side of the track with probability >0.9 leads to extremely high error probability
for the scenario l;l;l;l in which the car must navigate a counterclockwise loop.
Our forward analysis can help a system designer discover which combinations of
track segments and initial state distributions will permit safe deployment of the
autonomous system. The results from our F1Tenth case study would cause a system
designer to focus on improving performance on track configurations that include
left turn segments.

Backward Analysis. For the backward analysis, we assume that the domain expert
provides a scenario sequence along with a maximum allowable error probability ϵ for
the entire execution of the scenario sequence. We then compute the summary (A,b)
of the scenario sequence and observe that the weakest precondition that ensures the
error probability does not exceed ϵ is ϕϵ :=x·b≤ϵ. We visualize these preconditions in
Figure 5 by highlighting the set of point distributions that ensure error probabilities
less than 0.305, 0.05, and 0.01 for the scenario sequence bright;bright and the
(singleton) scenario sequence dark.
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Fig. 6: Time needed to construct the error coefficients vector b using our compositional
approach vs. a non-compositional application of PRISM’s Experiments feature. For our
approach, we report the time needed for the one-time summary generation, which can then
be composed with minimal overhead for any sequence of scenarios. For PRISM experiments,
we report the time needed to compute b for fixed scenario sequences of varying length. For
TaxiNet we chose scenario sequences containing only bright, for F1Tenth we chose scenario
sequences containing only right.

Computational Overhead. Both the forward and backward analyses are very
computationally efficient, assuming that the summary of each atomic scenario has
already been computed. The linear programs generated during our forward analysis
can be quickly solved by Gurobi; it took less than 0.2 seconds to compute all the values
in Table 2. The backward analysis requires no computation beyond the construction
of b. The upfront summary computation only needs to be performed once per atomic
scenario. Generating all summaries for the TaxiNet and F1Tenth case studies took
79.56 seconds and 360.86 seconds, respectively.8

Our analyses consider sets of initial distributions, which are not naturally express-
ible in PRISM, so a direct comparison of computational efficiency vs. PRISM is not
possible. However, one could use PRISM compute the error probability coefficients b
by first building a monolithic DTMC that represents the execution of a particular
scenario, then using either (1) PRISM’s parametric model checking feature or (2)
PRISM’s experiments feature. Neither method scales gracefully: for our TaxiNet case
study using parametric model checking to compute b for the scenario bright takes
6.912 seconds and exceeds PRISM’s default 1GB of allocated RAM for bright;
bright. PRISM’s experiments feature can calculate b for bright;bright in 7.027s,
however computing b for the long scenario bright64 takes 481.692s much more
than the ∼79.56 seconds needed by our approach. We visualize the computational
scalability in Figure 6.

4.3 Using the Acceleration Rule

The acceleration rules introduced in Section 3.2 allow us to bound error probability of
sequence scenarios, without putting an a priori bound on sequence length. Empirically,
we find that our procedure to guess invariant preconditions works well for our case

8 All durations are reported based on single-threaded execution using a commodity laptop
with a 2 GHZ processor.
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studies. Out of all of our singleton scenario sequences (bright, dark, straight,
left, and right) and the ϵ values {0,0.01,0.02,...0.99}, the only instances where our
guessed ϕϵ did not satisfy the premise of Rule 2 were:

– TaxiNet’s dark scenario with the ϵ values 0.27, 0.28, 0.29, and 0.30.
– F1Tenths’s left scenario with 0.02≤ϵ≤0.13.
– F1Tenth’s right scenario with ϵ values 0.00, 0.01, and 0.02.

Acceleration. Practically, the procedure yields an upper bound on the error prob-
ability of an unbounded sequential iteration of a single scenario. For example, for
a desired local error probability of ϵ=0.01, we apply Rule 2 to TaxiNet’s bright
scenario with ϕ=x·bbright≤0.01 to prove:

{ϕ}(bright)k{ϕ}{1−(1−0.01)k}

for any k∈N. This bound on error probability is parametric in the number of iterated
executions of the bright scenario. Though not necessarily tight, such a parametric
upper bound can help a system designer reason about how the cumulative probability
of error increases during the execution of the autonomous system.

Rule 2 is particularly useful for autonomous systems that can maintain perfect
safety. In our F1Tenth case study, we found that for the straight scenario, the
precondition ϕ=x·bstraight≤0 is invariant, so we can prove:

{ϕ}(straight)k{ϕ}{0}

for any k. The precondition ϕ is actually quite permissive, in particular, it is more
permissive than any of ϕf1tenthnominal , ϕ

f1tenth
center , and ϕf1tenthright introduced in Section 3.1.

Acceleration with Choice. For the more complex Rule 3, once again, we found
that our proposed procedure successfully finds recurrent preconditions in the context
of our case studies. For the TaxiNet case study, applying this procedure for ϵ=0.306
and ϕ0.306 :=x·bbright≤0.306∧x·bdark≤0.306 allows us to prove:

{ϕ0.306}(bright|dark)k{ϕ0.306}{1−(1−0.306)k}

this form of error bound is useful to a system designer who cannot predict the
sequence of atomic scenarios the autonomous system will encounter during operation.
We plot this upper bound on error probability against the true error probability of
an adversarially chosen scenario sequence in Figure 7.

In the context of the F1Tenth case study, Rule 3 lets us derive an error bound
for arbitrary track configurations. Importantly, we only need to collect datasets for
each atomic scenario and our compositional reasoning allows us to generalize our
guarantee to any track configuration formed from these atomic scenarios. Trying our
procedure to guess an invariant precondition that satisfies the premise of Rule 3 for
the scenarios left, right, and straight, we found that for ϵ∈{0.74,0.75,...,0.99}
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Fig. 7: The error bounds found by applications of Rule 3 vs. true worst-case error probability.
For the worst case error probabilities, we consider all possible scensario interleavings and all
starting distributions that satisfy the precondition ϕϵ used in our application of Rule 3..

the precondition ϕϵ := x ·bleft ≤ ϵ∧x ·bright ≤ ϵ∧x ·bstraight ≤ ϵ is invariant and
nontrivial. We can thus conclude:

{ϕ0.74}(left|right|straight)k{ϕ0.74}{1−(1−0.74)k}

This bound allows extremely high error probability. A domain expert might restrict
the deployment of the autonomous car to tracks formed from right and straight
segments. Here, we find that ϕϵ := x ·bright ≤ ϵ∧x ·bstraight ≤ ϵ is nontrivial and
invariant for ϵ∈{0.13,0.14,...,0.99}. In particular, we can conclude

{ϕ0.13}(right|straight)k{ϕ0.13}{1−(1−0.13)k}

Concerning the relatively high error probabilities, we currently work with high-level
abstractions of actual systems so computed error probabilities should be taken with a
grain of salt. Still, our acceleration rules can reveal useful trends to system developers.
Moreover, we expect lower error probabilities when applied to more accurate models
of real-world systems; the analysis of fixed scenario sequences (Section 3.1) is tight.

5 Conclusion

Our verification framework decomposes the autonomous system and its operating
conditions into scenarios to enable efficient probabilistic analysis. Our compositional
proof rules enable system designers to obtain a bound on error probability that is
parametric with respect to the length of an arbitrary interleaving of scenarios, which
is useful for reasoning about the system under unpredictable changes in operating
conditions. In future work, we plan to investigate more nuanced approaches to discover
the invariant preconditions that enable application of our acceleration rule.

Building a probabilistic abstraction of perception with respect to a discretized
state space can introduce inaccuracies. In our work, we avoid this concern by assuming
that the distribution of state estimates yielded by the learning-enabled component
is uniquely determined by the current environment condition and (discrete) state.
In future work we plan to develop (possibly symbolic) abstractions of perception
for continuous-state system models and to account for distribution shifts that are
continuous, instead of discrete as we do here.
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A Soundness Proofs

We prove soundness of the rules introduced in Section 3.2 with respect to the definition
of sequential composition of summaries found at the end of Section 2.2.

{ϕ}C{ψ}{ϵ},{ϕ′}C′{ψ′}{ϵ′},ψ=⇒ ϕ′

{ϕ}CC′{ψ′}{1−(1−ϵ)(1−ϵ′)}
Rule 1

Proof. Let C≡(A,b) and C′≡(A′,b′).
By the definition of sequential composition of scenarios, we know CC′≡(AA′,b+Ab.
We prove the two obligations:

– To show that ϕ(x)⇒ψ′(norm(xAA′))we fixxw.l.o.g. and apply the first premise
to obtain ψ(norm(xA)). We then apply the third premise to obtain ϕ(norm(xA))
and the second premise to obtain ψ′(norm(norm(xA)A′)). Expansion of the
definition of norm and algebraic manipulation completes this branch of the proof.

– To show that ϕ(x)→xb+xAb′ ≤ 1−(1−ϵ)(1−ϵ′) we fix x w.l.o.g. Next we
observe that xb+xAb′=xb+(1−xb)xAb′ by the definition of norm and of
a summary. We can rewrite this as 1−(1−xb)(1−norm(xA)b′). So it suffices
to show 1− (1−xb)(1−norm(xA)b′)≤ 1− (1− ϵ)(1− ϵ′). Premise 1 lets us
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bound xb≤ ϵ and premise 2 lets us bound norm(xA)b′≤ ϵ′ so we can bound
(1−xb)≥1−ϵ and 1−norm(xA)b′≥1−ϵ′. Together these imply the desired
bound.

{ϕ}C{ϕ}{ϵ}
{ϕ}Ck{ϕ}{1−(1−ϵ)k}

Rule 2

Proof. Direct application of Rule 3, which we prove below.
{ϕ}C1{ϕ}{ϵ},...,{ϕ}Cℓ{ϕ}{ϵ}

{ϕ}(C1|...|Cm)k{ϕ}{ϵ}}
Rule 3

Proof. By induction over k. The case k=1 is immediate and the case k=2 follows by
Rule 1. For the inductive step, assume w.l.o.g. that the conclusion of this instance of
Rule 3 is {ϕ}Ci1...Cik−1

Cik{ϕ}{1−(1−ϵ)k}. By the inductive hypothesis, we know
{ϕ}Ci1...Cik−1

{ϕ}{1−(1−ϵ)(k−1)}, so we can apply Rule 1 to complete the proof.

B PRISM Model Construction

We provide additional details about the our PRISM model construction introduced
in Section 4.1 and adapted from [28]. Assume that we are modeling an autonomous
system in which the dynamics uses state set S, the perception model outputs state
estimates from Y , the controller issues commands from U , and there are m distinct
scenarios which we will refer to by the counting numbers {1,...,m}. For each scenario
i, we denote the probabilistic abstraction of perception as αi :S→Dist(Y ) the time
horizon as Hi∈N. Let Hmax denote maxi∈{1,...,m}(Hi).

Our PRISM model has a set of state variables V which can be partitioned as
V = VS⊔VY ⊔VU ⊔{pc,scenario,timer}. Each valuation VS, VY , or VU uniquely
determines an element of S, Y , or U, respectively. For each s∈ S, we write s as
shorthand for the PRISM state predicate that evaluates to true exactly when the
current valuation of VS determines s.

Our construction introduces a program counter variable pc with range {0,1,2}, a
variable scenario with range {1,...,m}, and a variable timer with range {1,...,Hmax}.
PRISM indexes timesteps starting at 0. We maintain pc and timer such that at
PRISM timestep t, we have pc=mod(t,3) and timer=min(quotient(t,3)+1,Hmax).
The other variables are updated as follows:
– Perception: When pc=0, the valuation of VY will be updated according to the

valuation of VS and on the next step. This update’s transition probabilities are
given by the probabilistic abstraction for the current scenario, which we represent
using the value of scenario. The value of scenario is never updated, later on
we will explain how we initialize the value of scenario to compute each summary.

– Controller: When pc = 1, the valuation of VU is updated according to the
valuation of VY .

– Dynamics: When pc = 2, the valuation of VS is updated according to the
valuation of VU and the current valuation of VS.

We can now apply the summary generation technique detailed in Section 4.1 to this
model.
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B.1 Additional TaxiNet Details

For the purpose of our analysis, we discretize TaxiNet’s outputs and treat it as a
classifier. cte ∈ [-8.0 m, 8.0 m] and he ∈ [-35.0 deg, 35.0 deg] are translated into cte
∈ 0, 1, 2, 3, 4 and he ∈ 0, 1, 2 as shown below.

cte=



3 if −8.0 m <=cte<−4.8 m
1 if −4.8 m <=cte<−1.6 m
0 if −1.6 m <=cte<=1.6 m
2 if 1.6 m <cte<=4.8 m
4 if 4.8 m <cte<=8.0 m

he=


1 if −35.0 deg <=he<−11.67 deg

0 if −11.67 deg <=he<=11.66 deg

2 if 11.66 deg <he<=35.0 deg

Yielding the discretized set of system states S :=[0..4]×[0..2]. Any airplane position
with in which the magnitude of the cross-track error exceeds 8m or the magnitude of
the heading error exceeds 35◦ represents the error state serr.

B.2 Additional F1Tenth Details

We provide additional details about the F1Tenth case study. At each timestep, the
car’s heading heading is updated based on the control input u. Then, the car moves
one grid-position in the direction of the updated heading. The dynamics function
f :E×S×U also accounts for walls and transitions between track segments.

We define one scenario (e,30) for each track segment e. We wish for the scenario
(e,30) to end when the car reaches the end of the current track segment, which we
represent as Fe. This requires careful definition of the dynamics function, since the
car may take more or less than the horizon value of 30 timesteps to reach Fe. We
present pseudocode for the dynamics function in f. At a high level, we introduce
a time limit 30 and transition to serr if the car does not reach Fe in fewer than 30
steps. To address cars that reach Fe in less than 30 timesteps, we stop updating the
position and heading of the car until the start of the next scenario.

We built a Controller g :E×Y →U. The dependence on Y corresponds to the
autonomous system being equipped with an oracle that detects which track segment
is being navigated currently. This controller can navigate each track segment safely
when it recieves the ground-truth state estimate at each timestep and begins from
an initial state with heading heading=0. When operating under these conditions,
the controller completes each track segment with its heading such that it starts the
next segment with heading=0. This implies that the controller can safely navigate
any sequence of track segments assuming perfect behavior of the learning-enabled
component.
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Algorithm 2: F1Tenth Dynamics
Input: Track segment e∈E; Current state s∈S; control input u∈U
Output: Next state s′∈S

1 if s=serr then
2 return serr
3 else
4 (posside,posfront ,heading,τ)←s;
5 if τ <30 then
6 heading′←mod(heading+u,8);
7 pos′side←posside−1{1,2,3}(heading)+1{5,6,7}(heading);
8 pos′front←posfront−1{0,1,7}(heading)+1{3,4,5}(heading);
9 (pos′side,pos

′
front)←fpos((posside,posfront ,heading),u);

10 else if (pos′side,pos
′
front)∈Track∪Tracke∪Fe then

11 return (pos′side,pos
′
front ,heading

′,τ+1);
12 else
13 return serr;
14 else if (posside,posfront)∈Fe then
15 if e=left then
16 return (3−posfront ,15,mod(heading−2,8),1);
17 else if e=right then
18 return (posfront−3,15,mod(heading+2,8),1);
19 else
20 return (posside,15,heading,1);
21 else
22 return serr


