
13

Executing Microservice Applications on Serverless, Correctly

KONSTANTINOS KALLAS∗, University of Pennsylvania, USA

HAORAN ZHANG∗, University of Pennsylvania, USA

RAJEEV ALUR, University of Pennsylvania, USA

SEBASTIAN ANGEL, University of Pennsylvania & Microsoft Research, USA

VINCENT LIU, University of Pennsylvania, USA

While serverless platforms substantially simplify the provisioning, configuration, and management of cloud

applications, implementing correct services on top of these platforms can present significant challenges to

programmers. For example, serverless infrastructures introduce a host of failure modes that are not present

in traditional deployments. Individual serverless instances can fail while others continue to make progress,

correct but slow instances can be killed by the cloud provider as part of resource management, and providers

will often respond to such failures by re-executing requests. For functions with side-effects, these scenarios

can create behaviors that are not observable in serverful deployments.

In this paper, we propose µ2sls, a framework for implementing microservice applications on serverless

using standard Python code with two extra primitives: transactions and asynchronous calls. Our framework

orchestrates user-written services to address several challenges, such as failures and re-executions, and provides

formal guarantees that the generated serverless implementations are correct. To that end, we present a novel

service specification abstraction and formalization of serverless implementations that facilitate reasoning

about the correctness of a given application’s serverless implementation. This formalization forms the basis

of the µ2sls prototype, which we then use to develop a few real-world microservice applications and show

that the performance of the generated serverless implementations achieves significant scalability (3-5× the

throughput of a sequential implementation) while providing correctness guarantees in the context of faults,

re-execution, and concurrency.

CCS Concepts: • Software and its engineering → Correctness; Distributed programming languages;
Semantics; • Information systems→Web services; • Computer systems organization→ Cloud computing.

Additional Key Words and Phrases: microservices, stateful serverless, transactions

ACM Reference Format:
Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu. 2023. Executing Microser-

vice Applications on Serverless, Correctly. Proc. ACM Program. Lang. 7, POPL, Article 13 (January 2023),

29 pages. https://doi.org/10.1145/3571206

1 INTRODUCTION
For today’s internet and web services, a dominant architecture is that of microservices. Consider a
service like Facebook or a similar social network. While each user’s initial request may get routed

to a single frontend web server, an army of other machines and services—typically on the order of

hundreds—are also necessary to assemble the newsfeed, execute real-time advertisement auctions,

query a friend graph, and eventually compose the final response [Nazir et al. 2008]. Other modern

services (e.g., Google, Uber, etc.) exhibit similar patterns. Structuring applications as microservices

promotes modular design, quick iteration, and simple reuse of well-defined application pieces.

∗
The two marked authors contributed equally to the paper.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART13

https://doi.org/10.1145/3571206

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

HTTPS://ORCID.ORG/0000-0002-8984-6648
HTTPS://ORCID.ORG/0000-0002-5759-5637
HTTPS://ORCID.ORG/0000-0003-1733-7083
HTTPS://ORCID.ORG/0000-0002-3798-5590
HTTPS://ORCID.ORG/0000-0001-7683-208X
https://doi.org/10.1145/3571206
https://doi.org/10.1145/3571206

13:2 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

While developers might provision and manage a fixed number of machines (servers) to run each

of the above tasks (listening for incoming RPC requests in a loop, accepting them, processing them,

fetching any relevant state from a backend database, and returning a result), microservice tasks are

increasingly deployed using so-called serverless infrastructure. This style of service architecture—
enabled by cloud platforms like AWS Lambda, Azure Functions, and Google Cloud Functions—allows

programmers to break down their application into small units of functionality that cloud providers

then automatically distribute over the machines in their data centers. This frees programmers from

worrying about the prosaic but difficult tasks associated with provisioning, scaling, and maintaining

the underlying computational, storage, and network resources of the system; they, instead, only

need to focus on the logic executed on each request. This arrangement is also particularly beneficial

for customers from a business perspective because it outsources all liability to the service provider:

the cost of provisioning or load balancing mistakes is shouldered entirely by the cloud provider—the

customer only pays for the resources used when the functions execute.

While the above operational and cost benefits make serverless architectures an attractive alterna-

tive to traditional server-oriented deployment, implementing services on the new paradigm can be

challenging due to the fundamental differences in the architectures particularly when manipulating

state and recursion. For example, serverless instances are ephemeral, and therefore all persistent

data of an application needs to be stored and managed in external storage. Furthermore, serverless

infrastructures introduce a host of failure modes not present in traditional microservice deploy-

ments. Individual serverless instances can fail while others continue to make progress, correct but

slow instances can be killed by the cloud provider as part of resource management, and providers

will often respond to such failures by re-executing requests. In functions with side-effects, these

scenarios can create behaviors that are not observable in serverful deployments.

Indeed, many of the early successes in serverless computing were relatively simple applications

that could execute without the aid of either persistent state or supporting services and, thus, could

sidestep the above issues. However, recent academic work on stateful serverless frameworks [Jia

andWitchel 2021a,b; Sreekanti et al. 2020b; Zhang et al. 2020a,b] suggests that serverless computing

has broader applicability than those early use cases and that better programmer support is valuable.

This is not just an academic exercise: industry is investing significant resources in stateful serverless

as well [Amazon 2020; Bonér 2020; Burckhardt et al. 2021; Ray 2022; Temporal 2022].

To address the above challenges, we propose µ2sls, a framework for correctly implementing

microservice applications on serverless. Our framework allows developers to specify microservice

applications by writing simple Python code with two added primitives: transactions and asynchro-

nous service invocations. It then orchestrates this Python code with a runtime to correctly run on

Knative [Knative 2022], an open-source serverless platform, handling persistent state management

and providing transactional execution guarantees despite faults and concurrency in the serverless

platform. Our work is the first to support asynchronous calls inside transactions on serverless.

Prior work either: (1) only supports transactions that do not involve calls to other services [Jangda

et al. 2019], which prevents the expression of many applications; or (2) is restricted to synchronous

calls inside transactions [Zhang et al. 2020a], which exposes fewer opportunities for concurrency.

To ensure that our framework generates correct serverless implementations of the users’ microser-

vice applications, we formalize the source and target semantics and prove that any implementations

generated by our framework are correct with respect to their specifications. First, we give formal

semantics to service specifications, which correspond to the Python code that µ2sls supports and can

be used to develop microservice applications. We give formal semantics to microservice applications

defined using service specifications using a labeled transition system that keeps track of requests,

responses, and local and persistent state for each service; these semantics do not model failures or

low-level state management. We then give formal semantics to serverless (SLS) implementations of

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:3

service applications by defining a transition system that exposes serverless implementation details

such as faults, re-executions, and the decoupling of storage and compute.

To bridge the gap between service specifications and serverless implementations, µ2sls defines a

formal relationship between the two, describing (i) when an implementation is correct with respect

to a specification and (ii) how to generate correct implementations from a given specification. We

define correctness as observational refinement, i.e., any observable behavior of the implementation

can also be produced by the specification, and we prove that our framework generates correct

implementations using a simulation relation. To facilitate the proof of correctness, we introduce

an intermediate representation that captures state management concerns but not faults and re-

executions. Our formalization effort guided µ2sls’s implementation and uncovered two subtle

correctness issues, one affecting the atomicity of persistent updates in the context of transactions

and another that leads to half-committed results when combining asynchronous calls with trans-

actions. The implementation of µ2sls also identifies a few performance overheads and introduces

corresponding optimizations, such as creating a custom wrapper of Python builtin dictionaries to al-

low for higher concurrency, improving the performance of the formalized translation. Our prototype

implementation of µ2sls is open source and available for download: github.com/eniac/mu2sls.

In summary, our work makes the following contributions:

• A formalized service specification abstraction for stateful microservice applications that

supports asynchronous calls and transactions (Section 4) and a formalization of serverless

implementations of service applications (Section 6).

• A formal relationship that describes when a serverless implementation is correct with re-

spect to a service specification, as well as a proof that µ2sls generates correct serverless

implementations from service specifications (Sections 5 and 6)

• A prototype implementation of µ2sls that orchestrates applications defined using service

specifications to generate correct serverless implementations (Section 7). We used the pro-

totype to develop the microservice applications from the Deathstar Benchmark Suite [Gan

et al. 2019] and evaluated the latency and throughput characteristics of the generated imple-

mentations (Section 8).

2 BACKGROUND
Applications today often comprise various services, each of which handles an incoming request,

performs some small task, and returns a response. This microservice paradigm has many benefits

over prior (monolithic) architectures in which all functionality existed within a single component.

For example, microservices are modular, so they can be implemented in any language with any

features as long as they expose an appropriate API (e.g., REST). This also allows teams to design,

develop, scale, and optimize each microservice independently.

A common set of features used by microservices is:

• State. Microservices can be stateful and reuse state across requests; they may even persist

this state locally or remotely.

• Asynchronous calls. Due to the fact that each service implements limited functionality, services

need to call other services. They typically leverage asynchronous calls to contact multiple

services in parallel.

• Concurrency Control. Microservices commonly use multi-threading to ensure high throughput,

and they use standard techniques (e.g., locking, transactions) to ensure correct state handling.

They also sometimes use distributed transactions to perform atomic operations across services.

For example, a travel site might want to use a transaction when the customer books both a

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

https://github.com/eniac/mu2sls

13:4 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

hotel and a flight (each type handled by a different microservice), ensuring that either both

reservations succeed or neither does.

Microservices can be deployed on VMs in the cloud, but they are increasingly being deployed on

top of serverless platforms like AWS Lambda, Azure Functions, and Google’s Cloud Functions.

2.1 Serverless platforms
Serverless is a new paradigm that simplifies the development of applications by outsourcing most

of the resource management complexity. In serverless, the developer does not need to worry about

managing machines and VMs, routing and load balancing requests, scaling up or down resources,

updating the OS or runtime, etc. Instead, the developer simply uploads a function or “lambda” (e.g.,

Python code that implements some functionality) that is invoked on-demand via triggers such as an

HTTP request to a particular URL or a timer. Autoscaling happens automatically: when invocations

occur, the provider spawns the function on any of its available machines; when it completes, the

provider may tear down the function to free up resources. This makes functions ephemeral, which
is a primary reason why serverless functions store their state in an external database and query it

explicitly each time they need to access it. The delegation of scaling to the provider also enables

adaptive pricing; serverless is usually billed based on how long a function runs regardless of the

compute instances that have been spawned in the underlying infrastructure.

While early serverless applications were primarily stateless, the benefits of serverless (elasticity,

the delegation of operational concerns, and adaptive pricing) are fundamental and extend beyond

purely stateless behavior [Jonas et al. 2019]. There is strong evidence for the use of serverless for

stateful workloads in recent academic work on stateful serverless frameworks [Jia and Witchel

2021a,b; Klimovic et al. 2018; Sreekanti et al. 2020b; Zhang et al. 2020a,b], as well as recent industry

offerings [Amazon 2020; Bonér 2020; Burckhardt et al. 2021; Ray 2022; Temporal 2022].

Building microservice applications on serverless: Building a microservice application on

serverless requires addressing a variety of challenges. These include:

• State management. Developers need to pack all of the application’s state into data structures

that can be stored in a key-value (KV) store or relational database. This is error-prone and

requires effort. Since the state is stored in external services, users must deal with failed calls,

managing the connection to the service, authentication tokens, etc.

• At-least-once execution semantics. Cloud providers use retries to guarantee that a serverless

function is executed at least once. This leads to non-trivial complexity for stateful applications,

since developers must ensure that re-execution of a function does not corrupt the application’s

state (e.g., decrements a user’s account balance twice).

• Isolation and atomicity. When a cloud provider receives multiple requests for a serverless

function, the provider spawns multiple instances concurrently. If the function is stateful,

this will lead to concurrent accesses to the application’s state. It is the developer’s job to

ensure that such accesses are safe, whether through locks, concurrent data structures, or by

designing the application to work with weaker consistency semantics.

• Reasoning and testing. Debugging a stateful application that runs on a serverless platform

is difficult. Unit tests can give some idea of the basic functionality, while end-to-end tests

require a full deployment with various databases, serverless schedulers, etc. There is currently

no way to test for functional properties in a more controlled and scalable manner.

To summarize, the key challenge that developers face when running microservice applications

on existing serverless runtimes is finding a way to ensure that their application correctly guarantees
exactly-once execution semantics. That is, that their application behaves as if it were running on a

single fault-free server that processes requests exactly once despite the fact that the functions are

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:5

class Frontend(object):
async def request(self, user_id,

flight_id, hotel_id):
BeginTx()

Try to reserve a hotel and flight
hotel_f = AsyncInv('Hotel', 'res_hotel',

hotel_id, user_id)
flight_f = AsyncInv('Flight', 'res_flight',

flight_id, user_id)
h_ret, f_ret = await WaitAll(hotel_f, flight_f)

If any of the two failed abort the txn
if not (h_ret and f_ret):

AbortTx()
return (False, "Order Failed")

else:
CommitTx()

Place the order
SyncInvoke('Order', 'place_order',

user_id, flight_id, hotel_id)
return (True, "Order Successful")

class Hotel(object):
def __init__(self):

self.hotels = {} # type: Persistent[dict]

async def res_hotel(self, hotel_id, user_id):
Retrieve the hotel from the database
BeginTx()
hotel = self.hotels[hotel_id]

If there is capacity,
add the user in the hotel clients
if hotel.capacity > 0:

hotel.clients.append(user_id)
hotel.capacity -= 1
self.hotels[hotel_id] = hotel
ret = True

else:
ret = False

CommitTx()
return ret

Fig. 1. µ2sls code for two services of the travel application: the frontend (left) and the hotel service (right).
µ2sls’ library provides transaction APIs (BeginTx/CommitTx/AbortTx) and invocation APIs (SyncInv/AsyncIn-
voke/WaitAll) that work with Python’s built-in async/await syntax.

ephemeral, requests can be re-executed at any time (even after the original request completes), and

there is no way for the developer to control the number of concurrent instances of a function.

3 OVERVIEW
Our framework addresses the aforementioned challenges by allowing developers to write appli-

cations using service specifications, i.e., simple Python code with the addition of two primitives:

transactions and asynchronous service invocations. Our framework then orchestrates this code

to run correctly in a serverless environment, providing transactional and exactly-once execution

guarantees despite faults and concurrency in the underlying platform.

3.1 Example: Travel Reservation Application
Figure 1 shows the simplified code of two services from a travel reservation application (Cf. Expedia)

in our programming model (service specifications). The service on the left is the frontend that

handles incoming reservation requests, which could have been generated by a web app client.

The service on the right is a hotel reservation service that checks whether a hotel has adequate

capacity and then reserves a room for the user. This application was originally developed as a

serverful microservice application as part of the Deathstar Benchmark Suite [Gan et al. 2019], and

we reimplemented it in our setting using service specifications.

The application can be used to book both hotels and flights, and it ensures that a booking will

either succeed or fail for both, making sure that the user doesn’t book a hotel without securing a

flight to their destination. This is achieved by wrapping the flight and hotel bookings in a transaction

in the frontend; if both reservations succeed, the system can commit the transaction and send

a final invocation to an order service that places the final order and completes the reservation.

Otherwise, the transaction aborts, and a failed reservation message is returned to the user.

Service Specifications: Service specifications are structured as Python classes that support

several requests (their methods) and contain persistent state components (fields marked with a

Persistent type). We chose type comments as non-invasive lightweight annotations to indicate

the persistent fields so that the same code can be easily used in other contexts without requiring

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:6 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

get, set

Pending Requests
Pending Responses
Request State Map
KV Store

Service
Specification

Intermediate
Representation

Serverless
Implementation

Features

Async Calls
Transactions
Local State Updates
Persistent State Updates

Service State

Pending Requests
Pending Responses
Request State Map
Persistent State

Async Calls
Transactions
Local State Updates
External KV store

Async Calls
Transactions
Local State Updates
External KV store
Crashes
Request Reexecutions
Transition Logging

Pending Requests
Pending Responses
Processing Instances
KV Store
Transition Log

1 2
…

1 2
…

State

Service 1 Service 2

1 2
…

1 2
…

Service 1 Service 2

Store

get
set

1

2

…

Service 1 Service 2

Store

Log

1

2

Log

3
1

State Visualization

Fig. 2. µ2sls overview: The three abstraction layers that are defined in the framework. The components
highlighted in light blue are the ones that differ from the layer above.

changes. The persistent fields are standard Python objects that support methods, e.g., the dictionary

supports a .keys() method that returns all dictionary keys and a .__get_item__() method, which

is called when accessing its values using dict[i]. Developers do not need to worry about how to

implement their data structures in a remote persistent store or how to access them in the context

of faults and re-executions. Informally, the execution semantics guarantee that different requests

execute exactly-once
1
but concurrently, only sharing their persistent fields and guaranteeing

isolation and atomicity using transactions. All method calls to persistent objects are guaranteed

to be linearizable [Herlihy and Wing 1990] (and thus execute atomically). They are used as the

concurrent computation quantum with which users interact with the shared persistent state. Finally,

note that the calls to both the hotel and flight reservation services are asynchronous to enable

concurrent processing since the result of the calls do not depend on each other; the frontend

then waits for both calls to complete without regarding their completion order. Our work is the

first to support this in the context of serverless, as prior work either only supports single-service

transactions (i.e., transactions that do not include invocations to other services) [Jangda et al. 2019]

or is restricted to synchronous calls inside a transaction [Zhang et al. 2020a].

3.2 Framework Overview
Our framework, µ2sls, orchestrates the user-written service specifications with a library of runtime

components to correctly execute on serverless, taking care of state management and exactly-once

execution in the context of crashes and re-executions. Our runtime and orchestration build on

Beldi [Zhang et al. 2020a], a system for the exactly-once execution of stateful serverless workflows,

and aim to generate implementations similar to their hand-tuned serverless implementations of

microservice applications. Similarly to Beldi, our framework: (i) generates unique identifiers to track

invocations, (ii) logs nondeterministic system transitions, and (iii) implements transactions using a

two-phase locking protocol. In contrast to Beldi, our framework: (i) supports asynchronous calls in

the context of cross-service transactions (e.g., Frontend service in Figure 1) by tracking pending

1
Note that what is informally called “exactly-once” execution in this and prior work [Burckhardt et al. 2021; Jangda et al.

2019] does not capture arbitrary effects, e.g., sending an email can never be guaranteed to execute exactly once; but instead

refers to updates on the persistent state and calls to other services in the application. The notion of correctness that we use

and prove is made precise in Sections 5 and 6.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:7

calls and ensuring that they do not escape transaction boundaries, (ii) hides state management from

the user by allowing them to represent the application state as Python objects, and (iii) provides

formal correctness guarantees for the generated implementations.

Framework Layers: Figure 2 gives an overview of µ2sls, showing the three different abstraction

layers, together with their features (on the left) and the system state (on the right). Users describe

their application by writing a service specification (Section 4) for each of their services (like the

ones in Figure 1). Our framework formally defines service specifications in Section 4, and gives

them semantics using a labeled transition system. The transition system state is partitioned for

each service, and the per-service state contains its pending requests and responses, a local state

map for each request that is being processed (visualized as a thread in Fig. 2), and the service’s

persistent state. Service specifications are an abstraction that users should be able to reason about,

and therefore their semantics abstract away implementation aspects of serverless, namely faults,

re-executions, and the separation of storage in an external service. These aspects are captured

by serverless implementations (Section 6), which our framework formalizes by building on the

serverless execution model introduced by Jangda et al. [2019]. We extend their work to support

asynchronous calls in the context of transactions, i.e., their formalization does not support the

Frontend service shown in Figure 1. The bottom right of Figure 2 shows the state of a serverless

implementation. The local state map is replaced by processing instances, which could be duplicated

and could crash, the store is separated from the processing instances, and transitions are stored in

a log to tolerate faults and re-executions.

Correctness: We connect service specifications with serverless implementations by formalizing

a relationship between the two and then proving that our framework produces correct serverless

implementations, given a service specification. To do so, we introduce an intermediate implementa-

tion layer (Section 5) that does not include faults and re-executions but captures the store separation

by exposing low-level state management using gets and sets, which corresponds to the standard

API offered by key-value stores. The correctness proof is then broken up into two steps: first, the

intermediate implementation is proven correct with respect to the service specification, and second,

the serverless implementation is proven correct with respect to the intermediate implementation.

We use a standard notion of correctness for both steps, that of observational refinement, namely

that every observable behavior by the implementation is allowed by the specification. We then

prove for each step that the implementation system simulates the specification one.

Challenges: In order to generate a correct implementation from a given service specification,

our framework has to address two subtle issues that were uncovered by our formalization and not

addressed by prior work. First, asynchronous calls decouple invocation from response handling,

potentially violating a call-graph well-formedness property, i.e., a call can happen inside a transaction,
but the response might return after the transaction has already been committed, which could lead

to half-committed results. To address this, µ2sls tracks asynchronous calls in a transaction and

ensures that they have all been awaited before the transaction completes (committing or aborting).

Second, asynchronous calls introduce concurrency while processing a single transaction, allowing

for multiple requests to be processed at the same time by a single service. For example, if both Hotel

and Flight services (Figure 1) called the same backend Storage service to handle their persistent

data, two requests in the same transaction would be processed concurrently by Storage for every

request to Frontend. Due to the low-level API of external stores (and the fact that they offer atomic

reads or writes but not arbitrary atomic updates), this could lead to a violation of the atomicity of

persistent state update methods, which is provided by service specifications, i.e., the high-level

semantics. Our framework addresses this by introducing two-level locks that ensure the atomicity

of persistent field updates even in the context of multi-request concurrency in a single transaction.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:8 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

Serverless implementations introduce crashes and re-executions leading to incorrect executions

in the context of side effects or KV store accesses. To hide these issues from the user, µ2sls logs

system transitions to avoid performing them a second time if the serverless platform re-executes

the same request. Our framework avoids unnecessary overheads by re-executing deterministic

request-local transitions instead of logging them—still guaranteeing correct execution.

Prototype and Evaluation: We have implemented a prototype of µ2sls (Section 7) that or-

chestrates service specifications in Python and generates serverless implementations that run on

Knative [Knative 2022], an open-source serverless platform, and use FoundationDB [Apple 2022] as

the storage service. Our prototype can also deploy service specifications locally to facilitate debug-

ging and end-to-end application testing. The µ2sls prototype optimizes the formalized translation

described in our formalization to improve concurrency, reduce logging overhead, and better utilize

the API of FoundationDB. We develop three microbenchmarks to evaluate several aspects of our

prototype implementation (Section 8), namely the overheads caused by logging, transactions, and

the improvements by one of our optimizations. We also evaluate the feasibility of using µ2sls for real

microservice applications by implementing two large-scale applications from DeathstarBench [Gan

et al. 2019], a state-of-the-art benchmark suite for microservice applications.

4 STATEFUL SERVICE APPLICATION SPECIFICATION
This section introduces a formal model for applications P that consist of multiple services with

persistent state and support transactions and asynchronous calls. Applications are defined using a

set of service specifications (Section 4.1), one for each application service, and we give semantics

to them using a labeled transition system 𝑇 (𝑃) (Sections 4.2 and 4.3). The goal is to give a high-

level semantics for such applications, i.e., from the perspective of the user, and therefore service

specifications and their semantics does not expose implementation aspects, like interactions with

external persistent stores, logging, re-executions, and crashes.

4.1 Service Specifications

Service Specification SS := init; stmt

Statement stmt := var = 𝑒 Local Update

| var = pupdate(𝑒) Persistent Update

| req(𝑓 , 𝑒) Async service calls

| var = wait Wait for async call response

| ret(𝑒) Return a value for request

| stmt; stmt Sequential composition

| if test then {stmt} else {stmt} Conditional

| while test do {stmt} Iteration

| txn {stmt} Transaction

Initialization init := . . .

Local Expression 𝑒 := . . .

Test Expression test := . . .

Fig. 3. Service Specification Language.

Figure 3 shows the language used to define services. This closely mirrors the programming model

that our prototype framework supports, but is slightly simplified for clarity. More precisely, some

components are left abstract (like initialization, local, and test expressions) since their syntactic

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:9

System C := {F , . . .}
Service F := ⟨𝑓 ,M, 𝑝,R,S⟩

Service name 𝑓 := . . .

State Map M := {𝑥 ↦→ 𝜎}
Request State 𝜎 := ⟨𝑠, stmt⟩

Persistent State 𝑝 := . . .

Requests R := {R(𝑥, 𝑣), . . .}
Responses S := {S(𝑥, 𝑣), . . .}

Request Header 𝑥 := R(𝑟𝑖𝑑 , 𝑓 , 𝑖, 𝑗)
Request Id 𝑟𝑖𝑑 := . . .

Call Id 𝑖 := . . .

Transaction Id 𝑗 := . . .

Fig. 4. States of transition system 𝑇 (𝑃) where 𝑃 is an application defined using service specifications.

form is of no interest. Each service is defined using an initialization function init, and a program

that handles the incoming request and returns a result. The initialization function is given the value

of the incoming request and it initializes the local state, e.g., by storing the value of the request in a

variable. Each service also has access to a persistent state object, which has an initial value and

supports a persistent update method. Persistent state survives across requests, while local state

lives during a single request.

The service handler is defined using a standard imperative language, supporting assignments,

expressions applied on the local state (e.g., accessing variables and arithmetic), sequencing, condi-

tionals, iteration, and returning a response. The handler can also update the service’s persistent

state, using the pupdate(𝑒) method, which represents all the methods that an object might support,

e.g., Python dictionaries support .keys() and .get() among others. For clarity, our formal model

only allows a single persistent object for each service, but our prototype supports multiple persistent

fields for each service. Furthermore, a service can perform asynchronous calls to other services

using req(𝑓 , 𝑒), where 𝑓 represents the remote service and 𝑒 is a local expression representing

the input argument. Services can then wait for the response of any prior asynchronous call using

wait. Waiting on any response is not restrictive, since the results of a call that the handler is not

interested in yet can be stored in the local state and used later. It is straightforward to perform

synchronous calls by combining a call with a subsequent wait, i.e., req(𝑓 , 𝑒); 𝑡 = wait.

Finally, services can perform transactions, using txn {stmt}, that provide ACID guarantees for

persistent object accesses across different services in the whole application. For simplicity, our

formal model does not support custom abort handlers (like the example in Section 3), which is not

restrictive since the caller of the service that aborted can handle it, e.g., by retrying the request.

4.2 Execution Semantics
This section gives the semantics of applications 𝑃 defined using service specifications by defining

a labeled transition system 𝑇 (𝑃). Figure 4 shows the states of the system. We then describe the

transitions, first ignoring transactions, and then introducing them to give the complete semantics.

Several of our notation decisions are inspired by Jangda et al. [2019] and their formalization.

Application State: The global state of the application is a map from service names 𝑓 to their

states F . Each service state is separate from the rest and contains a state map M (that we also

call a scheduler), a persistent state 𝑝 , a set of requests R, and a set of responses S. The scheduler
maps a request header 𝑥 to a pair ⟨𝑠, stmt⟩ where 𝑠 is a local state that assigns values to variables,

and stmt is the continuation of the program, i.e., the remaining program to be executed. Request

headers 𝑥 are generated for each request by the caller—either a client or some other service. The set

of requests R contains requests R(𝑥, 𝑣) with header 𝑥 together with a value 𝑣 . Responses S(𝑥, 𝑣)
also contain a request header so that the request handler that corresponds to them can identify

them. The request header contains a request identifier 𝑟𝑖𝑑 , a list of caller services 𝑓 (together with

call identifiers 𝑖) to be able to correctly match responses to their respective caller, and an optional

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:10 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

transaction identifier if a request is part of a transaction. We need to keep a list of all the callers

and call identifiers since call chains between services can be arbitrarily long. External requests

have empty caller services and call identifiers lists and no transaction identifier. Predicates ext()
and int() check if a request is external or internal respectively. We will ignore persistent state and

transactions for now and will come back to them later in Section 4.3. In the starting state of the

system, the state map, requests, and responses are all empty.

System Transitions: We describe the system behavior using smallstep operational semantics

and an asynchronous execution model, meaning that at each system step, a single service takes

a step. System steps can produce a label 𝑙 , which models the externally visible behavior of the

system. There are two relevant labels, clientReq(𝑓 , 𝑥, 𝑣) and clientRes(𝑥, 𝑣), that correspond to

client requests and responses. The complete system steps using the following rules.

C 𝑙−→ C′
ClientReq

fresh 𝑥 ext(𝑥) R ′ = R ∪ R(𝑥, 𝑣)

C ∪ {⟨𝑓 ,M, 𝑝,R,S⟩}
clientReq(𝑓 ,𝑥,𝑣)
−−−−−−−−−−−−→ C ∪ {⟨𝑓 ,M, 𝑝,R ′,S⟩}

ProcessReq

𝑥 ∉ dom(M) 𝑠 = Jinit𝑓 K(𝑣) M ′ = M[𝑥 ↦→ ⟨𝑠, stmt𝑓 ⟩]
C ∪ {⟨𝑓 ,M, 𝑝,R ∪ R(𝑥, 𝑣),S⟩} −→ C ∪ {⟨𝑓 ,M ′, 𝑝,R,S⟩}

ClientReq describes an incoming request 𝑥 for service 𝑓 with value 𝑣 , that gets stored in the

pending requests of that service. Incoming requests need to have a fresh header 𝑥 , with a request

identifier 𝑟𝑖𝑑 that has not occurred before. ProcessReq describes how the service starts processing

incoming requests. The initial local state is determined using the initialization function init𝑓 , which

has type Jinit𝑓 K : 𝑉 → Σ, and the handler for that specified service stmt𝑓 . Note that the request is

removed from the request set, ensuring that each request is processed exactly once.

ReqLocalSched

M[𝑥] = 𝜎 𝑥 : 𝜎 −→𝑟 𝜎
′ M ′ = M[𝑥 ↦→ 𝜎 ′]

C ∪ {⟨𝑓 ,M, 𝑝,R,S⟩} −→ C ∪ {⟨𝑓 ,M ′, 𝑝,R,S⟩}

Schedule

M[𝑥] = 𝜎 𝑓 , 𝑥 : 𝜎, 𝑝,S 𝑙−→ 𝜎 ′, 𝑝 ′,S′,R𝑠 ,S𝑠 C′ = add(C,R𝑠 ,S𝑠)

C ∪ {⟨𝑓 ,M, 𝑝,R,S⟩} 𝑙−→ C′ ∪ {⟨𝑓 ,M[𝑥 ↦→ 𝜎 ′], 𝑝 ′,R,S′⟩}

ReqLocalSched and Schedule are two disjoint rules that describe how a service performs a

transition for a pending request that is enabled. The first describes local request processing and

only updates the local state 𝜎 , while the second describes arbitrary processing steps that affect the

whole service (with new calls R𝑠 , responses S𝑠 , and updates to persistent state 𝑝). The auxiliary

function add(C,R𝑠 ,S𝑠) in Schedule adds the relevant new requests and responses to the sets of

the corresponding services.

Request Processing: Each service progresses by executing a step for a single request at a time

with the following rules. These rules describe how a handler processing request 𝑥 with (i) local

state 𝜎 , (ii) persistent service state 𝑝 , and (iii) available responses S, takes a step updating its local

state, persistent state, and available responses, as well as producing requests R𝑠 and responses S𝑠

for other services. The service 𝑓 and request identifier 𝑥 are read-only and often ignored in the

rules when not needed.

InternalReq

fresh 𝑖 R𝑠 = {⟨𝑓 ′,R(extend(𝑥, 𝑓 , 𝑖), J𝑒K(𝑠))⟩}
𝑓 , 𝑥 : ⟨𝑠, req(𝑓 ′, 𝑒)⟩, 𝑝,S −→ ⟨𝑠, skip⟩, 𝑝,S,R𝑠 , ·

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:11

InternalReq describes a call to a service 𝑓 ′. The type of the local expression is J𝑒K : Σ → 𝑉 . The

request identifier of the new request contains: (i) the original 𝑥 ; (ii) the caller service 𝑓 , to be able

to route the response; and (iii) a fresh identifier 𝑖 that is generated to ensure that different calls to

the same service will have different request headers. Request header extension is defined as:

extend(R(𝑟𝑖𝑑 , 𝑓 , 𝑖, 𝑗), 𝑓 , 𝑖) = R(𝑟𝑖𝑑 , 𝑓 · 𝑓 , 𝑖 · 𝑖, 𝑗)

There are two rules (ClientRes and Res) that correspond to responses (ret(𝑒)). Both return an

empty local state since the processing of the request is complete, and only the internal returns a

response to be added to the system. Finally, the Wait transition blocks until there is a response for

a request that was made while processing 𝑥 , which it identifies by matching on its header 𝑥 ′
.

ClientRes

ext(𝑥) 𝑣 = J𝑒K(𝑠)

𝑥 : ⟨𝑠, ret(𝑒)⟩, 𝑝,S
clientRes(𝑥,𝑣)
−−−−−−−−−−→ ⊥, 𝑝,S, ·, ·

Res

int(𝑥) S𝑠 = S(𝑥, J𝑒K(𝑠))
𝑥 : ⟨𝑠, ret(𝑒)⟩, 𝑝,S −→ ⊥, 𝑝,S, ·,S𝑠

Wait

𝑥 ′ = extend(𝑥, 𝑓 , _) 𝑠 ′ = 𝑠 ∪ {var ↦→ 𝑣}
𝑓 , 𝑥 : ⟨𝑠, var = wait⟩, 𝑝,S ∪ S(𝑥 ′, 𝑣) −→ ⟨𝑠 ′, skip⟩, 𝑝,S, ·, ·

Request-Local Transitions: Request handling can also step in a local way, without affecting

anything other than the local state of that particular request. The following rule shows one such

transition: a local variable assignment (the rest are shown in the appendix of the extended version

of this paper).

Local

𝑠 ′ = 𝑠 [var ↦→ J𝑒K(𝑠)]
𝑥 : ⟨𝑠, var = 𝑒⟩ −→𝑟 ⟨𝑠 ′, skip⟩

4.3 Persistent State and Transactions

Persistent State 𝑝 := ⟨𝑣, 𝑣, 𝑗⟩
Transaction Id 𝑗 := . . .

Transaction Context txn := tx𝑗 (𝜏,𝑤)
Services To Inform 𝜏 := {. . .}

Waiting on 𝑤 := . . .

Fig. 5. Persistent State.

We now focus on state and transactions. Figure 5 un-

folds the persistent state component that was kept

abstract in Figure 4 and describes the transaction con-

text. The persistent state contains: (i) the committed

value of the persistent state, (ii) the speculative value

of the persistent state if a request is in the middle of a

transaction, and (iii) an ownership field that indicates

the transaction identifier that owns the state and can perform updates. The system needs to keep

track of both the speculative and the committed value of the state in case the transaction aborts,

e.g., when attempting to modify a piece of state owned by a different transaction. The speculative

state is shared between all requests because multiple requests might be in the same transaction,

e.g., if their caller started a transaction and then made two calls in sequence to the same service.

The transaction context is independent for each request being processed (it is kept in the local

state, assigned to a special variable called txn, so that it can be accessed from the request handler)

and contains the transaction identifier 𝑗 , the set 𝜏 of services 𝑓 participating in the transaction, i.e.,

the services that have processed at least one request which was made as part of this transaction,

and thus need to be informed to commit or abort, and the number 𝑤 of invocations for whom

responses need to be awaited (necessary to ensure that a transaction commits or aborts as a whole).

We now give the rules that describe transactional execution, beginning and committing transac-

tions, as well as performing requests and receiving responses. The parts of the rules colored in teal

indicate the changes with respect to the non-transactional symmetrical rules shown in Section 4.2.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:12 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

At a high level, transactions in our framework are implemented using a standard non-blocking two-

phase locking protocol, using only exclusive locks (and no shared/read-only locks). Our transaction

model builds on a recent framework for transactions for serverless workflows [Zhang et al. 2020a],

which we extend with (i) support for asynchronous calls, and (ii) formal semantics. To support

asynchronous calls without leading to half-committed state, the system keeps track of pending

asynchronous invocations that have not been waited using 𝑤 , and ensures that calls that were

made in a transaction have always returned before the transaction is completed.

Initiating transactions and processing transaction requests: Rule BeginTx initializes the

transaction context and stores it in the local state. Processing an internal request that is part of a

transaction is described with the rule TxProcessReq, which initializes a transaction context in

addition to what ProcessReq does.

BeginTx

𝑠 [txn] = ⊥ fresh 𝑗 𝑠 ′ = 𝑠 [txn ↦→ tx𝑗 (∅, 0)]
𝑓 , 𝑥 : ⟨𝑠, txn {stmt1}⟩, 𝑝,S −→ ⟨⟨𝑠 ′, stmt1⟩⟩, 𝑝,S, ·, ·

TxProcessReq

𝑥 ∉ dom(M) 𝑥 = R(_, _, _, 𝑗)
𝑠 = Jinit𝑓 K(𝑣) 𝑠 ′ = 𝑠 [txn ↦→ tx𝑗 (∅, 0)] M ′ = M[𝑥 ↦→ ⟨𝑠 ′, stmt𝑓 ⟩]

C ∪ {⟨𝑓 ,M, 𝑝,R ∪ R(𝑥, 𝑣),S⟩} −→ C ∪ {⟨𝑓 ,M ′, 𝑝,R,S⟩}

TxInternalReq describes an invocation to another service. The difference with the original

InternalReq rule is that the caller increments its𝑤 counter and also extends the request with the

transaction identifier so the callee is aware of the transaction context. When given a transaction

identifier 𝑗 , extend() sets the transaction identifier of the request header.

TxInternalReq

𝑠 [txn] = tx𝑗 (𝜏,𝑤) fresh 𝑖

𝑠 ′ = 𝑠 [txn ↦→ tx𝑗 (𝜏,𝑤 + 1)] R𝑠 = {⟨𝑓 ′,R(extend(𝑥, 𝑓 , 𝑖, 𝑗), J𝑒K(𝑠))⟩}
𝑓 , 𝑥 : ⟨𝑠, req(𝑓 ′, 𝑒)⟩, 𝑝,S −→ ⟨𝑠 ′, skip⟩, 𝑝,S,R𝑠 , ·

Internal responses TxRes return the set 𝜏 of all the services that have participated in the transaction

by processing subrequests (in addition to the return value) so that the request that initiated the

transaction can inform all relevant services to commit or abort their changes, and TxWait extends

its service-to-inform set using this value 𝜏 ′ and decrements the𝑤 counter.

TxRes

int(𝑥) 𝑠 [txn] = tx𝑗 (𝜏, 0) S𝑠 = S(𝑥, (J𝑒K(𝑠), 𝜏))
𝑥 : ⟨𝑠, ret(𝑒)⟩, 𝑝,S −→ ⊥, 𝑝,S, ·,S𝑠

TxWait

𝑠 [txn] = tx𝑗 (𝜏,𝑤) 𝑣 ≠ abort 𝑠 ′ = 𝑠 [txn ↦→ tx𝑗 (𝜏 ∪ 𝜏 ′,𝑤 − 1), var ↦→ 𝑣]
𝑓 , 𝑥 : ⟨𝑠, var = wait⟩, 𝑝,S ∪ S(extend(𝑥, 𝑓 ′, 𝑖), (𝑣, 𝜏 ′)) −→ ⟨𝑠 ′, skip⟩, 𝑝,S, ·, ·

Finally, when committing (CommitTx) the request handler informs all relevant services by sending

them a request to commit a transaction. The commit message is then processed by services like

a standard request (ProcCommit), and it commits the speculative state only if the transaction

id 𝑗 corresponds to the ownership of its persistent state. During commit, the committed state is

replaced with the speculative, and the ownership of the persistent state is dropped. The reason

why committing is processed per service and not per request is that different requests could be

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:13

part of a single transaction, and the changes done by all of them need to be committed at once.

CommitTx

𝑠 [txn] = tx𝑗 (𝜏, 0) 𝑠 ′ = 𝑠 [txn ↦→ ⊥] R𝑠 = {⟨𝑓 ′,R(𝑗, commit)⟩ | ∀𝑓 ′ ∈ 𝜏}
⟨𝑠, commit⟩, ⟨𝑣1, 𝑣2, 𝑗⟩,S −→ ⟨⟨𝑠 ′, skip⟩⟩, ⟨𝑣2,⊥,⊥⟩,S,R𝑠 , ·

ProcCommit

C ∪ {⟨𝑓 ,M, ⟨𝑣, 𝑣𝑠 , 𝑗⟩,R ∪ R(𝑗, commit),S⟩} −→ C ∪ {⟨𝑓 ,M, ⟨𝑣𝑠 ,⊥,⊥⟩,R,S⟩}

Note that we need to extend the symmetric rules in the non-transactional context, i.e., InternalReq,

Res,Wait, with a requirement for the transaction variable to be empty in the starting local state so

that symmetric rules are not both enabled at the same time.

Persistent state updates: The following transition rules describe how services access and modify

their persistent state inside or outside of a transaction. In all cases, updating happens through the

persistent object method pupdate(𝑒).

Update

𝑠 [txn] = ⊥ (𝑣 ′, 𝑣 ′𝑝) = Jpupdate(𝑒)K(𝑣𝑝) 𝑠 ′ = 𝑠 [var ↦→ 𝑣 ′]
𝑓 , 𝑥 : ⟨𝑠, var = pupdate(𝑒)⟩, ⟨𝑣𝑝 ,⊥,⊥⟩,S −→ ⟨𝑠 ′, skip⟩, ⟨𝑣 ′𝑝 ,⊥,⊥⟩,S, ·, ·

Update describes an atomic update of the state outside of a transaction. Non-transactional updates

cannot fail and wait until no one has the lock to update their field. Applying Jpupdate(𝑒)K to the

value of the persistent state 𝑣𝑝 , returns two values, a return value 𝑣 ′ to be assigned to var, and the

new value of the persistent state 𝑣 ′𝑝 .

UpdOwn

𝑠 [txn] = tx𝑗 (𝜏,𝑤)
𝑓 , 𝑥 : ⟨𝑠, var = pupdate(𝑒)⟩, ⟨𝑣,⊥,⊥⟩,S −→ ⟨𝑠, var = pupdate(𝑒)⟩, ⟨𝑣, 𝑣, 𝑗⟩S, ·, ·

UpdSuccess

𝑠 [txn] = tx𝑗 (𝜏,𝑤)
(𝑣 ′, 𝑣 ′𝑠) = Jpupdate(𝑒)K(𝑣𝑠) 𝑠 ′ = 𝑠 [txn ↦→ tx𝑗 (𝜏 ∪ {𝑓 },𝑤), var ↦→ 𝑣 ′]
𝑓 , 𝑥 : ⟨𝑠, var = pupdate(𝑒)⟩, ⟨𝑣𝑝 , 𝑣𝑠 , 𝑗⟩,S −→ ⟨𝑠 ′, skip⟩, ⟨𝑣𝑝 , 𝑣 ′𝑠 , 𝑗⟩,S, ·, ·

Updates in transactions are split in two rules, UpdOwn and UpdSuccess, where the first tries to

acquire the lock of the persistent state, while the second performs the update on the speculative

state (which will later be committed or aborted). Note that a function is only added in the 𝜏 set if it

updates the state successfully, in order to avoid unnecessary commit or abort messages.

UpdFail

𝑠 [txn] = tx𝑗 (𝜏,𝑤) lock ∉ {⊥, 𝑗} 𝑠 ′ = 𝑠 [txn ↦→ tx𝑗 (𝜏,𝑤)]
𝑓 , 𝑥 : ⟨𝑠, var = pupdate(𝑒)⟩, ⟨𝑣, 𝑣𝑠 , lock⟩,S −→ ⟨𝑠 ′, abort⟩, ⟨𝑣, 𝑣𝑠 , lock⟩,S, ·, ·

Finally, UpdFail shows how a transaction aborts if the request tries to update the persistent state

when it is owned by a different transaction.

Aborting a transaction: When aborting, a request handler first waits until all of its callees have

returned (to be able to collect their 𝜏 sets), and then lets its caller know (if it wasn’t the initiator of

the transaction).

AbortTxTop

𝑠 [txn] = tx𝑗 (𝜏, 0) 𝑝 = ⟨𝑣,⊥,⊥⟩ if 𝑗 ′ = 𝑗 else ⟨𝑣, 𝑣𝑠 , 𝑗 ′⟩
𝑠 ′ = 𝑠 [txn ↦→ ⊥] R𝑠 = {⟨𝑓 ′,R(𝑗, abort)⟩ | ∀𝑓 ′ ∈ 𝜏}

𝑓 , R(𝑟𝑖𝑑 , 𝑓 , 𝑖,⊥) : ⟨𝑠, abort⟩, ⟨𝑣, 𝑣𝑠 , 𝑗 ′⟩,S −→ ⟨𝑠 ′, ret(abort)⟩, 𝑝,S,R𝑠 , ·

AbortTxTop shows the final aborting transition for the initiator of the transaction 𝑗 , i.e., the

head of the transaction call-tree; the request is the transaction initiator because its request header

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:14 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

R(𝑟𝑖𝑑 , 𝑓 , 𝑖,⊥) does not contain a transaction identifier. The request handler that initiated the trans-

action informs the services in 𝜏 to abort and throws away any speculative persistent state and

the lock if it was associated with transaction 𝑗 . The rest of the rules that are not shown here are

in the appendix of the extended version of this paper. They include stepping rules for sequence,

conditionals, and iteration (mirroring standard IMP semantics [Pierce et al. 2010]), and the rest of

the aborting rules.

5 KEY-VALUE STORE IMPLEMENTATION MODEL
Our overarching goal is to give semantics to the serverless implementations of stateful service

applications, and show that these implementations are correct with respect to the high-level

semantics defined in Section 4. In order to simplify the presentation and proofs, we do not directly

describe serverless implementations but rather gradually expose implementation details using an

intermediate KV implementation level that exposes state management details that were abstracted

by service specifications. In this section, we introduce the service implementation language that can
be used to define applications 𝑃 𝐼

that keep their persistent state in a key-value store that provides

a get/set API, and give semantics to them using a labeled transition system 𝑇 KV (𝑃 𝐼) (Section 5.1).

The KV semantics is still abstract in the sense that it does not expose crashes and re-executions. We

then describe how our framework translates an application 𝑃 , defined using service specifications,

to a KV application 𝑃 𝐼 = translate(𝑃) defined using service implementations. The translation

is a local replacement of all pupdate(𝑒) statements to instead use the get/set API while ensuring

atomicity in and out of transactions; the rest of the statements are left intact. Finally, we prove

that any KV application 𝑃 𝐼
produced by our framework is correct with respect to 𝑃 , namely, that

𝑇 KV (𝑃 𝐼) simulates 𝑇 (𝑃) (Section 5.2).

5.1 Key-Value Store Implementations

stmt := . . .

| var = get

| var = get𝑐

| set(𝑒)

Fig. 6. Service Impl. Language

We first describe the service implementations language. Fig-

ure 6 shows the language extensions compared to service spec-

ifications (defined in Figure 3). The persistent state method

pupdate(𝑒) is replaced with get and set statements. The dif-

ference between get and get𝑐 is that the latter does not abort if it

tries to read from the persistent state when locked by a different

transaction, but rather returns a “get-failed” message. Our translation uses get𝑐 to ensure that

persistent state accesses will not abort when the specification is not in a transaction, by repeatedly

trying to access the state while get𝑐 fails (see Figure 8).

KV store semantics: We describe the transitions of the labeled transition system of KV applica-

tions 𝑇 KV (𝑃 𝐼). Below follow the transition rules for the new constructs; our translation ensures

that get and set are only called inside transactions and thus we only give semantics for that.

GetOwn

𝑠 [txn] = tx𝑗 (𝜏,𝑤) 𝑠 ′ = 𝑠 [var ↦→ 𝑣]
𝑓 , 𝑥 : ⟨𝑠, var = get⟩, ⟨𝑣,⊥,⊥⟩,S −→ ⟨𝑠 ′, skip⟩, ⟨𝑣, 𝑣, 𝑗⟩,S, ·, ·

Get

𝑠 [txn] = tx𝑗 (𝜏,𝑤) 𝑠 ′ = 𝑠 [var ↦→ 𝑣𝑠]
𝑓 , 𝑥 : ⟨𝑠, var = get⟩, ⟨𝑣, 𝑣𝑠 , 𝑗⟩,S −→ ⟨𝑠 ′, skip⟩, ⟨𝑣, 𝑣𝑠 , (𝑗, 𝑥)⟩,S, ·, ·

Set

𝑠 [txn] = tx𝑗 (𝜏,𝑤) 𝑣 ′𝑠 = J𝑒K(𝑠) 𝑠 ′ = 𝑠 [txn ↦→ tx𝑗 (𝜏 ∪ {𝑓 },𝑤)]
𝑓 , 𝑥 : ⟨𝑠, set(𝑒)⟩, ⟨𝑣, 𝑣𝑠 , (𝑗, 𝑥)⟩,S −→ ⟨𝑠 ′, skip⟩, ⟨𝑣, 𝑣 ′𝑠 , 𝑗⟩,S, ·, ·

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:15

x0

x1

x2

x1

x0

x2

BeginTx() → j

get() set()

get() set()

AsyncInv() AsyncInv()
Both use the same j

(a) Without lock promotion (atomicity violation).

x0

x1

x2

x1

x0

x2

BeginTx() → j

get() set()

get() set()

AsyncInv() AsyncInv()
Uses (j, x1)

Uses (j, x2)

(b) With lock promotion.

Fig. 7. An example execution of two asynchronous invocations to the same service in a transaction 𝑗 .

translate(var = pupdate(𝑒)) :=
if (txn ≠ ⊥) then { var1 = get; var2 = 𝑒𝑝 (var1); set(snd(var2)); var = fst(var2);
} else { txn { var1 = “get-failed”;while (var1 == “get-failed”) do {var1 = get𝑐 };

var2 = 𝑒𝑝 (var1); set(snd(var2)); var = fst(var2); commit

}}

Fig. 8. Translation of persistent state updates; the rest of the statements are left intact.

Using a get returns the value of the speculative persistent state (Get) and acquires the lock if

needed (GetOwn). Similarly, set modifies the speculative state (Set) and adds the service 𝑓 that is

processing it to the 𝜏 set. Requests can fail if the persistent state is owned by a different transaction

identifier as shown in the transition rules GetFail and GetCheckFail below.

GetFail

𝑠 [txn] = tx𝑗 (𝜏,𝑤) lock ∉ {⊥, 𝑗, (𝑗, _)}
𝑓 , 𝑥 : ⟨𝑠, var = get⟩, ⟨𝑣, 𝑣𝑠 , lock⟩,S −→ ⟨𝑠 ′, abort⟩, ⟨𝑣, 𝑣𝑠 , lock⟩,S, ·, ·

GetCheckFail

𝑠 [txn] = tx𝑗 (𝜏,𝑤) lock ∉ {⊥, 𝑗, (𝑗, _)} 𝑠 ′ = 𝑠 [var ↦→ “get-failed”]
𝑓 , 𝑥 : ⟨𝑠, var = get𝑐⟩, ⟨𝑣, 𝑣𝑠 , lock⟩,S −→ ⟨𝑠 ′, skip⟩, ⟨𝑣, 𝑣𝑠 , lock⟩,S, ·, ·

Lock Promotion: As mentioned in Section 3.2, asynchronous calls within a transaction could

lead to a race, violating the atomicity of persistent state updates as guaranteed by the service

specification semantics. Figure 7a shows an example where the updates in two asynchronous calls

in a transaction with identifier 𝑗 violate atomicity due to them using the same transaction identifier.

To address that, get accesses, when successful (see Get transition above), promote the ownership

lock to include their request identifier, i.e., from 𝑗 to (𝑗, 𝑥), so that only the set corresponding to

the same update call in the service specification can proceed, at which point it demotes the lock

back to a normal transaction lock (see Set transition above). Figure 7b shows an example execution

of two asynchronous calls in a transaction with lock promotion.

Persistent update translation: In order to hide the store interactions from the user and allow

them to develop as if their persistent state was a local Python object, our framework translates

the persistent updates in service specifications to gets and sets; all other parts of the service

specification are left as they are. Figure 8 shows the translation for pupdate(𝑒), where var1, var2, . . .
are temporary fresh variables, the local expressions fst and snd are extracting the first and second

element from a tuple respectively, and 𝑒𝑝 (var1) is a local expression that corresponds to pupdate(𝑒),
namely J𝑒𝑝 (var)K(𝑠) = Jpupdate(𝑒)K(var) and var ∈ dom(𝑠). Translation can be directly lifted to

applications 𝑃 that consist of multiple services.

The translation ensures that if the request handler is not in a transaction, then a transaction has

to be started to guarantee the atomicity of the update, and since the update cannot fail, it retries

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:16 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

getting its value until it succeeds. After the value of the persistent state is retrieved successfully,

the state is owned, and then we perform the update and set the state. Note that the set() cannot
fail in the generated implementation since the get has to have succeeded to reach it.

5.2 KV implementation correctness
Wewant to show that any KV application implementation 𝑃 𝐼 = translate(𝑃) is correct with respect
to its specification 𝑃 , namely that any observable behavior exhibited by the translated application

can also be exhibited by the original one. We prove this using a forward simulation technique, and

for that, we first need to define a simulation relation ∼ that describes a correspondence between

the states of 𝑇 KV (translate(𝑃)) and 𝑇 (𝑃) transition systems.

Definition 5.1 (Simulation Relation). A state CKV
is similar ∼ to a state CSpec

, iff both states have

the same services, dom(CKV) = dom(CSpec), and for all services 𝑓 the following holds:

(1) Requests and Responses of the KV service are the same as the Spec, RKV,SKV = RSpec,SSpec
.

(2) Persistent state of the KV service is the same as the Spec, 𝑝KV = 𝑝Spec.

(3) The KV and the Spec scheduler contains the same requests, dom(MKV) = dom(MSpec).
(4) The local states for all requests in both the KV and the Spec scheduler are the same, except if

the Spec state is updating the persistent state, when the KV state can be in any part of the

translated handler. For all 𝑥 , with MKV [𝑥] = ⟨𝑠KV, stmt
KV⟩ and MSpec [𝑥] = ⟨𝑠Spec, stmt

Spec⟩:
• either, 𝑠KV = 𝑠Spec and stmt

KV = translate(stmt
Spec),

• or if stmt
Spec = (var = pupdate(𝑒)), the KV state can be in any part of the translated handler

(Figure 8). We only show one alternative: stmt
KV = var2 = 𝑒𝑝 (var1); set(snd(var2)); var =

fst(var2), i.e., the KV model has just executed the get in the first branch of the translated

code, 𝑠KV [txn] = tx𝑗 (𝜏,𝑤) (the KV model is in a transaction), 𝑠KV = 𝑠Spec [var1 ↦→ snd(𝑝)],
and thrd(𝑝) = (𝑗, 𝑥) (where thrd retrieves the third item of a tuple), ensuring that the

persistent state is owned by the correct transaction id 𝑗 and request.

Before describing the main correctness theorem, we introduce a lemma that describes valid execu-

tions of the KV LTS that are necessary for the proof.

Lemma 5.2 (Call-graph Well-formedness). Given a labeled transition system 𝑇 KV (𝑃 𝐼), the
following holds for all states CKV that are reachable from its starting state CKV

0
. For all services

⟨𝑓 ,M, 𝑝,R,S⟩ ∈ CKV, for all requests 𝑥 ∈ dom(M), whereM[𝑥] = ⟨𝑠, stmt⟩ and 𝑠 [txn] = tx𝑗 (𝜏,𝑤)
and for all R(𝑗 ′,msg) ∈ R where msg = commit ∨ abort, 𝑗 ′ ≠ 𝑗 .

Lemma 5.2 addresses the half-committed state issue (a request that was made in a transaction

completes after the transaction was committed), and it describes that a service cannot have received

a commit or abort request if it is still processing a request that is in that transaction. Our framework

guarantees this property by monitoring the initiated requests inside a transaction using𝑤 , ensuring

that a commit, abort, or return can only happen when all sub-requests have completed (𝑤 = 0).

We are now ready to define and prove the correctness theorem.

Theorem 5.3. Given an application P defined using service specifications our framework produces
an implementation 𝑃 𝐼 = translate(𝑃) that is correct with respect to 𝑃 , namely the LTS of the
implementation 𝑇 KV (𝑃 𝐼) simulates ∼ the LTS of the specification 𝑇 (𝑃). To show that, we need to show
that their starting states are related CKV

0
∼ CSpec

0
and for all CKV, CSpec for which CKV is reachable

from CKV
0

and CKV ∼ CSpec the following holds:

• if CKV 𝑙−→ CKV′, then there exists CSpec′, such that CSpec 𝑙−→ CSpec′ and CKV′ ∼ CSpec′.
• if CKV −→ CKV′, then either CKV′ ∼ CSpec, or there exists CSpec′, such that CSpec −→ CSpec′ and
CKV′ ∼ CSpec′.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:17

Proof. We provide a sketch of the proof. The start states are trivially related; the values of the

persistent state are equal and the state map, requests, and responses are empty. The rest of the proof

proceeds using a case analysis on the transitions of the KV system. The interesting states are the

ones where at least one request 𝑥 is in the process of updating, i.e., 𝑥 is processing var = pupdate(𝑒)
in the specification system. The rest of the cases are straightforward since the KV system exactly

mirrors the specification system. If only the currently stepping request 𝑥0 is in the process of

updating the persistent state, then the destination state directly satisfies the simulation relation.

Before focusing on the interesting cases, notice the “independence” of the simulation relation

w.r.t. requests, namely that similarity of two local states is completely independent to the rest

of the state, except for the requirement that var1 ↦→ snd(𝑝) when a request is in the middle of

updating after having already read the value from the persistent state. Therefore, we only need to

check the cases where the current transition affects the speculative part of 𝑝 , and therefore might

invalidate the simulation for some other 𝑥 in the same service 𝑓 . This can happen in two cases, (i)

if the transition is ProcCommit or ProcAbort , or (ii) if the current request 𝑥0 is performing a

Set transition. For both cases, let a request 𝑥 be in transaction 𝑗 , having already read the value of

persistent state and therefore owning the 𝑝 lock with 𝑗 .

(i) The commit (or abort) message cannot refer to the same 𝑗 due to Lemma 5.2 that ensures

that all requests for a transaction (except for the initiator) have completed before finalizing

the commit or abort. The commit also cannot refer to a different 𝑗 since 𝑥 holds the lock for

𝑝 having read the value of the persistent state. If the abort is for a different transaction 𝑗 ′,
then it cannot affect the speculative state.

(ii) This is a contradiction. The simulation relation ∼ precludes 𝑥0 from being ready to perform

a Set transition if another 𝑥 has not completed its Set transition due to lock promotion

thrd(𝑝) = (𝑗, 𝑥), regardless of whether they have the same 𝑗 or not.

□

6 SERVERLESS IMPLEMENTATION MODEL
In this section, we introduce a serverless implementation transition system 𝑇 SLS

exposing the

implementation challenges related to serverless deployments, namely failures, re-executions, and

concurrent executions of the same request (Section 6.1). The serverless implementation also includes

the runtime orchestration that our framework performs to guarantee that execution is correct

despite the implementation challenges. We then prove that the serverless implementation of any

application 𝑃 𝐼
produced by our framework is correct with respect to the KV implementation,

namely, that 𝑇 SLS (𝑃 𝐼) simulates 𝑇 KV (𝑃 𝐼) (Section 6.2).

6.1 SLS Implementations

Service F := ⟨𝑓 ,M, 𝑝,L,R,S⟩
Instances M := {(𝑥, ⟨𝜎,𝑦⟩), . . .}

Log L := {(𝑥,𝑦) ↦→ 𝜎}
Step Number 𝑦 := . . .

Fig. 9. Serverless implementation state.

We first describe how the system state is modified for

SLS. Figure 9 shows the modified state components.

The service state is modified in two ways. First, the

scheduler M is modified to be a multiset instead of

a set. This is necessary to model that serverless plat-

forms do not guarantee at-most-once execution of

each request, and therefore can be processing multiple executions of the same request at the same

time. Second, it is extended to contain a log L of non-deterministic actions. This log is used by

our framework to store the results of some transitions so that they can be replayed instead of

re-executed after a crash. The state contains an additional step number 𝑦 that is incremented every

transition and then used together with request identifiers 𝑥 to index the log.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:18 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

Serverless platform execution: First, there are twomodifications corresponding to the execution

characteristics of serverless platforms, namely that instances processing requests might crash at

any point in time and that requests are not guaranteed to be processed exactly once (also described

by Jangda et al. [2019]). These modifications are captured using a new transition rule named Crash,

and by modifying the ProcessReq rule.

Crash

M = M0 ⊎ (𝑥, ⟨𝜎,𝑦⟩)
C ∪ {⟨𝑓 ,M, 𝑝,L,R,S⟩} −→ C ∪ {⟨𝑓 ,M0, 𝑝,L,R,S⟩}

ProcessReq

R(𝑥, 𝑣) ∈ R 𝑠 = Jinit𝑓 K(𝑣) M ′ = M ⊎ (𝑥, ⟨⟨𝑠, stmt𝑓 ⟩, 0⟩)
C ∪ {⟨𝑓 ,M, 𝑝,L,R,S⟩} −→ C ∪ {⟨𝑓 ,M ′, 𝑝,L,R,S⟩}

A Crash rule is added that simply removes a request from the scheduler, simulating the failure

of a processing instance that can happen at any time. Transition ProcessReq differs from the

specification transition system since it does not remove the request when its processing begins.

Serverless platforms achieve that by storing incoming requests in a persistent queue, and then

re-executing them until they determine that they have been completed. In order to have better

performance and scalability, determining that a request has completed might happen much later

than the actual completion of the request, and to model that, we never remove a request from the

request set. In addition, ProcessReq adds the request to the multiset of instances even if it already

exists there. Our framework extends all requests with a step number 𝑦 that is initialized to 0 and is

then used to store and retrieve transitions from the log.

Managing crashes and re-executions: Second, there are the extensions that have to do with the

runtime orchestration of our framework, and how it guarantees that requests are executed exactly

once in the context of crashes and re-executions. Scheduling the processing of a request is split

into three disjoint cases, instead of just two in the Spec semantics.

Sched

M = M0 ⊎ (𝑥, ⟨𝜎,𝑦⟩) (𝑥,𝑦) ∉ dom(L) 𝑓 , 𝑥 : 𝜎, 𝑝,S 𝑙−→ 𝜎 ′, 𝑝 ′,S′,R𝑠 ,S𝑠

M ′ = M0 ⊎ (𝑥, ⟨𝜎 ′, 𝑦 + 1⟩) L′ = L[(𝑥,𝑦) ↦→ 𝜎 ′] C′ = add(C,R𝑠 ,S𝑠)

C ∪ {⟨𝑓 ,M, 𝑝,L,R,S⟩} 𝑙−→ C′ ∪ {⟨𝑓 ,M ′, 𝑝 ′,L′,R,S′⟩}
The rule Sched captures the standard processing of a request, checking that this transition has not

happened before by looking at the existence of the pair (𝑥,𝑦) in the log L. If the transition hasn’t

happened in the past, then it simply proceeds normally, and is then stored in the log while also

incrementing the step number 𝑦 for the next transition.

Replay

M = M0 ⊎ (𝑥, ⟨𝜎,𝑦⟩) L[(𝑥,𝑦)] = 𝜎 ′ M ′ = M0 ⊎ (𝑥, ⟨𝜎 ′, 𝑦 + 1⟩)
C ∪ {⟨𝑓 ,M, 𝑝,L,R,S⟩} −→ C ∪ {⟨𝑓 ,M ′, 𝑝,L,R,S⟩}

ReqLocalSched

M = M0 ⊎ (𝑥, ⟨𝜎,𝑦⟩) 𝑥 : 𝜎
𝑙−→𝑟 𝜎

′ M ′ = M0 ⊎ (𝑥, ⟨𝜎 ′, 𝑦 + 1⟩)

C ∪ {⟨𝑓 ,M, 𝑝,L,R,S⟩} 𝑙−→ C ∪ {⟨𝑓 ,M ′, 𝑝,L,R,S⟩}
If that specific transition exists in the log, then it is simply replayed without actually executing

it (Replay). Note that our prototype implementation doesn’t save the complete next state (the

whole memory and remaining program), but just saves the result of the current transition on the

state, e.g., the result of retrieving the value of persistent state from the store. If the transition

is replayed, the runtime does not modify the persistent state, pending requests, and pending

responses, since these changes have happened already when the transition was first executed.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:19

The ReqLocalSched transition captures request-local transitions that need not be logged and are

simply always re-executed.

ProcCommit

R = R0 ∪ R(𝑗, commit) 𝑗 ∉ dom(L) L′ = L[𝑗 ↦→ ⊥]
C ∪ {⟨𝑓 ,M, ⟨𝑣, 𝑣𝑠 , 𝑗⟩,L,R,S⟩} −→ C ∪ {⟨𝑓 ,M, ⟨𝑣𝑠 ,⊥,⊥⟩,L′,R0,S⟩}

Finally, ProcCommit ensures that each commit happens exactly once using the log L.

6.2 Serverless Implementation Correctness
We now want to show that the serverless implementation of any application is correct with

respect to the KV implementation, namely that any observable behavior exhibited by the serverless

implementation can be exhibited by the KV implementation. We prove this by defining a simulation

relation ≈ that describes a correspondence between serverless and KV implementation states.

Before defining the simulation relation, we need to define a helper relation 𝑥,L : 𝑦, 𝜎 ⇝ 𝜎 ′
that

describes what kind of local states can be reached using only request-local and replay transitions.

𝑥,L : 𝑦, 𝜎 ⇝ 𝜎 ′ Base

𝑥,L : 𝑦, 𝜎 ⇝ 𝜎
Local

𝑥 : 𝜎 −→𝑟 𝜎
′ 𝑥,L : 𝑦 + 1, 𝜎 ′⇝ 𝜎 ′′

𝑥,L : 𝑦, 𝜎 ⇝ 𝜎 ′′

Replay

L[(𝑥,𝑦)] = 𝜎 ′ 𝑥,L : 𝑦 + 1, 𝜎 ′⇝ 𝜎 ′′

𝑥,L : 𝑦, 𝜎 ⇝ 𝜎 ′′

This relation is essential since the SLS states can lag behind due to instance failures that completely

delete the local state of a request. Therefore, we need a way to express that a request is able to

catch up with the KV local state; even though it is lagging behind currently.

Definition 6.1 (SLS Simulation Relation). A state CSLS
is similar ≈ to a state CKV

, iff both states

have the same services (dom(CSLS) = dom(CKV)) and for all services 𝑓 the following holds:

(1) The request identifiers of the SLS are either in the pending requests of the KV, or the scheduler

of the KV or finished processing, {𝑥 | R(𝑥, 𝑣) ∈ RKV} ∪ dom(MKV) ∪ {𝑥 | ∃𝑦,L[(𝑥,𝑦)] =
⊥} = {𝑥 | R(𝑥, 𝑣) ∈ RSLS}.

(2) The pending requests in the KV model, the requests in the KV scheduler, and the completed

requests in SLS are pairwise disjoint. Let 𝑋1 = {𝑥 | R(𝑥, 𝑣) ∈ RKV}, 𝑋2 = dom(MKV), and
𝑋3 = {𝑥 | ∃𝑦,L[(𝑥,𝑦)] = ⊥}. Then 𝑋1 ∩ 𝑋2 = 𝑋1 ∩ 𝑋3 = 𝑋2 ∩ 𝑋3 = ∅.

(3) The KV pending requests are a subset of the SLS requests, RKV ⊆ RSLS
.

(4) Commit (and abort) requests have either been processed or logged, { 𝑗 ′ | R(𝑗 ′, commit) ∈
RKV} ∪ { 𝑗 ′ | 𝑗 ′ ∈ L} = { 𝑗 ′ | R(𝑗 ′, commit) ∈ RSLS} (similarly for abort requests).

(5) Responses of the SLS service are the same as the ones of the KV, SKV = SSpec
.

(6) Persistent state of the SLS service are the same as the original one, 𝑝SLS = 𝑝KV.

(7) For all requests that are being processed in KV or are done processing, the requests with

the same request header 𝑥 in the scheduler and pending requests of the SLS can reach

them using request-local and replay transitions. For all 𝑥 , such that MKV [𝑥] = 𝜎KV
or

∃𝑦,L[(𝑥,𝑦)] = ⊥ = 𝜎KV
, then both:

• for all (𝑥, ⟨𝜎,𝑦⟩) ∈ MSLS
, then 𝑥,L : 𝑦, 𝜎 ⇝ 𝜎KV

.

• for R(𝑥, 𝑣) ∈ RSLS
, where 𝜎0 = ⟨Jinit𝑓 (𝑣)K, stmt𝑓 ⟩ then 𝑥,L : 0, 𝜎0 ⇝ 𝜎KV

.

The first four requirements of the simulation relation relate the requests of both models. In the

SLS model requests are not removed once they start being processed since the serverless platform

can re-execute them later (e.g., when a crash occurs). Therefore, the two request sets do not match

exactly, but we still need a way to relate them. First, all SLS requests need to either be in the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:20 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

pending requests of the KV, or they need to be processed at the moment (inM), or they need to

have completed processing (the log contains the final step of the request). Second, the KV model

cannot lag behind the SLS, i.e., a request cannot have started processing in SLS but still be in the

pending requests of KV. Third, all pending requests in the KV model must also have arrived in the

SLS. Together with the first requirement, this ensures that all request identifiers in the SLS that

also exist in the KV correspond to the same request. Fourth, all commit and abort requests in the

SLS model need to either be in the pending requests of the KV or already processed (and therefore

logged). The responses and the persistent state need to be the same (similarly to ∼).
Finally, we relate the local states of each request that is being processed using two requirements.

First, each request that is being processed in the SLS should be able to reach the local state in the

KV with only request-local and log transitions. Furthermore, all SLS pending requests should also

be able to reach the local state in the KV with only request-local and log transitions.

We are now ready to define and prove the theorem that captures the correctness of serverless

implementations with respect to KV implementations. By combining this theoremwith Theorem 5.3

we get that for any application 𝑃 defined using service specifications, our framework generates a

serverless implementation that is correct with respect to 𝑃 , i.e., all of the observable behaviors that

can be exhibited by 𝑇 SLS (translate(𝑃)) can also be exhibited by 𝑇 (𝑃).

Theorem 6.2. The serverless implementation of any application 𝑃 𝐼 is correct with respect to its
KV implementation, i.e., the LTS 𝑇 SLS (𝑃 𝐼) simulates ≈ the LTS of the KV implementation 𝑇 KV (𝑃 𝐼). To
show that, we need to show that their starting states are related CSLS

0
≈ CKV

0
and for all CSLS, CKV for

which CSLS is reachable from CSLS
0

and CSLS ≈ CKV the following holds:

• if CSLS 𝑙−→ CSLS′, then there exists CKV′, such that CKV 𝑙−→ CKV′ and CSLS′ ≈ CKV′.
• if CSLS −→ CSLS′, then either CSLS′ ≈ CKV, or there exists CKV′, such that CKV −→ CKV′ and
CSLS′ ≈ CKV′.

Proof. We provide a sketch of some interesting cases of the proof. The start states are related;

the values of the persistent state are equal and the state map, requests, responses, and log are

empty. The proof proceeds using a case analysis on the transitions of the SLS system CSLS
. For

transitions Crash and Replay the destination SLS state simulates the starting KV state. We will

now go through the intuition behind the proof for the Sched transition. We want to show that

the KV can also take the same transition by showing that 𝜎KV, 𝑝KV,SKV = 𝜎SLS, 𝑝SLS,SSLS
. Then

we can very easily show that the simulation requirements are preserved. We already know that

𝑝KV,SKV = 𝑝SLS,SSLS
from simulation requirements (5,6) on the initial states. Therefore, we just

need to show the local states are also the same.

Based on the first part of requirement (7), we also know that 𝑥,L : 𝑦, 𝜎SLS ⇝ 𝜎KV
. Note that if

the Sched rule is enabled, then the ReqLocal rule is not enabled, and also (𝑥,𝑦) ∉ L. Based on that

and the definition of the helper relation we know that 𝜎SLS = 𝜎KV
. Therefore, the same transition

can be made by 𝑥 in the KV, satisfying the simulation requirements.

The rest of the cases follow using similar reasoning. □

7 PROTOTYPE IMPLEMENTATION
The µ2sls prototype implements the correct orchestration described in Sections 4 to 6 and generates

a serverless implementation given an application specified as shown in Figure 1. The translation

contains several components, totaling more than 1500 SLoC, and is open source and available

on Github (github.com/eniac/mu2sls). In this section we briefly describe a few highlights of our

implementation, including some optimizations that improve the performance of the generated

serverless implementations and how it facilitates debugging and testing.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

https://github.com/eniac/mu2sls

Executing Microservice Applications on Serverless, Correctly 13:21

Wrapping Python Objects: The µ2sls prototype supports arbitrary Python objects as the per-

sistent state of a service. To achieve that, it wraps a given object, and then instruments all of the

method calls to it to go through the persistent store. Each instrumented method call performs a

transaction where it (i) gets the object from the persistent store, (ii) deserializes it, (iii) performs

the actual method call, (iv) serializes back the (potentially modified) object, (v) writes it to the store

and commits the transaction. Since the framework does not know whether the method modifies

the object, it needs to always write it back to the store.

Logging Transitions: The formalized framework guarantees correctness in the presence of faults

and re-executions by logging the complete local state of a request every time it performs a non-

request-local transition. Our implementation improves performance by not logging unnecessary

information in two ways that do not affect the correctness guarantees. First, some transitions in

the formalization, like BeginTx (Section 4.3), are nondeterministic only because they generate

a fresh identifier. In our implementation, this identifier generation is deterministic, essentially

making the transition request-local, where it is safe to reexecute in case of a crash. Similarly, in the

formalization each log item contains the whole resulting local state 𝜎 of the logged transition (see

Sched rule in Section 6.1), whereas our implementation only stores the necessary information to

determine what part of the state changed, for example when a Get transition (Section 5) is logged,

the implementation only saves the result of the store access. Both of these changes do not weaken

the guarantees provided by our formal model.

Exploiting the API of the Persistent Store: Different persistent stores offer slightly different

affordances through their APIs in addition to simple gets and sets. For example, some stores offer

simple atomic primitives (like conditional writes) or restricted transaction guarantees that cannot

support full-fledged cross-service transactions. In addition to our standard transaction mechanism,

our implementation leverages FoundationDB’s transactions when performing Set transitions with

logging, i.e., µ2sls checks the log, writes the data and appends the new entry to the log in a single

FoundationDB transaction so that FoundationDB can buffer all writes and apply them together to

disk, improving latency.

Optimized Wrapper for Python Dictionaries: The default Python wrapper can support arbi-

trary python objects as persistent state and supports concurrency across these different objects.

However, services often use collection objects to store parts of their data, which could themselves al-

low for concurrent accesses. In µ2sls’s implementation we develop a custom wrapper for a common

Python builtin collection object, dictionaries. Our implementation enables additional concurrency

by partitioning the keys into different “buckets” using a deterministic hash, therefore requiring

locking a single bucket for accessing a single key (instead of locking the entire dictionary). The

methods that access multiple keys then need to lock multiple buckets, but this tradeoff is acceptable

due to the high frequency of single key accesses. Furthermore, by knowing which methods are

read-only, µ2sls avoids writing back to the persistent store after performing them. Our custom

wrapper is only a first step in optimizations of that kind, since there is a vast literature on highly

concurrent implementations of data structures that could be leveraged to develop highly concurrent

implementations for multiple commonly used Python data structures, such as lists, arrays, and sets.

Facilitating application debugging and testing: Debuggability and testability are key chal-

lenges when developing serverless applications because the applications run in a remote environ-

ment. Remote execution minimizes observability, especially if the only available testing infrastruc-

ture is unit testing for individual functions on a few examples. Our framework addresses this issue

by supporting end-to-end application deployment in a local setting, i.e., on a local Python inter-

preter, with an in-memory database, no faults, logging, or re-executions, where it can be debugged

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:22 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

and tested more easily. If the application is correct, i.e., satisfies some property in the local setting,

then given the correctness of our compilation framework, the serverless implementation should

also satisfy the same property. The correctness of a locally deployed application can be checked

using standard software correctness methods such as property-based testing or fuzz testing. This

functionality proved particularly useful when we ported the applications used in our evaluation

since it helped uncover typing and other bugs in our ports locally, before deploying them to the

serverless platform.

8 PERFORMANCE EVALUATION
In this section, we want to answer three questions regarding the performance of the serverless

implementations generated by µ2sls.

(Q1) What is the performance overhead of guaranteeing exactly-once execution in the presence

of faults and re-executions, namely what is the cost introduced by our logging mechanism.

(Q2) What is the performance overhead of providing transaction guarantees using our two-phase

locking protocol.

(Q3) Is the performance of implementations generated by µ2sls acceptable for real microservice

applications.

To answer the first two questions, we use µ2sls to develop and generate serverless implementations

for the following applications.

Stateful Counter: This is a small application with a single stateful service that handles requests

that contain a single key, and then increments a counter for the number of requests that

it has received with this key. To ensure correctness, the service performs a transaction to

increment the counter for each key. In our experiments, we produce requests for keys that

are chosen uniformly at random from 0 to 1000.

Chain Counter: This is an application containing three services that are combined in a chain

pattern. The first and second services simply forward the call to the next service and forward

back the results. The final service is the stateful counter described above. The input workload

is the same as above.

Cross Service Txn: This is an application consisting of three services combined in a tree pattern,

where the frontend handles input requests by performing a cross-service transaction and

forwarding its input value to the two backends asynchronously. The two backend services

are both stateful counters and the input is the same as above.

To answer the final question, we adapt two applications from the Deathstar Benchmark Suite [Gan

et al. 2019], a state-of-the-art microservice application suite. The applications are:

Movie Review Service (Cf. IMDB or Rotten Tomatoes): Users can create accounts, read re-

views, view the plot and cast of movies, and write their own movie reviews and articles.

The complete application consists of 14 services, out of which 9 are stateful. Each client

request leads to 28 persistent field method calls (which are all wrapped in transactions by our

framework’s translation). For our experiments, we first populate the database with 100 movies

and users, and then we perform review requests by picking users and movies uniformly at

random.

Travel reservation (Cf. Expedia): Users can create an account, search for hotels and flights, sort

them by price/distance/rate, find recommendations, and reserve hotel rooms and flights. This

is the application that was shown in Figure 1. The applications consists of 10 services and the

frontend performs a cross-service transaction to ensure that when a user reserves a hotel and

a flight, the reservation goes through only if both succeed. Each request to the frontend leads

to 5 persistent field method calls. Similar to Beldi [Zhang et al. 2020a], we extend this app to

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:23

0 50 100 150 200 250 300
0

100

200

300

400

La
te

nc
y

(m
s)

 (5
0t

h/
90

th
) Stateful Counter

0 20 40 60 80 100 120

Chain Counter
μ2sls
no FT

Throughput (requests/second)

Fig. 10. Logging overhead (Q1): Comparison of µ2sls with no FT. no FT doesn’t guarantee exactly-once
semantics in the presence of faults and reexecutions.

support flight reservations, as the original implementation only supports hotel reservations.

We populate the database with 100 hotels and 100 flights, which are then chosen uniformly

at random in user requests.

Setup and Infrastructure: All of our experiments run on machines in the Cloudlab testbed [Du-

plyakin et al. 2019] (configuration: c6525-25g) with a 16-core CPU and 128GB RAM. Our prototype

implementation deploys applications using the following components:

• We use Knative [Knative 2022] running on minikube [Minikube 2022] with 12 CPUs and

20GB RAM as the serverless platform. We configured it to 2 Kubernetes pods per service.

Autoscaling has been disabled to avoid measuring cold starts and autoscaler overheads.

• Each service is built in a docker container, that is running Quart [Quart 2022] on hyper-

corn [Hypercorn 2022], an asynchronous HTTP server framework for Python, configured

with 4 workers per container.

• As a persistent store, we use FoundationDB [Apple 2022] on the host machine, configured

for 1 CPU and 8GBs RAM.

Input Workload and Measurements: For all experiments, we generate input HTTP requests

using the open-source workload generator wrk2 [Tene 2022]. For each data point, we produce a

steady load for 30s and measure median and 90th percentile latency. We gradually increase the

input rate until the implementation is overloaded to evaluate the maximum throughput that the

implementation can sustain with reasonable latency. For Movie and Travel applications, we use the

same workload generator configuration as in the Beldi paper[Zhang et al. 2020a].

8.1 Logging Overhead (Q1)
To evaluate the logging overhead we use the Stateful Counter and the Counter Chain applica-

tions and we toggle the fault tolerance (FT) guarantees. Note that the serverless implementation

without fault-tolerance guarantees will not produce correct results in the presence of faults and

re-executions.

Figure 10 shows the results. In the Stateful Counter workload, under manageable load, µ2sls’s

median latencies range from 23ms to 75ms, and no FT’s median latencies range from 13ms to 51ms.

The maximum throughput of µ2sls is 260 rps, while that of no FT is 300 rps. In the Chain Counter

workload, under manageable load, µ2sls’s median latencies range from 82ms to 126ms, and no FT’s

median latencies range from 64ms to 83ms. The maximum throughput of µ2sls is 100 rps, while

that of no FT is 110 rps.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:24 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

0 50 100 150 200 250
0

100

200

300

400

La
te

nc
y

(m
s)

 (5
0t

h/
90

th
) Stateful Counter

μ2sls
μ2sls (w/o OD)
unsafe (w FT) (seq)
unsafe (w FT)

0 20 40 60 80 100

Chain Counter

0 20 40 60 80

Cross Service Txn

Throughput (requests/second)

Fig. 11. Transactions Overhead (Q2): Comparison of µ2sls, µ2sls (w/o OD) (no optimized dictionary
wrapper), and unsafe (w/ FT) (no transactional guarantees). unsafe (w/ FT) (seq) shows the throughput of the
implementation without transactional guarantees when executed with sequential load.

Take-away: The overhead of guaranteeing fault tolerance for serverless implementations using

logging is not prohibitive; compared to the incorrect implementation, latency is impacted by up to

1.7× when the applications are under manageable load, and the impact on maximum throughput is

up to 0.86×. The differences become less pronounced when there are more stateless services, as we

can see by comparing Stateful Counter and Chain Counter.

8.2 Transactions Overhead (Q2)
To evaluate the transactions overhead we use the applications that we used forQ1with the addition

of Cross Service Transaction that includes a cross-service transaction. To evaluate the transaction

overheads we compare µ2sls with an unsafe implementation that does not perform any concurrency

control (but performs logging, i.e., is fault tolerant). We run this unsafe implementation both with

a sequential load (one request at a time) (ref unsafe (w/ FT) (seq)) to measure its throughput, and

with the normal workload (ref unsafe (w/ FT)) to measure its upper bound maximum throughput.

Note that unsafe (w/ FT) produces wrong results, since incrementing the counter is not performed

inside a transaction. We also include a configuration without the optimized dictionary wrapper

(µ2sls (w/o OD)) to measure its benefits.

Figure 11 contains the results. The latencies for µ2sls (w/o OD) in the Cross Service Transaction

are too high, so they are not visible in the plot. In the Stateful Counter workload, under manageable

load, µ2sls’s median latencies range from 23ms to 75ms, µ2sls (w/o OD)’s median latencies range

from 117ms to 152ms, and unsafe (w/ FT)’s median latencies range from 35ms to 117ms. µ2sls’s

maximum throughput is 260 rps, µ2sls (w/o OD)’s is 60 rps, unsafe (w/ FT) (seq)’s is 19 rps, and

unsafe (w/ FT) is 100 rps. Similar results can be seen for the Chain Counter workload. In the Cross

Service workload, under manageable load, µ2sls’s median latencies range from 152ms to 165ms,

and unsafe (w/ FT)’s median latencies range from 133ms to 160ms. µ2sls’s maximum throughput is

20 rps, unsafe (w/ FT) (seq)’s is 15.5 rps, and unsafe (w/ FT) is 80 rps.

Take-away: µ2sls’s throughput is consistently higher than unsafe (w/ FT) (seq), showing that

the parallelism offered by serverless can be leveraged by µ2sls’s implementations. Our optimized

wrapper significantly improves performance, even better than the unsafe implementation for

applications that don’t have cross-service transactions. OD achieves it by leveraging the knowledge

that some methods do not update the dictionary state (like .get(k) and .keys()), so that µ2sls does

not need to write them back, making fewer calls to the persistent store. However, in the presence

of cross-service transactions, 2-phase locking and additional requests made when a transaction

commits or aborts lead to significant costs. In total, transactions do not add significant overhead

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:25

0 20 40 60 80
0

1000

2000

3000

La
te

nc
y

(m
s)

 (5
0t

h/
90

th
) Media Application

0 20 40 60 80
0

200
400
600
800

1000
Travel Reservation

μ2sls
unsafe (seq)
unsafe

Throughput (requests/second)

Fig. 12. Real-world Applications (Q3): Comparison of µ2sls and unsafe (no transactional guarantees or
logging). unsafe (seq) shows the throughput of unsafe when executed with sequential load.

when using the optimized dictionary. However, cross-service transactions introduce significant

overheads (1.15× on median latency, 4× on throughput) and therefore should be used carefully.

8.3 Real-world Applications (Q3)
To assess the feasibility of µ2sls for real-world applications, we use the applications adapted from

the Deathstar Benchmark Suite. Since there is no framework that provides equivalent guarantees

to ours that would allow for direct comparisons, we compare the implementation produced by

µ2sls with an unsafe implementation that does not perform any concurrency control or logging.

These unsafe implementations mirror the hand-tuned expert-written ones from the Beldi paper,

except that they avoid logging and concurrency control, representing a performance upper bound.

We do not include a comparison with the expert-written implementations that perform logging

and concurrency because our framework’s generated implementations are very similar to them,

achieving similar performance. We run the unsafe implementations both with a sequential load (one

request at a time) unsafe (seq) to measure their throughput, and with the normal workload unsafe

to measure their upper bound maximum throughput. Note that unsafe produce wrong results in

the context of concurrency or faults.

Figure 12 contains the results. In Media Application, under manageable load, µ2sls’s median

latencies range from 387ms to 559ms, and unsafe’s median latencies range from 114ms to 455ms.

µ2sls’s maximum throughput is 36 rps, unsafe (seq)’s is 7 rps, and unsafe’s is 70 rps. In Travel

Reservation, under manageable load, µ2sls’s median latencies range from 159ms to 295ms, and

unsafe’s median latencies range from 113ms to 177ms. µ2sls’s maximum throughput is 46 rps,

unsafe (seq)’s is 15 rps, and unsafe’s is 80 rps.

Take-away: In conclusion, µ2sls can generate serverless implementations for real-world microser-

vice applications that provide transaction support and exactly-once execution semantics while also

leveraging the parallelization offered by serverless platforms. µ2sls consistently outperforms unsafe

(seq) w.r.t. to throughput by 3-5× and its throughput is in the same order of magnitude (50-57%)

from an unsafe implementation that does not provide fault tolerance or transaction guarantees.

9 RELATEDWORK

Serverless Execution Platforms: Serverless execution platforms, like AWS Lambda [AWS

2022], Azure Functions [Microsoft Azure 2022], Google Cloud Functions [Google 2022], and Kna-

tive [Knative 2022], have become increasingly popular due to the promise of offloading operational

concerns, such as function scheduling, request routing, and autoscaling, to the provider. All of

these platforms offer limited support for state, and were primarily designed for completely stateless

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

13:26 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

applications. Our framework is orthogonal to these platforms and it focuses on providing features

that they lack, such as state management, logging, and transaction support. Our prototype deploys

its implementations on Knative, using it as a serverless execution backend.

Formal Semantics for Serverless: Jangda et al. [2019] were the first to study the semantics of

serverless platforms, presenting a formal model that captures important execution characteristics

of serverless. They also studied stateful serverless functions, namely ones that store their state in

an external store, and function compositions by proposing a language called SPL. Our framework

uses their work as a foundation, using their formalization of faults and reexecutions in serverless,

but extends it to support a programming model with both asynchronous calls and transactions, see

the Frontend service in Figure 1 for an example that is not supported by their work. The work by

Burckhardt et al. [2021] goes deeper in the study of persistent state, giving semantics to Durable

Functions (DF), a programming model for stateful serverless applications, and describing a correct—

providing exactly-once execution guarantees—and efficient implementation of DF (excluding critical

sections) in the context of faults, reexecutions, and compute-storage separation. The Durable

Functions programming model differs from our service specifications in several aspects, e.g., in

DF persistent state is stored and accessed through single-threaded stateful actors and not through

data objects, and also DF supports critical sections which require a preemptive declaration of the

accessed state components (in contrast to transactions that allow for dynamic accesses). At a higher

level, our framework builds on both of these works [Burckhardt et al. 2021; Jangda et al. 2019])

but its focus is different, as we target microservice applications and features that are necessary

to implement them, i.e., asynchronous calls and cross-service transactions, and we are the first to

formalize and develop a framework that given local Python source code generates correct serverless

implementations supporting all those features. The work by Ramalingam and Vaswani [2013] came

before serverless but has also influenced our framework, as they propose a semantics for distributed

services that execute in the presence of reliable storage, providing a translation framework using

monads that guarantees correct execution in the presence of faults. Finally, our work is influenced

by the rich literature on transaction formalization (e.g., [Abadi et al. 2008; Jagannathan et al. 2005;

Lesani et al. 2022; Moore and Grossman 2008; Vitek et al. 2004]).

Stateful Serverless Frameworks: The advent of serverless has led to a surge of proposals for

stateful serverless frameworks from both academia [Fouladi et al. 2019, 2017; Jonas et al. 2017;

López et al. 2020; Sreekanti et al. 2020a,b; Zhang et al. 2020a,b] and industry [Amazon 2020; Bonér

2020; Burckhardt et al. 2021; CloudFlare 2020a,b]. These systems provide helpful abstractions for

managing the state of serverless applications but usually do not provide strong reliability and formal

guarantees. [Zhang et al. 2020a] propose Beldi, a runtime and library that can be used by serverless

application developers to orchestrate storage accesses to provide exactly once guarantees in the

presence of faults. In contrast, µ2slsis an end-to-end framework with formal correctness guarantees

where developers write high-level code that is then executed on serverless infrastructure. Our

framework’s runtime builds on their work, but extends it to microservice applications that support

true asynchronous calls that can be awaited inside transactions (the Frontend service in Figure 1

is an example that is not supported by their work), retrieving their results, and provides formal
guarantees. Furthermore, Beldi requires manual state management (at the level of our KV model)

and explicit calls from the user to their library to provide correctness guarantees in the context

of faults, both of which are hidden by our programming model and taken care by our framework.

Kappa [Zhang et al. 2020b] is a framework for developing stateful serverless applications that

focuses on the issue of execution time limits that some serverless providers enforce. To address that,

they propose a continuation based translation that breaks user code to smaller functions so that

they can execute correctly without surpassing the execution time limit; this also enables functions

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

Executing Microservice Applications on Serverless, Correctly 13:27

that invoke other functions to not wait (and be billed for idle time) but rather stop executing and

then continue after the response arrives. Their techniques could be used in complement to ours,

e.g., to split request-processing at wait points so that a new function can be spawned to process

the response.

Microservice Application Correctness: The importance of microservice applications and the

lack of support for their correctness has been identified as an issue and recent work has taken steps

towards addressing it using a combination of static and dynamic techniques. Whip [Waye et al.

2017] proposes a contract language that captures the higher order nature of many service APIs

and develops a runtime monitoring framework to catch contract violations. Panda et al. [2017]

argue that microservice applications lack adequate tooling for checking correctness and propose

techniques that enable runtime checking of such application properties. Watchtower [Alpernas et al.

2021] builds on those ideas and developes a framework for the runtime verification of serverless

and other cloud applications. Finally, Filibuster [Meiklejohn et al. 2021] is a tool that combines

static analysis and concolic execution to identify resilience issues in microservice applications.

Actor Frameworks: Actor frameworks, like Erlang [Armstrong 1997], Akka [Haller 2012], and

Orleans [Bykov et al. 2011], are often used to simplify the development of service-like applications

since each actor is a single-threaded entity that processes incoming requests and holds its own state.

In order to develop multi-threaded applications with actors, developers often need to carefully

consider how many actors will hold the state and how to partition the state among them. They

must also perform manual logging and checkpointing to guarantee exactly-once execution in the

presence of faults. In contrast, state management is abstracted in our framework: the developers

do not need to worry about its partitioning, and execution is guaranteed to be correct even in the

presence of faults.

ACKNOWLEDGMENTS
We thank the POPL reviewers for their thoughtful comments, which improved the content and

presentation of this work. We also want to thank the anonymous OOPSLA reviewers for identifying

several issues in our formalism in a prior version of this work. This work was partially supported

by NSF award CCF 2124184.

REFERENCES
Martín Abadi, Andrew Birrell, Tim Harris, and Michael Isard. 2008. Semantics of Transactional Memory and Automatic

Mutual Exclusion. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (San Francisco, California, USA) (POPL ’08). Association for Computing Machinery, New York, NY, USA,

63–74. https://doi.org/10.1145/1328438.1328449

Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, and Mooly Sagiv. 2021. Cloud-Scale Runtime Verification of Serverless

Applications. In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA) (SoCC ’21). Association for

Computing Machinery, New York, NY, USA, 92–107. https://doi.org/10.1145/3472883.3486977

Amazon 2020. AWS Step Functions. https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html.

Apple 2022. FoundationDB. https://www.foundationdb.org/.

Joe Armstrong. 1997. The development of Erlang. In ICFP, Vol. 97. 196–203.
AWS 2022. AWS Lambda. https://aws.amazon.com/lambda/.

Jonas Bonér. 2020. Towards Stateful Serverless. https://www.youtube.com/watch?v=DVTf5WQlgB8.

Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor McMahon, and Christopher S. Meiklejohn.

2021. Durable Functions: Semantics for Stateful Serverless. Proc. ACM Program. Lang. 5, OOPSLA, Article 133 (Oct 2021),
27 pages. https://doi.org/10.1145/3485510

Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen Thelin. 2011. Orleans: Cloud Computing

for Everyone. In Proceedings of the 2nd ACM Symposium on Cloud Computing (Cascais, Portugal) (SOCC ’11). Association
for Computing Machinery, New York, NY, USA, Article 16, 14 pages. https://doi.org/10.1145/2038916.2038932

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

https://doi.org/10.1145/1328438.1328449
https://doi.org/10.1145/3472883.3486977
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://www.foundationdb.org/
https://aws.amazon.com/lambda/
https://www.youtube.com/watch?v=DVTf5WQlgB8
https://doi.org/10.1145/3485510
https://doi.org/10.1145/2038916.2038932

13:28 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu

CloudFlare 2020a. Using Durable Objects, Cloudflare Docs. https://developers.cloudflare.com/workers/learning/using-

durable-objects.

CloudFlare 2020b. Workers Durable Objects Beta: A New Approach to Stateful Serverless. https://blog.cloudflare.com/

introducing-workers-durable-objects/.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler,

David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink,

Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Operation of CloudLab. In Proceedings
of the USENIX Annual Technical Conference (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia, and Keith

Winstein. 2019. From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Transient Functional Containers.

In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference (Renton, WA, USA) (USENIX ATC
’19). USENIX Association, USA, 475–488.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubramaniam, William Zeng, Rahul Bhalerao,

Anirudh Sivaraman, George Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing

Using Thousands of Tiny Threads. In Proceedings of the 14th USENIX Conference on Networked Systems Design and
Implementation (Boston, MA, USA) (NSDI’17). USENIX Association, USA, 363–376.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken,

Brendon Jackson, et al. 2019. An open-source benchmark suite for microservices and their hardware-software implications

for cloud & edge systems. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. 3–18.

Google 2022. Google Cloud Functions. https://cloud.google.com/functions.

Philipp Haller. 2012. On the integration of the actor model in mainstream technologies: the Scala perspective. In Proceedings
of the 2nd Edition on Programming Systems, Languages and Applications based on Actors, Agents, and Decentralized Control
Abstractions. ACM, 1–6.

Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463–492.

Hypercorn 2022. Hypercorn. https://pgjones.gitlab.io/hypercorn.

Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony Hosking. 2005. A transactional object calculus. Science of Computer
Programming 57, 2 (2005), 164–186.

Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019. Formal foundations of serverless computing.

Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–26.

Zhipeng Jia and Emmett Witchel. 2021a. Boki: Stateful serverless computing with shared logs. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 691–707.

Zhipeng Jia and Emmett Witchel. 2021b. Nightcore: efficient and scalable serverless computing for latency-sensitive,

interactivemicroservices. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 152–166.

Eric Jonas, Qifan Pu, ShivaramVenkataraman, Ion Stoica, and Benjamin Recht. 2017. Occupy the cloud: Distributed computing

for the 99%. In Proceedings of the 2017 Symposium on Cloud Computing. 445–451. https://doi.org/10.1145/3127479.3128601

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao

Carreira, Karl Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on serverless

computing. arXiv preprint arXiv:1902.03383 (2019).
Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic

ephemeral storage for serverless analytics. In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). 427–444.

Knative 2022. Knative. https://knative.dev.

Mohsen Lesani, Li-yao Xia, Anders Kaseorg, Christian J Bell, Adam Chlipala, Benjamin C Pierce, and Steve Zdancewic. 2022.

C4: verified transactional objects. Proceedings of the ACM on Programming Languages 6, OOPSLA (2022), 1–31.

Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slominski, and Lionel Villard. 2020. Triggerflow: Trigger-Based

Orchestration of Serverless Workflows. In Proceedings of the 14th ACM International Conference on Distributed and
Event-Based Systems (Montreal, Quebec, Canada) (DEBS ’20). Association for Computing Machinery, New York, NY, USA,

3–14. https://doi.org/10.1145/3401025.3401731

Christopher S. Meiklejohn, Andrea Estrada, Yiwen Song, Heather Miller, and Rohan Padhye. 2021. Service-Level Fault

Injection Testing. In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA) (SoCC ’21). Association
for Computing Machinery, New York, NY, USA, 388–402. https://doi.org/10.1145/3472883.3487005

Microsoft Azure 2022. Azure Functions. https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview.

Minikube 2022. Minikube. https://minikube.sigs.k8s.io.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

https://developers.cloudflare.com/workers/learning/using-durable-objects
https://developers.cloudflare.com/workers/learning/using-durable-objects
https://blog.cloudflare.com/introducing-workers-durable-objects/
https://blog.cloudflare.com/introducing-workers-durable-objects/
https://www.flux.utah.edu/paper/duplyakin-atc19
https://cloud.google.com/functions
https://pgjones.gitlab.io/hypercorn
https://doi.org/10.1145/3127479.3128601
https://knative.dev
https://doi.org/10.1145/3401025.3401731
https://doi.org/10.1145/3472883.3487005
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://minikube.sigs.k8s.io

Executing Microservice Applications on Serverless, Correctly 13:29

Katherine F Moore and Dan Grossman. 2008. High-level small-step operational semantics for transactions. In Proceedings of
the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 51–62.

Atif Nazir, Saqib Raza, and Chen-Nee Chuah. 2008. Unveiling facebook: a measurement study of social network based

applications. In Proceedings of the 8th ACM SIGCOMM Internet Measurement Conference. ACM.

Aurojit Panda, Mooly Sagiv, and Scott Shenker. 2017. Verification in the age of microservices. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems. 30–36.

Benjamin C Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent

Yorgey. 2010. Software foundations. Webpage: http://www.cis.upenn.edu/bcpierce/sf/current/index.html (2010).
Quart 2022. Quart. https://pgjones.gitlab.io/quart.

Ganesan Ramalingam and Kapil Vaswani. 2013. Fault tolerance via idempotence. In Proceedings of the 40th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. 249–262. https://doi.org/10.1145/2429069.2429100

Ray 2022. Ray Core: A faster, simpler approach to parallel Python. https://ray.io/ray-core.

Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E Gonzalez, Joseph M Hellerstein, and Jose M Faleiro. 2020a.

A fault-tolerance shim for serverless computing. In Proceedings of the Fifteenth European Conference on Computer Systems.
1–15. https://doi.org/10.1145/3342195.3387535

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith, Jose M Faleiro, Joseph E Gonzalez, Joseph M

Hellerstein, and Alexey Tumanov. 2020b. Cloudburst: Stateful functions-as-a-service. arXiv preprint arXiv:2001.04592
(2020).

Temporal 2022. Temporal. https://temporal.io/.

Gil Tene. 2022. wrk2. https://github.com/giltene/wrk2.

Jan Vitek, Suresh Jagannathan, Adam Welc, and Antony L Hosking. 2004. A semantic framework for designer transactions.

In European Symposium on Programming. Springer, 249–263.
Lucas Waye, Stephen Chong, and Christos Dimoulas. 2017. Whip: Higher-Order Contracts for Modern Services. Proc. ACM

Program. Lang. 1, ICFP, Article 36 (aug 2017), 28 pages. https://doi.org/10.1145/3110280

Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent Liu. 2020a. Fault-tolerant and transactional

stateful serverless workflows. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
1187–1204.

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. 2020b. Kappa: A Programming Framework for Serverless

Computing. In Proceedings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20). Association
for Computing Machinery, New York, NY, USA, 328–343. https://doi.org/10.1145/3419111.3421277

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 13. Publication date: January 2023.

https://pgjones.gitlab.io/quart
https://doi.org/10.1145/2429069.2429100
https://ray.io/ray-core
https://doi.org/10.1145/3342195.3387535
https://temporal.io/
https://github.com/giltene/wrk2
https://doi.org/10.1145/3110280
https://doi.org/10.1145/3419111.3421277

	Abstract
	1 Introduction
	2 Background
	2.1 Serverless platforms

	3 Overview
	3.1 Example: Travel Reservation Application
	3.2 Framework Overview

	4 Stateful Service Application Specification
	4.1 Service Specifications
	4.2 Execution Semantics
	4.3 Persistent State and Transactions

	5 Key-Value Store Implementation Model
	5.1 Key-Value Store Implementations
	5.2 KV implementation correctness

	6 Serverless Implementation Model
	6.1 SLS Implementations
	6.2 Serverless Implementation Correctness

	7 Prototype Implementation
	8 Performance Evaluation
	8.1 Logging Overhead (Q1)
	8.2 Transactions Overhead (Q2)
	8.3 Real-world Applications (Q3)

	9 Related Work
	References

