
37

A Robust Theory of Series Parallel Graphs
RAJEEV ALUR, University of Pennsylvania, USA

CALEB STANFORD∗, University of California, San Diego, USA and University of California, Davis, USA

CHRISTOPHER WATSON, University of Pennsylvania, USA

Motivated by distributed data processing applications, we introduce a class of labeled directed acyclic graphs

constructed using sequential and parallel composition operations, and study automata and logics over them.

We show that deterministic and non-deterministic acceptors over such graphs have the same expressive

power, which can be equivalently characterized by Monadic Second-Order logic and the graded 𝜇-calculus.

We establish closure under composition operations and decision procedures for membership, emptiness,

and inclusion. A key feature of our graphs, called synchronized series-parallel graphs (SSPG), is that parallel

composition introduces a synchronization edge from the newly introduced source vertex to the sink. The

transfer of information enabled by such edges is crucial to the determinization construction, which would not

be possible for the traditional definition of series-parallel graphs.

SSPGs allow both ordered ranked parallelism and unordered unranked parallelism. The latter feature means

that in the corresponding automata, the transition function needs to account for an arbitrary number of

predecessors by counting each type of state only up to a specified constant, thus leading to a notion of counting

complexity that is distinct from the classical notion of state complexity. The determinization construction

translates a nondeterministic automaton with 𝑛 states and 𝑘 counting complexity to a deterministic automaton

with 2
𝑛2

states and 𝑘𝑛 counting complexity, and both these bounds are shown to be tight. Furthermore, for

nondeterministic automata a bound of 2 on counting complexity suffices without loss of expressiveness.

CCS Concepts: • Information systems → Data streaming; • Theory of computation → Formal lan-
guages and automata theory.

Additional Key Words and Phrases: series-parallel graphs, distributed stream processing, regular languages,

logic in computer science

ACM Reference Format:
Rajeev Alur, Caleb Stanford, and Christopher Watson. 2023. A Robust Theory of Series Parallel Graphs. Proc.

ACM Program. Lang. 7, POPL, Article 37 (January 2023), 31 pages. https://doi.org/10.1145/3571230

1 INTRODUCTION
Regular languages and automata over words play a fundamental role in software development

practice today; they are used for tasks including parsing and input validation [Chapman and

Stolee 2016], program synthesis [Gulwani 2011], and program verification [Amadini 2021; Hojjat

et al. 2019]. The theory of regular languages is especially appealing because it is robust: for

example, (1) regular languages are closed under operations such as union, concatenation, and

complement; (2) regular languages have multiple equivalent characterizations in terms of automata,

regular expressions, and monadic second-order logic (MSO); and (3) relevant decision problems,

∗
Work done while at the University of Pennsylvania.

Authors’ addresses: Rajeev Alur, Computer and Information Science, University of Pennsylvania, USA, alur@cis.upenn.edu;

Caleb Stanford, University of California, San Diego, USA and University of California, Davis, USA, cstanford@ucsd.edu;

Christopher Watson, Computer and Information Science, University of Pennsylvania, USA, ccwatson@seas.upenn.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART37

https://doi.org/10.1145/3571230

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

https://doi.org/10.1145/3571230
https://doi.org/10.1145/3571230

37:2 Rajeev Alur, Caleb Stanford, and Christopher Watson

including membership, equivalence, and emptiness, are decidable. This has prompted a longstanding

investigation in logic in computer science to generalize the theory to more complex structures, for

example to infinite words and trees [Thomas 1990] and nested words [Alur and Madhusudan 2004,

2009]. We continue this trend and study automata and logics over series-parallel graphs. We aim to

identify a robust theory that enjoys the properties (1)-(3) that have contributed to the widespread

success of word languages. We are in particular interested in series-parallel graphs because they can

be used as an abstract model of partially ordered data; a robust theory of such graphs could enable

new techniques for parsing, validation, synthesis, and verification for distributed data processing

software.

The core object of our study is a class of labeled graphs which we call synchronized series-parallel

graphs (SSPGs) (Section 2). An SSPG is a planar directed acyclic graph with a unique source and

unique sink vertex constructed using three inductive cases: series composition of two graphs, ordered

parallel composition of two graphs, and unordered parallel composition of any positive integer

number of graphs. Each of the two parallel composition operations introduces a new source and

sink vertex as well as new edges, including a synchronization edge that connects the source to the

sink. We use a fixed finite set of edge labels to make the graph’s structure visible; in particular, edge

labels distinguish ordered and unordered parallelism. Each vertex of an SSPG has a label drawn

from some finite alphabet Σ.

Practical Motivation. Series-parallel structures arise naturally in distributed data stream process-

ing applications. Prior language proposals consider the items in a stream to be tuples (in the sense

of relational databases) [Arasu et al. 2006; Babcock et al. 2002], arriving in parallel over multiple

distributed devices, with additional constraints on ordering between stream events, particularly

system events known as “punctuation marks” [Tucker et al. 2003]. Prior work (including a subset

of the current authors) identifies series-parallel partial orders as a useful abstraction at the type

system and language level for concisely describing these complex orderings [Alur et al. 2021; Kallas

et al. 2022; Mamouras et al. 2019].

However, existing type systems for streams have no way to describe temporal integrity constraints;

that is, constraints on the pattern of data that occurs over time. For example: “on each parallel

stream, every begin-transaction event 𝐵 is matched by a closing end-transaction event 𝐸.” Regular

languages of SSPGs could close this gap by providing a formalism for describing temporal integrity

constraints – while ensuring that the constraints remain computationally tractable. We elaborate

on this connection in Section 4.

The connection to data streams also motivates some of the design choices of the SSPG model.

Unordered parallelism corresponds to a common form of parallelism in data streams known as

key-based parallelism [Gedik 2014; Shatdal and Naughton 1995]. For example, a stream of bids in

an online auction would be parallelized by item identifiers, yielding a parallel stream for each item

being sold. This parallelism is inherently unranked (the number of parallel graphs is not bounded

by a fixed constant), because the number of different items is not known statically. Unordered,

unranked parallelism can express other standard streaming data models, including the sequence of

relations model [Arasu et al. 2003, 2006] (Section 3.5). Ordered parallelism models parallel streams

that should be treated asymmetrically, for example, a pair comprising a stream of auction bids

and a stream of direct purchases. Multiple levels of nested parallelism (of both types) also occur,

for example in Timely Dataflow [Murray et al. 2013]. We discuss design choices (including the

asymmetry between binary ordered and 𝑛-ary unordered parallelism) in Section 3.4.

Results. To study regular properties of SSPGs, we introduce synchronized series-parallel graph

automata (SSPGAs) as language acceptors over SSPGs (Section 3). An SSPGA is an acylic graph

automaton [Arbib and Give’on 1968; Kamimura and Slutzki 1981a; Thomas 1997]. Similar to other

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:3

models, an SSPGA labels the vertices of a graph with states in a topologically sorted order based on

each vertex’s immediate predecessors, as allowed by the SSPGA’s transition relation. At a join vertex

following either an ordered or unordered parallel construct, the synchronization edge provides

access to the state at the matching split vertex. A key difference from standard graph automata lies

in the case of unordered parallelism, since a join node in an SSPG may have an unbounded number

of predecessors. To ensure each SSPGA has a finite description, we introduce a transition relation

based on counting the number of predecessors of each state up to a maximum finite threshold 𝑘 ,

then applying a function to the vector of counts. As a brief preview, the structure of the unordered

join transition function will be a function of type𝑄 × [𝑄 → {0, 1, 2, . . . , 𝑘}] → 𝑄 . For example, this

allows transitioning to a state 𝑞′ if exactly two predecessor vertices are in state 𝑞1 and at most three

predecessor vertices are in state 𝑞2. This means that an automaton has two notions of succinctness:

its state complexity and its counting complexity 𝑘 .

Our main results are that the nondeterminstic and deterministic SSPGA models are expressively

equivalent to each other, are compositional (Section 5), and are expressively equivalent to both

MSO and graded 𝜇-calculus over SSPGs (Section 7). We also show that membership, emptiness,

and inclusion are decidable (Section 6). The determinization construction of a machine with state

complexity 𝑛 and counting complexity 𝑘 yields a machine with state complexity 2
𝑛2

and counting

complexity 𝑘𝑛; we show each blowup in complexity to be tight. Interestingly, we show more

generally that a counting complexity of 2 suffices for full expressiveness of nondeterministic

automata. We also show that a counting complexity of 1 leads to strictly weaker expressiveness.

To our knowledge, these results on counting complexity have not been made in the context of

automata on graphs or trees.

The addition of a synchronization edge between the new source and sink during each parallel com-

position of graphs plays a key role in our results. Inspired by nested words [Alur and Madhusudan

2009], the synchronization edge is necessary for a robust theory, in particular for determinization

and equivalence with MSO (see Section 3.4). Importantly, synchronization edges do not fundamen-

tally change the class of graphs considered: an SSPG𝐺 can be uniquely recovered from the graph

𝐺 ′
formed by removing all synchronization edges from𝐺 . However, without synchronization edges,

a pushdown model would be needed to recover the matching between split and join edges; with

them, a finite-state model suffices.

While automata over series-parallel graphs have been defined previously [Lodaya and Weil 1998,

2000], as they lack the synchronization edge, they do not admit determinization. We discuss related

work on tree, graph, trace, and word automata in Section 8.

2 SYNCHRONIZED SERIES PARALLEL GRAPHS
Before introducing SSPGs, which have vertex labels drawn arbitrarily from some finite alphabet,

we present their underlying structure in the form of vertex-unlabeled SSPGs.

Vertex-Unlabeled SSPG. A vertex-unlabeled SSPG comprises a nonempty set of vertices, a source

vertex, a sink vertex, and a set of labeled directed edges. The base case will be a single-vertex graph,

where the source and sink are the same; in all other cases, the source and sink will be different.

Edge labels are drawn from the set

Γ = {seq, sl, sr, su, jl, jr, ju, sync}

Where seq, sl, sr, su, jl, jr, ju, and sync are shorthands for (respectively) sequence, left-split, right-split,
unordered-split, left-join, right-join, unordered-join, and synchronization. For arbitrary vertices 𝑢

and 𝑣 and some label 𝛾 ∈ Γ, the directed edge from 𝑢 to 𝑣 with label 𝛾 is denoted 𝑢
𝛾
→𝑣 . We say that

𝑣 is the 𝛾-successor of 𝑢 and that 𝑢 is the 𝛾-predecessor of 𝑣 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:4 Rajeev Alur, Caleb Stanford, and Christopher Watson

𝑥1

𝑥8 𝑥9
𝑥6

𝑥2

𝑥3 𝑥4

𝑥5
𝑥7

𝑥10 𝑥11 𝑥12

sync

sync

su

su
su

seq

seq seq

seq
sl
sr

jl
jr

ju

ju

ju

(a) A vertex-unlabeled SSPG.

𝑏 𝑎

𝑏

𝑏

𝑏 𝑏

𝑞0 𝑞0 𝑞0 𝑞1

𝑞0 𝑞0

𝑞1 𝑞1

𝑞0 𝑞0 𝑞0 𝑞0

sync

seq
su

su

ju

seq
ju

(b) An accepting run of 𝐴SING on an SSPG (see
Example 3.7). Left- and right- states are marked
in red and blue, respectively.

𝑎

𝑎

𝑎

𝑎

𝑎
𝑞0 𝑞0

𝑞1 𝑞1

𝑞2 𝑞2

𝑞1 𝑞1

𝑞1 𝑞1

sync

su

su

su

ju

ju

ju

(c) A rejecting run of 𝐴2 on a 𝐺3 (see Exam-
ple 3.8). At the join, the machine counts 3 in-
coming copies of the state 𝑞1, and so transitions
to the fail state.

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑞0 𝑞0

𝑞1 𝑞1

𝑞1 𝑞1

𝑞1 𝑞3

𝑞1 𝑞2

𝑞1 𝑞4

sync

su

su
su

su

ju
ju
ju
ju

(d) An accepting run of 𝐵4 on 𝐺4 (see Exam-
ple 3.9). At the join, the machine counts one
each of 𝑞1, . . . , 𝑞4, and so the run can continue
toward acceptance.

Fig. 1. Examples of SSPG structure and SSPGA runs.

Definition 2.1 (Vertex-unlabeled Synchronized Series Parallel Graph). A vertex-unlabeled SSPG is

a tuple (𝑉 , 𝐸, 𝑠, 𝑡) constructed using the rules below. Here,𝑉 is the nonempty vertex set, 𝐸 ⊆ 𝑉×Γ×𝑉
is the labeled edge set, 𝑠 ∈ 𝑉 is the source, and 𝑡 ∈ 𝑉 is the sink.

(1) Singleton: For an arbitrary vertex 𝑢, the graph

𝐺 = ({𝑢}, {}, 𝑢,𝑢)
is a vertex-unlabeled SSPG.

(2) Series composition: For arbitrary disjoint vertex-unlabeled SSPGs 𝐺1 = (𝑉1, 𝐸1, 𝑠1, 𝑡1) and
𝐺2 = (𝑉2, 𝐸2, 𝑠2, 𝑡2), the graph

𝐺 = (𝑉1 ∪𝑉2, 𝐸1 ∪ 𝐸2 ∪ {𝑡1
seq
→𝑠2}, 𝑠1, 𝑡2)

is a vertex-unlabeled SSPG.

(3) Ordered parallel composition: For arbitrary disjoint vertex-unlabeled SSPGs 𝐺1 =

(𝑉1, 𝐸1, 𝑠1, 𝑡1) and 𝐺2 = (𝑉2, 𝐸2, 𝑠2, 𝑡2) and fresh source and sink 𝑠 and 𝑡 we define:

• 𝑉 = 𝑉1 ∪𝑉2 ∪ {𝑠, 𝑡}
• 𝐸 = 𝐸1 ∪ 𝐸2 ∪ {𝑠 sl→𝑠1, 𝑠

sr→𝑠2, 𝑡1
jl
→𝑡, 𝑡2

jr
→𝑡, 𝑠

sync
→ 𝑡}

and say 𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡) is a vertex-unlabeled SSPG.

(4) Unordered parallel composition: For 𝑛 ≥ 1 arbitrary disjoint vertex-unlabeled SSPGs

𝐺1, ...,𝐺𝑛 such that for 1 ≤ 𝑖 ≤ 𝑛, 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝑠𝑖 , 𝑡𝑖) and fresh source and sink 𝑠 and 𝑡 we

define:

• 𝑉 =
⋃𝑛

𝑖=1 [𝑉𝑖] ∪ {𝑠, 𝑡}

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:5

• 𝐸 =
⋃𝑛

𝑖=1 [𝐸𝑖 ∪ {𝑠 su→𝑠𝑖 , 𝑡𝑖
ju
→𝑡}] ∪ {𝑠

sync
→ 𝑡}

and say 𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡) is a vertex-unlabeled SSPG.

Each vertex in a vertex-unlabeled SSPG has exactly one type, uniquely determined by its incoming

and outgoing edges. A vertex with outgoing left- and right-split edges is an ordered-split vertex. A

vertex with at least one outgoing unordered-split edge is an unordered-split vertex. A vertex with

incoming left- and right-join edges is an ordered-join vertex. A vertex with at least one incoming

unordered-join edge is an unordered-join vertex. All other vertices are internal vertices. In Figure 1a,

𝑥2 is an ordered-split vertex, 𝑥1 is an unordered-split vertex, 𝑥5 is an ordered-join vertex, 𝑥6 is an

unordered-join vertex, and 𝑥3, 𝑥4, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, and 𝑥12 are all internal vertices.

SSPG. An SSPG has the same underlying structure as a vertex-unlabeled SSPG, with the addition

of vertex-labels drawn from a finite alphabet.

Definition 2.2 (SSPG). A synchronized series-parallel graph (SSPG) is a tuple (𝑉 , 𝐸, 𝑠, 𝑡, Σ, 𝜎) such
that

• (𝑉 , 𝐸, 𝑠, 𝑡) is a vertex-unlabeled SSPG

• Σ is a finite set of vertex labels

• 𝜎 : 𝑉 → Σ is a vertex-labeling function

For an SSPG 𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡, Σ, 𝜎) we say that 𝑉 is the vertex set, 𝐸 is the edge set, 𝑠 is the source,

𝑡 is the sink, Σ is the set of vertex labels, and 𝜎 is the vertex labeling function of 𝐺 . For a finite

alphabet Σ, let 𝑆𝑆𝑃𝐺 (Σ) denote the set of all labeled SSPGs with vertex labels drawn from Σ.

3 SSPG AUTOMATA
An SSPG Automaton (SSPGA) is a finite-state acceptor over SSPGs. In Section 3.1, we introduce the

SSPGA model, which characterizes the notion of regularity for SSPG languages. In Section 3.2, we

define the deterministic subclass of SSPGAs. In Section 3.3, we provide examples of SSPGAs and

the runs they may take on certain SSPGs.

3.1 Syntax and Semantics
We fix the notation [𝑖 .. 𝑗] for the set of natural numbers {𝑖, 𝑖 + 1, . . . , 𝑗} and define SSPGA as follows.

Definition 3.1 (SSPGA). An SSPGA is defined by a tuple (𝑄, Σ, 𝑄0, 𝐹 , 𝑘,Δup,Δseq,Δso,Δsu,Δjo,Δju)
where

• 𝑄 is a finite set of states

• Σ is a set of vertex labels

• 𝑄0 ⊆ 𝑄 is the set of initial states

• 𝐹 ⊆ 𝑄 is the set of final (accepting) states

• 𝑘 ∈ N is the counting complexity of 𝐴

• Δup ⊆ 𝑄 × Σ ×𝑄 is the update transition relation

• Δseq ⊆ 𝑄 ×𝑄 is the sequence transition relation

• Δso ⊆ 𝑄 ×𝑄 ×𝑄 is the ordered split transition relation

• Δsu ⊆ 𝑄 ×𝑄 is the unordered split transition relation

• Δjo ⊆ 𝑄 ×𝑄 ×𝑄 ×𝑄 is the ordered join transition relation

• Δju ⊆ 𝑄 × [𝑄 → [0..𝑘]] ×𝑄 is the unordered join transition relation (note that this is a finite

set, so there are finitely many possible transitions).

A run of an SSPGA on an SSPG is an assignment of a left-state and a right-state to each vertex of

the graph. The update transition relation defines legal triples of left-state, vertex label, and right-

state at a single vertex. The remaining transition relations define legal combinations of left-state at

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:6 Rajeev Alur, Caleb Stanford, and Christopher Watson

a vertex and right-states at its predecessors, or right-state at a vertex and left-states at its successors.

Since an unordered-join vertex may have unboundedly many unordered-join predecessors, the

states of which cannot all be maintained by a finite control, the SSPGA will “stop counting” once

a per-state threshold is reached. This threshold is the counting complexity of the SSPGA, and

motivates the following definition:

Definition 3.2 (𝑘-truncation (⌊ ⌋𝑘)). For any 𝑘 ∈ N and finite set𝑄 , we define a function k-truncate

that maps an arbitrary multiset𝑀 with elements drawn from𝑄 to a vector ⌊𝑀⌋𝑘 : 𝑄 → [0..𝑘] such
that for any 𝑞 ∈ 𝑄 ,

⌊𝑀⌋𝑘 (𝑞) =
{
𝑖, 𝑞 appears in𝑀 with multiplicity 𝑖 < 𝑘

𝑘, otherwise

and say that ⌊𝑀⌋𝑘 is the 𝑘-truncation of𝑀 .

Definition 3.3 (Run of an SSPGA). A run of an SSPGA 𝐴 = (𝑄, Σ, 𝑄0, 𝐹 , 𝑘,Δup,Δseq,Δso,Δsu,Δjo,

Δju) on an SSPG 𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡, Σ, 𝜎) is an assignment of a left-state 𝐿(𝑢) and right-state 𝑅(𝑢) to
each vertex in 𝑉 such that the following conditions hold:

(1) At each vertex 𝑢 the states satisfy (𝐿(𝑢), 𝜎 (𝑢), 𝑅(𝑢)) ∈ Δup
(2) At any vertex 𝑢 with a sequence successor 𝑣 , the states satisfy (𝑅(𝑢), 𝐿(𝑣)) ∈ Δseq
(3) At any ordered-split vertex 𝑢 with left-split successor 𝑣ℓ and right-split successor 𝑣𝑟 , the

states satisfy (𝑅(𝑢), 𝐿(𝑣ℓ), 𝐿(𝑣𝑟)) ∈ Δso
(4) At any unordered-split vertex 𝑢 and any unordered-split successor 𝑣 of 𝑢, the states satisfy

(𝑅(𝑢), 𝐿(𝑣))∈Δsu
(5) At any ordered-join vertex 𝑣 with synchronization, left-join, and right-join predecessors 𝑢𝑠 ,

𝑢ℓ , and 𝑢𝑟 , the states satisfy (𝑅(𝑢𝑠), 𝑅(𝑢ℓ), 𝑅(𝑢𝑟), 𝐿(𝑣)) ∈ Δjo
(6) At any unordered-join vertex 𝑣 with synchronization predecessor 𝑢𝑠 and unordered-join

predecessors 𝑢1, . . . , 𝑢𝑚 , the states satisfy (𝑅(𝑢𝑠), ⌊{𝑅(𝑢1), . . . , 𝑅(𝑢𝑚)}⌋𝑘 , 𝐿(𝑣)) ∈ Δju

A run is accepting if it satisfies the above conditions, assigns an element of 𝑄0 as the left-state of

the source 𝑠 , and assigns an element of 𝐹 as the right-state of the sink 𝑡 .

Definition 3.4 (Language of an SSPGA). A SSPGA𝐴 accepts an SSPG𝐺 iff there exists an accepting

run of 𝐴 on 𝐺 . The language 𝐿(𝐴) of an SSPGA 𝐴 is the set of all SSPGs that 𝐴 accepts.

A language is a (possibly infinite) set of SSPGs. A language 𝐿 is regular iff there exists an SSPGA

𝐴 such that 𝐿 = 𝐿(𝐴).

3.2 Deterministic SSPGA
A deterministic SSPGA (DSSPGA) is an SSPGA such that during a run on an SSPG, for any vertex 𝑢,

each assignment of right-states to the predecessors of 𝑢 uniquely determines the left-state of 𝑢,

and each pair of left-state and label of 𝑢 uniquely determines the right-state of 𝑢. Additionally, a

DSSPGA must have exactly one initial state.

Definition 3.5 (Deterministic SSPGA (DSSPGA)). A SSPGA 𝐴 = (𝑄, Σ, 𝑄0, 𝐹 , 𝑘,Δup,Δseq,Δso,Δsu,

Δjo,Δju) is a deterministic SSPGA (DSSPGA) if

(1) |𝑄0 | = 1

(2) ∀𝑞 ∈ 𝑄, ∀𝑎 ∈ Σ there is exactly one 𝑞′ = 𝛿up (𝑞, 𝑎) such that (𝑞, 𝑎, 𝑞′) ∈ Δup
(3) ∀𝑞 ∈ 𝑄 there is exactly one state 𝑞′ = 𝛿seq (𝑞) such that (𝑞, 𝑞′) ∈ Δseq
(4) ∀𝑞 ∈ 𝑄 there is exactly one pair (𝑞ℓ , 𝑞𝑟) = 𝛿so (𝑞) such that (𝑞, 𝑞ℓ , 𝑞𝑟) ∈ Δso
(5) ∀𝑞 ∈ 𝑄 there is exactly one 𝑞′ = 𝛿su (𝑞) such that (𝑞, 𝑞′) ∈ Δsu

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:7

(6) ∀𝑞𝑠 , 𝑞𝑙 , 𝑞𝑟 ∈ 𝑄 there is exactly one 𝑞′ = 𝛿jo (𝑞𝑠 , 𝑞ℓ , 𝑞𝑟) such that (𝑞𝑠 , 𝑞ℓ , 𝑞𝑟 , 𝑞′) ∈ Δjo
(7) ∀𝑞 ∈ 𝑄, ∀𝑓 ∈ [𝑄 → [0..𝑘]] there is exactly one 𝑞′ = 𝛿ju (𝑞, 𝑓) such that (𝑞, 𝑓 , 𝑞′) ∈ Δju

Definition 3.6 (Deterministic run of a DSSPGA). The deterministic run of a DSSPGA 𝐴 = (𝑄, Σ,
𝑄0, 𝐹 , 𝑘,Δup,Δseq,Δso,Δsu,Δjo,Δju) on an SSPG𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡, Σ, 𝜎) is the unique run of𝐴 on𝐺 that

assigns the sole element of 𝑄0 to be the left-state of 𝑠 .

For any DSSPGA 𝐴 = (𝑄, Σ, 𝑄0, 𝐹 , 𝑘,Δup,Δseq,Δso,Δsu,Δjo,Δju), Definition 3.5 implicitly defines

functions 𝛿up, 𝛿seq, 𝛿so, 𝛿su, 𝛿jo, 𝛿ju that characterize the transitions of 𝐴. To highlight the fact that

such an 𝐴 is deterministic, we may equivalently denote 𝐴 as (𝑄, Σ, 𝑄0, 𝐹 , 𝑘, 𝛿up, 𝛿seq, 𝛿so, 𝛿su, 𝛿jo,

𝛿ju). When an SSPGA is known to be deterministic, we may switch freely between the “transition

relation” (using capital Δ𝛾) and “transition function” (using lower-case 𝛿𝛾) notations.

Expressive equivalence of deterministic and nondeterministic SSPGAs is shown in section 5.1.

3.3 Examples
Example 3.7 (Single occurrence of 𝑎). Fix Σ = {𝑎, 𝑏} and let SING(𝑎) be the set of all SSPGs with
labels drawn from Σ containing exactly one vertex labeled 𝑎. We define a DSSPGA 𝐴SING such that

𝐿(𝐴SING) = SING(𝑎).
𝐴𝑆𝐼𝑁𝐺 has three states: 𝑞0 with the interpretation “no a has been encountered,” 𝑞1 with the

interpretation “one 𝑎 has been encountered,” and a failing state 𝑞2. At a vertex labeled 𝑎, if the left-

state is 𝑞0 then the update transition function sets the right-state to be 𝑞1. Similarly, the left-states

𝑞1 and 𝑞2 would each transition to 𝑞2 on the symbol 𝑎.

At a split vertex assigned some right-state 𝑞, the machine makes use of the synchronization

edge to recover 𝑞 at the corresponding join. Therefore, all non-synchronization successors can be

initialized to 𝑞0. On a join vertex, if there have been at least two 𝑎s encountered in total across

all the parallel branches and prior to the split, the machine assigns the failing left-state 𝑞2. For

unordered joins, this requires counting complexity 2. An example run is shown in Figure 1b.

Formally, 𝐴SING = ({𝑞0, 𝑞1, 𝑞2}, Σ, {𝑞0}, {𝑞1}, 2,Δup,Δseq,Δso,Δsu,Δjo,Δju). where the transition
relations are given by:

• Δup = {(𝑞0, 𝑎, 𝑞1), (𝑞0, 𝑏, 𝑞0), (𝑞1, 𝑎, 𝑞2), (𝑞1, 𝑏, 𝑞1), (𝑞2, 𝑎, 𝑞2), (𝑞2, 𝑏, 𝑞2)}
• Δseq = {(𝑞0, 𝑞0), (𝑞1, 𝑞1), (𝑞2, 𝑞2)}
• Δso = {(𝑞0, 𝑞0, 𝑞0), (𝑞1, 𝑞0, 𝑞0), (𝑞2, 𝑞0, 𝑞0)}
• Δsu = {(𝑞0, 𝑞0), (𝑞1, 𝑞0), (𝑞2, 𝑞0)}
• Δjo = 𝐷1 ∪ 𝐷2 where

– 𝐷1 = {(𝑞0, 𝑞0, 𝑞0, 𝑞0), (𝑞1, 𝑞0, 𝑞0, 𝑞1), (𝑞0, 𝑞1, 𝑞0, 𝑞1), (𝑞0, 𝑞0, 𝑞1, 𝑞1)}
– 𝐷2 = (𝑄 ×𝑄 ×𝑄 × {𝑞2}) \ 𝐷1

• Δju ⊆ 𝑄 × [𝑄 → [0..2]] ×𝑄 = 𝐷1 ∪ 𝐷2 where

– 𝐷1 = {(𝑞0, 𝑓 , 𝑞0) | 𝑓 (𝑞1) = 0 ∧ 𝑓 (𝑞2) = 0} ∪
{(𝑞0, 𝑓 , 𝑞1) | 𝑓 (𝑞1) = 1 ∧ 𝑓 (𝑞2) = 0} ∪ {(𝑞1, 𝑓 , 𝑞1) | 𝑓 (𝑞1) = 0 ∧ 𝑓 (𝑞2) = 0}

– 𝐷2 = (𝑄 × [𝑄 → [0..2]] × {𝑞2}) \ 𝐷1

Example 3.8 (Count parallel branches). Fix the unary alphabet Σ = {𝑎}. For any natural number

𝑠 , let 𝐺𝑠 be the SSPG comprising the unordered parallel composition of 𝑠 singleton vertices. Let

𝐿𝑠 be the one-element language containing 𝐺𝑠 . For any 𝑠 , we construct a DSSPGA 𝐴𝑠 such that

𝐿(𝐴𝑠) = 𝐿𝑠 .

𝐴𝑠 has three states: a start state 𝑞0, a “normal operation” state 𝑞1, and a fail state 𝑞2. During its

deterministic run on the graph 𝐺𝑠 ∈ 𝐿𝑠 , 𝐴𝑠 assigns 𝑞0 to be left- and right-state of the source and

assigns 𝑞1 to be the the left- and right-state of every other vertex in 𝐺𝑠 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:8 Rajeev Alur, Caleb Stanford, and Christopher Watson

𝐴𝑠 uses its counting complexity 𝑠 +1 to ensure the right number of parallel branches. Δju requires

that the count of 𝑞0 in the (𝑠 + 1)-truncation of the states at its unordered join-predecessors is

exactly 𝑠 . It also requires that none of the unordered join-predecessors of the join vertex were

assigned the fail state 𝑞2. If these requirements are met, the successor (which must be the sink) is

assigned 𝑞1 and 𝐴𝑠 will accept the graph. An example run for 𝐴2 is shown in Figure 1c.

Formally, we let 𝐴𝑠 = (𝑄, Σ, {𝑞0}, {𝑞1}, 𝑠 + 1,Δup,Δseq,Δso,Δsu,Δjo,Δju) where the state-set 𝑄 =

{𝑞0, 𝑞1, 𝑞2} and the transition functions are defined as follows:

• Δup = {(𝑞0, 𝑎, 𝑞0), (𝑞1, 𝑎, 𝑞1), (𝑞2, 𝑎, 𝑞2)}
• Δseq = 𝑄 × {𝑞2}
• Δso = 𝑄 × {𝑞2} × {𝑞2}
• Δsu = {(𝑞0, 𝑞1), (𝑞1, 𝑞2), (𝑞2, 𝑞2)}
• Δjo = 𝑄 ×𝑄 ×𝑄 × {𝑞2}
• Δju = {(𝑞0, 𝑓 , 𝑞1)} ∪ ((𝑄 × [𝑄 → [0..𝑠 +1]] × {𝑞2}) \ {(𝑞0, 𝑓 , 𝑞2)}) where 𝑓 is the count vector

such that 𝑓 (𝑞0) = 0, 𝑓 (𝑞1) = 𝑠 , and 𝑓 (𝑞2) = 0

Observe that 𝐿(𝐴𝑠) = 𝐿𝑠 .

Perhaps counterintuitively, it is also possible to construct a (nondeterministic) SSPGA that

accepts 𝐿𝑠 but has counting complexity 2.

Example 3.9 (Nondeterministic counting). Let 𝐿𝑠 be defined as in example 3.8. We define such an

SSPGA 𝐵𝑠 = (𝑄, Σ, {𝑞0}, {𝑞1}, 2,Δup, {}, {},Δsu, {},Δju) such that 𝐿(𝐵𝑠) = 𝐿𝑠 .

𝐵𝑠 includes indexes in its states to keep counting complexity constant. The states of 𝐵𝑠 are

{𝑞0, . . . , 𝑞𝑠 }. For any 𝑖 ∈ [1..𝑠], 𝑞𝑖 is the state with index 𝑖 (𝑞0 is not part of the indexing scheme).

Immediately before the join, Δ𝑢𝑝 can nondeterministically set the state at a join-predecessor

to any of 𝑞1, ..., 𝑞𝑠 . Then, Δju requires that the multiplicity of each of 𝑞1, . . . , 𝑞𝑠 is exactly 1 (and

the multiplicity of 𝑞0 is 0) in the incoming count-vector. By requiring exactly one state of each

index, the machine “counts” to 𝑠 while maintaining counting complexity 2. An example run for 𝐵4

is shown in Figure 1d.

The sequence, ordered-split, and ordered-join transition relations are empty to ensure that the

graph consists of exactly one ordered-parallel composition of singleton vertices. Formally,

• 𝑄 = {𝑞0, . . . , 𝑞𝑠 }
• Δ𝑢𝑝 = {(𝑞0, 𝑎, 𝑞0)} ∪ ({𝑞1} × {𝑎} ×𝑄)
• Δsu = {(𝑞0, 𝑞1)}
• Δju = {(𝑞0, 𝑓 , 𝑞1) | 𝑓 (𝑞0) = 0 ∧ ∀𝑞 ∈ 𝑄 \ {𝑞0}.𝑓 (𝑞) = 1}

3.4 Design Choices

Unranked Parallelism. In the SSPG model, ordered parallelism is ranked and binary, while

unordered parallelism is unranked (𝑛-ary for any 𝑛). Our rationale is that on the one hand 𝑛-ary

ordered parallelism can be encoded using repeated binary parallelism (this trick, similar to currying,

can be applied in unranked, ordered tree automata [Courcelle 1989; Cristau et al. 2005]). On the

other hand, unranked unordered parallelism cannot be encoded this way: any repeated binary

operation would implicitly define an order which could then be used by the model. To wit, consider

the language of SSPGs EVEN(𝑎), consisting of SSPGs with an even number of 𝑎s. This would

be regular if only binary ordered (or even binary unordered!) parallelism were allowed, but it is

not regular in the unordered case (following our definition). Intuitively, computing this property

requires picking an order on 𝑎s, then counting them up (modulo 2).

This highlights a difference between order-independent processing (where the input is processed in

order, but the final result is order-independent) and order-unaware processing (where the processing

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:9

does not have access to an order). If we were to allow computations over unordered parallel graphs

to be only order-independent, and not order-unaware, it would break the expressive equivalence

with MSO shown in Section 7.1, giving up robustness property (2) from the introduction. See

Section 8 for a comparison of our model with existing automaton models defined over traditional

series-parallel graphs, which do not support unranked unordered parallelism.

Transition Semantics of Unordered Join. Rather than counting up to a set threshold, an alternative
treatment of unordered joins would be to define a merge function merge : 𝑄 ×𝑄 → 𝑄 and apply it

repeatedly (see e.g. [Courcelle 1989; Lodaya and Weil 1998]). For deterministic automata, we would

then need to require that merge be commutative and associative [Courcelle 1989]. However, just

as with encoding 𝑛-ary unranked parallelism using ranked parallelism, this choice would give up

expressive equivalence with MSO because the property EVEN(𝑎) discussed above is expressible

with a commutative, associative merge function but not in MSO.

We choose to describe unordered join transitions rather abstractly, as arbitrary functions 𝑄 ×
[𝑄 → [0..𝑘]] → 𝑄 . This leaves open the question of how to symbolically represent these functions

in an implementation, where rather than giving the function as a complete table, we might describe

symbolic expressions such as “transition to state 𝑞2 if there are at least 3 copies of state 𝑞3 and

no copies of state 𝑞4”. This is analogous to in classical automata theory how the state set 𝑄 and

transition set Δ are abstract functions, but in applications it is more fruitful to represent them

symbolically using predicates, Boolean expressions, or binary decision diagrams (BDDs) [D’Antoni

and Veanes 2021; D’Antoni and Veanes 2017]. By leaving the function abstract, we are able to study

a natural notion of counting complexity that is implementation-independent, analogous to how

state complexity is independent of how states are physically represented.

Finally, another alternative treatment of unordered joins would be to disallow counting, and

instead express only a Boolean combination of existential and universal properties: e.g., there exists

a predecessor labeled 𝑞2 but no predecessor labeled 𝑞3. This is equivalent to our model where

counting complexity is restricted to be at most 1. This is natural but less expressive, and would

lead to only expressing bisimulation-invariant properties, an expressive limitation shared by the

(non-graded) modal 𝜇-calculus [Bradfield and Walukiewicz 2018]. In our model, we show that

counting complexity of 2 is necessary and sufficient for full expressiveness in the nondeterministic

setting (Section 5.2).

Synchronization Edge. The synchronization edge is inspired by nested words, where it has been

shown that removing it results in a loss of expressiveness, where nondeterministic and deterministic

automata no longer coincide in expressiveness [Alur and Madhusudan 2009]. Split- and join-vertices

appear inmatched pairs in an SSPG, analogously to well-matched parentheses in a string.We include

the synchronization edge to make this matching structure visible; when an SSPGA processes a

join-vertex, the synchronization edge provides information from the matching split-vertex. Without

the synchronization edge, a pushdown model with unbounded memory would be needed to recover

the matching structure.

The synchronization edge in SSPGs allows the model to naturally express properties that require

saving some state before a split. The following result shows that without the synchronization

edge, it is impossible to define even simple languages such as SING(𝑎) (Example 3.7), the set of

graphs with exactly one vertex labeled 𝑎, using a DSSPGA. This lack of expressiveness would

preclude expressive equivalence to MSO, because SING(𝑎) is MSO-definable even without the

synchronization-edge.

Proposition 3.10. Fix Σ = {𝑎, 𝑏} and define SING(𝑎) as in Example 3.7. Any DSSPGA 𝐴 whose

unordered-join transition function 𝛿 𝑗𝑜 does not use the sync edge (i.e. for any choice of 𝑞, 𝑞′, and 𝑓 ,

𝛿jo (𝑞, 𝑓) = 𝛿jo (𝑞′, 𝑓)) does not recognize SING(𝑎).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:10 Rajeev Alur, Caleb Stanford, and Christopher Watson

Proof. Intuitively, without the sync edge, on a nested composition of unordered parallel com-

positions, the automaton would have to keep track of the exact history of where a prior 𝑎 was in

order to distinguish it from any other joined threads.

Assume for the sake of contradiction that 𝐴 = (𝑄, Σ, 𝑄0, 𝐹 , 𝑘, 𝛿up, 𝛿seq, 𝛿so, 𝛿su, 𝛿jo, 𝛿ju) recognizes
SING(𝑎). Let𝑚 be some integer such that𝑚 > |𝑄 |. For any choice of 𝑖 and 𝑗 s.t. 𝑖 < 𝑗 < 𝑚, define

two SSPGs 𝐺𝑖 and 𝐺𝑖, 𝑗 that differ only in their vertex labels. Each SSPG starts with a linear path of

𝑖 vertices connected by nested su edges. The 𝑖𝑡ℎ vertex of each graph is a binary unordered-split

vertex. Each parallel branch is a linear path of 2𝑚−2𝑖−1 vertices connected by nested su and ju
edges. The suffixes after the𝑚𝑡ℎ

positions of each graph are equal. The only difference between

𝐺𝑖 and 𝐺𝑖, 𝑗 is that the 𝑖
𝑡ℎ

vertex of 𝐺1 is labeled 𝑎 while the two 𝑗𝑡ℎ vertices of 𝐺𝑖, 𝑗 are labeled

𝑎. All other vertices of each graph are labeled 𝑏. By the pigeonhole principle and the fact that 𝐴

is finite-state, there must be a choice of 𝑖 and 𝑗 such that the deterministic run of 𝐴 assigns the

same right-state to the𝑚𝑡ℎ
vertex in each graph, hence to sink of each graph (since the suffixes are

equal). Thus 𝐺𝑖 ∈ SING(𝑎) ↔ 𝐺𝑖, 𝑗 ∈ SING(𝑎). But clearly 𝐺𝑖 ∈ SING(𝑎) while 𝐺𝑖, 𝑗 ∉ SING(𝑎), a
contradiction. □

Runs. Our definition of the run of an automaton annotates a left- and right-state at each vertex,

rather than just a single state. This is convenient, but not essential; we could just as well label only

one state at each vertex, as long as we are consistent about whether that state is prior to reading in

the input letter at that vertex (left-state) or after (right-state). A second notable alternative would be

to label edges, rather than vertices, with alphabet symbols Σ; however, this makes comparison with

logical formalisms (MSO and graded 𝜇-calculus) more cumbersome, as logics are usually expressed

using vertex labels.

SSPGs as Trees. Finally, an SSPG with vertex labels drawn from some finite Σ can be translated to

a directed rooted tree (with edge labels drawn from Γ \ {sl, sr, su} and vertex labels drawn from Σ)
obtained by removing all left-split, right-split, and unordered-split edges while leaving the remaining

structure unchanged. Like the original SSPG, this resulting tree is over an unranked alphabet and

exhibits unordered branching of unbounded arity. The above translation is an alternative to the

standard notion of unwinding an acyclic graph to obtain a tree with a potentially exponential

increase in size. For a comparison with existing tree automaton models, see Section 8. Although the

split-edges are uniquely determined by the remaining structure of an SSPG, their explicit inclusion

facilitates a natural flow of information during the run of an automaton.

3.5 Special Cases
SSPGs with restricted structure can model familiar objects including strings, multisets of strings,

sequences of relations, and nested words. When we only consider SSPGs that model a particular

structure, the regular SSPG languages (to be defined in Section 3.1) captures a natural notion of

regularity for the underlying structure.

String. An SSPG constructed using only singleton vertices and series composition represents

a string. Regular SSPG languages restricted to this structure coincide with the familiar regular

languages of strings.

Multiset of Strings. The unordered parallel composition of 1 or more SSPGs each of which

represents a string (as described above) represents a nonempty multiset of strings. The source and

sink vertices are not used to represent the multiset, so we label them with a specially reserved

placeholder # ∈ Σ.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:11

Relation. A relation (in the sense of relational algebra, i.e. a set of tuples) can be modeled as a

multiset of strings where each string is a single character. Each character represents a tuple of

one of finitely many types, where the label is the type of the tuple. Regular languages of such

relations correspond to those definable in first-order logic over the language of equality: essentially

expressing the existence or non-existence of a finite pattern of vertex labels.

Sequence of Relations. A sequence of relations is the classical model of a stream in traditional

query processing literature [Arasu et al. 2003, 2006]. A sequence of relations in our setting is a

series composition of some number of relations. It thus consists of multisets of Σ-labeled events
separated by # marks in between.

Nested Word. An SSPG constructed using only singleton vertices, sequential composition, and

1-ary unordered parallel composition represents a well-matched nested word [Alur and Madhusudan

2009]. The synchronization edges of the SSPG correspond to the nesting edges, and all other edges

of the SSPG correspond to the linear edges of the nested word. Unordered-split and unordered-join

vertices correspond to call and return positions in the nested word, respectively. A language of

SSPGs restricted to this form is regular iff it corresponds to a regular language of well-matched

nested words.

4 APPLICATION TO DATA STREAMS
In this section, we describe a potential application of regular languages of SSPGs to express temporal

integrity constraints on data streams. Three particular features of this connection are promising:

SSPGs model the kinds of parallelism that arise in practice (Section 4.1); SSPGAs can be used

to describe useful temporal integrity constraints that aren’t expressible in existing type systems

(Section 4.2); and decision procedures on SSPGAs can be reinterpreted as type-checking algorithms

over temporal integrity constraints (Section 4.3). We also discuss limitations (Section 4.4).

4.1 SSPGs as Distributed Data Dtreams
Distributed data streams can be viewed as series-parallel structures. For example, consider a

centralized system to monitor data from a distributed fleet of taxis. The events in the system consist

of begin ride events B and end ride events E, representing the start time and close time for a ride at

each individual taxi; and punctuation marks # which are placed at the start and at the end of each

day. Punctuation marks act as global synchronization; after all taxi rides for the day complete, the

distributed set of events is always closed by a # before the beginning of the next day.

We represent one possible input stream as the SSPG in Figure 2. In the graph, the first day

comprises data streams from three taxis in parallel, containing 4, 2, and 1 events, respectively. The

second day contains only a single end-ride event E, and the third day contains no events. Sequential
composition is used to create the stream of events for a specific taxi on a specific day; sequential

composition is used to combine data from different days; and unordered parallelism is used to

combine streams from all of the different taxis within a single day. The stream can be thought of as

a partial order on events: events are ordered within a specific taxi stream and ordered with respect

to punctuation events.

Prior Work on Type Systems for Streams. A series-parallel semantics is inherent in any type

system for streams that includes key-based parallelism (in this case, over taxi events) and synchro-

nizing punctuation events. Some modern systems have more expressive type systems for describing

how events are ordered in nested parallel contexts. For example, in Timely Dataflow [Murray et al.

2013, 2016], timestamps may be nested sequences, such as an event occurring in a given day, hour,

and second written as (𝑑, ℎ, 𝑠); and events may be parallelized within each day, within each hour,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:12 Rajeev Alur, Caleb Stanford, and Christopher Watson

#

B E B E

E # # #B E

B

sync

su

su
su

seq seq seq

seq

ju

ju
ju

seq

sync

su ju seq seq

Fig. 2. A series-parallel stream of events from a distributed fleet of taxis: begin-ride events B, end-ride events
E, and punctuation marks # marking the start and end of each day.

and within each second. Using synchronization schemas [Alur et al. 2021], which evolved from the

earlier data-trace types proposal [Mamouras et al. 2019], the example in Figure 2 could be assigned

a type such as TaxiStream = Synch<#, KeyBy<id, Seq<B, E, G>>.

4.2 SSPGAs as Temporal Integrity Constraints
With the SSPG view, we can combine a stream type, given using an existing type system, with a

temporal integrity constraint on the stream, given as an SSPGA describing a regular language. A

temporal constraint is one that describes the pattern of data that occurs over time.

Example 4.1. Define the property 𝜑1 that the begin- and end-ride events correspond for each

taxi: the synchronizing events consist only of #, and for each key, the events of key i between

consecutive # events match the regular expression (B E)*. The trace in Figure 2 violates 𝜑1 because

the third parallel taxi stream on the first day consists of a B with no corresponding E.
We can write a nondeterministic SSPGA to monitor 𝜑1 using 4 states (a deterministic automaton

would be similar, but require an additional reject state). The top-level state of the machine is 𝑞0
indicating that no violation has been seen in the trace so far. On a split, we use the remaining two

states 𝑞B and 𝑞E (indicating the next character expected) to match the regex (B E)*. On a join, we

require that all joined vertices match the regex. The counting complexity for this property is 1. The

formal transition relation is as follows:

• Δup = {(𝑞0, #, 𝑞0), (𝑞B, B, 𝑞E), (𝑞E, E, 𝑞B)}
• Δseq = {(𝑞0, 𝑞0), (𝑞B, 𝑞B), (𝑞E, 𝑞E)}
• Δso = Δjo = {}
• Δsu = {(𝑞0, 𝑞B)}
• Δju ⊆ 𝑄 × [𝑄 → [0..1]] ×𝑄 contains exactly the triples (𝑞0, 𝑓 , 𝑞0) where 𝑓 (𝑞E) = 𝑓 (𝑞0) = 0.

Example 4.2. Define𝜑2 as the property that every event in the stream should be eventually followed

by # (as opposed to a non-punctuation event), which is a necessary property for punctuation marks

to ensure progress. The stream in Figure 2 satisfies this property because the final event is #. This
property can be decided by an SSPGA with two states to remember the most recent event. The

automaton has counting complexity 0; that is, it does not need to know which states have occurred

or not before a join vertex.

Example 4.3. For an example with nontrivial counting complexity, define a taxi with 10 or more

end-ride events in a given day to be overloaded, and let 𝜑3 be the property that there are at most 3

overloaded taxis in a given day. This property can be monitored with an SSPGA with counting

complexity 3. The state set is used to record whether the property has been violated so far and to

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:13

count the number of end-ride events in a stream (maxing out at 10, requiring 11 states). On a join,

the automaton checks whether there are at most 3 states that have reached a count of 10.

Example 4.4. Finally, for an example that uses the synchronization edge, define the property

𝜑4 that there are at least three overloaded taxis for two consecutive days (perhaps indicating the

need to deploy more taxis). It is most convenient to express this using an SSPGA which is a small

modification of the SSPGA for 𝜑3: we simply use the synchronization edge to directly recover

whether or not the previous day was also overloaded. Note, however, that because nesting depth is

bounded in this example, it is also possible to express 𝜑4 without the use of the synchronization

edge, by passing this information to the children rather than saving it at the parent level (though

this would require additional state complexity).

Existing type systems cannot describe temporal constraints like 𝜑1, 𝜑2, 𝜑3, and 𝜑4. In our expe-

rience, temporal constraints are common when working with streams in practice. For example,

one might encounter a stream of aggregates such as S, C, #, S, C, #, . . . , where the S events are

running sums and the C events are running counts; each occurs exactly once per punctuation

event #. Now suppose we want to divide the sum and count to produce an average. This is difficult

programmatically because the stream doesn’t have the type information that S and C events actually
come in adjacent pairs.

4.3 Decidability as Type Checking
Each property 𝜑 in the previous section can be seen as refinement type [Rondon et al. 2008]: given

a stream type 𝑆 in an existing type system, the refinement type {𝑆 | 𝜑} refines the type with a

temporal constraint on the items in that stream. For example, a type such as

{Stream<#, B, E, G> | 𝜑1}
describes the set of SSPGs of events #, B, E, and G satisfying the formula 𝜑1. From this perspective,

decision procedures for regular SSPG languages are useful for type-checking. The membership

problem is useful for monitoring: given a stream 𝑠 (represented as an SSPG) of type 𝑆 and an SSPGA

𝐴 for 𝜑 , we can check whether 𝑠 has type {𝑆 | 𝜑} by running𝐴 on input 𝑠 . And more interestingly,

if we are given 𝑠 of type {𝑆 | 𝜑} (e.g., the output of one operator) and we want to check whether

this is compatible with the input to another operator of type {𝑆 | 𝜑 ′}, this amounts to checking

inclusion between two regular SSPG languages: we check whether the language of an automaton

for 𝜑 is included in the language of an automaton for 𝜑 ′
. This is a form of subtyping. Thanks to

the robustness properties of the class of regular languages of SSPGs, these checks can be done

efficiently and compositionally (see Section 6).

4.4 Limitations
Finally, there are useful properties that SSPGAs cannot describe. SSPGAs operate on the series-

parallel structure with only finitely many labels; this means they cannot describe properties that

work across taxis or that require knowing which taxi is which from one day to the next. For example,

there is no way to express the property that the same taxi is overloaded from one day to the next,

as this information is not present in the SSPG input. SSPGAs also cannot describe properties which

require saving more than finite-state information from one day to the next, such as the following:

Example 4.5. Let 𝜑5 be the property that B and E events form matched pairs, when considered

across days: each taxi stream within a day should match the regular expression (E∪ 𝜖) (BE)∗ (B∪ 𝜖),
and the number of unclosed B events on each day must equal the number of starting E events on
the following day. Although the trace in Figure 2 violates our initial constraint 𝜑1, it does satisfy 𝜑5.

However, the set of SSPGs satisfying 𝜑5 is not regular.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:14 Rajeev Alur, Caleb Stanford, and Christopher Watson

5 AUTOMATA CONSTRUCTIONS
5.1 Determinization
Nondeterministic and deterministic SSPGA are equally expressive. The determinization procedure

includes a subset construction over pairs of states to keep track of state assignments during all

possible runs of a nondeterministic machine. This technique is borrowed from the determinization

procedure for nested word automata [Alur and Madhusudan 2009]. Unordered joins pose a new

challenge for determinization, and require increasing the counting complexity of the determinized

machine.

Theorem 5.1 (Determinization). Given an SSPGA 𝐴, one can effectively construct a DSSPGA 𝐵

such that 𝐿(𝐴) = 𝐿(𝐵). If𝐴 has 𝑛 states and counting complexity 𝑘 , then 𝐵 has 2
𝑛2

states and counting

complexity 𝑛𝑘 .

Proof. Let 𝐿 be the language accepted by the nondeterministic SSPGA 𝐴 = (𝑄, Σ, 𝑄0, 𝐹 , 𝑘,Δup,

Δseq,Δso,Δsu,Δjo,Δju).
The components of 𝐵 are (2𝑄×𝑄 , Σ, 𝑄 ′

0
, 𝐹 ′, 𝑘 ′, 𝛿 ′up, 𝛿

′
seq, 𝛿

′
so, 𝛿

′
su, 𝛿

′
jo, 𝛿

′
ju) described below.

Definitions and Overview. In an SSPG 𝐺 , we define the least linear predecessor of a vertex 𝑣 to

be the most distant ancestor 𝑢 of 𝑣 such that there is a (possibly 0-length) path from 𝑢 to 𝑣 in 𝐺

consisting solely of sequence- and synchronization-edges. Next we define a summary to be a pair

of states drawn from 𝑄 . The states of 𝐵 are sets of summaries.

We will design 𝐵 such that for any SSPG 𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡, Σ, 𝜎), there exists a run of 𝐴 on 𝐺 that

assigns some 𝑞 ∈ 𝑄 as the left-state of 𝑠 and assigns some 𝑞′ ∈ 𝑄 as the right-state of 𝑡 if and only if

there exists a run of 𝐵 on 𝐺 that assigns some right-state 𝑆 ∈ 2
𝑄×𝑄

to 𝑡 such that (𝑞, 𝑞′) ∈ 𝑆 . We call

the preceding specification of 𝐵 the summary invariant.

The proof of the main theorem proceeds in three parts: first, we will define the state sets of 𝐵

such that the summary invariant entails 𝐿(𝐴) = 𝐿(𝐵). Second, we will define the transitions of
𝐵 to satisfy the summary invariant. The summary invariant can be proved by induction on the

SSPG structure; we omit the details of this proof. Finally, we will observe that the constructed 𝐵 is

deterministic.

State Sets and Acceptance. The states of 𝐵 are sets of summaries. The initial state is the set of

summaries that each have equal first and second components:

𝑄 ′
0
= {(𝑞, 𝑞) | 𝑞 ∈ 𝑄}

A determinized state 𝑆 ∈ 2
𝑄×𝑄

is accepting iff it contains a summary (𝑞, 𝑞′) such that 𝑞 ∈ 𝑄0 and

𝑞′ ∈ 𝐹 :

𝐹 ′ = {𝑆 | ∃(𝑞, 𝑞′) ∈ 𝑆 s.t. 𝑞 ∈ 𝑄0 ∧ 𝑞′ ∈ 𝐹 }
Assuming the summary invariant, such a summary will be an element of the right-state assigned

to the sink of 𝐺 by the deterministic run of 𝐵 exactly when there is an accepting run of 𝐴 on 𝐺 .

From this we obtain 𝐿(𝐴) = 𝐿(𝐵).
Update, Sequence, and Split. The transition functions 𝛿 ′up, and 𝛿 ′seq leave the first elements of

their input summaries unchanged while updating the second components according to Δ𝑢𝑝 or Δseq,

respectively:

𝛿 ′up (𝑆𝑠 , 𝑎) = {(𝑞𝑠 , 𝑞′) | ∃𝑞 s.t. (𝑞𝑠 , 𝑞) ∈ 𝑆, (𝑞, 𝑎, 𝑞′) ∈ Δup}
𝛿 ′seq (𝑆) = {(𝑞𝑠 , 𝑞′) | ∃𝑞 s.t. (𝑞𝑠 , 𝑞) ∈ 𝑆, (𝑞, 𝑞′) ∈ Δseq}

The transition functions 𝛿 ′so, and 𝛿
′
su assign the set of all summaries with equal first and second

components to the left position of each successor of an (ordered or unordered) split vertex. Note

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:15

that this does not make use of Δso and Δ𝑠𝑢 ; we defer checking the split relations of 𝐴 until the join,

while continuing to preserve the summary invariant.

𝛿 ′so (𝑆) = {(𝑞, 𝑞) | 𝑞 ∈ 𝑄} × {(𝑞, 𝑞) | 𝑞 ∈ 𝑄}
𝛿 ′su (𝑆) = {(𝑞, 𝑞) | 𝑞 ∈ 𝑄}

Ordered Join. The ordered join transition function receives inputs from a synchronization-

predecessor𝑢𝑠 , a left-predecessor𝑢ℓ , and a right-predecessor𝑢𝑟 . The transition function 𝛿 ′jo inspects
combinations of incoming summaries to see if the states assigned to the least-linear predecessors

of 𝑢ℓ and 𝑢𝑟 could have been achieved by splitting some state that could be assigned to 𝑢𝑟 accord-

ing to Δso. If so, then those three summaries could correspond to a single run, and appropriate

updated summaries are included in the output according to Δjo (with care to preserve the summary

invariant):

𝛿 ′jo (𝑆𝑠 , 𝑆ℓ , 𝑆𝑟) = {(𝑞𝑠 , 𝑞′) | ∃𝑞′𝑠 , 𝑞ℓ , 𝑞′ℓ , 𝑞𝑟 , 𝑞′𝑟 s.t. (𝑞𝑠 , 𝑞′𝑠) ∈ 𝑆𝑠 , (𝑞ℓ , 𝑞′ℓ) ∈ 𝑆ℓ , (𝑞𝑟 , 𝑞′𝑟) ∈ 𝑆𝑟

(𝑞′𝑠 , 𝑞ℓ , 𝑞𝑟) ∈ Δso, (𝑞′𝑠 , 𝑞′ℓ , 𝑞′𝑟 , 𝑞′) ∈ Δjo}

Counting Complexity and Unordered Join. The unordered join transition function of 𝐵 deter-

mines the set of summaries at an unordered join vertex 𝑢 according to inputs from its synchro-

nization predecessor 𝑢𝑠 and a multiset𝑀 of inputs coming from its unordered join predecessors

𝑢1, . . . , 𝑢𝑚 . 𝐵 must 𝑘 ′
-truncate 𝑀 into a finite vector while preserving enough information to

determine which summaries belong in the output.

Setting the counting complexity of 𝐵 to 𝑘 ′ = 𝑘𝑛 (where 𝑛 = |𝑄 |) suffices. For 𝐵 to decide which

summaries to include in the left-state of 𝑣 (according to the transition relations of the original

machine 𝐴) requires collapsing𝑀 into the 𝑘-truncation of a multiset𝑀 ′
of elements drawn from𝑄 .

A state 𝑆 ∈ 𝑀 is able to contribute multiplicity to one of 0 or more elements of𝑀 ′
, depending on

the summaries 𝑆 contains. There can only be 𝑛 unique elements of𝑀 ′
, and each element can appear

in ⌊𝑀 ′⌋𝑘 with multiplicity at most 𝑘 , so for any 𝑆 , 𝑘 ′ = 𝑘𝑛 appearances of 𝑆 in 𝑀 can contribute

the full 𝑘 multiplicity to each element of ⌊𝑀 ′⌋𝑘 . That is, for any 𝑘 ′′ ≥ 𝑘 ′
, 𝑘 ′′

appearances of 𝑆

can contribute exactly the same distributions of multiplicities as could 𝑘 ′
appearances of 𝑆 , so no

information is lost by 𝑘 ′
-truncating𝑀 .

𝐵 collapses its 𝑘 ′
-truncated representation of𝑀 into𝑀 ′

by mapping each 𝑆𝑖 ∈ 𝑀 to some 𝑞′𝑖 ∈ 𝑄 .

Such “collapses” are only legal if all of the 𝑞′𝑖 could be achieved on a single run of 𝐴 (that assigns

some state some right-state 𝑞′𝑠 ∈ 𝑄 to 𝑢𝑠). For each 𝑞′𝑠 that appears as the second element of a

summary in the right-state that 𝐵 assigned to 𝑢𝑠 , 𝐵 uses the summary invariant to only consider

summaries in each element of ⌊𝑀⌋𝑘′ that have as their first component some 𝑞𝑖 that could be

achieved on an unordered split (according to Δsu) from 𝑞′𝑠 . 𝐵 then uses the other elements of these

summaries along with Δju to decide which summaries to include in the output, taking care to

preserve the summary invariant:

𝛿 ′ju (𝑆𝑠 , 𝑓) = {(𝑞𝑠 , 𝑞′) | ∃𝑞′𝑠 ∈ 𝑄, ∃𝑚 ∈ [1..|2𝑄×𝑄 |𝑘 ′] .∃𝑆1, . . . , 𝑆𝑚 ∈ 2
𝑄×𝑄 .

∃𝑞1, 𝑞′1, . . . , 𝑞𝑚, 𝑞′𝑚 ∈ 𝑄, ∃𝑔 : 𝑄 → [0..𝑘] s.t.
(𝑞𝑠 , 𝑞′𝑠) ∈ 𝑆𝑠 ∧ (∀𝑖 ∈ [1..𝑚], ((𝑞′𝑠 , 𝑞𝑖) ∈ Δsu) ∧ (𝑞𝑖 , 𝑞′𝑖) ∈ 𝑆𝑖)∧
𝑓 = ⌊{𝑆1, . . . , 𝑆𝑚}⌋𝑘′ ∧ 𝑔 = ⌊{𝑞′

1
, . . . , 𝑞′𝑚}⌋𝑘 ∧ (𝑞′𝑠 , 𝑔, 𝑞′) ∈ Δju}

It suffices to only consider𝑚 ≤ |2𝑄×𝑄 |𝑘 ′
, because if the above condition were relaxed to allow𝑚

to be quantified over unrestricted N, then for any choice of the existentially quantified variables

that satisfies the condition, there would also exist a “small” choice with𝑚′ ≤ max (|2𝑄×𝑄 |𝑘 ′,𝑚)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:16 Rajeev Alur, Caleb Stanford, and Christopher Watson

that satisfies the condition. If the original choice used (determinized) states 𝑆1, . . . 𝑆𝑚 then a corre-

sponding “small” choice would limit the multiplicity of each determinized state in 𝑆1, . . . , 𝑆𝑚 to 𝑘 ′

(this preserves the ability to saturate the counting number of 𝐵). The choice of 𝑞1, 𝑞
′
1
, . . . , 𝑞𝑚, 𝑞

′
𝑚

similarly can be “shrunk.” The choices of 𝑞′𝑠 and 𝑔 need not change.

Determinism. Observe that |𝑄 ′
0
| = 1. Each transition of 𝐵 is deterministic (this follows from the

correspondence between the function and relation notations for transitions described in Section 3.2).

Thus 𝐵 is deterministic. □

The above construction requires expanding the state size to maintain sets of pairs of states. The

following theorem shows that this increase in complexity is tight.

Theorem 5.2 (State succinctness of nondeterminism). There exists a family 𝐿𝑠 of languages of

SSPGs such that each 𝐿𝑠 is accepted by a nondeterministic SSPGA with 𝑂 (𝑠) states but every DSSPGA

accepting 𝐿𝑠 must have 2
𝑠2
states.

Proof. Under the correspondence between SSPGs and well-matched nested words described in

section 3.5, the family of SSPG languages 𝐿𝑠 corresponds to the family of nested word languages

used to prove the analagous theorem for nested word automata. The proof proceeds similarly; see

theorem 3.4 of Alur and Madhusudan [2009] for details. □

The determinization construction also increases counting complexity by a factor equal to the

number of states of the original machine. We show this increase to be tight.

Theorem 5.3 (Counting succinctness of nondeterminism). There exists a family 𝐿𝑠 of SSPG

languages of such that each 𝐿𝑠 is accepted by a nondeterministic SSPGA with 𝑂 (𝑠) states and constant
counting complexity, but every DSSPGA accepting 𝐿𝑠 must have counting complexity at least 𝑠 .

Proof. The family 𝐿𝑠 is the same family 𝐿𝑠 defined in example 3.8. Observe that for any 𝑠 , the

SSPGA 𝐵𝑠 defined in example 3.9 accepts 𝐿𝑠 using 𝑂 (𝑠) states and 𝑂 (1) counting complexity.

For the sake of contradiction, assume there exists a DSSPGA 𝐶 with counting complexity 𝑘

such that 𝑘 ≤ 𝑠 that accepts 𝐿𝑠 . Consider the graph 𝐺𝑠 ∈ 𝐿𝑠 consisting of the unordered parallel

composition of 𝑠 vertices, and the graph𝐺𝑠+1 ∉ 𝐿𝑠 consisting of the unordered parallel composition

of 𝑠 + 1 vertices. Since 𝐶 is deterministic, the sources of 𝐺𝑠 and 𝐺𝑠+1 must be assigned the same

right-state 𝑞. Moreover, the 𝑠 parallel vertices of 𝐺𝑠 and the 𝑠 + 1 parallel vertices of 𝐺𝑠+1 must

all be assigned the same right-state 𝑞′. When applying the unordered-join transition function to

determine the left-state of the sink, 𝐶 𝑘-truncates the incoming multiset of states into a count-

vector (for 𝑘 ≤ 𝑠). This means that the 𝑠 copies of 𝑞′′ in 𝐺𝑠 and the 𝑠 + 1 copies of 𝑞′′ in 𝐺𝑠+1 are
indistinguishable, so𝐺 assigns the same left-state (and in turn, right-state) to the sink of each graph.

Thus 𝐺𝑠 ∈ 𝐿(𝐶) ↔ 𝐺𝑠+1 ∈ 𝐿(𝐶), a contradiction. □

Interestingly, any regular SSPG language can be recognized by a nondeterministic SSPGA with

constant counting complexity. This is the focus of section 5.2.

5.2 Constant Counting Complexity
Theorem 5.4 (Constant counting complexity). Given a DSSPGA 𝐴 with state complexity 𝑛

and counting complexity 𝑘 ≥ 1, one can effectively construct a nondeterministic SSPGA 𝐵 with state

complexity 𝑘𝑛 and counting complexity 2 such that 𝐿(𝐴) = 𝐿(𝐵).
Proof. Denote the components of the DSSPGA 𝐴 as (𝑄, Σ, 𝑄0, 𝐹 , 𝑘,Δ𝑢𝑝 ,Δseq,Δso,Δsu,Δjo,Δju).

We will construct an equivalent nondeterministic SSPGA 𝐵 with state set 𝑄 × ({1} ∪ [1..𝑘]) and
counting complexity 2 that simulates counting at unordered joins by including an index as the

second component of each of its states.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:17

Immediately preceding an unordered join, 𝐵’s update relation nondeterministically assigns each

of the unordered predecessors an index. If a rule in 𝐴’s Δju requires the incoming count-vector

to include some state 𝑞 with multiplicity𝑚 < 𝑘 , then the corresponding rule of 𝐵 requires the

incoming states (𝑞, 1), . . . , (𝑞,𝑚) to each have multiplicity 1 (and requires (𝑞,𝑚 + 1), . . . , (𝑞, 𝑘) to
have multiplicity 0). If 𝐴’s rule requires 𝑞 with multiplicity 𝑘 , then the corresponding rule of 𝐵

requires the states (𝑞, 1), . . . (𝑞, 𝑘) to each have multiplicity at least 1.

In all other situations, 𝐵 ignores the index of its states and behaves analogously to 𝐴. Formally,

let 𝐵 = (𝑄 × ({1} ∪ [1..𝑘]), Σ, 𝑄0 × ({1} ∪ [1..𝑘]), 𝐹 × ({1} ∪ [1..𝑘]), 2,Δ′
up,Δ

′
seq,Δ

′
so,Δ

′
su,Δ

′
jo,Δ

′
ju)

where the transition relations are

• Δ′
𝑢𝑝 = {((𝑞, 𝑖), 𝑎, (𝑞′, 𝑖 ′)) | (𝑞, 𝑎, 𝑞′) ∈ Δ𝑢𝑝 ∧ 𝑖, 𝑖 ′ ∈ ({1} ∪ [1..𝑘])}

• Δ′
seq = {((𝑞, 𝑖), (𝑞′, 𝑖 ′)) | (𝑞, 𝑞′) ∈ Δ𝑠𝑒𝑞 ∧ 𝑖, 𝑖 ′ ∈ ({1} ∪ [1..𝑘])}

• Δ′
so = {((𝑞, 𝑖), (𝑞ℓ , 𝑖ℓ), (𝑞𝑟 , 𝑖𝑟)) | (𝑞, 𝑞ℓ , 𝑞𝑟) ∈ Δso ∧ 𝑖, 𝑖ℓ , 𝑖𝑟 ∈ ({1} ∪ [1..𝑘])}

• Δ′
su = {((𝑞, 𝑖), (𝑞′, 𝑖 ′)) | (𝑞, 𝑞′) ∈ Δsu ∧ 𝑖, 𝑖 ′ ∈ ({1} ∪ [1..𝑘])}

• Δ′
jo = {((𝑞𝑠 , 𝑖𝑠), (𝑞ℓ , 𝑖ℓ), (𝑞𝑟 , 𝑖𝑟), (𝑞′, 𝑖 ′)) | (𝑞𝑠 , 𝑞ℓ , 𝑞𝑟 , 𝑞′) ∈ Δjo ∧ 𝑖𝑠 , 𝑖ℓ , 𝑖𝑟 , 𝑖

′ ∈ ({1} ∪ [1..𝑘])}
• Δ′

ju={(𝑞,𝑔, 𝑞′) |∃𝑓 ∈[𝑄→[0..𝑘]] .(𝑞, 𝑓 , 𝑞′) ∈ Δju.∀𝑞′′∈𝑄.

(∀𝑚 ∈ [𝑓 (𝑞′′) + 1..𝑘] .𝑔((𝑞′′,𝑚)) = 0) ∧
(𝑓 (𝑞′′) = 𝑘 ⇒ (∀𝑖 ∈ ({1} ∪ [1..𝑘]).𝑔((𝑞′′, 𝑖)) > 0)) ∧
(𝑓 (𝑞′′) < 𝑘 ⇒ (∀𝑖 ∈ [1..𝑓 (𝑞′′)] .𝑔((𝑞′′, 𝑖)) = 1))}

Let𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡, Σ, 𝜎) be an arbitrary SSPG over Σ and assume w.l.o.g. that𝑉 = {𝑢1, . . . , 𝑢𝑝 }. We

claim that for any 𝑞1ℓ , 𝑞
1

𝑟 , . . . , 𝑞
𝑝

ℓ
, 𝑞

𝑝
𝑟 ∈ 𝑄 , there exists a run of 𝐴 that assigns the left- and right states

𝑞𝑖ℓ and𝑞
𝑖
𝑟 (respectively) to each𝑢𝑖 ∈ 𝑉 iff there exists a choice of 𝑗1ℓ , 𝑗

1

𝑟 , . . . , 𝑗
𝑝

ℓ
, 𝑗

𝑝
𝑟 ∈ ({1}∪[1..𝑘]) such

that there exists a run of 𝐵 that assigns the left- and right-states (𝑞𝑖ℓ , 𝑗𝑖ℓ) and (𝑞𝑖𝑟 , 𝑗𝑖𝑟) (respectively)
to each 𝑢𝑖 ∈ 𝑉 . This subclaim can be proved by induction on the structure of 𝐺 .

Combining the preceding subclaim with the fact that the initial and final state sets of 𝐵 are the

same as those of 𝐴 modulo indexing, we find that there is an accepting run of 𝐴 on𝐺 iff there is an

accepting run of 𝐵 on 𝐺 . Since 𝐺 may be an arbitrary SSPG over Σ, 𝐿(𝐴) = 𝐿(𝐵).
□

The counting complexity 2 achieved by the construction above is the best possible, as shown

below.

Theorem 5.5 (Minimum counting complexity). There exists a regular SSPG language 𝐿 such

that any SSPGA 𝐴 accepting 𝐿 has counting complexity at least 2.

Proof. For natural numbers 𝑠 , let 𝐿𝑠 and 𝐺𝑠 be defined as in example 3.8. 𝐿1 is clearly regular.

Assume, for the sake of contradiction, that there exists an SSPGA 𝐴 with counting complexity 1

such that 𝐿(𝐴) = 𝐿1. There must be an accepting run of 𝐴 on 𝐺1 that assigns some right-state 𝑞 to

the source and some right-state 𝑞′ to the central vertex.

On 𝐺2, 𝐴 can assign 𝑞 to be the right-state of the source and 𝑞′ to be the right-states of each

of the two central vertices, as it did for 𝐺1. Note that the 1-truncations of {𝑞′} and {𝑞′, 𝑞′} are
identical. Since the inputs to the unordered-join are the same during the accepting run on𝐺1 as for

this run on 𝐺2, 𝐺1 ∈ 𝐿(𝐴) ↔ 𝐺2 ∈ 𝐿(𝐴), a contradiction. □

5.3 Closure Properties
The regular SSPG languages are closed under intersection, union, complement, language homo-

morphism, and reversal.

Theorem 5.6 (Boolean closure). If 𝐿1 and 𝐿2 are regular SSPG languages over Σ, then 𝐿1 ∪ 𝐿2,

𝐿1 ∩ 𝐿2, and 𝑆𝑆𝑃𝐺 (Σ) \ 𝐿1 are also regular SSPG languages.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:18 Rajeev Alur, Caleb Stanford, and Christopher Watson

Proof. Let 𝐴𝑖 = (𝑄𝑖 , Σ, 𝑄𝑖
0
, 𝐹 𝑖 , 𝑘𝑖 ,Δ𝑖

up,Δ
𝑖
seq,Δ

𝑖
so,Δ

𝑖
su,Δ

𝑖
jo,Δ

𝑖
ju) for 𝑖 = 1, 2 be an SSPGA such that

𝐿(𝐴𝑖) = 𝐿𝑖 . Let 𝑛1 = |𝑄𝑖 | and assume without loss of generality that 𝑘1 ≥ 𝑘2.

Union and Intersection.Define the product of these machines as follows: the set of states is𝑄1×𝑄2

and the set of initial states is {(𝑞1, 𝑞2) |𝑞1 ∈ 𝑄1

0
∧ 𝑞2 ∈ 𝑄2

0
}. The counting complexity of the product

machine is 𝑘1. The Δ𝑢𝑝 ,Δ𝑠𝑒𝑞,Δso,Δsu, and Δjo transition relations are defined in the natural way.

For example, the product machine’s update transition relation is {((𝑞1, 𝑞2), 𝑎, (𝑞′1, 𝑞′2)) | (𝑞1, 𝑎, 𝑞′1) ∈
Δ1

up ∧ (𝑞1, 𝑎, 𝑞′1) ∈ Δ1

up}. The unordered-join transition relation must account for the fact that the

counting complexity of 𝐴2 may be less than that of the product machine, which motivates an

additional step of further truncating the count-vector before checking membership in Δ2

ju. The

product-machine’s unordered-join transition relation is thus

{((𝑞1, 𝑞2), 𝑓 , (𝑞′1, 𝑞′2)) | (𝑞1, 𝑓 , 𝑞′1) ∈ Δ1

ju∧
(𝑞2, 𝜆𝑥 .min(𝑘2, 𝑓 (𝑥)), 𝑞′

2
) ∈ Δ2

ju}

Setting the set of accepting states to 𝐹 1 × 𝐹 2 yields a product machine whose language is the

intersection 𝐿1 ∩ 𝐿2. Setting the set of accepting states to (𝐹 1 ×𝑄2) ∪ (𝑄1 × 𝐹 2) yields a machine

whose language is the union 𝐿1 ∪ 𝐿2. Each of these product machines has 𝑛1𝑛2 states, counting

complexity 𝑘1, and is deterministic if both 𝐴1 and 𝐴2 are deterministic.

Complement. To construct a machine whose language is the complement 𝑆𝑆𝑃𝐺 (Σ) \ 𝐿1 of 𝐿1, we
first construct a DSSPGA that accepts 𝐿1. If 𝐴1 is deterministic, this is immediate, otherwise it

requires the determinization procedure of theorem 5.1 and introduces the associated increases in

state size and counting complexity. Complementing the the set of accepting states of this DSSPGA

yields an automaton whose whose language is 𝑆𝑆𝑃𝐺 (Σ)\𝐿1. If𝐴1 is deterministic, then this machine

has 𝑛1 states and counting complexity 𝑘1. Otherwise, this machine has 2
𝑛2

1 states and counting

complexity 𝑘1𝑛1. □

Homomorphism. A language homomorphism ℎ maps an arbitrary symbol 𝑎 ∈ Σ to an SSPG

language ℎ(𝑎) (possibly over a different finite alphabet). For an SSPG language 𝐿, we define ℎ(𝐿) to
be the set of SSPGs obtained by replacing each vertex 𝑢 of some 𝐺 ∈ 𝐿 with some SSPG 𝐺𝑢 such

that 𝐺𝑢 ∈ ℎ(𝜎 (𝑢)).

Theorem 5.7 (Homomorphism closure). If 𝐿 is a regular SSPG language over Σ, and ℎ is a

language homomorphism such that for each 𝑎 ∈ Σ, ℎ(𝑎) is regular, then ℎ(𝐿) is also regular.

Proof. This proof is similar that of the analogous theorem for nested word automata, with the

addition of a technical detail to ensure that only subgraphs with valid SSPG structure (i.e., have

matching splits and joins) can be considered as candidates for membership in ℎ(𝑎) for some 𝑎 ∈ Σ.
See theorem 3.8 of Alur and Madhusudan [2009] for details. □

Reverse. The reverse operation inverts the direction of all edges in an SSPG, replacing split edges

with join edges and vice-versa.

Definition 5.8 (Reverse). For an edge label 𝛾 , define reverse(𝛾) by reverse(so) = jo and vice

versa, reverse(su) = ju and vice versa, and reverse(𝛾) = 𝛾 otherwise. For an edge (𝑢,𝛾, 𝑣), define
reverse((𝑢,𝛾, 𝑣)) = (𝑣, reverse(𝛾), 𝑢). Lift the reverse operation to set 𝐸 of edges by reverse(𝐸) =

{reverse(𝑒) | 𝑒 ∈ 𝐸}. Given an SSPG 𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡, Σ, 𝜎) define the reverse of 𝐺 as:

reverse(𝐺) = (𝑉 , reverse(𝐸), 𝑡, 𝑠, Σ, 𝜎)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:19

Finally, define the reverse of an SSPG language 𝐿 as:

reverse(𝐿) = {reverse(𝐺) | 𝐺 ∈ 𝐿}

Theorem 5.9 (Reverse closure). Given an SSPGA 𝐴, one can effectively construct an SSPG 𝐵 such

that 𝐿(𝐵) = reverse(𝐿(𝐴)).

Proof idea. Recall the definition of least linear predecessor, introduced in the proof of Theo-

rem 5.1. Given an automaton 𝐴, the idea is to define 𝐵 such that for any𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡, Σ, 𝜎) over
Σ (assume w.l.o.g. that 𝑉 = {𝑢1, . . . , 𝑢𝑝 }), there exists a run of 𝐴 on 𝐺 that assigns the left- and

right-states 𝑞
𝑗

ℓ
and 𝑞

𝑗
𝑟 (respectively) to 𝑢𝑖 ∈ 𝑉 for each 𝑖 ∈ [1..𝑝] iff there is a run of 𝐵 on reverse(𝐺)

that assigns the left- and right-states (𝑞 𝑗

ℓ
, 𝑞𝑖ℓ) and (𝑞

𝑗

ℓ
, 𝑞𝑖𝑟) to each𝑢𝑖 ∈ 𝑉 with least linear predecessor

(in 𝐺) 𝑢 𝑗 (n.b. that 𝑢 𝑗 might not be the least linear predecessor of 𝑢𝑖 in reverse(𝐺)). We define 𝐵

such that this subclaim can be proved by induction on the SSPG structure of 𝐺 . □

Similarly to how regular languages of words are closed under concatenation, regular SSPG

languages are closed under sequential, ordered-parallel, and unordered-parallel composition, as

well as iterated sequential composition of an SSPG language with itself (Kleene-plus). We omit the

associated constructions.

6 DECISION PROBLEMS
Membership, emptiness, and inclusion are decidable for regular SSPG languages. Table 1 summarizes

complexity results for these problems. Throughout the section, we assume that membership and

function application can be performed in constant time.

Theorem 6.1 (Membership). For any SSPGA 𝐴 with 𝑛 states and SSPG 𝐺 with𝑚 vertices and

𝑜 edges, the membership problem 𝐺 ∈ 𝐿(𝐴) is decidable 𝑂 (𝑚 + 𝑜) time when 𝐴 is deterministic.

If 𝐴 is nondeterministic and has |Δju | unordered-join transitions, then membership is decidable in

𝑂 (𝑚3.5𝑛3 |Δju |) time.

Proof. Denote 𝐴 = (𝑄, Σ, 𝑄0, 𝐹 , 𝑘,Δup,Δseq,Δso,Δsu,Δjo,Δju) and let 𝑛 = |𝑄 |. Let 𝐺 be an arbi-

trary SSPG 𝐺 over Σ with𝑚 vertices and 𝑜 edges.

𝐴 is deterministic. It suffices to construct the deterministic run of𝐴 on𝐺 , then check the acceptance

condition. We process 𝐺 in the same order as Kahn’s topological sort algorithm, [Kahn 1962]

performing constant-time additional work at each step to annotate each vertex with the left-state,

right-state, and right-states of each of the vertex’s predecessors (along with the type of predecessor)

that would be assigned by the deterministic run of 𝐴 on 𝐺 . Whenever we add a vertex to the

topologically-sorted list of vertices, we consult its “predecessor annotations” to determine which

transition rule (or 𝑄0 if there are no predecessor annotations) should be used to determine the

vertex’s left-state 𝑞ℓ and annotate the vertex’s left-state accordingly. Then we annotate the right

state 𝛿𝑢𝑝 (𝑞ℓ , 𝑎) where 𝑎 ∈ Σ is the vertex’s label. Since each edge of the graph adds exactly one

such annotation, this matches the running time of classical topological sorting, 𝑂 (𝑚 + 𝑜) time.

𝐴 is nondeterministic. We will simulate the determinization procedure of theorem 5.1 on the fly.

Correctness follows from the earlier proof; it suffices to show that the sets of summaries that would

be the left- and right-states assigned to a vertex by a determinized machine can be constructed in

polynomial time, assuming that the left- and right-sets of the vertex’s predecessors have already

been constructed.

We construct the right-set 𝑆 ′ at a vertex labeled 𝑎 ∈ Σ that has been assigned the left-set 𝑆 as

follows. For each 𝑞′ that appears as the second element of a summary in 𝑆 , lookup the set of all 𝑞′′

such that (𝑞′, 𝑎, 𝑞′′) ∈ Δup, and for each such 𝑞′′ and each 𝑞 such that (𝑞, 𝑞′) ∈ 𝑆 insert (𝑞, 𝑞′′) in 𝑆 ′.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:20 Rajeev Alur, Caleb Stanford, and Christopher Watson

This requires 𝑂 (𝑛) lookups and 𝑂 (𝑛2) insertions. The left-sets at internal, ordered split, unordered

split, and ordered join vertices can similarly be constructed in polynomial time.

It remains to show that the left-set 𝑆 ′ of an unordered-join vertex can be constructed in polynomial

time given the right-sets of its predecessors. Let 𝑆𝑠 denote the right-set of the synchronization-

predecessor and 𝑆1, . . . , 𝑆𝑝 denote the right-sets of the 𝑝 unordered join-predecessors. Deciding

whether a transition rule (𝑞, 𝑓 , 𝑞′) ∈ Δju justifies adding a summary to 𝑆 ′ requires considering the

possible “collapses” of 𝑆1, . . . , 𝑆𝑝 , as discussed in the proof of Theorem 5.1. This can be reduced to

finding a complete matching in a bipartite graph with 2𝑚 vertices. The left node set of the bipartite

graph will comprise 𝑝 nodes representing each of 𝑆1, . . . , 𝑆𝑝 . The left-node set will comprise nodes

representing states of 𝑄 , with multiplicity determined by 𝑓 . Edges exist between a node on the left

and each state it could “collapse to,” in such a way that there exists a perfect matching iff 𝑆1, . . . , 𝑆𝑝
could collapse to a 𝑞1, . . . , 𝑞𝑝 whose 𝑘-truncation is 𝑓 . The construction proceeds as follows:

We will repeat the following procedure for each summary (𝑞𝑠 , 𝑞′𝑠) ∈ 𝑆𝑠 :

(1) For 𝑖 ∈ [1..𝑝], define𝑇𝑖 = {𝑞′𝑖 | ∃𝑞𝑖 s.t. (𝑞′𝑠 , 𝑞𝑖) ∈ Δsu∧ (𝑞𝑖 , 𝑞′𝑖) ∈ 𝑆𝑖 }. This filtering step ensures
that only combinations of states achievable on the same run are considered.

(2) For each rule of the form (𝑞′𝑠 , 𝑓 , 𝑞′) ∈ Δju, construct a bipartite graph with left node set 𝑋

and right node set 𝑌 as follows:

(a) Let 𝑋 comprise 𝑥1, . . . , 𝑥𝑝 .

(b) For each 𝑞′′ ∈ 𝑄 , add 𝑓 (𝑞′′) nodes to 𝑌 and add edges connecting each of them to all 𝑥𝑖 ∈ 𝑋

such that 𝑞′′ ∈ 𝑇𝑖 .

(c) If |𝑋 | > |𝑌 | then add |𝑋 | − |𝑌 | nodes to 𝑌 and add edges connecting each of them to all 𝑥𝑖
such that 𝑇𝑖 contains any 𝑞

′′
for which 𝑓 (𝑞′′) = 𝑘 .

(d) If there exists a complete matching in the bipartite graph, then add (𝑞𝑠 , 𝑞′) to 𝑆 ′.
At each iteration, the bipartite graph has𝑂 (𝑚) vertices and𝑂 (𝑚2) edges, so the complete match-

ing problem can be solved in𝑂 (𝑚2.5) time [Hopcroft and Karp 1973]. The entire above procedure to

construct the left-set of an unordered-join vertex can thus be performed in𝑂 (𝑚2.5𝑛3 |Δju |) time. This

is the most computationally expensive kind of set to construct, so the entire on the fly simulation

takes 𝑂 (𝑚3.5𝑛3 |Δju |) time. □

Theorem 6.2 (Emptiness). Given an SSPGA 𝐴, checking emptiness of 𝐿(𝐴) is decidable in polyno-

mial time.

Proof. Denote 𝐴 = (𝑄, Σ, 𝑄0, 𝐹 , 𝑘,Δup,Δseq,Δso,Δsu,Δjo,Δju). We define a reachability relation

𝑅 ⊆ 𝑄 ×𝑄 where 𝑞 𝑅 𝑞′ represents the statement “There exists an SSPG 𝐺 such that there exists a

run of 𝐴 on 𝐺 that assigns 𝑞 as the left-state of the source vertex and 𝑞′ as the right-state of the
sink-vertex” or equivalently “𝑞 reaches 𝑞′.” We initialize:

𝑅 = {(𝑞, 𝑞′) | ∃𝑎 ∈ Σ.(𝑞, 𝑎, 𝑞′) ∈ Δ𝑢𝑝 }

and proceed to apply the following rules (in any order) until a fixed-point is reached: (Sequence) For

any 𝑞, 𝑞′, 𝑞′′, 𝑞′′′∈𝑄 such that 𝑞𝑅𝑞′∧ (𝑞′, 𝑞′′)∈Δseq∧𝑞′′𝑅𝑞′′′, add (𝑞, 𝑞′′′) to 𝑅. (Ordered parallelism)

For any 𝑞, 𝑞′, 𝑞′′, 𝑞′′′, 𝑞ℓ , 𝑞′ℓ , 𝑞𝑟 , 𝑞
′
𝑟 ∈ 𝑄 such that ∃𝑎∈Σ.(𝑞, 𝑎, 𝑞′)∈Δup ∧ (𝑞′, 𝑞ℓ , 𝑞𝑟)∈Δso ∧ 𝑞ℓ 𝑅 𝑞′ℓ ∧

𝑞𝑟𝑅𝑞
′
𝑟∧(𝑞′, 𝑞′ℓ , 𝑞′𝑟 , 𝑞′′)∈Δjo∧∃𝑎∈Σ.(𝑞′′, 𝑎, 𝑞′′′)∈Δup, add (𝑞, 𝑞′′′) to𝑅. (Unordered parallelism) For any

𝑚 ∈ [1..𝑘𝑛] and 𝑞, 𝑞′, 𝑞′′, 𝑞1, 𝑞′1, . . . , 𝑞𝑚, 𝑞′𝑚 such that ∃𝑎∈Σ.(𝑞, 𝑎, 𝑞′)∈Δup∧∀𝑖∈[1..𝑚] .((𝑞′, 𝑞𝑖)∈Δsu∧
𝑞𝑖 𝑅 𝑞′𝑖) ∧ (𝑞′, ⌊{𝑞′

1
, . . . , 𝑞′𝑚}⌋𝑘 , 𝑞′′)∈Δju ∧ ∃𝑎∈Σ.(𝑞′′, 𝑎, 𝑞′′′)∈Δup, add (𝑞, 𝑞′′′) to 𝑅. The fixed-point

will be reached after a polynomial number of iterations. 𝐿 is empty iff no initial state 𝑞0 ∈ 𝑄0

reaches any final state 𝑞𝑓 ∈ 𝐹 . □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:21

Table 1. Complexity of SSPGA decision problems (under polytime reductions). Complexity is parameterized
on SSPGA state complexity, counting complexity, as well as |Δju | (and the size of the input SSPG in the case
of membership).

Membership Emptiness Inclusion

DSSPGA Linear PTime PTime

SSPGA PTime PTime ExpTime-complete

Theorem 6.3 (Inclusion and universality). Given two SSPGAs 𝐴 and 𝐵 over an arbitrary finite

alphabet Σ, the inclusion problem 𝐿𝐴 ⊆ 𝐿𝐵 and the universality problem 𝐿(𝐵) = 𝑆𝑆𝑃𝐺 (Σ) are in
PTime when 𝐵 is deterministic and are ExpTime-complete in general.

Proof. 𝐵 is deterministic. Let 𝐵′
be the DSSPGA obtained by complementing the set of final

states of 𝐵. Observe that 𝐿(𝐵′) = 𝐵. Construct the product of 𝐴 and 𝐵′
as described in the proof of

theorem 5.6 to obtain a (potentially nondeterministic) machine accepting the language 𝐿(𝐴) ∩𝐿(𝐵).
The inclusion problem reduces to checking emptiness of the language of the product machine. As

shown in Theorem 6.2, emptiness is decidable in polynomial time.

The universality problem reduces to checking inclusion of the language accepted by the 1-state

SSPGA that accepts every SSPG in the language of 𝐵.

𝐵 is nondeterministic. Inclusion and universality are in ExpTime since we can first determinize 𝐵

as in the proof of theorem 5.1 and proceed with the procedures described above for deterministic 𝐵.

To show ExpTime-hardness, we reduce the membership problem for alternating linear-space

Turing machines to the universality problem for SSPGA. The proof proceeds similarly to the

analogous theorem for nested word automata; see Theorem 6.2 of Alur and Madhusudan [2009]. □

7 LOGICAL CHARACTERIZATIONS
We now show that monadic second-order logic (MSO) and graded 𝜇-calculus of SSPGs each charac-

terize the regular SSPG languages.

7.1 MSO Characterization
In the MSO of SSPGs, first-order variables are interpreted over vertices and second-order variables

are interpreted over sets of vertices. MSO over SSPGs includes an atomic formula for each 𝛾 ∈ Γ to

capture the 𝛾-labeled edge relation, which holds between a vertex and its 𝛾-successor.

Definition 7.1 (MSO over SSPGs). Let Σ be a finite alphabet, let 𝐹𝑉 denote a countable set of

first-order variables, and let 𝑆𝑉 denote a countable set of monadic second-order (set) variables. We

use 𝑥,𝑦, 𝑧, 𝑥 ′, etc. to refer to elements of 𝐹𝑉 and 𝑋,𝑌, 𝑍, 𝑋 ′, etc. to refer to elements of 𝑆𝑉 .

The monadic second-order logic of SSPGs (over Σ) is given by

𝜙 B 𝑎(𝑥) | 𝑋 (𝑥) | 𝑥
𝛾
{𝑦 | 𝜙 ∨ 𝜙 | ¬𝜙 | 𝑥 = 𝑦 | ∃𝑥 .𝜙 | ∃𝑋 .𝜙

where 𝑎 ∈ Σ, 𝑥,𝑦 ∈ 𝐹𝑉 , 𝑋 ∈ 𝑆𝑉 , and 𝛾 ∈ Γ.

𝑎(𝑥) holds when the label at the vertex interpreted for 𝑥 is 𝑎. 𝑥
𝛾
{𝑦 holds when the vertex

interpreted for 𝑦 is a 𝛾-successor of the vertex interpreted for 𝑦. 𝑥 = 𝑦 holds when the same vertex

is interpreted for each of 𝑥 and 𝑦. An occurrence of a variable 𝑥 or 𝑋 in a MSO formula 𝜙 is bound

if it occurs in a subformula ∃𝑥 .𝜓 or ∃𝑋 .𝜓 (respectively), and free otherwise. A sentence is a formula

with no free occurrences of variables.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:22 Rajeev Alur, Caleb Stanford, and Christopher Watson

Simple examples of an MSO-definable properties include the unlabeled edge relation and its

transitive closure, the ancestor-of relation, defined as follows:

𝑥{𝑦 B ∨𝛾 ∈Γ (𝑥
𝛾
{𝑦)

𝑥 ≺ 𝑦 B ∃𝑍 .𝑍 (𝑦).∀𝑧.(𝑍 (𝑧)⇒(𝑥{𝑧 ∨ ∃𝑧 ′.𝑍 (𝑧 ′).𝑧 ′{𝑧))

Definition 7.2 (Language of an MSO sentence). For an MSO sentence 𝜙 over Σ, let 𝐿(𝜙) denote
the set of all SSPGs over Σ that satisfy 𝜙 . Say that 𝜙 defines 𝐿(𝜙)

For example, language SING(𝑎) introduced in Example 3.7 is 𝐿(𝜙SING) where
𝜙SING = ∃𝑥 .𝑎(𝑥) ∧ ¬(∃𝑦.𝑥 ≠ 𝑦 ∧ 𝑎(𝑦))

An SSPG language 𝐿 is MSO-definable iff there exists an MSO sentence 𝜙 such that 𝐿 = 𝐿(𝜙). We

show that the class of MSO-definable languages is the regular SSPG languages.

Theorem 7.3 (MSO characterization). A language 𝐿 of SSPGs over Σ is regular iff there is an

MSO sentence 𝜙 over Σ that defines 𝐿.

Proof. The proof is similar in structure to the proof that MSO over nested words characterizes

the regular nested word languages [Alur and Madhusudan 2009].

For any sentence 𝜙 , the set 𝐿(𝜙) of satisfying models is regular.We show the stronger claim

that for any MSO formula𝜓 , the set 𝐿(𝜓) of satisfying models is regular.

Assume that in all formulas, each variable is quantified at most once. Fix the formula𝜓 (𝑥1, ..., 𝑥𝑚,
𝑋1, ..., 𝑋𝑜) with free variables 𝑍 = {𝑥1, ..., 𝑥𝑚, 𝑋1, ..., 𝑋𝑜 }. We construct an alphabet Σ𝑍 ⊆ Σ × [𝑍 →
{0, 1}]. An SSPG 𝐺 ′

over Σ𝑍 encodes an SSPG 𝐺 over Σ and a valuation for the free variables of𝜓 .

Let 𝐿(𝜓) denote the SSPG language such that for any𝐺 ′ ∈ 𝐿(𝜓), the underlying SSPG𝐺 satisfies𝜓

under the valuations encoded by 𝐺 ′
. We will show that it is possible to construct an SSPGA that

accepts 𝐿(𝜓).
First, we describe how an SSPGA can check the property that each FV is assigned exactly once.

Recall example 3.7, in which we construct the SSPGA𝐴𝑆𝐼𝑁𝐺 that accepts the graphs in 𝑆𝑆𝑃𝐺 ({𝑎, 𝑏})
that have exactly one vertex labeled 𝑎. For any FV 𝑥 , we can adapt this construction to check that 𝑥

is assigned exactly once. The new machine treats a symbol (𝑏, 𝑓) ∈ Σ𝑍 the way 𝐴𝑆𝐼𝑁𝐺 would treat

𝑎 iff 𝑓 (𝑥) = 1. Regular SSPG languages are closed under product (theorem Theorem 5.6), so there

exists an SSPGA that checks that all FVs are assigned once.

The proof now proceeds by induction on the structure of theMSO formula𝜓 . The atomic formulas

𝑋 (𝑥), 𝑎(𝑥), and 𝑥
𝛾
{𝑦 can be checked using the finite control of an SSPGA.

For example, the atomic formula 𝑥
sync
{𝑦 can be checked by designing Δup such that the right state

assigned of any vertex 𝑢 includes an encoding of the vertex-label at 𝑢. The Δjo and Δju relations

enforce that at any join, if the synchronization predecessor is interpreted for 𝑥 , then the left-state

assigned to the join vertex encodes the requirement “this vertex is interpreted for 𝑦”. Δup then

checks that this requirement is met.

The cases for disjunction and negation follow from the fact that regular SSPG languages are

closed under boolean operations (Theorem 5.6). The case for existential quantification follows

from closure under language homomorphism (Theorem 5.7) because existential quantification

corresponds to renaming the alphabet such that the valuation functions exclude a variable, which

is a kind of language homomorphism.

For any SSPGA 𝐴, there is an equivalent MSO sentence. Let 𝐴 = (𝑄, Σ, 𝑄0, 𝐹 , 𝑘,Δup,Δseq,Δso,

Δsu,Δjo,Δju) where 𝑄 = {𝑞1, ..., 𝑞𝑛}. Assume w.l.o.g. that 𝐴 is a DSSPGA (Theorem 5.1). The

corresponding MSO sentence 𝜙 holds on an SSPG 𝐺 over Σ exactly when 𝐺 ∈ 𝐿(𝐴). This sentence

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:23

is of the form ∃𝑋 1

ℓ .∃𝑋 1

𝑟∃𝑋𝑛
ℓ .∃𝑋𝑛

𝑟 .𝜙 where 𝑋 𝑖
ℓ represents the set of vertices assigned the left-state

𝑞𝑖 and 𝑋
𝑖
𝑟 represents the sets of vertices assigned the right-state 𝑞𝑖 during the run of 𝐴 on 𝐺 .

The formula 𝜙 is a conjunction of conditions that must hold on an accepting run. For example,

the condition that Δup holds at each vertex is be expressed as

∀𝑥 .
∨

(𝑞𝑖 ,𝑎,𝑞 𝑗) ∈Δup

(𝑋 𝑖
ℓ (𝑥) ∧ 𝑎(𝑥) ∧ 𝑋

𝑗
𝑟 (𝑥))

One must also include conditions to enforce the other transition relations, assign an initial state to

the source, and assign a final state to the sink. The most interesting condition is the one for Δju
given by

∀𝑥 .∀𝑦.∀𝑧.𝑥
sync
{ 𝑧 ∧ 𝑦

ju
{𝑧 ⇒

∨
(𝑞𝑎,𝑓 ,𝑞𝑏) ∈Δju

(𝑋𝑎
𝑟 (𝑥) ∧ 𝜙1 ∧ 𝜙2 ∧ 𝑋𝑏

ℓ (𝑧))

where the left side of the implication holds whenever 𝑥 and 𝑧 are a matching pair of unordered split

and join vertices, and the right side holds whenever some rule in Δju holds at 𝑦 and its predecessors.

The formula 𝜙1 ensures that for all 𝑞𝑐 ∈ 𝑄 such that 𝑓 (𝑞𝑐) = 𝑘 , at least 𝑘 distinct unordered join

predecessors of 𝑧 are assigned the right-state 𝑞𝑐 :

𝜙1 =
∧

𝑐 :𝑓 (𝑞𝑐)=𝑘
∃𝑦1 · · · ∃𝑦𝑘 .

𝑘∧
𝑖=1

(
𝑦𝑖

ju
{𝑧 ∧ 𝑋𝑐

𝑟 (𝑦𝑖) ∧
∧
𝑗≠𝑖

𝑦𝑖 ≠ 𝑦 𝑗

)
The formula 𝜙2 ensures that for all 𝑞𝑐 ∈ 𝑄 such that 𝑓 (𝑞𝑐) < 𝑘 , exactly 𝑓 (𝑞𝑐) distinct 𝑞𝑐 unordered
join predecessors of 𝑧 are assigned the right-state 𝑞𝑐 :

𝜙2 =
∧

{𝑐 |𝑓 (𝑞𝑐)<𝑘 }

(
∃𝑦1 · · · ∃𝑦𝑓 (𝑞𝑐) .

𝑓 (𝑞𝑐)∧
𝑖=1

(
𝑦𝑖

ju
{𝑧 ∧ 𝑋𝑐

𝑟 (𝑦𝑖) ∧
∧
𝑗≠𝑖

𝑦𝑖 ≠ 𝑦 𝑗

)
∧ �𝑦 ′.𝑦 ′ ju{𝑧 ∧

𝑓 (𝑞𝑐)∧
𝑖=1

𝑦 ′ ≠ 𝑦𝑖

)
□

7.2 Graded 𝜇-calculus Characterization
The 𝜇-calculus [Kozen 1983] extends modal logic with least- and greatest-fixpoint operators, and is

an important logic in model checking (see, e.g. Bradfield and Walukiewicz [2018]). A 𝜇-calculus

formula is interpreted over a labeled transition systems (LTS), which is a potentially infinite directed

graph in which vertices (states) are labeled with propositions and edges (transitions) are labeled

with actions. We denote by

M = (𝑆, 𝑟, {𝑅𝑎}𝑎∈Act, {𝑃𝑝 }𝑝∈Prop)
the LTS M with state set 𝑆 , distinguished root 𝑟 ∈ 𝑆 , action set Act, transition relations 𝑅𝑎 ⊆ 𝑆 × 𝑆

for each action 𝑎, propositions set Prop, and set of satisfying states 𝑃𝑝 ⊆ 𝑆 for each proposition 𝑝 .

An SSPG 𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡, Σ, 𝜎) can be viewed as an LTS where 𝑉 is the set of states, 𝑠 is the root,

Σ is the set of propositions, and Γ is the set of actions. Formally, we denote the elements of Σ as

{𝑝1, 𝑝2, . . . , 𝑝ℓ } and let the LTS representation of 𝐺 be

M𝐺 = (𝑉 , 𝑠, {𝑅𝛾 }𝛾 ∈Γ, {𝑃𝑝 }𝑝∈Σ)
where for each 𝛾 ∈ Γ, 𝑅𝛾 B {(𝑢, 𝑣) | (𝑢,𝛾, 𝑣) ∈ 𝐸}, and for each 𝑎 ∈ Σ, 𝑃𝑎 B {𝑢 | 𝜎 (𝑢) = 𝑎}.

The 𝜇-calculus can only express bisimulation-invariant properties in LTSs [Bradfield and

Walukiewicz 2018]. Since the regular SSPG languages can express properties of SSPGs that are

not bisimulation-invariant (e.g. “every unordered-split vertex has 𝑘 successors”), 𝜇-calculus cannot

express all SSPGA-definable properties.

We will show that the extension of 𝜇-calculus with graded (counting) modalities is expressively

equivalent to the regular SSPG languages.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:24 Rajeev Alur, Caleb Stanford, and Christopher Watson

Definition 7.4 (Graded 𝜇-calculus [Janin and Lenzi 2001; Kupferman et al. 2002]). Given a set Prop

of atomic propositions, a set Act of actions, and a set Var of (propositional set) variables, the syntax

of graded 𝜇-calculus formulas is given by:

𝜙 B ⊤ | ⊥ | 𝑝 | ¬𝑝 | 𝑋 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | ⟨𝑛, 𝑎⟩𝜙1 | [𝑛, 𝑎]𝜙1 | 𝜇𝑋 .𝜙1 (𝑋) | 𝜈𝑋 .𝜙1 (𝑋)
where 𝑝 ∈ Prop, 𝑋 ∈ Var, 𝑎 ∈ Act, 𝜙1 and 𝜙2 are graded 𝜇-calculus formulas, and 𝑛 is a non-negative

integer. Note that the boolean constants ⊤ and ⊥ can be derived from the remaining constructs.

A graded 𝜇-calculus formula 𝜙 counts up to 𝑏 if the largest integer occurring in graded modalities

is 𝑏−1. We refer to 𝑏 as the counting bound of 𝜙 . The counting bound of a graded 𝜇-calculus formula

is analogous to the counting complexity of an SSPGA.

A graded 𝜇-calculus formula 𝜙 with variable set Var and a valuationV : Var → 2
𝑆
is interpreted

over a LTS M = (𝑆, 𝑟, {𝑅𝑎}𝑎∈Act, {𝑃𝑝 }𝑝∈Prop) as a subset [[𝜙]]MV of 𝑆 defined inductively as follows

[Kupferman et al. 2002]:

[[𝑋]]MV = V(𝑋)
[[𝑝]]MV = 𝑃𝑝 [[¬𝑝]]MV = 𝑉 \ 𝑃𝑝

[[𝜙1 ∧ 𝜙2]]MV = [[𝜙1]]MV ∩ [[𝜙2]]MV [[𝜙1 ∨ 𝜙2]]MV = [[𝜙1]]MV ∪ [[𝜙2]]MV
[[⟨𝑛, 𝑎⟩𝜙1]]MV = {𝑢 ∈ 𝑆 | |{𝑣 | (𝑢, 𝑣) ∈ 𝑅𝑎 ∧ 𝑣 ∈ [[𝜙1]]MV }| > 𝑛}
[[[𝑛, 𝑎]𝜙1]]MV = {𝑢 ∈ 𝑆 | |{𝑣 | (𝑢, 𝑣) ∈ 𝑅𝑎 ∧ 𝑣 ∉ [[𝜙1]]MV }| ≤ 𝑛}

[[𝜇𝑋 .𝜙1]]MV =
⋂

{𝑆 ′ ⊆ 𝑆 | [[𝜙1]]MV[𝑆′/𝑋] ⊆ 𝑆 ′}

[[𝜈𝑋 .𝜙1]]MV =
⋃

{𝑆 ′ ⊆ 𝑆 | 𝑆 ′ ⊆ [[𝜙1]]MV[𝑆′/𝑋]}

where 𝑝 ∈ Prop, 𝑋 ∈ Var, 𝑎 ∈ Act, 𝜙1 and 𝜙2 are graded 𝜇-calculus formulas, and 𝑛 is a non-negative

integer. An occurrence of a variable 𝑋 ∈ Var is bound if it occurs in a subformula of the form 𝜇𝑋 .𝜙1

or 𝜈𝑋 .𝜙1 and bound otherwise. A sentence is a formula without any free occurrences of variables.

For a state 𝑠 ∈ 𝑆 , we write M, 𝑠,V ⊨ 𝜙 when 𝑠 ∈ [[𝜙]]MV . If 𝜙 is a sentence then we may omit

the valuation and write M, 𝑠 ⊨ 𝜙 . We follow Janin and Lenzi [2001] in saying that LTS M with

root 𝑟 satisfies a sentence 𝜙 iff M, 𝑟 ⊨ 𝜙 . We equivalently write M ⊨ 𝜙 .

Definition 7.5 (Language of graded 𝜇-calculus sentence). For a graded 𝜇-calculus sentence 𝜙 , we

define 𝐿(𝜙) to be the set of all SSPGs 𝐺 such that M𝐺 ⊨ 𝜙 for the LTS representation M𝐺 of 𝐺 .

Say that 𝜙 defines 𝐿(𝜙).

An SSPG language 𝐿 is graded 𝜇-calculus definable iff there exists a graded 𝜇-calculus sentence 𝜙

that defines 𝐿. We show that the class of graded 𝜇-calculus-definable languages is the regular SSPG

languages.

Lemma 7.6. For any graded 𝜇-calculus sentence 𝜙 , 𝐿(𝜙) is a regular SSPG language.

Proof. Exploiting the MSO characterization of the regular SSPG languages (Theorem 7.3), it

suffices to show that for any graded 𝜇-calculus sentence 𝜙 there is an equivalent MSO sentence𝜓

such that 𝐿(𝜙) = 𝐿(𝜓).
This follows from the fact that any graded 𝜇-calculus formula 𝜙 in an LTS has the same meaning

as some MSO formula [Janin and Lenzi 2001]. □

For the other direction, we show how to take an arbitrary SSPGA 𝐴 and construct a graded

𝜇-calculus formula 𝜙 such that 𝐿(𝐴) = 𝐿(𝜙). The main challenge in the construction is that during

a run of an SSPGA 𝐴 on an SSPG𝐺 , determining a legal left- and right-state assignment at a vertex

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:25

(assuming knowledge of state assignments at its neighbors) may require knowledge of the state

assignments at the vertex’s predecessors and successors. Since graded 𝜇-calculus has only forward

modalities, we wish 𝜙 to be able to determine the set of legal state assignments with reference only

to the assignments at the successors. Conveniently, determining state assignments at a vertex 𝑣 if

𝐴 is deterministic only requires reference to the predecessors of 𝑣 , and the regular SSPG languages

are closed under the reverse operation (Theorem 5.9). We will first construct a DSSPGA 𝐵 such that

𝐿(𝐵) = reverse(𝐿(𝐴)), then use 𝐵 as a guide to define a graded 𝜇-calculus formula whose language

is 𝐿(𝐴).
It will be convenient to use the vectorial syntax for graded 𝜇-calculus; thus far we have used

the scalar syntax. We follow the presentation of Bradfield and Walukiewicz [2018] for vectorial

𝜇-calculus, adjusting to include graded-modalities:

Definition 7.7 (Vectorial syntax). A graded 𝜇-calculus formula without fixpoint operators is a

modal formula. If 𝛼1, . . . , 𝛼𝑛 are modal formulas, then 𝜶 = (𝛼1, . . . , 𝛼𝑛) is a vectorial graded 𝜇-

calculus formula of height 𝑛. For a sequence of variables 𝑿 = (𝑋1, . . . , 𝑋𝑛) and a vectorial formula

𝜶 of height 𝑛, the formulas 𝜇𝑿 .𝜶 and 𝜈𝑿 .𝜶 are vectorial formulas of height 𝑛.

The meaning of a vectorial formula 𝜶 = (𝛼1, . . . , 𝛼𝑛) in an LTS M under valuation V is

([[𝛼1]]MV , . . . , [[𝛼𝑛]]MV). With the variables 𝑿 distinguished, the meaning of 𝜶 is a function from

(2𝑆)𝑛 to (2𝑆)𝑛 (where 𝑆 is the state set of M). Then the meanings of 𝜇𝑿 .𝜶 and 𝜈𝑿 .𝜶 are the least

and greatest fixed-points of this function, respectively.

Proposition 7.8 (Scalar representation). Any vectorial syntax graded 𝜇-calculus formula of

height 𝑛 can be translated into 𝑛 scalar graded 𝜇-calculus formulas such that the 𝑖𝑡ℎ formula has the

same meaning as the 𝑖𝑡ℎ coordinate of the original vectorial formula via iterated application of the

Bekić principle [Bekić 1984].

Lemma 7.9. Given an SSPGA 𝐴, one can effectively construct a graded 𝜇-calculus sentence 𝜙 such

that 𝐿(𝐴) = 𝐿(𝜙).
Proof. Let 𝐵 = (𝑄, Σ, 𝑄0, 𝐹 , 𝑘, 𝛿up, 𝛿seq, 𝛿so, 𝛿su, 𝛿jo, 𝛿ju) be a DSSPGA such that 𝐿(𝐵) =

reverse(𝐿(𝐴)) (such an SSPGA 𝐵 can be constructed from 𝐴, see Theorem 5.9 and Theorem 5.1).

Let 𝑛 denote |𝑄 | and assume w.l.o.g. that the elements of 𝑄 are {𝑞1, 𝑞2, . . . , 𝑞𝑛}.
We will first define a vectorial-syntax graded 𝜇-calculus sentence𝜓 that encodes the initialization,

acceptance, and transition conditions of 𝐵, then describe how to obtain a scalar-syntax graded

𝜇-calculus sentence 𝜙 such that 𝐿(𝜙) = reverse(𝐿(𝐵)) = 𝐿(𝐴).
The formula 𝜓 will have variable set Var = 𝑋𝐹 ∪ ⋃

𝑖∈[1..𝑛]{𝑋 𝑖
ℓ , 𝑋

𝑖
𝑟 }, proposition set Prop = Σ,

action set Act = Γ, and a counting bound of 𝑘+1.
We will design𝜓 such that for any𝐺 ∈ SSPG(Σ) with LTS representationM𝐺 , 𝑋𝐹 represents all

vertices of 𝐺 that are assigned an accepting right-state during the run of 𝐵 on reverse(𝐺), and for

any 𝑖 ∈ [1..𝑛], 𝑋 𝑖
ℓ and 𝑋

𝑖
𝑟 represent the set of vertices of 𝐺 that are assigned a the state 𝑞𝑖 as a left-

or right-state (respectively) during the run of 𝐵 on reverse(𝐺).
Define the followingmodal formula to capture the set of vertices that can be assigned an accepting

right-state during the run of 𝐵 on reverse(𝐺):

𝛼𝐹 =
∨

𝑖:𝑞𝑖 ∈𝐹
𝑋 𝑖
𝑟

For each 𝑖 ∈ [1..𝑛] define the followingmodal formula to allow vertices to be assigned the right-state

𝑞𝑖 according to 𝛿up during the run of 𝐵 on reverse(𝐺):

𝛼𝑖𝑟 =
∨

𝑗 :(𝑞 𝑗 ,𝑞𝑖) ∈Δup

(𝑋 𝑗

ℓ
∧ 𝑎)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:26 Rajeev Alur, Caleb Stanford, and Christopher Watson

For each 𝑖 ∈ [1..𝑛], define the modal formula 𝛽𝑖
0
that allows any 𝑞𝑖 ∈ 𝑄0 to be the left-state of the

source and define formulas 𝛽𝑖seq, 𝛽
𝑖
so, 𝛽

𝑖
su, 𝛽

𝑖
jo, and 𝛽

𝑖
ju to allow vertices to be assigned the left-state 𝑞𝑖

according to the transitions of 𝐵 during the run of 𝐵 on reverse(𝐺):

𝛽𝑖
0
=

∧
𝛾 ∈Γ

[0, 𝛾]⊥ 𝛽𝑖seq =
∨

𝑗 :𝛿seq (𝑞 𝑗)=𝑞𝑖

⟨0, seq⟩𝑋 𝑗
𝑟

𝛽𝑖sl =
∨

𝑗 :fst(𝛿so (𝑞 𝑗))=𝑞𝑖

⟨0, jl⟩𝑋 𝑗
𝑟 𝛽𝑖sr =

∨
𝑗 :snd(𝛿so (𝑞 𝑗))=𝑞𝑖

⟨0, jr⟩𝑋 𝑗
𝑟 𝛽𝑖su =

∨
𝑗 :𝛿su (𝑞 𝑗)=𝑞𝑖

⟨0, ju⟩𝑋 𝑗
𝑟

𝛽𝑖jo =
∨
𝑥,𝑦,𝑧:

𝛿jo (𝑞𝑥 ,𝑞𝑦,𝑞𝑧)=𝑞𝑖

(
⟨0, sync⟩𝑋𝑥

𝑟 ∧ ⟨0, sl⟩𝑋 𝑦
𝑟 ∧ ⟨0, sr⟩𝑋𝑧

𝑟

)
𝛽𝑖ju =

∨
𝑗,𝑓 :

𝛿ju (𝑞𝑗 ,𝑓)=𝑞𝑖

(
⟨0, sync⟩𝑋 𝑗

𝑟 ∧
(∧
𝑥 ∈[1..𝑛]

⟨𝑓 (𝑞𝑥)−1, su⟩𝑋𝑥
𝑟

)
∧

(∧
𝑥 ∈[1..𝑛]:
𝑓 (𝑞𝑥)<𝑘

[𝑓 (𝑞𝑥), su]
(∨
𝑦∈[1..𝑛]:

𝑦≠𝑥

𝑋
𝑦

ℓ

)))
Note that in the last formula we and may abuse notation and include subformulas of the form

⟨−1, su⟩𝜓 ′
. Each such subformula should be read as ⊤.

Now, for the (sole) 𝑖 ∈ [1..𝑛] such that 𝑞𝑖 ∈ 𝑄0, define:

𝛼𝑖𝑟 = 𝛽𝑖
0
∨ 𝛽𝑖seq ∨ 𝛽𝑖sl ∨ 𝛽𝑖sr ∨ 𝛽𝑖su ∨ 𝛽𝑖jo ∨ 𝛽𝑖ju

And for each 𝑖 ∈ [1..𝑛] such that 𝑞𝑖 ∉ 𝑄0, define:

𝛼𝑖𝑟 = 𝛽𝑖seq ∨ 𝛽𝑖sl ∨ 𝛽𝑖sr ∨ 𝛽𝑖su ∨ 𝛽𝑖jo ∨ 𝛽𝑖ju

Finally, let 𝑿 = (𝑋𝐹 , 𝑋
1

ℓ , 𝑋
2

ℓ , . . . , 𝑋
𝑛
ℓ , 𝑋

1

𝑟 , 𝑋
2

𝑟 , . . . , 𝑋
𝑛
𝑟), let 𝜶 = (𝛼𝐹 , 𝛼1

ℓ , 𝛼
2

ℓ , . . . , 𝛼
𝑛
ℓ , 𝛼

1

𝑟 , 𝛼
2

𝑟 , . . . , 𝛼
𝑛
𝑟),

and let𝜓 = 𝜇𝑿 .𝜶 .

For any 𝐺 ∈ SSPG(Σ) with LTS representationM𝐺 and any vertex 𝑢 of 𝐺 , let 𝐵ℓ (𝑢) and 𝐵𝑟 (𝑢)
denote the left- and right-state (respectively) assigned to 𝑢 during the run of 𝐵 on𝐺 . We claim that

for any 𝐺 = (𝑉 , 𝐸, 𝑠, 𝑡, Σ, 𝜎) with LTS representationM𝐺 and any valuation V ,

(
[[𝜓]]M𝐺

V

)
𝑖
=

{𝑢 ∈ 𝑉 | 𝐵𝑟 (𝑢) ∈ 𝐹 } 𝑖 = 1

{𝑢 ∈ 𝑉 | 𝐵ℓ (𝑢) = 𝑞𝑖 } 𝑖 ∈ [2..𝑛+1]
{𝑢 ∈ 𝑉 | 𝐵𝑟 (𝑢) = 𝑞𝑖 } otherwise

The preceding claim can be proved by induction on the structure of the SSPG𝐺 . As a consequence

of this claim, we obtain that for any 𝐺 ∈ SSPG(Σ) and any valuation V , the root of the LTS

representation M𝐺 is in the first component of [[𝜓]]MV iff 𝐺 ∈ 𝐿(𝐴). Following the procedure

mentioned in Proposition 7.8, one can construct a scalar graded 𝜇-calculus sentence 𝜙 equivalent to

the first component of𝜓 . For this 𝜙 , we have that 𝐺 ∈ 𝐿(𝜙) ↔ 𝐺 ∈ 𝐿(𝐴) hence 𝐿(𝜙) = 𝐿(𝐴). □

The construction described above relies on the fact that 𝐵 is deterministic. The formula 𝜶 merely

encodes the conditions that must be true of any run of 𝐵 on 𝐺 , and exploits the fact that 𝐵 is

deterministic to ensure that the least fixed-point of 𝜶 represents an accepting run of 𝐵 on 𝐺 iff

such a run exists. If 𝐵 were not deterministic, an analogously defined 𝜶 would not suffice, and

new techniques would be needed to aggregate the potentially many (or zero) runs of 𝐵 on 𝐺 . As a

consequence of Lemma 7.6 and Lemma 7.9 we get the theorem:

Theorem 7.10 (graded 𝜇-calculus characterization). A language 𝐿 of SSPGs over Σ is regular

iff there is a graded 𝜇-calculus sentence that defines 𝐿.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

A Robust Theory of Series Parallel Graphs 37:27

8 RELATEDWORK
Existing models of automata and logics can be classified based on the input structure. The studied

structures include graphs, nested models and trees, Mazurkiewicz traces, and data words.

Graphs. Graph automata are most easily defined over directed acyclic graphs, or equivalently, over

labeled partially ordered sets (generalizing beyond this is difficult, see [Bozapalidis and Kalam-

pakas 2008; Reiter 2015]). Like our automata, acyclic graph automata proceed by visiting states

in a topologically sorted order and labeling them based on the local neighborhood of predeces-

sors [Kamimura and Slutzki 1981b; Thomas 1997]. Models in this setting typically assume that the

incoming edges at each vertex are ranked, meaning that the set of predecessors is bounded and

ordered [Arbib and Give’on 1968; Kamimura and Slutzki 1981a]. Series-parallel graphs with ordered

parallelism (but no unordered parallelism) can be considered a special case for these models.

Lodaya and Weil [1998, 2000] define a model over series-parallel graphs (generalized to infinite

graphs in [Kuske 2000]) with unranked unordered parallelism. Their nondeterministic automaton

does not have counting, but instead may apply joins multiple times in a nondeterministic order

at each join vertex. Each join is of finite arity (e.g., consume 𝑞2 and two copies of 𝑞3 to produce

𝑞5). This notably allows for properties not definable in MSO, such as parity (e.g., number of states

labeled 𝑞2 is even). In other respects the model is similar to a standard graph automaton. This results

in theory of regular languages with a number of characterized subclasses (notably, bounded-width

languages), but no class is shown to have a robust characterization admitting determinization and

equivalence to MSO.

Dimitrova and Majumdar [2018] study series parallel graphs using graph grammar transition

systems, in which a context-free graph transformation system generating a family of series parallel

graphs (with labeled directed edges) is paired with a concurrent finite automaton comprising

finitely many two-way finite automata that communicate via boolean-valued registers at the graph’s

vertices. The graph transformation systems considered are edge replacement graph grammars

that support only binary parallelism. More generally, no graph grammar that proceeds by edge

replacement and has a finite number of production rules (see [Drewes et al. 1997]) can generate

SSPGs with unbounded unordered parallelism.

Finally, note that the decidability ofMSO over SSPGs follows fromCourcelle’s theorem, [Courcelle

1990] since any SSPG has bounded-tree width. The procedure described in Section 7.1 to convert

an MSO formula into an equivalent SSPGA, which may then be used to check membership, is an

alternative proof of this decidability result.

Nested Models and Trees. Hierarchical nesting is present in many existing theories of automata.

A simple model of hierarchical nesting is given by nested words and nested word automata [Alur

and Madhusudan 2009], which recognize the class of visibly pushdown languages [Alur and

Madhusudan 2004]. Nested words are, up to syntactic differences, essentially equivalent to SSPGs

where there is no ordered parallelism and unordered parallelism is only of arity 𝑛 = 1.

Tree automata are one of the classical models in automata theory, originally introduced by

Doner [1970] and more abstractly by Thatcher and Wright [1968] (for further reading, see [Baker

1978; Engelfriet 2015; Gécseg and Steinby 1997]). Tree automata have bottom-up and top-down

variants. Tree automata typically work over ranked, ordered trees (that is, each node has a fixed

number of ordered children). In this setting, traditional tree automata characterize the regular tree

languages [Comon et al. 2008].

Since our SSPG model supports unranked, unordered branching, the generalization of tree

automata to unranked, unordered trees [Carme et al. 2004; Cristau et al. 2005] is relevant to the

design of our unordered join. Courcelle [Courcelle 1989] employs a general algebraic approach

that works for various structures, including unordered trees, which requires the update function

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

37:28 Rajeev Alur, Caleb Stanford, and Christopher Watson

to satisfy a commutativity property (see Definition 8, p. 117-118). A different approach is to use

expressive logics for transition formulas based on the number of occurrences of states, often a

variant of Presburger arithmetic [Dal Zilio and Lugiez 2003; Niehren and Podelski 1993]. Multitree

automata [Lugiez 2005] are a representative model in this family; however, the expressive logical

formulas go beyond MSO-definable properties, for example being able to express whether a node

has an equal number of 𝑎s and 𝑏s as children. To our knowledge, the study of counting complexity

and its relation to determinism is new to our work.

The semantics of graded 𝜇-calculus is often defined over trees [Bárcenas et al. 2015; Kupferman

et al. 2002]. As shown in Section 7.2, when interpreted over SSPGs, graded 𝜇-calculus is expressively

equivalent to the regular SSPG languages. Over general labeled transition systems, non-graded

𝜇-calculus is expressively equivalent to the bisimulation-invariant fragment of MSO [Janin and

Walukiewicz 1996], and graded 𝜇-calculus is expressively equivalent to the unwinding-invariant

fragment of MSO [Janin and Lenzi 2001] (Theorem 3.1, attributed to [Walukiewicz 1996]).

Traces. Mazurkiewicz traces [Mazurkiewicz 1986] are a related model of a partially ordered set of

events, and automata and logics have been studied over traces [Diekert and Métivier 1997; Diekert

and Rozenberg 1995], giving rise to regular languages of traces. In trace theory, the ordering (edges)

on elements is derived from the vertex labels via a dependence relation 𝐷 ⊆ Σ × Σ, whereas we
study automata over graphs where the vertex labels are independent of the edges. Unlike traces,

series-parallel graphs enforce a hierarchical structure. For example, the graph {1, 2, 3, 4} with labels

𝑎, 𝑎, 𝑏, 𝑏 and edges 1 → 3, 1 → 4, 2 → 3, 2 → 4 is definable as a trace but cannot occur in a

series-parallel graph.

DataWords. Finally, a data word is an element of (Σ×𝐷)∗, where Σ is a finite alphabet of labels and

𝐷 is a potentially infinite data domain. There exist many formalisms to describe properties of strings

over infinite alphabets (some of which treat the simpler case where words are drawn from 𝐷∗
) [Alur

and Černý 2011; Björklund and Schwentick 2010; Bojańczyk et al. 2006; Demri and Lazić 2009;

Kaminski and Francez 1994; Neven et al. 2004; Shemesh and Francez 1994] (see [Segoufin 2006] for a

survey). Data words are relevant for processing key-based parallel data: to a first approximation, the

data word automata introduced by Bojańczyk et al. [2006] work in two passes: first, by relabeling

the data word using a finite-state transducer, and second, checking whether the projection onto

each key 𝑑 ∈ 𝐷 present in the data word matches a regular language. One way to encode a data

word as an SSPG is to combine different keys using unordered parallelism, as suggested by the

example in Section 4 (where the keys are taxi IDs). Rigorously comparing and unifying these two

approaches would be an interesting direction for future work.

ACKNOWLEDGMENTS
We would like to thank Mikołaj Bojańczyk and Alexander Rabinovich for helpful discussions, and

the anonymous reviewers for their feedback. This material is based upon work supported by the

National Science Foundation under award CCF 1763514.

REFERENCES
Rajeev Alur, Phillip Hilliard, Zachary G Ives, Konstantinos Kallas, Konstantinos Mamouras, Filip Niksic, Caleb Stanford,

Val Tannen, and Anton Xue. 2021. Synchronization schemas. In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems. 1–18. https://doi.org/10.1145/3452021.3458317

Rajeev Alur and Parthasarathy Madhusudan. 2004. Visibly pushdown languages. In Proceedings of the thirty-sixth annual

ACM symposium on Theory of computing. 202–211. https://doi.org/10.1145/1007352.1007390

Rajeev Alur and P. Madhusudan. 2009. Adding Nesting Structure to Words. J. ACM 56, 3, Article 16 (may 2009), 43 pages.

https://doi.org/10.1145/1516512.1516518

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

https://doi.org/10.1145/3452021.3458317
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1516512.1516518

A Robust Theory of Series Parallel Graphs 37:29

Rajeev Alur and Pavol Černý. 2011. Streaming Transducers for Algorithmic Verification of Single-Pass List-Processing

Programs. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(Austin, Texas, USA) (POPL ’11). Association for Computing Machinery, New York, NY, USA, 599–610. https://doi.org/

10.1145/1926385.1926454

Roberto Amadini. 2021. A survey on string constraint solving. ACM Computing Surveys (CSUR) 55, 1 (2021), 1–38.

https://doi.org/10.1145/3484198

Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2003. CQL: A language for continuous queries over streams and

relations. In International Workshop on Database Programming Languages. Springer, 1–19. https://doi.org/10.1007/978-3-

540-24607-7_1

Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL continuous query language: semantic foundations and

query execution. The VLDB Journal 15, 2 (2006), 121–142. https://doi.org/10.1007/s00778-004-0147-z

Michael A Arbib and Yehoshafat Give’on. 1968. Algebra automata I: Parallel programming as a prolegomena to the categorical

approach. Information and Control 12, 4 (1968), 331–345. https://doi.org/10.1016/S0019-9958(68)90374-4

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. 2002. Models and issues in data stream

systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.

1–16. https://doi.org/10.1145/543613.543615

Brenda S Baker. 1978. Tree transducers and tree languages. Information and Control 37, 3 (1978), 241–266. https:

//doi.org/10.1016/S0019-9958(78)90538-7

Everardo Bárcenas, Edgard Benítez-Guerrero, and Jesús Lavalle. 2015. On the Model Checking of the Graded 𝜇-calculus on

Trees. In Mexican International Conference on Artificial Intelligence. Springer, 178–189. https://doi.org/10.1007/978-3-319-

27060-9_14

Hans Bekić. 1984. Definable operations in general algebras, and the theory of automata and flowcharts. Springer Berlin

Heidelberg, Berlin, Heidelberg, 30–55. https://doi.org/10.1007/BFb0048939

Henrik Björklund and Thomas Schwentick. 2010. On notions of regularity for data languages. Theoretical Computer Science

411, 4-5 (2010), 702–715. https://doi.org/10.1007/978-3-540-74240-1_9

Mikołaj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David. 2006. Two-variable logic on words

with data. In 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06). IEEE, 7–16. https://doi.org/10.1109/

LICS.2006.51

Symeon Bozapalidis and Antonios Kalampakas. 2008. Graph automata. Theoretical Computer Science 393, 1-3 (2008), 147–165.

https://doi.org/j.tcs.2007.11.022

Julian C. Bradfield and Igor Walukiewicz. 2018. The mu-calculus and Model Checking. In Handbook of Model Checking,

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Springer, 871–919. https://doi.org/

10.1007/978-3-319-10575-8_26

Julien Carme, Joachim Niehren, and Marc Tommasi. 2004. Querying unranked trees with stepwise tree automata. In

International Conference on Rewriting Techniques and Applications. Springer, 105–118. https://doi.org/10.1007/978-3-540-

25979-4_8

Carl Chapman and Kathryn T Stolee. 2016. Exploring regular expression usage and context in Python. In Proceedings of the

25th International Symposium on Software Testing and Analysis. 282–293. https://doi.org/10.1145/2931037.2931073

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof Löding, Sophie Tison, and Marc

Tommasi. 2008. Tree Automata Techniques and Applications. 262 pages. https://hal.inria.fr/hal-03367725

Bruno Courcelle. 1989. On recognizable sets and tree automata. In Algebraic Techniques. Elsevier, 93–126. https:

//doi.org/10.1016/B978-0-12-046370-1.50009-7

Bruno Courcelle. 1990. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and

Computation 85, 1 (1990), 12–75. https://doi.org/10.1016/0890-5401(90)90043-H

Julien Cristau, Christof Löding, and Wolfgang Thomas. 2005. Deterministic automata on unranked trees. In International

Symposium on Fundamentals of Computation Theory. Springer, 68–79. https://doi.org/10.1007/11537311_7

Silvano Dal Zilio and Denis Lugiez. 2003. XML schema, tree logic and sheaves automata. In International Conference on

Rewriting Techniques and Applications. Springer, 246–263. https://doi.org/10.1007/s00200-006-0016-7

Loris D’Antoni and Margus Veanes. 2021. Automata modulo theories. Commun. ACM 64, 5 (2021), 86–95. https:

//doi.org/10.1145/3419404

Stéphane Demri and Ranko Lazić. 2009. LTL with the freeze quantifier and register automata. ACM Transactions on

Computational Logic (TOCL) 10, 3 (2009), 1–30. https://doi.org/10.1145/1507244.1507246

Volker Diekert and Yves Métivier. 1997. Partial commutation and traces. In Handbook of formal languages. Springer, 457–533.

https://doi.org/10.1007/978-3-642-59126-6_8

Volker Diekert and Grzegorz Rozenberg. 1995. The book of traces. World scientific. https://doi.org/10.1142/2563

Rayna Dimitrova and Rupak Majumdar. 2018. Reachability Analysis of Reversal-Bounded Automata on Series—Parallel

Graphs. Acta Inf. 55, 2 (mar 2018), 153–189. https://doi.org/10.1007/s00236-016-0290-1

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/3484198
https://doi.org/10.1007/978-3-540-24607-7_1
https://doi.org/10.1007/978-3-540-24607-7_1
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1016/S0019-9958(68)90374-4
https://doi.org/10.1145/543613.543615
https://doi.org/10.1016/S0019-9958(78)90538-7
https://doi.org/10.1016/S0019-9958(78)90538-7
https://doi.org/10.1007/978-3-319-27060-9_14
https://doi.org/10.1007/978-3-319-27060-9_14
https://doi.org/10.1007/BFb0048939
https://doi.org/10.1007/978-3-540-74240-1_9
https://doi.org/10.1109/LICS.2006.51
https://doi.org/10.1109/LICS.2006.51
https://doi.org/j.tcs.2007.11.022
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-540-25979-4_8
https://doi.org/10.1007/978-3-540-25979-4_8
https://doi.org/10.1145/2931037.2931073
https://hal.inria.fr/hal-03367725
https://doi.org/10.1016/B978-0-12-046370-1.50009-7
https://doi.org/10.1016/B978-0-12-046370-1.50009-7
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/11537311_7
https://doi.org/10.1007/s00200-006-0016-7
https://doi.org/10.1145/3419404
https://doi.org/10.1145/3419404
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1007/978-3-642-59126-6_8
https://doi.org/10.1142/2563
https://doi.org/10.1007/s00236-016-0290-1

37:30 Rajeev Alur, Caleb Stanford, and Christopher Watson

John Doner. 1970. Tree acceptors and some of their applications. J. Comput. System Sci. 4, 5 (1970), 406–451. https:

//doi.org/10.1016/S0022-0000(70)80041-1

Frank Drewes, Hans-Joerg Kreowski, and Annegret Habel. 1997. Hyperedge replacement graph grammars. 95–162. https:

//doi.org/10.1142/9789812384720_0002

Loris D’Antoni and Margus Veanes. 2017. The power of symbolic automata and transducers. In International Conference on

Computer Aided Verification. Springer, 47–67. https://doi.org/10.1007/978-3-319-63387-9_3

Joost Engelfriet. 2015. Tree Automata and Tree Grammars. CoRR abs/1510.02036 (2015), 80 pages. arXiv:1510.02036

http://arxiv.org/abs/1510.02036

Ferenc Gécseg and Magnus Steinby. 1997. Tree languages. In Handbook of formal languages. Springer, 1–68. https:

//doi.org/10.1007/978-3-642-59126-6_1

Buğra Gedik. 2014. Partitioning functions for stateful data parallelism in stream processing. The VLDB Journal 23, 4 (2014),

517–539. https://doi.org/10.1007/s00778-013-0335-9

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. ACM Sigplan Notices 46,

1 (2011), 317–330. https://doi.org/10.1145/1926385.1926423

Hossein Hojjat, Philipp Rümmer, and Ali Shamakhi. 2019. On strings in software model checking. In Asian Symposium on

Programming Languages and Systems. Springer, 19–30. https://doi.org/10.1007/978-3-030-34175-6_2

John E. Hopcroft and Richard M. Karp. 1973. An 𝑛5/2 Algorithm for Maximum Matchings in Bipartite Graphs. SIAM J.

Comput. 2, 4 (1973), 225–231. https://doi.org/10.1137/0202019 arXiv:https://doi.org/10.1137/0202019

D. Janin and G. Lenzi. 2001. Relating levels of the mu-calculus hierarchy and levels of the monadic hierarchy. In Proceedings

16th Annual IEEE Symposium on Logic in Computer Science. 347–356. https://doi.org/10.1109/LICS.2001.932510

David Janin and Igor Walukiewicz. 1996. On the expressive completeness of the propositional mu-calculus with respect to

monadic second order logic. In CONCUR ’96: Concurrency Theory, Ugo Montanari and Vladimiro Sassone (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 263–277. https://doi.org/10.1007/3-540-61604-7_60

A. B. Kahn. 1962. Topological Sorting of Large Networks. Commun. ACM 5, 11 (nov 1962), 558–562. https://doi.org/10.

1145/368996.369025

Konstantinos Kallas, Filip Niksic, Caleb Stanford, and Rajeev Alur. 2022. Stream processing with dependency-guided

synchronization. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

1–16. https://doi.org/10.1145/3503221.3508413

Tsutomu Kamimura and Giora Slutzki. 1981a. Parallel and two-way automata on directed ordered acyclic graphs. Information

and Control 49, 1 (1981), 10–51. https://doi.org/10.1016/S0019-9958(81)90438-1

Tsutomu Kamimura and Giora Slutzki. 1981b. Transductions of dags and trees. Mathematical systems theory 15, 1 (1981),

225–249. https://doi.org/10.1007/BF01786981

Michael Kaminski and Nissim Francez. 1994. Finite-memory automata. Theoretical Computer Science 134, 2 (1994), 329–363.

https://doi.org/10.1016/0304-3975(94)90242-9

Dexter Kozen. 1983. Results on the propositional 𝜇-calculus. Theoretical Computer Science 27, 3 (1983), 333–354. https:

//doi.org/10.1016/0304-3975(82)90125-6 Special Issue Ninth International Colloquium on Automata, Languages and

Programming (ICALP) Aarhus, Summer 1982.

Orna Kupferman, Ulrike Sattler, and Moshe Y Vardi. 2002. The complexity of the graded 𝜇-calculus. In International

Conference on Automated Deduction. Springer, 423–437. https://doi.org/10.1007/3-540-45620-1_34

Dietrich Kuske. 2000. Infinite series-parallel posets: logic and languages. In International Colloquium on Automata, Languages,

and Programming. Springer, 648–662. https://doi.org/10.1007/3-540-45022-X_55

Kamal Lodaya and Pascal Weil. 1998. Series-parallel posets: algebra, automata and languages. In Annual Symposium on

Theoretical Aspects of Computer Science. Springer, 555–565. https://doi.org/10.1007/BFb0028590

Kamal Lodaya and Pascal Weil. 2000. Series–parallel languages and the bounded-width property. Theoretical Computer

Science 237, 1-2 (2000), 347–380. https://doi.org/10.1016/S0304-3975(00)00031-1

Denis Lugiez. 2005. Multitree automata that count. Theoretical Computer Science 333, 1-2 (2005), 225–263. https://doi.org/j.

tcs.2004.10.023

Konstantinos Mamouras, Caleb Stanford, Rajeev Alur, Zachary G Ives, and Val Tannen. 2019. Data-trace types for distributed

stream processing systems. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 670–685. https://doi.org/10.1145/3314221.3314580

Antoni Mazurkiewicz. 1986. Trace theory. In Advanced course on Petri nets. Springer, 278–324. https://doi.org/10.1007/3-

540-17906-2_30

Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. 2013. Naiad: a timely

dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. 439–455. https:

//doi.org/10.1145/2517349.2522738

Derek G Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul Barham, and Martin Abadi. 2016. Incremental,

iterative data processing with timely dataflow. Commun. ACM 59, 10 (2016), 75–83. https://doi.org/10.1145/2983551

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

https://doi.org/10.1016/S0022-0000(70)80041-1
https://doi.org/10.1016/S0022-0000(70)80041-1
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1007/978-3-319-63387-9_3
https://arxiv.org/abs/1510.02036
http://arxiv.org/abs/1510.02036
https://doi.org/10.1007/978-3-642-59126-6_1
https://doi.org/10.1007/978-3-642-59126-6_1
https://doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1007/978-3-030-34175-6_2
https://doi.org/10.1137/0202019
https://arxiv.org/abs/https://doi.org/10.1137/0202019
https://doi.org/10.1109/LICS.2001.932510
https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/3503221.3508413
https://doi.org/10.1016/S0019-9958(81)90438-1
https://doi.org/10.1007/BF01786981
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/3-540-45620-1_34
https://doi.org/10.1007/3-540-45022-X_55
https://doi.org/10.1007/BFb0028590
https://doi.org/10.1016/S0304-3975(00)00031-1
https://doi.org/j.tcs.2004.10.023
https://doi.org/j.tcs.2004.10.023
https://doi.org/10.1145/3314221.3314580
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2983551

A Robust Theory of Series Parallel Graphs 37:31

Frank Neven, Thomas Schwentick, and Victor Vianu. 2004. Finite state machines for strings over infinite alphabets. ACM

Transactions on Computational Logic (TOCL) 5, 3 (2004), 403–435. https://doi.org/10.1145/1013560.1013562

Joachim Niehren and Andreas Podelski. 1993. Feature automata and recognizable sets of feature trees. In Colloquium on

Trees in Algebra and Programming. Springer, 356–375. https://doi.org/10.1007/3-540-56610-4_76

Fabian Reiter. 2015. Distributed graph automata. In 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

IEEE, 192–201. https://doi.org/10.1109/LICS.2015.27

Patrick M Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid types. In Proceedings of the 29th ACM SIGPLAN Conference

on Programming Language Design and Implementation. 159–169. https://doi.org/10.1145/1375581.1375602

Luc Segoufin. 2006. Automata and logics for words and trees over an infinite alphabet. In International Workshop on Computer

Science Logic. Springer, 41–57. https://doi.org/10.1007/11874683_3

Ambuj Shatdal and Jeffrey F Naughton. 1995. Adaptive parallel aggregation algorithms. Acm Sigmod Record 24, 2 (1995),

104–114. https://doi.org/10.1145/223784.223801

Yael Shemesh and Nissim Francez. 1994. Finite-state unification automata and relational languages. Information and

Computation 114, 2 (1994), 192–213. https://doi.org/10.1006/inco.1994.1085

James W. Thatcher and Jesse B. Wright. 1968. Generalized finite automata theory with an application to a decision problem

of second-order logic. Mathematical systems theory 2, 1 (1968), 57–81. https://doi.org/10.1007/BF01691346

Wolfgang Thomas. 1990. Infinite trees and automaton definable relations over𝜔-words. In Annual Symposium on Theoretical

Aspects of Computer Science. Springer, 263–277. https://doi.org/10.1016/0304-3975(92)90090-3

Wolfgang Thomas. 1997. Elements of an automata theory over partial orders. In Partial order methods in verification. Vol. 29.

American Mathematical Society, 25–40. https://doi.org/10.1090/dimacs/029/02

Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003. Exploiting punctuation semantics in continuous

data streams. IEEE Transactions on Knowledge and Data Engineering 15, 3 (2003), 555–568. https://doi.org/10.1109/TKDE.

2003.1198390

Igor Walukiewicz. 1996. Monadic second order logic on tree-like structures. In STACS 96, Claude Puech and Rüdiger Reischuk

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 399–413.

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 37. Publication date: January 2023.

https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1007/3-540-56610-4_76
https://doi.org/10.1109/LICS.2015.27
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1007/11874683_3
https://doi.org/10.1145/223784.223801
https://doi.org/10.1006/inco.1994.1085
https://doi.org/10.1007/BF01691346
https://doi.org/10.1016/0304-3975(92)90090-3
https://doi.org/10.1090/dimacs/029/02
https://doi.org/10.1109/TKDE.2003.1198390
https://doi.org/10.1109/TKDE.2003.1198390

	Abstract
	1 Introduction
	2 Synchronized Series Parallel Graphs
	3 SSPG Automata
	3.1 Syntax and Semantics
	3.2 Deterministic SSPGA
	3.3 Examples
	3.4 Design Choices
	3.5 Special Cases

	4 Application to Data Streams
	4.1 SSPGs as Distributed Data Dtreams
	4.2 SSPGAs as Temporal Integrity Constraints
	4.3 Decidability as Type Checking
	4.4 Limitations

	5 Automata constructions
	5.1 Determinization
	5.2 Constant Counting Complexity
	5.3 Closure Properties

	6 Decision Problems
	7 Logical Characterizations
	7.1 MSO Characterization
	7.2 Graded mu-calculus Characterization

	8 Related Work
	Acknowledgments
	References

